File: factgrp.gi

package info (click to toggle)
gap 4r4p9-1
  • links: PTS
  • area: main
  • in suites: etch, etch-m68k
  • size: 27,120 kB
  • ctags: 6,735
  • sloc: ansic: 96,692; sh: 3,254; makefile: 319; perl: 11; awk: 6
file content (1064 lines) | stat: -rw-r--r-- 31,419 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
#############################################################################
##
#W  factgrp.gi                      GAP library              Alexander Hulpke
##
#H  @(#)$Id: factgrp.gi,v 4.52 2003/09/17 21:37:28 gap Exp $
##
#Y  Copyright (C)  1997,  Lehrstuhl D fuer Mathematik,  RWTH Aachen,  Germany
#Y  (C) 1998 School Math and Comp. Sci., University of St.  Andrews, Scotland
#Y  Copyright (C) 2002 The GAP Group
##
##  This file contains the declarations of operations for factor group maps
##
Revision.factgrp_gi:=
  "@(#)$Id: factgrp.gi,v 4.52 2003/09/17 21:37:28 gap Exp $";

#############################################################################
##
#M  NaturalHomomorphismsPool(G) . . . . . . . . . . . . . . initialize method
##
InstallMethod(NaturalHomomorphismsPool,true,[IsGroup],0,
  G->rec(GopDone:=false,ker:=[],ops:=[],cost:=[],group:=G,lock:=[],
         intersects:=[],blocksdone:=[],in_code:=false));

#############################################################################
##
#F  AddNaturalHomomorphismsPool(G,N,op[,cost[,blocksdone]]) . Store operation
##       op for kernel N if there is not already a cheaper one
##       returns false if nothing had been added and 'fail' if adding was
##       forbidden
##
InstallGlobalFunction(AddNaturalHomomorphismsPool,function(arg)
local G,N,op,i,c,p,pool,perm;
  G:=arg[1];
  N:=arg[2];
  op:=arg[3];

  # don't store trivial cases
  if Size(N)=1 or Size(N)=Size(G) then
    Info(InfoFactor,4,"trivial sub");
    # do we really want the trivial subgroup?
    if not (HasNaturalHomomorphismsPool(G) and
      ForAny(NaturalHomomorphismsPool(G).ker,j->Size(j)=1)) then
    return false;
    fi;
  fi;

  pool:=NaturalHomomorphismsPool(G);

  # split lists in their components
  if IsList(op) and not IsInt(op[1]) then
    p:=[];
    for i in op do
      if IsMapping(i) then
        c:=Intersection(G,KernelOfMultiplicativeGeneralMapping(i));
      else
        c:=Core(G,i);
      fi;
      Add(p,c);
      AddNaturalHomomorphismsPool(G,c,i);
    od;
    # transfer in numbers list
    op:=List(p,i->PositionSet(pool.ker,i));
    if Length(arg)<4 then
      # add the prices
      c:=Sum(pool.cost{op});
    fi;
  # compute/get costs
  elif Length(arg)>3 then
    c:=arg[4];
  else
    if IsGroup(op) then
      c:=Index(G,op);
    elif IsMapping(op) then
      c:=Image(op);
      if IsPcGroup(c) then
	c:=1;
      elif IsPermGroup(c) then
	c:=NrMovedPoints(c);
      else
        c:=Size(c);
      fi;
    fi;
  fi;

  # check whether we have already a better operation (or whether this normal
  # subgroup is locked)

  p:=PositionSet(pool.ker,N);
  if p=fail then
    if pool.in_code then
      return fail;
    fi;
    p:=PositionSorted(pool.ker,N);
    # compute the permutation we have to apply finally
    perm:=PermList(Concatenation([1..p-1],[Length(pool.ker)+1],
                   [p..Length(pool.ker)]))^-1;

    # first add at the end
    p:=Length(pool.ker)+1;
    pool.ker[p]:=N;
  elif c>=pool.cost[p] then
    Info(InfoFactor,4,"bad price");
    return false; # nothing added
  elif pool.lock[p]=true then
    return fail; # nothing added
  else
    perm:=();
  fi;

  Info(InfoFactor,3,"Added price ",c," for size ",Index(G,N));
  if IsMapping(op) and not HasKernelOfMultiplicativeGeneralMapping(op) then
    SetKernelOfMultiplicativeGeneralMapping(op,N);
  fi;
  pool.ops[p]:=op;
  pool.cost[p]:=c;
  pool.lock[p]:=false;

