1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
|
#############################################################################
##
#W factgrp.gi GAP library Alexander Hulpke
##
#H @(#)$Id: factgrp.gi,v 4.52 2003/09/17 21:37:28 gap Exp $
##
#Y Copyright (C) 1997, Lehrstuhl D fuer Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St. Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## This file contains the declarations of operations for factor group maps
##
Revision.factgrp_gi:=
"@(#)$Id: factgrp.gi,v 4.52 2003/09/17 21:37:28 gap Exp $";
#############################################################################
##
#M NaturalHomomorphismsPool(G) . . . . . . . . . . . . . . initialize method
##
InstallMethod(NaturalHomomorphismsPool,true,[IsGroup],0,
G->rec(GopDone:=false,ker:=[],ops:=[],cost:=[],group:=G,lock:=[],
intersects:=[],blocksdone:=[],in_code:=false));
#############################################################################
##
#F AddNaturalHomomorphismsPool(G,N,op[,cost[,blocksdone]]) . Store operation
## op for kernel N if there is not already a cheaper one
## returns false if nothing had been added and 'fail' if adding was
## forbidden
##
InstallGlobalFunction(AddNaturalHomomorphismsPool,function(arg)
local G,N,op,i,c,p,pool,perm;
G:=arg[1];
N:=arg[2];
op:=arg[3];
# don't store trivial cases
if Size(N)=1 or Size(N)=Size(G) then
Info(InfoFactor,4,"trivial sub");
# do we really want the trivial subgroup?
if not (HasNaturalHomomorphismsPool(G) and
ForAny(NaturalHomomorphismsPool(G).ker,j->Size(j)=1)) then
return false;
fi;
fi;
pool:=NaturalHomomorphismsPool(G);
# split lists in their components
if IsList(op) and not IsInt(op[1]) then
p:=[];
for i in op do
if IsMapping(i) then
c:=Intersection(G,KernelOfMultiplicativeGeneralMapping(i));
else
c:=Core(G,i);
fi;
Add(p,c);
AddNaturalHomomorphismsPool(G,c,i);
od;
# transfer in numbers list
op:=List(p,i->PositionSet(pool.ker,i));
if Length(arg)<4 then
# add the prices
c:=Sum(pool.cost{op});
fi;
# compute/get costs
elif Length(arg)>3 then
c:=arg[4];
else
if IsGroup(op) then
c:=Index(G,op);
elif IsMapping(op) then
c:=Image(op);
if IsPcGroup(c) then
c:=1;
elif IsPermGroup(c) then
c:=NrMovedPoints(c);
else
c:=Size(c);
fi;
fi;
fi;
# check whether we have already a better operation (or whether this normal
# subgroup is locked)
p:=PositionSet(pool.ker,N);
if p=fail then
if pool.in_code then
return fail;
fi;
p:=PositionSorted(pool.ker,N);
# compute the permutation we have to apply finally
perm:=PermList(Concatenation([1..p-1],[Length(pool.ker)+1],
[p..Length(pool.ker)]))^-1;
# first add at the end
p:=Length(pool.ker)+1;
pool.ker[p]:=N;
elif c>=pool.cost[p] then
Info(InfoFactor,4,"bad price");
return false; # nothing added
elif pool.lock[p]=true then
return fail; # nothing added
else
perm:=();
fi;
Info(InfoFactor,3,"Added price ",c," for size ",Index(G,N));
if IsMapping(op) and not HasKernelOfMultiplicativeGeneralMapping(op) then
SetKernelOfMultiplicativeGeneralMapping(op,N);
fi;
pool.ops[p]:=op;
pool.cost[p]:=c;
pool.lock[p]:=false;
