File: factgrp.gd

package info (click to toggle)
gap 4r4p9-1
  • links: PTS
  • area: main
  • in suites: etch, etch-m68k
  • size: 27,120 kB
  • ctags: 6,735
  • sloc: ansic: 96,692; sh: 3,254; makefile: 319; perl: 11; awk: 6
file content (265 lines) | stat: -rw-r--r-- 12,215 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
#############################################################################
##
#W  factgrp.gd                      GAP library              Alexander Hulpke
##
#H  @(#)$Id: factgrp.gd,v 4.13 2002/04/15 10:04:39 sal Exp $
##
#Y  Copyright (C)  1997,  Lehrstuhl D fuer Mathematik,  RWTH Aachen,  Germany
#Y  (C) 1998 School Math and Comp. Sci., University of St.  Andrews, Scotland
#Y  Copyright (C) 2002 The GAP Group
##
##  This file contains the declarations of operations for factor group maps
##
Revision.factgrp_gd:=
  "@(#)$Id: factgrp.gd,v 4.13 2002/04/15 10:04:39 sal Exp $";

##
##  To implement new factor group methods, one does not need to deal with
##  most of the following operations (which are only used to cache known
##  homomorphisms and extend them to subdirect factors). Instead only methods
##  for the following three operations might need to be supplied:
##  If a suitable homomorphism cannot be found from the cached homomorphisms
##  pool, `NaturalHomomorphismByNormalSubgroupOp(<G>,<N>)' is called to
##  construct one.
##  The default method for `NaturalHomomorphismByNormalSubgroupOp' then uses
##  two other operations: `DoCheapActionImages' computes actions that come
##  naturally from a groups representation (for example permutation action
##  on orbits and blocks) and can be computed quickly. This is intended
##  as a first test to avoid hard work for homomorphisms that are easy to
##  get.
##  If this fails, `FindActionKernel' is called which will try to find some
##  action which will give a suitable homomorphism. (This can be very time
##  consuming.)
##  The existing methods seem to work reasonably well for permutation groups
##  and pc groups, for other kinds of groups it might be necessary to
##  implement completely new methods.
##  

#############################################################################
##
#O  DoCheapActionImages(<G>)
##
##  computes natural actions for <G> and stores the resulting
##  `NaturalHomomorphismByNormalSubgroup'. The type of the natural actions
##  varies with the representation of <G>, for permutation groups it are for
##  example constituent and block homomorphisms.
##  A method for `DoCheapActionImages' must register all found actions with
##  `AddNaturalHomomorphismsPool' so they become available.
##  
DeclareOperation("DoCheapActionImages",[IsGroup]);
DeclareSynonym("DoCheapOperationImages",DoCheapActionImages);


#############################################################################
##
#O  FindActionKernel( <G>, <N> )  . . . . . . . . . . . . . . . . local
##
##  This operation tries to find a suitable action for the group <G> such
##  that its kernel is <N>. This is used to construct faithful permutation
##  representations for the factor group.
##
DeclareOperation( "FindActionKernel",[IsGroup,IsGroup]);
DeclareSynonym( "FindOperationKernel",FindActionKernel);

#############################################################################
##
#V  InfoFactor
##
DeclareInfoClass("InfoFactor");

