File: csetgrp.gi

package info (click to toggle)
gap 4r4p9-1
  • links: PTS
  • area: main
  • in suites: etch, etch-m68k
  • size: 27,120 kB
  • ctags: 6,735
  • sloc: ansic: 96,692; sh: 3,254; makefile: 319; perl: 11; awk: 6
file content (819 lines) | stat: -rw-r--r-- 22,105 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
#############################################################################
##
#W  csetgrp.gi                      GAP library              Alexander Hulpke
##
#H  @(#)$Id: csetgrp.gi,v 4.54.2.1 2006/05/18 19:37:44 gap Exp $
##
#Y  Copyright (C)  1996,  Lehrstuhl D fuer Mathematik,  RWTH Aachen,  Germany
#Y  (C) 1998 School Math and Comp. Sci., University of St.  Andrews, Scotland
#Y  Copyright (C) 2002 The GAP Group
##
##  This file contains the generic operations for cosets.
##
Revision.csetgrp_gi:=
  "@(#)$Id: csetgrp.gi,v 4.54.2.1 2006/05/18 19:37:44 gap Exp $";


#############################################################################
##
#R  IsRightCosetDefaultRep
##
DeclareRepresentation( "IsRightCosetDefaultRep",
    IsComponentObjectRep and IsAttributeStoringRep and IsRightCoset, [] );


#############################################################################
##
#M  Enumerator
##
BindGlobal( "NumberElement_RightCoset", function( enum, elm )
    return Position( enum!.groupEnumerator, elm / enum!.representative, 0 );
end );

BindGlobal( "ElementNumber_RightCoset", function( enum, pos )
    return enum!.groupEnumerator[ pos ] * enum!.representative;
end );

InstallMethod( Enumerator,
    "for a right coset",
    [ IsRightCoset ],
    function( C )
    local enum;

    enum:= EnumeratorByFunctions( C, rec(
               NumberElement     := NumberElement_RightCoset,
               ElementNumber     := ElementNumber_RightCoset,

               groupEnumerator   := Enumerator( ActingDomain( C ) ),
               representative    := Representative( C ) ) );

    SetLength( enum, Size( ActingDomain( C ) ) );

    return enum;
end );


#############################################################################
##
#R  IsDoubleCosetDefaultRep
##
DeclareRepresentation( "IsDoubleCosetDefaultRep",
  IsComponentObjectRep and IsAttributeStoringRep and IsDoubleCoset, [] );

InstallMethod(ComputedAscendingChains,"init",true,[IsGroup],0,G->[]);

#############################################################################
##
#F  AscendingChain(<G>,<U>) . . . . . . .  chain of subgroups G=G_1>...>G_n=U
##
InstallGlobalFunction( AscendingChain, function(G,U)
local c,i;
  if not IsSubgroup(G,U) then
    Error("not subgroup");
  fi;
  c:=ComputedAscendingChains(U);
  i:=PositionProperty(c,i->i[1]=G);
  if i=fail then
    i:=AscendingChainOp(G,U);
    Add(c,[G,i]);
    return i;
  else
    return c[i][2];
  fi;
end );

#############################################################################
##
##  IntermediateGroup(<G>,<U>)  . . . . . . . . . subgroup of G containing U
##
##  This routine tries to find a subgroup E of G, such that G>E>U. If U is
##  maximal, it returns fail. This is done by finding minimal blocks for
##  the operation of G on the Right Cosets of U.
##
InstallGlobalFunction( IntermediateGroup, function(G,U)
local o,b,img,G1;

  if U=G then
    return fail;
  fi;
  if IsPermGroup(G) and Length(GeneratorsOfGroup(G))>3 then
    G1:=Group(SmallGeneratingSet(G));
    if HasSize(G) then
      SetSize(G1,Size(G));
    fi;
  else
    G1:=G;
  fi;
  o:=ActionHomomorphism(G,RightTransversal(G,U),OnRight,"surjective");
  img:=Range(o);
  b:=Blocks(img,MovedPoints(img));
  if Length(b)=1 then
    return fail;
  else
    b:=StabilizerOfBlockNC(img,First(b,i->1 in i));
    b:=PreImage(o,b);
    return b;
  fi;
end );

