File: csetperm.gi

package info (click to toggle)
gap 4r4p9-1
  • links: PTS
  • area: main
  • in suites: etch, etch-m68k
  • size: 27,120 kB
  • ctags: 6,735
  • sloc: ansic: 96,692; sh: 3,254; makefile: 319; perl: 11; awk: 6
file content (80 lines) | stat: -rw-r--r-- 2,501 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
#############################################################################
##
#W  csetperm.gi                     GAP library              Alexander Hulpke
##
#H  @(#)$Id: csetperm.gi,v 4.12 2002/09/20 22:27:45 gap Exp $
##
#Y  Copyright (C)  1996,  Lehrstuhl D fuer Mathematik,  RWTH Aachen,  Germany
#Y  (C) 1998 School Math and Comp. Sci., University of St.  Andrews, Scotland
#Y  Copyright (C) 2002 The GAP Group
##
##  This file contains the operations for cosets of permutation groups
##
Revision.csetperm_gi:=
  "@(#)$Id: csetperm.gi,v 4.12 2002/09/20 22:27:45 gap Exp $";

InstallMethod( AscendingChainOp, "PermGroup", IsIdenticalObj,
  [IsPermGroup,IsPermGroup],0,
function(G,U)
local s,c,mp,o,i,step;
  s:=G;
  c:=[G];
  repeat
    mp:=MovedPoints(s);
    o:=ShallowCopy(OrbitsDomain(s,mp));
    Sort(o,function(a,b) return Length(a)<Length(b);end);
    i:=1;
    step:=false;
    while i<=Length(o) and step=false do
      if not IsTransitive(U,o[i]) then
	Info(InfoCoset,2,"AC: orbit");
	o:=ShallowCopy(OrbitsDomain(U,o[i]));
	Sort(o,function(a,b) return Length(a)<Length(b);end);
	s:=Stabilizer(s,Set(o[1]),OnSets);
	step:=true;
      elif Index(G,U)>NrMovedPoints(U) 
	  and IsPrimitive(s,o[i]) and not IsPrimitive(U,o[i]) then
	Info(InfoCoset,2,"AC: blocks");
	s:=Stabilizer(s,Set(List(MaximalBlocks(U,o[i]),Set)),
                      OnSetsDisjointSets);
	step:=true;
      else
	i:=i+1;
      fi;
    od;
    if step then
      Add(c,s);
    fi;
  until step=false or Index(s,U)=1; # we could not refine better
  if Index(s,U)>1 then
    Add(c,U);
  fi;
  if InfoLevel(InfoCoset)>1 then
    Print("Indices",List([1..Length(c)-1],i->Index(c[i],c[i+1])),"\n");
  fi;
  return RefinedChain(G,Reversed(c));
end);

InstallMethod(CanonicalRightCosetElement,"Perm",IsCollsElms,
  [IsPermGroup,IsPerm],0,
function(U,e)
  return MinimalElementCosetStabChain(MinimalStabChain(U),e);
end);

InstallMethod(\<,"RightCosets of perm group",IsIdenticalObj,
  [IsRightCoset and IsPermCollection,IsRightCoset and IsPermCollection],0,
function(a,b)
  # for permutation groups the canonical rep is the smallest element of the
  # coset
  if ActingDomain(a)<>ActingDomain(b) then
    return ActingDomain(a)<ActingDomain(b);
  fi;
  return CanonicalRepresentativeOfExternalSet(a)
         <CanonicalRepresentativeOfExternalSet(b);
end);


#############################################################################
##
#E  csetperm.gi . . . . . . . . . . . . . . . . . . . . . . . . . . ends here
##