  # update the costs of all intersections that are affected
  for i in [1..Length(pool.ker)] do
    if IsList(pool.ops[i]) and IsInt(pool.ops[i][1]) and p in pool.ops[i] then
      pool.cost[i]:=Sum(pool.cost{pool.ops[i]});
    fi;
  od;

  if Length(arg)>4 then
    pool.blocksdone[p]:=arg[5];
  else
    pool.blocksdone[p]:=false;
  fi;

  if perm<>() then
    # sort the kernels anew
    pool.ker:=Permuted(pool.ker,perm);
    # sort/modify the other components accordingly
    pool.ops:=Permuted(pool.ops,perm);
    for i in [1..Length(pool.ops)] do
      # if entries are lists of integers
      if IsList(pool.ops[i]) and IsInt(pool.ops[i][1]) then
	pool.ops[i]:=List(pool.ops[i],i->i^perm);
      fi;
    od;
    pool.cost:=Permuted(pool.cost,perm);
    pool.lock:=Permuted(pool.lock,perm);
    pool.blocksdone:=Permuted(pool.blocksdone,perm);
    pool.intersects:=Set(List(pool.intersects,i->List(i,j->j^perm)));
  fi;

  return perm; # if anyone wants to keep the permutation
end);


#############################################################################
##
#F  LockNaturalHomomorphismsPool(G,N)  . .  store flag to prohibit changes of
##                                                               the map to N
##
InstallGlobalFunction(LockNaturalHomomorphismsPool,function(G,N)
local pool;
  pool:=NaturalHomomorphismsPool(G);
  N:=PositionSet(pool.ker,N);
  if N<>fail then
    pool.lock[N]:=true;
  fi;
end);


#############################################################################
##
#F  UnlockNaturalHomomorphismsPool(G,N) . . .  clear flag to allow changes of
##                                                               the map to N
##
InstallGlobalFunction(UnlockNaturalHomomorphismsPool,function(G,N)
local pool;
  pool:=NaturalHomomorphismsPool(G);
  N:=PositionSet(pool.ker,N);
  if N<>fail then
    pool.lock[N]:=false;
  fi;
end);


#############################################################################
##
#F  KnownNaturalHomomorphismsPool(G,N) . . . . .  check whether Hom is stored
##                                                               (or obvious)
##
InstallGlobalFunction(KnownNaturalHomomorphismsPool,function(G,N)
  return N=G or Size(N)=1 
      or PositionSet(NaturalHomomorphismsPool(G).ker,N)<>fail;
end);


#############################################################################
##
#F  GetNaturalHomomorphismsPool(G,N)  . . . .  get operation for G/N if known
##
InstallGlobalFunction(GetNaturalHomomorphismsPool,function(G,N)
local pool,p,h,ise,emb,i,j;
  if not HasNaturalHomomorphismsPool(G) then
    return fail;
  fi;
  pool:=NaturalHomomorphismsPool(G);
  p:=PositionSet(pool.ker,N);
  if p<>fail then
    h:=pool.ops[p];
    if IsList(h) then
      # just stored as intersection. Construct the mapping!
      # join intersections
      ise:=ShallowCopy(h);
      for i in ise do
	if IsList(pool.ops[i]) and IsInt(pool.ops[i][1]) then
	  for j in Filtered(pool.ops[i],j-> not j in ise) do
	    Add(ise,j);
	  od;
	elif not pool.blocksdone[i] then
	  h:=GetNaturalHomomorphismsPool(G,pool.ker[i]);
	  pool.in_code:=true; # don't add any new kernel here
	  # (which would mess up the numbering)
	  ImproveActionDegreeByBlocks(G,pool.ker[i],h);
	  pool.in_code:=false;
	fi;
      od;
      ise:=List(ise,i->GetNaturalHomomorphismsPool(G,pool.ker[i]));
      h:=CallFuncList(DirectProduct,List(ise,Image));
      emb:=List([1..Length(ise)],i->Embedding(h,i));
      emb:=List(GeneratorsOfGroup(G),
	   i->Product([1..Length(ise)],j->Image(emb[j],Image(ise[j],i))));
      ise:=SubgroupNC(h,emb);

      h:=GroupHomomorphismByImagesNC(G,ise,GeneratorsOfGroup(G),emb);
      SetKernelOfMultiplicativeGeneralMapping(h,N);
      pool.ops[p]:=h;
    elif IsGroup(h) then
      h:=FactorCosetAction(G,h,N); # will implicitely store
    fi;
    p:=h;
  fi;
  return p;
end);


#############################################################################
##
#F  DegreeNaturalHomomorphismsPool(G,N) degree for operation for G/N if known
##
InstallGlobalFunction(DegreeNaturalHomomorphismsPool,function(G,N)
local p,pool;
  pool:=NaturalHomomorphismsPool(G);
  p:=PositionSet(pool.ker,N);
  if p<>fail then
    p:=pool.cost[p];
  fi;
  return p;
end);