#############################################################################
##
#F  RefinedChain(<G>,<c>) . . . . . . . . . . . . . . . .  refine chain links
##
InstallGlobalFunction(RefinedChain,function(G,cc)
local bound,a,b,c,cnt,r,i,j,bb,normalStep,gens,hardlimit;
  bound:=(10*LogInt(Size(G),10)+1)*Maximum(Factors(Size(G)));
  bound:=Minimum(bound,20000);
  c:=ValueOption("refineIndex");
  if IsInt(c) then
    bound:=c;
  fi;
  c:=ValueOption("refineChainActionLimit");
  if IsInt(c) then
    hardlimit:=c;
  else
    hardlimit:=20000;
  fi;

  c:=[];  
  for i in [2..Length(cc)] do  
    Add(c,cc[i-1]);
    if Index(cc[i],cc[i-1]) > bound then
      a:=AsSubgroup(Parent(cc[i]),cc[i-1]);
      while Index(cc[i],a)>bound do
	# try extension via normalizer
	b:=Normalizer(cc[i],a);
	if Size(b)>Size(a) then
	 # extension by normalizer surely is a normal step
	  normalStep:=true;
	  bb:=b;
        else
	  bb:=cc[i];
	  normalStep:=false;
	  b:=Centralizer(cc[i],Centre(a));
        fi;
	if Size(b)=Size(a) or Index(b,a)>bound then
	  cnt:=8+2^(LogInt(Index(bb,a),5)+2);
	  repeat
	    if Index(bb,a)<hardlimit and cnt<20 then
	      # if random failed: do hard work
	      b:=IntermediateGroup(bb,a);
	      if b=fail then
		b:=bb;
	      fi;
	      cnt:=0;
	    else
	    # larger indices may take more tests...
	      Info(InfoCoset,1,"Random");
	      repeat
		r:=Random(bb);
	      until not(r in a);
	      if normalStep then
		# NC is safe
		b:=ClosureSubgroupNC(a,r);
              else
		# self normalizing subgroup: thus every element not in <a>
     		# will surely map one generator out
	        j:=0;
		gens:=GeneratorsOfGroup(a);
		repeat
		  j:=j+1;
                until not(gens[j]^r in a);
		r:=gens[j]^r;

		# NC is safe
		b:=ClosureSubgroupNC(a,r);
	      fi;
	      if Size(b)<Size(bb) then
		bb:=b;
		Info(InfoCoset,1,"improvement found");
	      fi;
	      cnt:=cnt-1;
	    fi;
	  until Index(bb,a)<=bound or cnt<1;
	fi;
	a:=b;
	if a<>cc[i] then #not upper level
	  Add(c,a);
	fi;
      od;
    fi;
  od;
  Add(c,cc[Length(cc)]);
  a:=c[Length(c)];
  for i in [Length(c)-1,Length(c)-2..1] do
    #enforce parent relations
    if not HasParent(c[i]) then
      SetParent(c[i],a);
      a:=c[i];
    else
      a:=AsSubgroup(a,c[i]);
      c[i]:=a;
    fi;
  od;
  return c;
end);

InstallMethod( AscendingChainOp, "generic", IsIdenticalObj, [IsGroup,IsGroup],0,
function(G,U)
  return RefinedChain(G,[U,G]);
end);

InstallMethod(DoubleCoset,"generic",IsCollsElmsColls,
  [IsGroup,IsObject,IsGroup],0,
function(U,g,V)
local d,fam;
  fam:=FamilyObj(U);
  if not IsBound(fam!.doubleCosetsDefaultType) then
    fam!.doubleCosetsDefaultType:=NewType(fam,IsDoubleCosetDefaultRep
          and HasLeftActingGroup and HasRightActingGroup
	  and HasRepresentative);
  fi;
  d:=rec();
  ObjectifyWithAttributes(d,fam!.doubleCosetsDefaultType,
    LeftActingGroup,U,RightActingGroup,V,Representative,g);
  return d;
end);


