1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819
|
#############################################################################
##
#W csetgrp.gi GAP library Alexander Hulpke
##
#H @(#)$Id: csetgrp.gi,v 4.54.2.1 2006/05/18 19:37:44 gap Exp $
##
#Y Copyright (C) 1996, Lehrstuhl D fuer Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St. Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## This file contains the generic operations for cosets.
##
Revision.csetgrp_gi:=
"@(#)$Id: csetgrp.gi,v 4.54.2.1 2006/05/18 19:37:44 gap Exp $";
#############################################################################
##
#R IsRightCosetDefaultRep
##
DeclareRepresentation( "IsRightCosetDefaultRep",
IsComponentObjectRep and IsAttributeStoringRep and IsRightCoset, [] );
#############################################################################
##
#M Enumerator
##
BindGlobal( "NumberElement_RightCoset", function( enum, elm )
return Position( enum!.groupEnumerator, elm / enum!.representative, 0 );
end );
BindGlobal( "ElementNumber_RightCoset", function( enum, pos )
return enum!.groupEnumerator[ pos ] * enum!.representative;
end );
InstallMethod( Enumerator,
"for a right coset",
[ IsRightCoset ],
function( C )
local enum;
enum:= EnumeratorByFunctions( C, rec(
NumberElement := NumberElement_RightCoset,
ElementNumber := ElementNumber_RightCoset,
groupEnumerator := Enumerator( ActingDomain( C ) ),
representative := Representative( C ) ) );
SetLength( enum, Size( ActingDomain( C ) ) );
return enum;
end );
#############################################################################
##
#R IsDoubleCosetDefaultRep
##
DeclareRepresentation( "IsDoubleCosetDefaultRep",
IsComponentObjectRep and IsAttributeStoringRep and IsDoubleCoset, [] );
InstallMethod(ComputedAscendingChains,"init",true,[IsGroup],0,G->[]);
#############################################################################
##
#F AscendingChain(<G>,<U>) . . . . . . . chain of subgroups G=G_1>...>G_n=U
##
InstallGlobalFunction( AscendingChain, function(G,U)
local c,i;
if not IsSubgroup(G,U) then
Error("not subgroup");
fi;
c:=ComputedAscendingChains(U);
i:=PositionProperty(c,i->i[1]=G);
if i=fail then
i:=AscendingChainOp(G,U);
Add(c,[G,i]);
return i;
else
return c[i][2];
fi;
end );
#############################################################################
##
## IntermediateGroup(<G>,<U>) . . . . . . . . . subgroup of G containing U
##
## This routine tries to find a subgroup E of G, such that G>E>U. If U is
## maximal, it returns fail. This is done by finding minimal blocks for
## the operation of G on the Right Cosets of U.
##
InstallGlobalFunction( IntermediateGroup, function(G,U)
local o,b,img,G1;
if U=G then
return fail;
fi;
if IsPermGroup(G) and Length(GeneratorsOfGroup(G))>3 then
G1:=Group(SmallGeneratingSet(G));
if HasSize(G) then
SetSize(G1,Size(G));
fi;
else
G1:=G;
fi;
o:=ActionHomomorphism(G,RightTransversal(G,U),OnRight,"surjective");
img:=Range(o);
b:=Blocks(img,MovedPoints(img));
if Length(b)=1 then
return fail;
else
b:=StabilizerOfBlockNC(img,First(b,i->1 in i));
b:=PreImage(o,b);
return b;
fi;
end );
#############################################################################
##
#F RefinedChain(<G>,<c>) . . . . . . . . . . . . . . . . refine chain links
##
InstallGlobalFunction(RefinedChain,function(G,cc)
local bound,a,b,c,cnt,r,i,j,bb,normalStep,gens,hardlimit;
bound:=(10*LogInt(Size(G),10)+1)*Maximum(Factors(Size(G)));
bound:=Minimum(bound,20000);
c:=ValueOption("refineIndex");
if IsInt(c) then
bound:=c;
fi;
c:=ValueOption("refineChainActionLimit");
if IsInt(c) then
hardlimit:=c;
else
hardlimit:=20000;
fi;
c:=[];
for i in [2..Length(cc)] do
Add(c,cc[i-1]);
if Index(cc[i],cc[i-1]) > bound then
a:=AsSubgroup(Parent(cc[i]),cc[i-1]);
while Index(cc[i],a)>bound do
# try extension via normalizer
b:=Normalizer(cc[i],a);
if Size(b)>Size(a) then
# extension by normalizer surely is a normal step
normalStep:=true;
bb:=b;
else
bb:=cc[i];
normalStep:=false;
b:=Centralizer(cc[i],Centre(a));
fi;
if Size(b)=Size(a) or Index(b,a)>bound then
cnt:=8+2^(LogInt(Index(bb,a),5)+2);
repeat
if Index(bb,a)<hardlimit and cnt<20 then
# if random failed: do hard work
b:=IntermediateGroup(bb,a);
if b=fail then
b:=bb;
fi;
cnt:=0;