#############################################################################
##
#F  CloseNaturalHomomorphismsPool(<G>[,<N>]) . . calc intersections of known
##         operation kernels, don't continue anything whic is smaller than N
##
InstallGlobalFunction(CloseNaturalHomomorphismsPool,function(arg)
local G,pool,p,comb,i,c,perm,l,isi;
  G:=arg[1];
  pool:=NaturalHomomorphismsPool(G);
  p:=[1..Length(pool.ker)];
  
  repeat
    # obviously it is sufficient to consider only pairs iteratively
    p:=Set(p);
    comb:=Combinations(p,2);
    comb:=Filtered(comb,i->not i in pool.intersects);
    l:=Length(pool.ker);
    Info(InfoFactor,2,"CloseNaturalHomomorphismsPool");
    for i in comb do
      c:=Intersection(pool.ker[i[1]],pool.ker[i[2]]);
      isi:=ShallowCopy(i);

      # unpack 'iterated' lists
      if IsList(pool.ops[i[2]]) and IsInt(pool.ops[i[2]][1]) then
        isi:=Concatenation(isi{[1]},pool.ops[i[2]]);
      fi;
      if IsList(pool.ops[i[1]]) and IsInt(pool.ops[i[1]][1]) then
        isi:=Concatenation(isi{[2..Length(isi)]},pool.ops[i[1]]);
      fi;
      isi:=Set(isi);

      perm:=AddNaturalHomomorphismsPool(G,c,isi,Sum(pool.cost{i}));
      if perm<>fail then
	# note that we got the intersections
	if perm<>false then
	  AddSet(pool.intersects,List(i,j->j^perm));
	else
	  AddSet(pool.intersects,i);
        fi;
      fi;

      # note index shifts
      if IsPerm(perm) then
	p:=List(p,i->i^perm);
	Apply(comb,j->OnSets(j,perm));
      fi;

      if Length(arg)=1 or IsSubgroup(c,arg[2]) then
	AddSet(p,
	  PositionSet(pool.ker,c)); # to allow iterated intersections
      fi;
    od;
  until Length(comb)=0; # nothing new was added
  
end);


#############################################################################
##
#F  FactorCosetAction( <G>, <U>, [<N>] )  operation on the right cosets Ug
##                                        with possibility to indicate kernel
##
DoFactorCosetAction:=function(arg)
local G,u,op,h,N,rt;
  G:=arg[1];
  u:=arg[2];
  if Length(arg)>2 then
    N:=arg[3];
  else
    N:=false;
  fi;
  if IsList(u) and Length(u)=0 then
    u:=G;
    Error("only trivial operation ?  I Set u:=G;");
  fi;
  if N=false then
    N:=Core(G,u);
  fi;
  rt:=RightTransversal(G,u);
  if not IsRightTransversalRep(rt) then
    # the right transversal has no special `PositionCanonical' method.
    rt:=List(rt,i->RightCoset(u,i));
  fi;
  h:=ActionHomomorphism(G,rt,OnRight,"surjective");
  op:=Image(h,G);
  SetSize(op,Index(G,N));

  # and note our knowledge
  SetKernelOfMultiplicativeGeneralMapping(h,N);
  AddNaturalHomomorphismsPool(G,N,h);
  return h;
end;

InstallMethod(FactorCosetAction,"by right transversal operation",
  IsIdenticalObj,[IsGroup,IsGroup],0,
function(G,U)
  return DoFactorCosetAction(G,U);
end);

InstallOtherMethod(FactorCosetAction,
  "by right transversal operation, given kernel",IsFamFamFam,
  [IsGroup,IsGroup,IsGroup],0,
function(G,U,N)
  return DoFactorCosetAction(G,U,N);
end);

InstallMethod(FactorCosetAction,"by right transversal operation, Niceo",
  IsIdenticalObj,[IsGroup and IsHandledByNiceMonomorphism,IsGroup],0,
function(G,U)
local hom;
  hom:=RestrictedNiceMonomorphism(NiceMonomorphism(G),G);
  return hom*DoFactorCosetAction(Image(hom,G),Image(hom,U));
end);

InstallOtherMethod(FactorCosetAction,
  "by right transversal operation, given kernel, Niceo",IsFamFamFam,
  [IsGroup and IsHandledByNiceMonomorphism,IsGroup,IsGroup],0,
function(G,U,N)
local hom;
  hom:=RestrictedNiceMonomorphism(NiceMonomorphism(G),G);
  return hom*DoFactorCosetAction(Image(hom,G),Image(hom,U),Image(hom,N));
end);


#############################################################################
##
#M  DoCheapActionImages(G) . . . . . . . . . . All cheap operations for G
##
InstallMethod(DoCheapActionImages,true,[IsGroup],0,Ignore);

InstallMethod(DoCheapActionImages,true,[IsPermGroup],0,
function(G)
local dom,o,bl,i,j,b,op,pool;

  pool:=NaturalHomomorphismsPool(G);
  if pool.GopDone=false then

    dom:=MovedPoints(G);
    # orbits
    o:=OrbitsDomain(G,dom);
    o:=Set(List(o,Set));