InstallOtherMethod(DoubleCoset,"with size",true,
  [IsGroup,IsObject,IsGroup,IsPosInt],0,
function(U,g,V,sz)
local d,fam;
  fam:=FamilyObj(U);
  if not IsBound(fam!.doubleCosetsDefaultSizeType) then
    fam!.doubleCosetsDefaultSizeType:=NewType(fam,IsDoubleCosetDefaultRep
	  and HasSize and HasIsFinite and IsFinite
          and HasLeftActingGroup and HasRightActingGroup
	  and HasRepresentative);
  fi;
  d:=rec();
  ObjectifyWithAttributes(d,fam!.doubleCosetsDefaultSizeType,
    LeftActingGroup,U,RightActingGroup,V,Representative,g,
    Size,sz);
  return d;
end);

InstallMethod(\=,"DoubleCosets",IsIdenticalObj,[IsDoubleCoset,IsDoubleCoset],0,
function(a,b)
   return LeftActingGroup(a)=LeftActingGroup(b) and
          RightActingGroup(a)=RightActingGroup(b) and
          RepresentativesContainedRightCosets(a)
	  =RepresentativesContainedRightCosets(b);
end);

InstallMethod(PrintObj,"DoubleCoset",true,[IsDoubleCoset],0,
function(d)
  Print("DoubleCoset(",LeftActingGroup(d),",",Representative(d),",",
        RightActingGroup(d),")");
end);

InstallMethod(Random,"double coset",true,[IsDoubleCoset],0,
function(d)
  return Random(LeftActingGroup(d))*Representative(d)
         *Random(RightActingGroup(d));
end);

InstallMethod(PseudoRandom,"double coset",true,[IsDoubleCoset],0,
function(d)
  return PseudoRandom(LeftActingGroup(d))*Representative(d)
         *PseudoRandom(RightActingGroup(d));
end);

InstallMethod(RepresentativesContainedRightCosets,"generic",true,
  [IsDoubleCoset],0,
function(c)
local u,v,o,i,j,img;
  u:=LeftActingGroup(c);
  v:=RightActingGroup(c);
  o:=[CanonicalRightCosetElement(u,Representative(c))];
  # orbit alg.
  for i in o do
    for j in GeneratorsOfGroup(v) do
      img:=CanonicalRightCosetElement(u,i*j);
      if not img in o then
        Add(o,img);
      fi;
    od;
  od;
  return Set(o);
end);

InstallMethod(\in,"double coset",IsElmsColls,
  [IsMultiplicativeElementWithInverse,IsDoubleCoset],0,
function(e,d)
  return CanonicalRightCosetElement(LeftActingGroup(d),e)
        in RepresentativesContainedRightCosets(d);
end);

InstallMethod(Size,"double coset",true,[IsDoubleCoset],0,
function(d)
  return
  Size(LeftActingGroup(d))*Length(RepresentativesContainedRightCosets(d));
end);

InstallMethod(AsList,"double coset",true,[IsDoubleCoset],0,
function(d)
local l;
  l:=Union(List(RepresentativesContainedRightCosets(d),
                    i->RightCoset(LeftActingGroup(d),i)));
  return l;
end);

#############################################################################
##
#M  Enumerator
##
BindGlobal( "ElementNumber_DoubleCoset", function( enum, pos )
    pos:= pos-1;
    return enum!.leftgroupEnumerator[ ( pos mod enum!.leftsize )+1 ] 
           * enum!.rightCosetReps[ QuoInt( pos, enum!.leftsize )+1 ];
end );

BindGlobal( "NumberElement_DoubleCoset", function( enum, elm )
    local p;

    p:= First( [ 1 .. Length( enum!.rightCosetReps ) ],
               i -> elm / enum!.rightCosetReps[i] in enum!.leftgroup );
    p:= (p-1) * enum!.leftsize
        + Position( enum!.leftgroupEnumerator,
                    elm / enum!.rightCosetReps[p], 0 );
    return p; 
end );