#############################################################################
##
#A  NaturalHomomorphismsPool(<G>)
##
## The `NaturalHomomorphismsPool' is a record which contains the following
## components:
##    `group' is the corresponding group.
##    `ker' is a list of normal subgroups, which defines the arrangements.
##          It is sorted.
##    `ops' is a list which gives the best know actions for each normal 
##          subgroup. Its entries are either Homomorphisms from G or
## 	 generator lists (G.generators images) or lists of integers. In the
## 	 latter case the factor is subdirect product of the factors with
## 	 the given numbers.
##    `cost' gives the difficulty for each actions (degree of permgroup). It
##           is used to check whether a new actions is better.
##    `lock' is a bitlist, which indicates whether certain actions are
## 	  locked. If this happens, a better new actions is not entered.
## 	  This allows a computation to access the pool several times and to
## 	  be guaranteed to be returned the same object. Usually a routine
## 	  initially locks and finally unlocks.
## 	  #AH probably one even would like to have a lock counter ?
##    `GopDone' indicates whether all `obvious' actions have been tried
##              already
##    `intersects' is a list of all intersections that have already been
##              formed.
##    `blocksdone' indicates if the actions already has been improved
##         using blocks
##    `in_code' can be set by the code to avoid addition of new actions
##              (and thus resorting)
DeclareAttribute("NaturalHomomorphismsPool",IsGroup,
                                         "mutable");

#############################################################################
##
#O  FactorCosetAction( <G>, <U>, [<N>] )  action on the right cosets Ug
##
##  This command computes the action of <G> on the right cosets of the
##  subgroup <U>. If the normal subgroup <N> is given, it is stored as kernel
##  of this action.
##
DeclareOperation( "FactorCosetAction", [IsGroup,IsGroup] );
DeclareSynonym( "FactorCosetOperation",FactorCosetAction);

#############################################################################
##
#F  ImproveActionDegreeByBlocks( <G>, <N> , <hom> [,forceblocks] )
#F  ImproveActionDegreeByBlocks( <G>, <N> , <U> [,forceblocks] )
##
##  In the first usage, <N> is a normal subgroup of <G> and <hom> a
##  homomorphism from <G> to a permutation group with kernel <N>. In the second
##  usage, <hom> is taken to be the action of <G> on the cosets of <U> by right
##  multiplication.
##  The function tries to find another homomorphism with the same kernel but
##  image group of smaller degree by looking for block systems of the image
##  group. An improved result is stored in the `NaturalHomomorphismsPool', the
##  function returns the degree of this image (or the degree of the original
##  image).
##  If the image degree is larger than 500, only one block system is tested by
##  standard. A test of all block systems is enforced by the optional boolean
##  parameter <forceblocks>
##
DeclareGlobalFunction( "ImproveActionDegreeByBlocks" );
DeclareSynonym( "ImproveOperationDegreeByBlocks",
                        ImproveActionDegreeByBlocks );

#############################################################################
##
#F  SmallerDegreePermutationRepresentation( <G> )
##
##  Let <G> be a permutation group that acts transitively
##  on its moved points.
##  `SmallerDegreePermutationRepresentation' tries to find a faithful
##  permutation representation of smaller degree.
##  The result is a group homomorphism onto a permutation group,
##  in the worst case this is the identity mapping on <G>.
##
##  Note that the result is not guaranteed to be a faithful permutation
##  representation of smallest degree,
##  or of smallest degree among the transitive permutation representations
##  of <G>.
##  Using {\GAP} interactively, one might be able to choose subgroups
##  of small index for which the cores intersect trivially;
##  in this case, the actions on the cosets of these subgroups give rise to
##  an intransitive permutation representation
##  the degree of which may be smaller than the original degree.
##
##  The methods used might involve the use of random elements and the
##  permutation representation (or even the degree of the representation) is
##  not guaranteed to be the same for different calls of
##  `SmallerDegreePermutationRepresentation'.
##
DeclareGlobalFunction( "SmallerDegreePermutationRepresentation" );