    # do orbits and test for blocks 
    bl:=[];
    for i in o do
      op:=ActionHomomorphism(G,i,"surjective");
      if i<>dom then
        AddNaturalHomomorphismsPool(G,Stabilizer(G,i,OnTuples),
			    op,Length(i));
      fi;

      if Length(i)<500 and Size(Image(op,G))>10*Length(i) then
	# all blocks
	for j in AllBlocks(Image(op,G)) do
	  j:=i{j}; # preimage
	  b:=Orbit(G,j,OnSets);
	  Add(bl,Immutable(Set(b)));
	od;
      else
	# one block system
	b:=Blocks(G,i);
	if Length(b)>1 then
	  Add(bl,Immutable(Set(b)));
	fi;
      fi;
    od;

    for i in bl do
      op:=ActionHomomorphism(G,i,OnSets,"surjective");
      b:=KernelOfMultiplicativeGeneralMapping(op);

      #AH kernel is blockstab intersect.
      #b:=g;
      #for j in i do
      #  b:=StabilizerOfBlockNC(b,j);
      #od;

      AddNaturalHomomorphismsPool(G,b,op);
    od;

    pool.GopDone:=true;
  fi;

end);

#############################################################################
##
#F  ImproveActionDegreeByBlocks( <G>, <N> , hom )
##  extension of <U> in <G> such that   \bigcap U^g=N remains valid
##
InstallGlobalFunction(ImproveActionDegreeByBlocks,function(G,N,oh)
local gimg,img,dom,b,improve,bp,bb,i,k,bestdeg,subo,op,bc,bestblock,bdom,
      bestop,sto,gimgbas,subomax;
  Info(InfoFactor,1,"try to find block systems");

  # remember that we computed the blocks
  b:=NaturalHomomorphismsPool(G);

  # special case to use it for improving a permutation representation
  if Size(N)=1 then
    Info(InfoFactor,1,"special case for trivial subgroup");
    b.ker:=[N];
    b.ops:=[oh];
    b.cost:=[Length(MovedPoints(Range(oh)))];
    b.lock:=[false];
    b.blocksdone:=[false];
    subomax:=20;
  else
    subomax:=500;
  fi;

  i:=PositionSet(b.ker,N);
  if b.blocksdone[i] then
    return DegreeNaturalHomomorphismsPool(G,N); # we have done it already
  fi;
  b.blocksdone[i]:=true;

  if not IsPermGroup(Range(oh)) then
    return 1;
  fi;

  gimg:=Image(oh,G);
  gimgbas:=false;
  if HasBaseOfGroup(gimg) then
    gimgbas:=Filtered(BaseOfGroup(gimg),i->ForAny(GeneratorsOfGroup(gimg),
                                           j->i^j<>i));
  fi;
  img:=gimg;
  dom:=MovedPoints(img);
  bdom:=fail;

  if IsTransitive(img,dom) then
    # one orbit: Blocks
    repeat
      b:=Blocks(img,dom);
      improve:=false;
      if Length(b)>1 then
	if Length(dom)<40000 then
	  subo:=ApproximateSuborbitsStabilizerPermGroup(img,dom[1]);
	  subo:=Difference(List(subo,i->i[1]),dom{[1]});
	else
	  subo:=fail;
	fi;
	bc:=First(b,i->dom[1] in i);
	if subo<>fail and (Length(subo)<=subomax) then
	  Info(InfoFactor,2,"try all seeds");
	  # if the degree is not too big or if we are desparate then go for
	  # all blocks
	  # greedy approach: take always locally best one (otherwise there
	  # might be too much work to do)
	  bestdeg:=Length(dom);
	  bp:=[]; #Blocks pool
	  i:=1;
	  while i<=Length(subo) do
	    if subo[i] in bc then
	      bb:=b;
	    else
	      bb:=Blocks(img,dom,[dom[1],subo[i]]);
	    fi;
	    if Length(bb)>1 and not (bb[1] in bp or Length(bb)>bestdeg) then
	      Info(InfoFactor,3,"found block system ",Length(bb));
	      # new nontriv. system found 
	      AddSet(bp,bb[1]);
	      # store action
	      op:=1;# remove old homomorphism to free memory
	      if bdom<>fail then
	        bb:=Set(List(bb,i->Immutable(Union(bdom{i}))));
	      fi;

	      op:=ActionHomomorphism(gimg,bb,OnSets,"surjective");
	      if HasSize(gimg) and not HasStabChainMutable(gimg) then
		sto:=StabChainOptions(Range(op));
		sto.limit:=Size(gimg);
		# try only with random (will exclude some chances, but is
		# quicker. If the size is OK we have a proof anyhow).
		sto.random:=100;
#		if gimgbas<>false then
#		  SetBaseOfGroup(Range(op),
#		    List(gimgbas,i->PositionProperty(bb,j->i in j)));
#		fi;
		if Size(Range(op))=Size(gimg) then
		  sto.random:=1000;
		  k:=TrivialSubgroup(gimg);
		  op:=oh*op;
		  SetKernelOfMultiplicativeGeneralMapping(op,PreImage(oh,k));
		  AddNaturalHomomorphismsPool(G,
		      KernelOfMultiplicativeGeneralMapping(op),
					      op,Length(bb));
		else
		  k:=[]; # do not trigger improvement
		fi;
	      else
		k:=KernelOfMultiplicativeGeneralMapping(op);
		SetSize(Range(op),Index(gimg,k));
		op:=oh*op;
		SetKernelOfMultiplicativeGeneralMapping(op,PreImage(oh,k));
		AddNaturalHomomorphismsPool(G,
		    KernelOfMultiplicativeGeneralMapping(op),
					    op,Length(bb));