InstallMethod( Enumerator,
    "for a double coset",
    [ IsDoubleCoset ],
    d -> EnumeratorByFunctions( d, rec(
             NumberElement     := NumberElement_DoubleCoset,
             ElementNumber     := ElementNumber_DoubleCoset,

             leftgroupEnumerator := Enumerator( LeftActingGroup( d ) ),
             leftgroup := LeftActingGroup( d ),
             leftsize := Size( LeftActingGroup( d ) ),
             rightCosetReps := RepresentativesContainedRightCosets( d ) ) ) );


RightCosetCanonicalRepresentativeDeterminator := 
function(U,a)
  return [CanonicalRightCosetElement(U,a)];
end;

InstallMethod(RightCoset,"generic",IsCollsElms,
  [IsGroup,IsObject],0,
function(U,g)
local d,fam;
  # noch tests...

  fam:=FamilyObj(U);
  if not IsBound(fam!.rightCosetsDefaultType) then
    fam!.rightCosetsDefaultType:=NewType(fam,IsRightCosetDefaultRep and
          HasActingDomain and HasFunctionAction and HasRepresentative and
	  HasCanonicalRepresentativeDeterminatorOfExternalSet);
  fi;

  d:=rec();
  ObjectifyWithAttributes(d,fam!.rightCosetsDefaultType,
    ActingDomain,U,FunctionAction,OnLeftInverse,Representative,g,
    CanonicalRepresentativeDeterminatorOfExternalSet,
    RightCosetCanonicalRepresentativeDeterminator);
  return d;
end);

InstallMethod(RightCoset,"use subgroup size",IsCollsElms,
  [IsGroup and HasSize,IsObject],0,
function(U,g)
local d,fam;
  # noch tests...

  fam:=FamilyObj(U);
  if not IsBound(fam!.rightCosetsDefaultSizeType) then
    fam!.rightCosetsDefaultSizeType:=NewType(fam,IsRightCosetDefaultRep and
          HasActingDomain and HasFunctionAction and HasRepresentative and
	  HasSize and HasCanonicalRepresentativeDeterminatorOfExternalSet);
  fi;

  d:=rec();
  ObjectifyWithAttributes(d,fam!.rightCosetsDefaultSizeType,
    ActingDomain,U,FunctionAction,OnLeftInverse,Representative,g,
    Size,Size(U),CanonicalRepresentativeDeterminatorOfExternalSet,
    RightCosetCanonicalRepresentativeDeterminator);
  return d;
end);

InstallMethod(PrintObj,"RightCoset",true,[IsRightCoset],0,
function(d)
  Print("RightCoset(",ActingDomain(d),",",Representative(d),")");
end);

InstallMethod(ViewObj,"RightCoset",true,[IsRightCoset],0,
function(d)
  Print("RightCoset(",ActingDomain(d),",",Representative(d),")");
end);

InstallMethod(Random,"RightCoset",true,[IsRightCoset],0,
function(d)
  return Random(ActingDomain(d))*Representative(d);
end);

InstallMethod(PseudoRandom,"RightCoset",true,[IsRightCoset],0,
function(d)
  return PseudoRandom(ActingDomain(d))*Representative(d);
end);

InstallMethod(\=,"RightCosets",IsIdenticalObj,[IsRightCoset,IsRightCoset],0,
function(a,b)
  return ActingDomain(a)=ActingDomain(b) and
         Representative(a)/Representative(b) in ActingDomain(a);
end);

InstallOtherMethod(\*,"RightCosets",IsCollsElms,
        [IsRightCoset,IsMultiplicativeElementWithInverse],0,
function(a,g)
    return RightCoset( ActingDomain( a ), Representative( a ) * g );
end);

# disabled because of comparison incompatibilities
#InstallMethod(\<,"RightCosets",IsIdenticalObj,[IsRightCoset,IsRightCoset],0,
#function(a,b)
#  # this comparison is *NOT* necessarily equivalent to a comparison of the 
#  # element lists!
#  if ActingDomain(a)<>ActingDomain(b) then
#    return ActingDomain(a)<ActingDomain(b);
#  fi;
#  return CanonicalRepresentativeOfExternalSet(a)
#         <CanonicalRepresentativeOfExternalSet(b);
#end);