#############################################################################
##
#F  AddNaturalHomomorphismsPool(G,N,op[,cost[,blocksdone]])
##
##  This function stores a computed action of <G> with kernel <N> in the
##  `NaturalHomomorphismsPool' of <G>, unless a ``better'' action is already
##  known. <op> usually is a homomorphism of <G> with kernel <N>. It may also
##  be a subgroup of <G>, in which case the action of <G> on its cosets is
##  taken.
##  If the optional parameter <cost> is not given, <cost> is taken to be the
##  degree of the image representation (or 1 if the image is a pc group). This
##  <cost> is stored with the action to determine later whether another
##  action is ``better''.
##  The optional boolean parameter <blocksdone> indicates if set to true, that
##  all block systems of the image of <op> have already been computed and the
##  resulting (lower degree, but not necessarily faithful for $G/N$) actions
##  have been already considered. (Otherwise such a test may be done later by
##  `DoCheapActionImages'.)
##  The function internally re-sorts the list of normal subgroups to permit
##  binary search among them. If a new action is returns the re-sorting
##  permutation applied there. If returns `false' if a ``better'' action was
##  already known, it returns ``fail'' if this factor is locked.
##
DeclareGlobalFunction("AddNaturalHomomorphismsPool");


#############################################################################
##
#F  LockNaturalHomomorphismsPool(<G>,<N>)  . .  store flag to prohibit changes 
##
##  Calling this function stores a flag in the `NaturalHomomorphismsPool' of
##  <G> to prohibit it to store new (even better) faithful actions for $G/N$.
##  This can be used in algorithms to ensure that
##  `NaturalHomomorphismByNormalSubgroup(<G>,<N>)' will always return the same
##  mapping, even if in the meantime other homomorphisms are computed anew,
##  which -- as a side effect -- obtained a better action for $G/N$ which {\GAP}
##  normally would store.
##  The locking can be reverted by `UnlockNaturalHomomorphismsPool(<G>,<N>)'.
##
DeclareGlobalFunction("LockNaturalHomomorphismsPool");

#############################################################################
##
#F  UnlockNaturalHomomorphismsPool(<G>,<N>) .  clear flag to allow changes of
##
##  clears the flag set by `LockNaturalHomomorphismsPool(<G>,<N>)'.
##
DeclareGlobalFunction("UnlockNaturalHomomorphismsPool");

#############################################################################
##
#F  KnownNaturalHomomorphismsPool(<G>,<N>) . . .  check whether Hom is stored
##
##  This function tests whether an homomorphism for
##  `NaturalHomomorphismByNormalSubgroup(<G>,<N>)' is already known (or
##  computed trivially for $G=N$ or $N=\langle1\rangle$).
##
DeclareGlobalFunction("KnownNaturalHomomorphismsPool");

#############################################################################
##
#F  GetNaturalHomomorphismsPool(<G>,<N>) . . . get action for G/N if known
##
##  returns a `NaturalHomomorphismByNormalSubgroup(<G>,<N>)' if one is
##  stored already in the `NaturalHomomorphismsPool' of <G>.
##  (As the homomorphism may be stored by a ``recipe'' this command can
##  still take some time when called the first time.)
##
DeclareGlobalFunction("GetNaturalHomomorphismsPool");

#############################################################################
##
#F  DegreeNaturalHomomorphismsPool(<G>,<N>) degree for action for G/N 
##
##  returns the cost (see "AddNaturalHomomorphismsPool") of a stored action
##  for $G/N$ and fail if no such action is stored.
##
DeclareGlobalFunction("DegreeNaturalHomomorphismsPool");


#############################################################################
##
#F  CloseNaturalHomomorphismsPool(<G>[,<N>]) . . calc intersections of known
##
##  This command tries to build actions for (new) factor groups from the
##  already known actions in the `NaturalHomomorphismsPool(<G>)' by considering
##  intransitive representations for subdirect products. Any new or better
##  homomorphism obtained this way is stored (see
##  "AddNaturalHomomorphismsPool"). 
##  If the optional parameter <N> is given, only actions which have <N> in their
##  kernel are considered.
##  The function keeps track of already considered subdirect products, thus
##  there is no overhead in calling it several times.
##
DeclareGlobalFunction("CloseNaturalHomomorphismsPool");


#############################################################################
##
#E  factgrp.gd  . . . . . . . . . . . . . . . . . . . . . . . . . . ends here
##