	      fi;
	      # and note whether we got better
	      #improve:=improve or (Size(k)=1);
	      if Size(k)=1 and Length(bb)<bestdeg then
		improve:=true;
		bestdeg:=Length(bb);
		bestblock:=bb;
		bestop:=op;
	      fi;
	    fi;
	    # break the test loop if we found a fairly small block system
	    # (iterate greedily immediately)
	    if improve and bestdeg<i then
	      i:=Length(dom);
	    fi;
	    i:=i+1;
	  od;
	else
	  Info(InfoFactor,2,"try only one system");
	  op:=1;# remove old homomorphism to free memory
	  if bdom<>fail then
	    b:=Set(List(b,i->Immutable(Union(bdom{i}))));
	  fi;
	  op:=ActionHomomorphism(gimg,b,OnSets,"surjective");
	  if HasSize(gimg) and not HasStabChainMutable(gimg) then
	    sto:=StabChainOptions(Range(op));
	    sto.limit:=Size(gimg);
	    # try only with random (will exclude some chances, but is
	    # quicker. If the size is OK we have a proof anyhow).
	    sto.random:=100;
#	    if gimgbas<>false then
#	      SetBaseOfGroup(Range(op),
#	         List(gimgbas,i->PositionProperty(b,j->i in j)));
#	    fi;
	    if Size(Range(op))=Size(gimg) then
	      sto.random:=1000;
	      k:=TrivialSubgroup(gimg);
	      op:=oh*op;
	      SetKernelOfMultiplicativeGeneralMapping(op,PreImage(oh,k));
	      AddNaturalHomomorphismsPool(G,
		  KernelOfMultiplicativeGeneralMapping(op),
					  op,Length(b));
	    else
	      k:=[]; # do not trigger improvement
	    fi;
	  else
	    k:=KernelOfMultiplicativeGeneralMapping(op);
	    SetSize(Range(op),Index(gimg,k));
	    # keep action knowledge
	    op:=oh*op;
	    SetKernelOfMultiplicativeGeneralMapping(op,PreImage(oh,k));
	    AddNaturalHomomorphismsPool(G,
		KernelOfMultiplicativeGeneralMapping(op),
					op,Length(b));
	  fi;

	  if Size(k)=1 then
	    improve:=true;
	    bestblock:=b;
	    bestop:=op;
	  fi;
	fi;
	if improve then
	  # update mapping
	  bdom:=bestblock;
	  img:=Image(bestop,G);
	  dom:=MovedPoints(img);
	fi;
      fi;
    until improve=false;
  fi;
  Info(InfoFactor,1,"end of blocks search");
  return DegreeNaturalHomomorphismsPool(G,N);
end);

#############################################################################
##
#F  SmallerDegreePermutationRepresentation( <G> )
##
InstallGlobalFunction(SmallerDegreePermutationRepresentation,function(G)
local H,o,i,s,gut,erg,k,loop;
  if not IsTransitive(G,MovedPoints(G)) then
    o:=ShallowCopy(OrbitsDomain(G,MovedPoints(G)));
    Sort(o,function(a,b)return Length(a)<Length(b);end);

    for loop in [1..2] do
      s:=[];
      # Try subdirect product
      k:=G;
      gut:=[];
      for i in [1..Length(o)] do
	s:=Stabilizer(k,o[i],OnTuples);
	if Size(s)<Size(k) then
	  k:=s;
	  Add(gut,i);
	fi;
      od;
      # reduce each orbit separately
      o:=o{gut};
      # second run: now take the big orbits first
      Sort(o,function(a,b)return Length(a)>Length(b);end);
    od;

    erg:=List(GeneratorsOfGroup(G),i->());
    for i in [1..Length(o)] do
      s:=ActionHomomorphism(G,o[i],OnPoints,"surjective");
      s:=s*SmallerDegreePermutationRepresentation(Image(s));
      erg:=SubdirectDiagonalPerms(erg,List(GeneratorsOfGroup(G),i->Image(s,i)));
    od;
    if NrMovedPoints(erg)<NrMovedPoints(G) then
      s:=Group(erg,());  # `erg' arose from `SubdirectDiagonalPerms'
      SetSize(s,Size(G));
      s:=GroupHomomorphismByImagesNC(G,s,GeneratorsOfGroup(G),erg);
      SetIsBijective(s,true);
      return s;
    fi;
    return IdentityMapping(G);
  fi;
  # if the original group has no stabchain we probably do not want to keep
  # it (or a homomorphisms pool) there -- make a copy for working
  # intermediately with it.
  if not HasStabChainMutable(G) then
    H:= GroupWithGenerators( GeneratorsOfGroup( G ),One(G) );
    if HasSize(G) then
      SetSize(H,Size(G));
    fi;
    if HasBaseOfGroup(G) then
      SetBaseOfGroup(H,BaseOfGroup(G));
    fi;
  else
    H:=G;
  fi;
  ImproveActionDegreeByBlocks(H,TrivialSubgroup(H),IdentityMapping(H));
  return GetNaturalHomomorphismsPool(H,TrivialSubgroup(H));
end);