InstallGlobalFunction( DoubleCosets, function(G,U,V)
  if not IsSubset(G,U) and IsSubset(G,V) then
    Error("not contained");
  fi;
  return DoubleCosetsNC(G,U,V);
end );

InstallGlobalFunction( RightCosets, function(G,U)
  if not IsSubset(G,U) then
    Error("not contained");
  fi;
  return RightCosetsNC(G,U);
end );

InstallMethod(CanonicalRightCosetElement,"generic",IsCollsElms,
  [IsGroup,IsObject],0,
function(U,e)
local l;
  l:=List(AsList(U),i->i*e); 
  return Minimum(l);
end);

#############################################################################
##
#F  CalcDoubleCosets( <G>, <A>, <B> ) . . . . . . . . .  double cosets: A\G/B
## 
##  DoubleCosets routine using an
##  ascending chain of subgroups from A to G, using the fact, that a
##  double coset is an union of right cosets
##
BindGlobal("CalcDoubleCosets",function(G,a,b)
local c,a1,a2,r,s,t,rg,st,i,j,nr,o,oi,nu,step,p,pinv,img,rep,
      sifa,stabs,nstab,lst,compst,e,cnt,rt,flip,dcs,unten,normal,
      lstgens,lstgensop,siz,ps,blist,bsz,indx,ep,hom;

  # if a is small and b large, compute cosets b\G/a and take inverses of the
  # representatives: Since we compute stabilizers in b and a chain down to
  # a, this is notably faster
  if ValueOption("noflip")<>true and 3*Size(a)<2*Size(b) then
    c:=b;
    b:=a;
    a:=c;
    flip:=true;
    Info(InfoCoset,1,"DoubleCosetFlip");
  else
    flip:=false;
  fi;

  if Index(G,a)=1 then
    return [[One(G),Size(G)]];
  fi;

  # compute ascending chain and refine if necessarily (we anyhow need action
  # on cosets).
  c:=AscendingChain(G,a:refineChainActionLimit:=Index(G,a));
  r:=[One(G)];
  stabs:=[b];
  dcs:=[];
  for step in [1..Length(c)-1] do
    a1:=c[Length(c)-step+1];
    a2:=c[Length(c)-step];
    normal:=IsNormal(a1,a2);
    indx:=Index(a1,a2);
    if normal then
      Info(InfoCoset,1,"Normal Step :",indx);
    else
      Info(InfoCoset,1,"Step :",indx);
    fi;
    

    # is this the last step?
    unten:=step=Length(c)-1;

    # shall we compute stabilizers?
    compst:=(not unten) or normal;

    t:=RightTransversal(a1,a2);

    # is it worth using a permutation representation?
    if Length(r)>4 and Length(t)<50000 and IsPermGroup(G) and not normal then
      # in this case, we can beneficially compute the action once and then use
      # homomorphism methods to obtain the permutation image
      Info(InfoCoset,2,"using perm action");
      hom:=Subgroup(G,SmallGeneratingSet(a1));
      hom:=ActionHomomorphism(hom,t,OnRight);
    else
      hom:=fail;
    fi;

    s:=[];
    nr:=[];
    nstab:=[];
    for nu in [1..Length(r)] do
      Info(InfoCoset,4,"number ",nu);
      lst:=stabs[nu];
      sifa:=Size(a2)*Size(b)/Size(lst); 
      p:=r[nu];
      pinv:=p^-1;
      blist:=BlistList([1..indx],[]);
      bsz:=indx;

      # if a2 is normal in a1, the stabilizer is the same for all Orbits of
      # right cosets. Thus we need to compute only one, and will receive all
      # others by simple calculations afterwards

      if normal then
	cnt:=1;
      else
	cnt:=indx;
      fi;

      while bsz>0 and cnt>0 do
	cnt:=cnt-1;