else
# larger indices may take more tests...
Info(InfoCoset,1,"Random");
repeat
r:=Random(bb);
until not(r in a);
if normalStep then
# NC is safe
b:=ClosureSubgroupNC(a,r);
else
# self normalizing subgroup: thus every element not in <a>
# will surely map one generator out
j:=0;
gens:=GeneratorsOfGroup(a);
repeat
j:=j+1;
until not(gens[j]^r in a);
r:=gens[j]^r;
# NC is safe
b:=ClosureSubgroupNC(a,r);
fi;
if Size(b)<Size(bb) then
bb:=b;
Info(InfoCoset,1,"improvement found");
fi;
cnt:=cnt-1;
fi;
until Index(bb,a)<=bound or cnt<1;
fi;
a:=b;
if a<>cc[i] then #not upper level
Add(c,a);
fi;
od;
fi;
od;
Add(c,cc[Length(cc)]);
a:=c[Length(c)];
for i in [Length(c)-1,Length(c)-2..1] do
#enforce parent relations
if not HasParent(c[i]) then
SetParent(c[i],a);
a:=c[i];
else
a:=AsSubgroup(a,c[i]);
c[i]:=a;
fi;
od;
return c;
end);
InstallMethod( AscendingChainOp, "generic", IsIdenticalObj, [IsGroup,IsGroup],0,
function(G,U)
return RefinedChain(G,[U,G]);
end);
InstallMethod(DoubleCoset,"generic",IsCollsElmsColls,
[IsGroup,IsObject,IsGroup],0,
function(U,g,V)
local d,fam;
fam:=FamilyObj(U);
if not IsBound(fam!.doubleCosetsDefaultType) then
fam!.doubleCosetsDefaultType:=NewType(fam,IsDoubleCosetDefaultRep
and HasLeftActingGroup and HasRightActingGroup
and HasRepresentative);
fi;
d:=rec();
ObjectifyWithAttributes(d,fam!.doubleCosetsDefaultType,
LeftActingGroup,U,RightActingGroup,V,Representative,g);
return d;
end);
InstallOtherMethod(DoubleCoset,"with size",true,
[IsGroup,IsObject,IsGroup,IsPosInt],0,
function(U,g,V,sz)
local d,fam;
fam:=FamilyObj(U);
if not IsBound(fam!.doubleCosetsDefaultSizeType) then
fam!.doubleCosetsDefaultSizeType:=NewType(fam,IsDoubleCosetDefaultRep
and HasSize and HasIsFinite and IsFinite
and HasLeftActingGroup and HasRightActingGroup
and HasRepresentative);
fi;
d:=rec();
ObjectifyWithAttributes(d,fam!.doubleCosetsDefaultSizeType,
LeftActingGroup,U,RightActingGroup,V,Representative,g,
Size,sz);
return d;
end);
InstallMethod(\=,"DoubleCosets",IsIdenticalObj,[IsDoubleCoset,IsDoubleCoset],0,
function(a,b)
return LeftActingGroup(a)=LeftActingGroup(b) and
RightActingGroup(a)=RightActingGroup(b) and
RepresentativesContainedRightCosets(a)
=RepresentativesContainedRightCosets(b);
end);
InstallMethod(PrintObj,"DoubleCoset",true,[IsDoubleCoset],0,
function(d)
Print("DoubleCoset(",LeftActingGroup(d),",",Representative(d),",",
RightActingGroup(d),")");
end);
InstallMethod(Random,"double coset",true,[IsDoubleCoset],0,
function(d)
return Random(LeftActingGroup(d))*Representative(d)
*Random(RightActingGroup(d));
end);
InstallMethod(PseudoRandom,"double coset",true,[IsDoubleCoset],0,
function(d)
return PseudoRandom(LeftActingGroup(d))*Representative(d)
*PseudoRandom(RightActingGroup(d));
end);
InstallMethod(RepresentativesContainedRightCosets,"generic",true,
[IsDoubleCoset],0,
function(c)
local u,v,o,i,j,img;
u:=LeftActingGroup(c);
v:=RightActingGroup(c);
o:=[CanonicalRightCosetElement(u,Representative(c))];