#############################################################################
##
#F  GenericFindActionKernel  random search for subgroup with faithful core
##
BADINDEX:=1000; # the index that is too big
GenericFindActionKernel:=function(arg)
local G,N,u,v,bv,cnt,zen,uc,nu,totalcnt,interupt,cor,badi;
  G:=arg[1];
  N:=arg[2];
  uc:=TrivialSubgroup(G);
  # look if it is worth to look at action on N
  # if not abelian: later replace by abelian Normal subgroup
  if IsAbelian(N) and (Size(N)>50 or Index(G,N)<Factorial(Size(N)))
      and Size(N)<50000 then
    zen:=Centralizer(G,N);
    if Size(zen)=Size(N) then
      cnt:=0;
      repeat
	cnt:=cnt+1;
	zen:=Centralizer(G,Random(N));
	if Size(Core(G,zen))=Size(N) and
	    Index(G,zen)<Index(G,uc) then
	  uc:=zen;
	fi;
      # until enough searched or just one orbit
      until cnt=9 or (Index(G,zen)+1=Size(N));
    else
      Info(InfoFactor,3,"centralizer too big");
    fi;
  fi;

  # try a random extension step
  # (We might always first add a random element and get something bigger)
  v:=N;
  bv:=v;

  #if Length(arg)=3 then
    ## in one example 512->90, ca. 40 tries
    #cnt:=Int(arg[3]/10);
  #else
    #cnt:=25;
  #fi;

  totalcnt:=0;
  interupt:=false;
  cnt:=20;
  badi:=BADINDEX;
  repeat
    u:=v;
    repeat
      repeat
	if Length(arg)<4 or Random([1,2])=1 then
	  nu:=ClosureGroup(u,Random(G));
	else
	  nu:=ClosureGroup(u,Random(arg[4]));
	fi;
	totalcnt:=totalcnt+1;
	if Length(arg)>2 and Minimum(Index(G,v),arg[3])<20000 
	     and 10*totalcnt>Minimum(Index(G,v),arg[3]) then
	  # interupt if we're already quite good
	  interupt:=true;
	fi;
	# Abbruchkriterium: Bis kein Normalteiler, es sei denn, es ist N selber
	# (das brauchen wir, um in einigen trivialen F"allen abbrechen zu
	# k"onnen)
      until 
        # der Index ist nicht so klein, da"s wir keine Chance haben
	((Index(G,nu)>50 or Factorial(Index(G,nu))>=Index(G,N)) and
	not IsNormal(G,nu)) or IsSubset(u,nu) or interupt;
      u:=nu;
    until 
      # und die Gruppe ist nicht zuviel schlechter als der
      # beste bekannte Index. Daf"ur brauchen wir aber wom"oglich mehrfache
      # Erweiterungen.
      interupt or (((Length(arg)=2 or Index(G,u)<=100*arg[3])));

    cor:=Core(G,u);

    if Size(u)>Size(v) and Size(cor)=Size(N) then
      v:=u;
    fi;

    # store known information(we do't act, just store the subgroup.
    # Thus this is fairly cheap
    AddNaturalHomomorphismsPool(G,cor,u,Index(G,u));

    Info(InfoFactor,2,"  ext ",cnt,": ",Index(G,u)," ",Index(G,v)," ",
             v=u,":",totalcnt);
    cnt:=cnt-1;

    if Size(v)>Size(bv) then
      bv:=v;
    fi;

    if cnt=0 and DegreeNaturalHomomorphismsPool(G,N)>badi then
      Info(InfoWarning,2,"index unreasonably large, iterating");
      badi:=Int(badi*11/10);
      cnt:=20;
      v:=N; # all new
    fi;
  until interupt or cnt<=0 or Index(G,bv)<100;
  u:=bv;

  if Index(G,uc)<Index(G,u) then
    Info(InfoFactor,1,"use centralizer");
    u:=uc;
  fi;

  # will we need the coset operation?
  if (Length(arg)=2 and Index(G,u)<10000) 
     or(Length(arg)>2 and arg[3]>Index(G,u)) then

    u:=FactorCosetAction(G,u,N); #stores implicitely!
    AddNaturalHomomorphismsPool(G,N,u);
    ImproveActionDegreeByBlocks(G,N,u); # computes and stores
    return GetNaturalHomomorphismsPool(G,N);
  else
    # too big, rely on canonical routine
    return fail;
  fi;
end;