	# compute orbit and stabilizers for the next step
        # own Orbitalgorithm and stabilizer computation

	ps:=Position(blist,false);
	blist[ps]:=true;
	bsz:=bsz-1;

	if hom=fail then
	  # no homomorphism -- act on cosets
	  e:=t[ps];
	  o:=[e];
	  oi:=[];
	  oi[ps]:=1; # reverse index
	  ep:=e*p;
	  Add(nr,ep);

	  lstgens:=GeneratorsOfGroup(lst);
	  if Length(lstgens)>2 then
	    lstgens:=SmallGeneratingSet(lst);
	  fi;
	  lstgensop:=List(lstgens,i->i^pinv); # conjugate generators: operation
	  # is on cosets a.p; we keep original cosets: Ua.p.g/p, this
	  # corresponds to conjugate operation
	  rep := [ One(b) ];
	  st := TrivialSubgroup(G);
	  i:=1;
	  while i<=Length(o) do
	    for j in [1..Length(lstgens)] do
	      img:=o[i]*lstgensop[j];
	      ps:=PositionCanonical(t,img);
	      if blist[ps] then
		if compst then
		  # known image
		  #NC is safe (initializing as TrivialSubgroup(G)
		  st := ClosureSubgroupNC(st,rep[i]*lstgens[j]/rep[oi[ps]]);
		fi;
	      else
		# new image
		blist[ps]:=true;
		bsz:=bsz-1;
		Add(o,img);
		Add(rep,rep[i]*lstgens[j]);
		oi[ps]:=Length(o);
	      fi;
	    od;
	    i:=i+1;
	  od;
	else
	  # homomorphism -- act on points
	  e:=t[ps];
	  o:=[ps];
	  oi:=[];
	  oi[ps]:=1; # reverse index
	  ep:=e*p;
	  Add(nr,ep);

	  lstgens:=GeneratorsOfGroup(lst);
	  if Length(lstgens)>2 then
	    lstgens:=SmallGeneratingSet(lst);
	  fi;
	  lstgensop:=List(lstgens,i->Image(hom,i^pinv));
	  # conjugate generators: operation
	  # is on cosets a.p; we keep original cosets: Ua.p.g/p, this
	  # corresponds to conjugate operation
	  rep := [ One(b) ];
	  st := TrivialSubgroup(G);
	  i:=1;
	  while i<=Length(o) do
	    for j in [1..Length(lstgens)] do
	      ps:=o[i]^lstgensop[j];
	      if blist[ps] then
		if compst then
		  # known image
		  #NC is safe (initializing as TrivialSubgroup(G)
		  st := ClosureSubgroupNC(st,rep[i]*lstgens[j]/rep[oi[ps]]);
		fi;
	      else
		# new image
		blist[ps]:=true;
		bsz:=bsz-1;
		Add(o,ps);
		Add(rep,rep[i]*lstgens[j]);
		oi[ps]:=Length(o);
	      fi;
	    od;
	    i:=i+1;
	  od;
	fi;

	siz:=sifa*Length(o); #order

        if unten then
	  if flip then
	    Add(dcs,[ep^(-1),siz]);
	  else
	    Add(dcs,[ep,siz]);
	  fi;
	fi;

	if compst then
	  Add(nstab,st);
	fi;

      od;

      if normal then
	# in the normal case, we can obtain the other orbits easily via
	# the orbit theorem (same stabilizer)
	rt:=RightTransversal(lst,st);
	Assert(1,Length(rt)=Length(o));

	while bsz>0 do
	  ps:=Position(blist,false);
	  e:=t[ps];
	  blist[ps]:=true;
	  ep:=e*p;
	  Add(nr,ep);
	  Add(nstab,st);

	  if unten then
	    if flip then
	      Add(dcs,[ep^(-1),siz]);
	    else
	      Add(dcs,[ep,siz]);
	    fi;
	  fi;