# orbit alg.
for i in o do
for j in GeneratorsOfGroup(v) do
img:=CanonicalRightCosetElement(u,i*j);
if not img in o then
Add(o,img);
fi;
od;
od;
return Set(o);
end);
InstallMethod(\in,"double coset",IsElmsColls,
[IsMultiplicativeElementWithInverse,IsDoubleCoset],0,
function(e,d)
return CanonicalRightCosetElement(LeftActingGroup(d),e)
in RepresentativesContainedRightCosets(d);
end);
InstallMethod(Size,"double coset",true,[IsDoubleCoset],0,
function(d)
return
Size(LeftActingGroup(d))*Length(RepresentativesContainedRightCosets(d));
end);
InstallMethod(AsList,"double coset",true,[IsDoubleCoset],0,
function(d)
local l;
l:=Union(List(RepresentativesContainedRightCosets(d),
i->RightCoset(LeftActingGroup(d),i)));
return l;
end);
#############################################################################
##
#M Enumerator
##
BindGlobal( "ElementNumber_DoubleCoset", function( enum, pos )
pos:= pos-1;
return enum!.leftgroupEnumerator[ ( pos mod enum!.leftsize )+1 ]
* enum!.rightCosetReps[ QuoInt( pos, enum!.leftsize )+1 ];
end );
BindGlobal( "NumberElement_DoubleCoset", function( enum, elm )
local p;
p:= First( [ 1 .. Length( enum!.rightCosetReps ) ],
i -> elm / enum!.rightCosetReps[i] in enum!.leftgroup );
p:= (p-1) * enum!.leftsize
+ Position( enum!.leftgroupEnumerator,
elm / enum!.rightCosetReps[p], 0 );
return p;
end );
InstallMethod( Enumerator,
"for a double coset",
[ IsDoubleCoset ],
d -> EnumeratorByFunctions( d, rec(
NumberElement := NumberElement_DoubleCoset,
ElementNumber := ElementNumber_DoubleCoset,
leftgroupEnumerator := Enumerator( LeftActingGroup( d ) ),
leftgroup := LeftActingGroup( d ),
leftsize := Size( LeftActingGroup( d ) ),
rightCosetReps := RepresentativesContainedRightCosets( d ) ) ) );
RightCosetCanonicalRepresentativeDeterminator :=
function(U,a)
return [CanonicalRightCosetElement(U,a)];
end;
InstallMethod(RightCoset,"generic",IsCollsElms,
[IsGroup,IsObject],0,
function(U,g)
local d,fam;
# noch tests...
fam:=FamilyObj(U);
if not IsBound(fam!.rightCosetsDefaultType) then
fam!.rightCosetsDefaultType:=NewType(fam,IsRightCosetDefaultRep and
HasActingDomain and HasFunctionAction and HasRepresentative and
HasCanonicalRepresentativeDeterminatorOfExternalSet);
fi;
d:=rec();
ObjectifyWithAttributes(d,fam!.rightCosetsDefaultType,
ActingDomain,U,FunctionAction,OnLeftInverse,Representative,g,
CanonicalRepresentativeDeterminatorOfExternalSet,
RightCosetCanonicalRepresentativeDeterminator);
return d;
end);
InstallMethod(RightCoset,"use subgroup size",IsCollsElms,
[IsGroup and HasSize,IsObject],0,
function(U,g)
local d,fam;