#############################################################################
##
#M  FindActionKernel(<G>)  . . . . . . . . . . . . . . . . . . . . generic
##
InstallMethod(FindActionKernel,"generic for finite groups",IsIdenticalObj,
  [IsGroup and IsFinite,IsGroup],0,
function(G,N)
  return GenericFindActionKernel(G,N);
end);

InstallMethod(FindActionKernel,"general case: can't do",IsIdenticalObj,
  [IsGroup,IsGroup],0,
function(G,N)
  return fail;
end);


#############################################################################
##
#M  FindActionKernel(<G>)  . . . . . . . . . . . . . . . . . . . . permgrp
##
InstallMethod(FindActionKernel,"perm",IsIdenticalObj,
  [IsPermGroup,IsPermGroup],0,
function(G,N)
local o,oo,s,i,u,m,v,cnt,comb,bestdeg,dom,blocksdone,pool;

  if Index(G,N)<50 then
    # small index, anything is OK
    return GenericFindActionKernel(G,N);
  else
    # get the known ones, including blocks &c. which might be of use
    DoCheapActionImages(G);

    pool:=NaturalHomomorphismsPool(G);
    dom:=MovedPoints(G);

    # store regular to have one anyway
    bestdeg:=Index(G,N);
    AddNaturalHomomorphismsPool(G,N,N,bestdeg);

    blocksdone:=false;
    # use subgroup that fixes a base of N
    # get orbits of a suitable stabilizer.
    o:=BaseOfGroup(N);
    s:=Stabilizer(G,o,OnTuples);
    if Size(s)>1 then
      cnt:=Filtered(OrbitsDomain(s,dom),i->Length(i)>1);
      for i in cnt do
	v:=ClosureGroup(N,Stabilizer(s,i[1]));
	if Size(v)>Size(N) and Index(G,v)<2000 then
	  u:=Core(G,v);
	  AddNaturalHomomorphismsPool(G,u,v,Index(G,v));
	fi;
      od;
      # try also intersections
      CloseNaturalHomomorphismsPool(G,N);

      bestdeg:=DegreeNaturalHomomorphismsPool(G,N);

      Info(InfoFactor,1,"Base Stabilizer and known, best Index ",bestdeg);

      if bestdeg<500 and bestdeg<Index(G,N) then
	# should be better...
	bestdeg:=ImproveActionDegreeByBlocks(G,N,
	  GetNaturalHomomorphismsPool(G,N));
	blocksdone:=true;
	Info(InfoFactor,2,"Blocks improve to ",bestdeg);
      fi;
    fi;

    # then we should look at the orbits of the normal subgroup to see,
    # whether anything stabilizing can be of use
    o:=Filtered(OrbitsDomain(N,dom),i->Length(Orbit(G,i[1]))>Length(i));
    Apply(o,Set);
    oo:=OrbitsDomain(G,o,OnSets);
    s:=G;
    for i in oo do
      s:=StabilizerOfBlockNC(s,i[1]);
    od;
    Info(InfoFactor,2,"stabilizer of index ",Index(G,s));

    m:=Core(G,s); # the normal subgroup we get this way.
    AddNaturalHomomorphismsPool(G,m,s,Index(G,s));

    if Size(m)=Size(N) and Index(G,s)<bestdeg then
      bestdeg:=Index(G,s);
      blocksdone:=false;
      Info(InfoFactor,2,"Orbits Stabilizer improves to index ",bestdeg);
    elif Size(m)>Size(N) then
      # no hard work for trivial cases
      if 2*Index(G,N)>Length(o) then
	# try to find a subgroup, which does not contain any part of m
	# For wreath products (the initial aim), the following method works
	# fairly well
	v:=Subgroup(G,Filtered(GeneratorsOfGroup(G),i->not i in m));
	v:=SmallGeneratingSet(v);

	cnt:=Length(v);
	repeat
	  for comb in Combinations([1..Length(v)],cnt) do
    #Print(">",comb,"\n");
	    u:=Subgroup(G,v{comb});
	    o:=ClosureGroup(N,u);
	    if Index(G,o)<bestdeg and Size(Core(G,o))=Size(N) then
	      bestdeg:=Index(G,o);
	      AddNaturalHomomorphismsPool(G,N,o,bestdeg);
	      blocksdone:=false;
	      cnt:=0;
	    fi;
	  od;
	  cnt:=cnt-1;
	until cnt<=0;
      fi;
    fi;