# update the costs of all intersections that are affected
for i in [1..Length(pool.ker)] do
if IsList(pool.ops[i]) and IsInt(pool.ops[i][1]) and p in pool.ops[i] then
pool.cost[i]:=Sum(pool.cost{pool.ops[i]});
fi;
od;
if Length(arg)>4 then
pool.blocksdone[p]:=arg[5];
else
pool.blocksdone[p]:=false;
fi;
if perm<>() then
# sort the kernels anew
pool.ker:=Permuted(pool.ker,perm);
# sort/modify the other components accordingly
pool.ops:=Permuted(pool.ops,perm);
for i in [1..Length(pool.ops)] do
# if entries are lists of integers
if IsList(pool.ops[i]) and IsInt(pool.ops[i][1]) then
pool.ops[i]:=List(pool.ops[i],i->i^perm);
fi;
od;
pool.cost:=Permuted(pool.cost,perm);
pool.lock:=Permuted(pool.lock,perm);
pool.blocksdone:=Permuted(pool.blocksdone,perm);
pool.intersects:=Set(List(pool.intersects,i->List(i,j->j^perm)));
fi;
return perm; # if anyone wants to keep the permutation
end);
#############################################################################
##
#F LockNaturalHomomorphismsPool(G,N) . . store flag to prohibit changes of
## the map to N
##
InstallGlobalFunction(LockNaturalHomomorphismsPool,function(G,N)
local pool;
pool:=NaturalHomomorphismsPool(G);
N:=PositionSet(pool.ker,N);
if N<>fail then
pool.lock[N]:=true;
fi;
end);
#############################################################################
##
#F UnlockNaturalHomomorphismsPool(G,N) . . . clear flag to allow changes of
## the map to N
##
InstallGlobalFunction(UnlockNaturalHomomorphismsPool,function(G,N)
local pool;
pool:=NaturalHomomorphismsPool(G);
N:=PositionSet(pool.ker,N);
if N<>fail then
pool.lock[N]:=false;
fi;
end);
#############################################################################
##
#F KnownNaturalHomomorphismsPool(G,N) . . . . . check whether Hom is stored
## (or obvious)
##
InstallGlobalFunction(KnownNaturalHomomorphismsPool,function(G,N)
return N=G or Size(N)=1
or PositionSet(NaturalHomomorphismsPool(G).ker,N)<>fail;
end);
#############################################################################
##
#F GetNaturalHomomorphismsPool(G,N) . . . . get operation for G/N if known
##
InstallGlobalFunction(GetNaturalHomomorphismsPool,function(G,N)
local pool,p,h,ise,emb,i,j;
if not HasNaturalHomomorphismsPool(G) then
return fail;
fi;
pool:=NaturalHomomorphismsPool(G);
p:=PositionSet(pool.ker,N);
if p<>fail then
h:=pool.ops[p];
if IsList(h) then
# just stored as intersection. Construct the mapping!
# join intersections
ise:=ShallowCopy(h);
for i in ise do
if IsList(pool.ops[i]) and IsInt(pool.ops[i][1]) then
for j in Filtered(pool.ops[i],j-> not j in ise) do
Add(ise,j);
od;
elif not pool.blocksdone[i] then
h:=GetNaturalHomomorphismsPool(G,pool.ker[i]);
pool.in_code:=true; # don't add any new kernel here
# (which would mess up the numbering)
ImproveActionDegreeByBlocks(G,pool.ker[i],h);
pool.in_code:=false;
fi;
od;
ise:=List(ise,i->GetNaturalHomomorphismsPool(G,pool.ker[i]));
h:=CallFuncList(DirectProduct,List(ise,Image));
emb:=List([1..Length(ise)],i->Embedding(h,i));
emb:=List(GeneratorsOfGroup(G),
i->Product([1..Length(ise)],j->Image(emb[j],Image(ise[j],i))));
ise:=SubgroupNC(h,emb);