# noch tests...
fam:=FamilyObj(U);
if not IsBound(fam!.rightCosetsDefaultSizeType) then
fam!.rightCosetsDefaultSizeType:=NewType(fam,IsRightCosetDefaultRep and
HasActingDomain and HasFunctionAction and HasRepresentative and
HasSize and HasCanonicalRepresentativeDeterminatorOfExternalSet);
fi;
d:=rec();
ObjectifyWithAttributes(d,fam!.rightCosetsDefaultSizeType,
ActingDomain,U,FunctionAction,OnLeftInverse,Representative,g,
Size,Size(U),CanonicalRepresentativeDeterminatorOfExternalSet,
RightCosetCanonicalRepresentativeDeterminator);
return d;
end);
InstallMethod(PrintObj,"RightCoset",true,[IsRightCoset],0,
function(d)
Print("RightCoset(",ActingDomain(d),",",Representative(d),")");
end);
InstallMethod(ViewObj,"RightCoset",true,[IsRightCoset],0,
function(d)
Print("RightCoset(",ActingDomain(d),",",Representative(d),")");
end);
InstallMethod(Random,"RightCoset",true,[IsRightCoset],0,
function(d)
return Random(ActingDomain(d))*Representative(d);
end);
InstallMethod(PseudoRandom,"RightCoset",true,[IsRightCoset],0,
function(d)
return PseudoRandom(ActingDomain(d))*Representative(d);
end);
InstallMethod(\=,"RightCosets",IsIdenticalObj,[IsRightCoset,IsRightCoset],0,
function(a,b)
return ActingDomain(a)=ActingDomain(b) and
Representative(a)/Representative(b) in ActingDomain(a);
end);
InstallOtherMethod(\*,"RightCosets",IsCollsElms,
[IsRightCoset,IsMultiplicativeElementWithInverse],0,
function(a,g)
return RightCoset( ActingDomain( a ), Representative( a ) * g );
end);
# disabled because of comparison incompatibilities
#InstallMethod(\<,"RightCosets",IsIdenticalObj,[IsRightCoset,IsRightCoset],0,
#function(a,b)
# # this comparison is *NOT* necessarily equivalent to a comparison of the
# # element lists!
# if ActingDomain(a)<>ActingDomain(b) then
# return ActingDomain(a)<ActingDomain(b);
# fi;
# return CanonicalRepresentativeOfExternalSet(a)
# <CanonicalRepresentativeOfExternalSet(b);
#end);
InstallGlobalFunction( DoubleCosets, function(G,U,V)
if not IsSubset(G,U) and IsSubset(G,V) then
Error("not contained");
fi;
return DoubleCosetsNC(G,U,V);
end );
InstallGlobalFunction( RightCosets, function(G,U)
if not IsSubset(G,U) then
Error("not contained");
fi;
return RightCosetsNC(G,U);
end );
InstallMethod(CanonicalRightCosetElement,"generic",IsCollsElms,
[IsGroup,IsObject],0,
function(U,e)
local l;
l:=List(AsList(U),i->i*e);
return Minimum(l);
end);
#############################################################################
##
#F CalcDoubleCosets( <G>, <A>, <B> ) . . . . . . . . . double cosets: A\G/B
##
## DoubleCosets routine using an
## ascending chain of subgroups from A to G, using the fact, that a
## double coset is an union of right cosets
##
BindGlobal("CalcDoubleCosets",function(G,a,b)
local c,a1,a2,r,s,t,rg,st,i,j,nr,o,oi,nu,step,p,pinv,img,rep,
sifa,stabs,nstab,lst,compst,e,cnt,rt,flip,dcs,unten,normal,
lstgens,lstgensop,siz,ps,blist,bsz,indx,ep,hom;
# if a is small and b large, compute cosets b\G/a and take inverses of the
# representatives: Since we compute stabilizers in b and a chain down to
# a, this is notably faster
if ValueOption("noflip")<>true and 3*Size(a)<2*Size(b) then
c:=b;
b:=a;
a:=c;
flip:=true;
Info(InfoCoset,1,"DoubleCosetFlip");
else
flip:=false;
fi;
if Index(G,a)=1 then
return [[One(G),Size(G)]];
fi;
# compute ascending chain and refine if necessarily (we anyhow need action
# on cosets).
c:=AscendingChain(G,a:refineChainActionLimit:=Index(G,a));
r:=[One(G)];
stabs:=[b];
dcs:=[];
for step in [1..Length(c)-1] do
a1:=c[Length(c)-step+1];
a2:=c[Length(c)-step];
normal:=IsNormal(a1,a2);
indx:=Index(a1,a2);
if normal then
Info(InfoCoset,1,"Normal Step :",indx);
else
Info(InfoCoset,1,"Step :",indx);
fi;