	  # tick off the orbit
	  for i in rt do
	    ps:=PositionCanonical(t,e*p*i/p);
	    blist[ps]:=true;
	  od;
	  bsz:=bsz-Length(rt);
	od;

      fi;

    od;
    stabs:=nstab;
    r:=nr;
    Info(InfoCoset,3,Length(r)," double cosets so far.");
  od;

  if AssertionLevel()>1 then
    # test
    bsz:=Size(G);
    t:=[];
    if flip then
      # flip back
      c:=a;
      a:=b;
      b:=c;
    fi;
    for i in dcs do
      bsz:=bsz-i[2];
      r:=CanonicalRightCosetElement(a,i[1]);
      if AssertionLevel()>0 and 
	ForAny(t,j->r in RepresentativesContainedRightCosets(j)) then
	Error("duplicate!");
      fi;
      r:=DoubleCoset(a,i[1],b);
      if AssertionLevel()>0 and Size(r)<>i[2] then
	Error("single size!");
      fi;
      Add(t,r);
    od;
    if bsz<>0 then
      Error("number");
    fi;
  fi;

  return dcs;
end);

InstallMethod(DoubleCosetsNC,"generic",true,
  [IsGroup,IsGroup,IsGroup],0,
function(G,U,V)
  return List(DoubleCosetRepsAndSizes(G,U,V),i->DoubleCoset(U,i[1],V,i[2]));
end);

InstallMethod(DoubleCosetRepsAndSizes,"generic",true,
  [IsGroup,IsGroup,IsGroup],0,
  CalcDoubleCosets);

#############################################################################
##
#M  RightTransversal   generic
##
DeclareRepresentation( "IsRightTransversalViaCosetsRep",
    IsRightTransversalRep,
    [ "group", "subgroup", "cosets" ] );

InstallMethod(RightTransversalOp, "generic, use RightCosets",
  IsIdenticalObj,[IsGroup,IsGroup],0,
function(G,U)
  return Objectify( NewType( FamilyObj( G ),
		    IsRightTransversalViaCosetsRep and IsList and 
		    IsDuplicateFreeList and IsAttributeStoringRep ),
          rec( group := G,
            subgroup := U,
            cosets:=RightCosets(G,U)));
end);

InstallMethod( \[\], "rt via coset", true,
    [ IsList and IsRightTransversalViaCosetsRep, IsPosInt ], 0,
function( cs, num )
  return Representative(cs!.cosets[num]);
end );

InstallMethod( PositionCanonical,"rt via coset", IsCollsElms,
    [ IsList and IsRightTransversalViaCosetsRep,
    IsMultiplicativeElementWithInverse ], 0,
function( cs, elm )
  return First([1..Index(cs!.group,cs!.subgroup)],i->elm in cs!.cosets[i]);
end );

InstallMethod(RightCosetsNC,"generic: orbit",IsIdenticalObj,
  [IsGroup,IsGroup],0,
function(G,U)
  return Orbit(G,RightCoset(U,One(U)),OnRight);
end);

# methods for groups which have a better 'RightTransversal' function
InstallMethod(RightCosetsNC,"perm groups, use RightTransversal",IsIdenticalObj,
  [IsPermGroup,IsPermGroup],0,
function(G,U)
  return List(RightTransversal(G,U),i->RightCoset(U,i));
end);

InstallMethod(RightCosetsNC,"pc groups, use RightTransversal",IsIdenticalObj,
  [IsPcGroup,IsPcGroup],0,
function(G,U)
  return List(RightTransversal(G,U),i->RightCoset(U,i));
end);


#############################################################################
##
#M  RightTransversalOp( <G>, <U> )  . . . . . . . . . . . . . for trivial <U>
##
InstallMethod( RightTransversalOp,
    "for trivial subgroup, call `EnumeratorSorted' for the big group",
    IsIdenticalObj,
    [ IsGroup, IsGroup and IsTrivial ],
    100,   # the method for pc groups has this offset but shall be avoided
#T really?
function( G, U )
  if IsSubgroupFpGroup(G) then
    TryNextMethod(); # this method is bad for the fp groups.
  fi;
  return EnumeratorSorted( G );
end );


#############################################################################
##
#E