    Info(InfoFactor,2,"Orbits Stabilizer, Best Index ",bestdeg);
    # first force blocks
    if (not blocksdone) and bestdeg<200 and bestdeg<Index(G,N) then
      bestdeg:=ImproveActionDegreeByBlocks(G,N,
	GetNaturalHomomorphismsPool(G,N));
      blocksdone:=true;
      Info(InfoFactor,2,"Blocks improve to ",bestdeg);
    fi;

    if bestdeg=Index(G,N) or 
      (bestdeg>400 and not(bestdeg<=2*NrMovedPoints(G))) then
      if GenericFindActionKernel(G,N,bestdeg,s)<>fail then
	blocksdone:=true;
      fi;
      Info(InfoFactor,1,"  Random search found ",
           DegreeNaturalHomomorphismsPool(G,N));
    #if (bestdeg>500 and Index(G,o)<5000) or Index(G,o)<bestdeg then
    #  # tell 'IODBB' not to doo too much blocksearch
    #  o:=ImproveActionDegreeByBlocks(G,o,N,bestdeg<Index(G,o));
    #  Info(InfoFactor,1,"  Blocks improve to ",Index(G,o),"\n");
    #fi;
    fi;

    if not blocksdone then
      ImproveActionDegreeByBlocks(G,N,GetNaturalHomomorphismsPool(G,N));
    fi;

    return GetNaturalHomomorphismsPool(G,N);
    return o;
  fi;

end);

#############################################################################
##
#M  FindActionKernel(<G>)  . . . . . . . . . . . . . . . . . . . . generic
##
InstallMethod(FindActionKernel,"Niceo",IsIdenticalObj,
  [IsGroup and IsHandledByNiceMonomorphism,IsGroup],0,
function(G,N)
local hom;
  hom:=NiceMonomorphism(G);
  return hom*GenericFindActionKernel(Image(hom,G),Image(hom,N));
end);


#############################################################################
##
#M  NaturalHomomorphismByNormalSubgroup( <G>, <N> )  . .  mapping G ->> G/N
##                             this function returns an epimorphism from G
##  with kernel N. The range of this mapping is a suitable (isomorphic) 
##  permutation group (with which we can compute much easier).
InstallMethod(NaturalHomomorphismByNormalSubgroupOp,
  "search for operation",IsIdenticalObj,[IsGroup,IsGroup],0,
function(G,N)
local h;

  # catch the trivial case N=G 
  if CanComputeIndex(G,N) and Index(G,N)=1 then
    h:=GroupByGenerators( [], () );  # a new group is created
    h:=GroupHomomorphismByImagesNC( G, h, GeneratorsOfGroup( G ),
           List( GeneratorsOfGroup( G ), i -> () ));  # a new group is created
    SetKernelOfMultiplicativeGeneralMapping( h, G );
    return h;
  fi;
 
  # catch trivial case N=1 (IsTrivial might not be set)
  if (HasSize(N) and Size(N)=1) or (HasGeneratorsOfGroup(N) and
    ForAll(GeneratorsOfGroup(N),IsOne)) then
    return IdentityMapping(G);
  fi;


  # check, whether we already know a factormap
  DoCheapActionImages(G);
  h:=GetNaturalHomomorphismsPool(G,N);
  if h=fail then
    # now we try to find a suitable operation
    h:=FindActionKernel(G,N);
    if h<>fail then
      Info(InfoFactor,1,"Action of degree ",
	Length(MovedPoints(Range(h)))," found");
    else
      Error("I don't know how to find a natural homomorphism for <N> in <G>");
      # nothing had been found, still rely on 'NatHom'
      h:= NaturalHomomorphismByNormalSubgroup( G, N );
    fi;
  fi;
  # return the map
  return h;
end);

#############################################################################
##
#M  NaturalHomomorphismByNormalSubgroup( <G>, <N> ) . .  for solvable factors
##
NH_TRYPCGS_LIMIT:=30000;
InstallMethod( NaturalHomomorphismByNormalSubgroupOp,
  "test if known/try solvable factor for permutation groups",
  IsIdenticalObj, [ IsPermGroup, IsPermGroup ], 0,
function( G, N )
local   map,  pcgs,  A,h;
    
  h:=GetNaturalHomomorphismsPool(G,N);
  if h<>fail then
    return h;
  fi;

    if Minimum(Index(G,N),NrMovedPoints(G))>NH_TRYPCGS_LIMIT then
      TryNextMethod();
    fi;

    # Make  a pcgs   based on  an  elementary   abelian series (good  for  ag
    # routines).
    pcgs := TryPcgsPermGroup( [ G, N ], false, false, true );
    if not IsModuloPcgs( pcgs )  then
	TryNextMethod();
    fi;

    # Construct the pcp group <A> and the bijection between <A> and <G>.
    A := PermpcgsPcGroupPcgs( pcgs, pcgs!.permpcgsNormalSteps, false );
    UseFactorRelation( G, N, A );
    map := EpiPcByModpcgs( G, A, pcgs, GeneratorsOfGroup( A ) );

    SetIsSurjective( map, true );
    SetKernelOfMultiplicativeGeneralMapping( map, N );
    
    return map;
end );

#############################################################################
##
#E  factgrp.gi  . . . . . . . . . . . . . . . . . . . . . . . . . . ends here
##