# is this the last step?
unten:=step=Length(c)-1;
# shall we compute stabilizers?
compst:=(not unten) or normal;
t:=RightTransversal(a1,a2);
# is it worth using a permutation representation?
if Length(r)>4 and Length(t)<50000 and IsPermGroup(G) and not normal then
# in this case, we can beneficially compute the action once and then use
# homomorphism methods to obtain the permutation image
Info(InfoCoset,2,"using perm action");
hom:=Subgroup(G,SmallGeneratingSet(a1));
hom:=ActionHomomorphism(hom,t,OnRight);
else
hom:=fail;
fi;
s:=[];
nr:=[];
nstab:=[];
for nu in [1..Length(r)] do
Info(InfoCoset,4,"number ",nu);
lst:=stabs[nu];
sifa:=Size(a2)*Size(b)/Size(lst);
p:=r[nu];
pinv:=p^-1;
blist:=BlistList([1..indx],[]);
bsz:=indx;
# if a2 is normal in a1, the stabilizer is the same for all Orbits of
# right cosets. Thus we need to compute only one, and will receive all
# others by simple calculations afterwards
if normal then
cnt:=1;
else
cnt:=indx;
fi;
while bsz>0 and cnt>0 do
cnt:=cnt-1;
# compute orbit and stabilizers for the next step
# own Orbitalgorithm and stabilizer computation
ps:=Position(blist,false);
blist[ps]:=true;
bsz:=bsz-1;
if hom=fail then
# no homomorphism -- act on cosets
e:=t[ps];
o:=[e];
oi:=[];
oi[ps]:=1; # reverse index
ep:=e*p;
Add(nr,ep);
lstgens:=GeneratorsOfGroup(lst);
if Length(lstgens)>2 then
lstgens:=SmallGeneratingSet(lst);
fi;
lstgensop:=List(lstgens,i->i^pinv); # conjugate generators: operation
# is on cosets a.p; we keep original cosets: Ua.p.g/p, this
# corresponds to conjugate operation
rep := [ One(b) ];
st := TrivialSubgroup(G);
i:=1;
while i<=Length(o) do
for j in [1..Length(lstgens)] do
img:=o[i]*lstgensop[j];
ps:=PositionCanonical(t,img);
if blist[ps] then
if compst then
# known image
#NC is safe (initializing as TrivialSubgroup(G)
st := ClosureSubgroupNC(st,rep[i]*lstgens[j]/rep[oi[ps]]);
fi;
else
# new image
blist[ps]:=true;
bsz:=bsz-1;
Add(o,img);
Add(rep,rep[i]*lstgens[j]);
oi[ps]:=Length(o);
fi;
od;
i:=i+1;
od;
else
# homomorphism -- act on points
e:=t[ps];
o:=[ps];
oi:=[];
oi[ps]:=1; # reverse index
ep:=e*p;
Add(nr,ep);
lstgens:=GeneratorsOfGroup(lst);
if Length(lstgens)>2 then
lstgens:=SmallGeneratingSet(lst);
fi;
lstgensop:=List(lstgens,i->Image(hom,i^pinv));
# conjugate generators: operation
# is on cosets a.p; we keep original cosets: Ua.p.g/p, this
# corresponds to conjugate operation
rep := [ One(b) ];
st := TrivialSubgroup(G);
i:=1;
while i<=Length(o) do
for j in [1..Length(lstgens)] do
ps:=o[i]^lstgensop[j];
if blist[ps] then
if compst then
# known image
#NC is safe (initializing as TrivialSubgroup(G)
st := ClosureSubgroupNC(st,rep[i]*lstgens[j]/rep[oi[ps]]);
fi;
else
# new image
blist[ps]:=true;
bsz:=bsz-1;
Add(o,ps);
Add(rep,rep[i]*lstgens[j]);
oi[ps]:=Length(o);
fi;
od;
i:=i+1;
od;
fi;
siz:=sifa*Length(o); #order
if unten then
if flip then
Add(dcs,[ep^(-1),siz]);
else
Add(dcs,[ep,siz]);
fi;
fi;
if compst then
Add(nstab,st);
fi;
od;
if normal then
# in the normal case, we can obtain the other orbits easily via
# the orbit theorem (same stabilizer)
rt:=RightTransversal(lst,st);
Assert(1,Length(rt)=Length(o));
while bsz>0 do
ps:=Position(blist,false);
e:=t[ps];
blist[ps]:=true;
ep:=e*p;
Add(nr,ep);
Add(nstab,st);
if unten then
if flip then
Add(dcs,[ep^(-1),siz]);
else
Add(dcs,[ep,siz]);
fi;
fi;
# tick off the orbit
for i in rt do
ps:=PositionCanonical(t,e*p*i/p);
blist[ps]:=true;
od;
bsz:=bsz-Length(rt);
od;
fi;
od;
stabs:=nstab;
r:=nr;
Info(InfoCoset,3,Length(r)," double cosets so far.");
od;
if AssertionLevel()>1 then
# test
bsz:=Size(G);
t:=[];
if flip then
# flip back
c:=a;
a:=b;
b:=c;
fi;
for i in dcs do
bsz:=bsz-i[2];
r:=CanonicalRightCosetElement(a,i[1]);
if AssertionLevel()>0 and
ForAny(t,j->r in RepresentativesContainedRightCosets(j)) then
Error("duplicate!");
fi;
r:=DoubleCoset(a,i[1],b);
if AssertionLevel()>0 and Size(r)<>i[2] then
Error("single size!");
fi;
Add(t,r);
od;
if bsz<>0 then
Error("number");
fi;
fi;
return dcs;
end);
InstallMethod(DoubleCosetsNC,"generic",true,
[IsGroup,IsGroup,IsGroup],0,
function(G,U,V)
return List(DoubleCosetRepsAndSizes(G,U,V),i->DoubleCoset(U,i[1],V,i[2]));
end);
InstallMethod(DoubleCosetRepsAndSizes,"generic",true,
[IsGroup,IsGroup,IsGroup],0,
CalcDoubleCosets);
#############################################################################
##
#M RightTransversal generic
##
DeclareRepresentation( "IsRightTransversalViaCosetsRep",
IsRightTransversalRep,
[ "group", "subgroup", "cosets" ] );
InstallMethod(RightTransversalOp, "generic, use RightCosets",
IsIdenticalObj,[IsGroup,IsGroup],0,
function(G,U)
return Objectify( NewType( FamilyObj( G ),
IsRightTransversalViaCosetsRep and IsList and
IsDuplicateFreeList and IsAttributeStoringRep ),
rec( group := G,
subgroup := U,
cosets:=RightCosets(G,U)));
end);
InstallMethod( \[\], "rt via coset", true,
[ IsList and IsRightTransversalViaCosetsRep, IsPosInt ], 0,
function( cs, num )
return Representative(cs!.cosets[num]);
end );
InstallMethod( PositionCanonical,"rt via coset", IsCollsElms,
[ IsList and IsRightTransversalViaCosetsRep,
IsMultiplicativeElementWithInverse ], 0,
function( cs, elm )
return First([1..Index(cs!.group,cs!.subgroup)],i->elm in cs!.cosets[i]);
end );
InstallMethod(RightCosetsNC,"generic: orbit",IsIdenticalObj,
[IsGroup,IsGroup],0,
function(G,U)
return Orbit(G,RightCoset(U,One(U)),OnRight);
end);
# methods for groups which have a better 'RightTransversal' function
InstallMethod(RightCosetsNC,"perm groups, use RightTransversal",IsIdenticalObj,
[IsPermGroup,IsPermGroup],0,
function(G,U)
return List(RightTransversal(G,U),i->RightCoset(U,i));
end);
InstallMethod(RightCosetsNC,"pc groups, use RightTransversal",IsIdenticalObj,
[IsPcGroup,IsPcGroup],0,
function(G,U)
return List(RightTransversal(G,U),i->RightCoset(U,i));
end);
#############################################################################
##
#M RightTransversalOp( <G>, <U> ) . . . . . . . . . . . . . for trivial <U>
##
InstallMethod( RightTransversalOp,
"for trivial subgroup, call `EnumeratorSorted' for the big group",
IsIdenticalObj,
[ IsGroup, IsGroup and IsTrivial ],
100, # the method for pc groups has this offset but shall be avoided
#T really?
function( G, U )
if IsSubgroupFpGroup(G) then
TryNextMethod(); # this method is bad for the fp groups.
fi;
return EnumeratorSorted( G );
end );
#############################################################################
##
#E
|