h:=GroupHomomorphismByImagesNC(G,ise,GeneratorsOfGroup(G),emb);
SetKernelOfMultiplicativeGeneralMapping(h,N);
pool.ops[p]:=h;
elif IsGroup(h) then
h:=FactorCosetAction(G,h,N); # will implicitely store
fi;
p:=h;
fi;
return p;
end);
#############################################################################
##
#F DegreeNaturalHomomorphismsPool(G,N) degree for operation for G/N if known
##
InstallGlobalFunction(DegreeNaturalHomomorphismsPool,function(G,N)
local p,pool;
pool:=NaturalHomomorphismsPool(G);
p:=PositionSet(pool.ker,N);
if p<>fail then
p:=pool.cost[p];
fi;
return p;
end);
#############################################################################
##
#F CloseNaturalHomomorphismsPool(<G>[,<N>]) . . calc intersections of known
## operation kernels, don't continue anything whic is smaller than N
##
InstallGlobalFunction(CloseNaturalHomomorphismsPool,function(arg)
local G,pool,p,comb,i,c,perm,l,isi;
G:=arg[1];
pool:=NaturalHomomorphismsPool(G);
p:=[1..Length(pool.ker)];
repeat
# obviously it is sufficient to consider only pairs iteratively
p:=Set(p);
comb:=Combinations(p,2);
comb:=Filtered(comb,i->not i in pool.intersects);
l:=Length(pool.ker);
Info(InfoFactor,2,"CloseNaturalHomomorphismsPool");
for i in comb do
c:=Intersection(pool.ker[i[1]],pool.ker[i[2]]);
isi:=ShallowCopy(i);
# unpack 'iterated' lists
if IsList(pool.ops[i[2]]) and IsInt(pool.ops[i[2]][1]) then
isi:=Concatenation(isi{[1]},pool.ops[i[2]]);
fi;
if IsList(pool.ops[i[1]]) and IsInt(pool.ops[i[1]][1]) then
isi:=Concatenation(isi{[2..Length(isi)]},pool.ops[i[1]]);
fi;
isi:=Set(isi);
perm:=AddNaturalHomomorphismsPool(G,c,isi,Sum(pool.cost{i}));
if perm<>fail then
# note that we got the intersections
if perm<>false then
AddSet(pool.intersects,List(i,j->j^perm));
else
AddSet(pool.intersects,i);
fi;
fi;
# note index shifts
if IsPerm(perm) then
p:=List(p,i->i^perm);
Apply(comb,j->OnSets(j,perm));
fi;
if Length(arg)=1 or IsSubgroup(c,arg[2]) then
AddSet(p,
PositionSet(pool.ker,c)); # to allow iterated intersections
fi;
od;
until Length(comb)=0; # nothing new was added
end);
#############################################################################
##
#F FactorCosetAction( <G>, <U>, [<N>] ) operation on the right cosets Ug
## with possibility to indicate kernel
##
DoFactorCosetAction:=function(arg)
local G,u,op,h,N,rt;
G:=arg[1];
u:=arg[2];
if Length(arg)>2 then
N:=arg[3];
else
N:=false;
fi;
if IsList(u) and Length(u)=0 then
u:=G;
Error("only trivial operation ? I Set u:=G;");
fi;
if N=false then
N:=Core(G,u);
fi;
rt:=RightTransversal(G,u);
if not IsRightTransversalRep(rt) then
# the right transversal has no special `PositionCanonical' method.
rt:=List(rt,i->RightCoset(u,i));
fi;
h:=ActionHomomorphism(G,rt,OnRight,"surjective");
op:=Image(h,G);
SetSize(op,Index(G,N));
# and note our knowledge
SetKernelOfMultiplicativeGeneralMapping(h,N);
AddNaturalHomomorphismsPool(G,N,h);
return h;
end;
InstallMethod(FactorCosetAction,"by right transversal operation",
IsIdenticalObj,[IsGroup,IsGroup],0,
function(G,U)
return DoFactorCosetAction(G,U);
end);
InstallOtherMethod(FactorCosetAction,
"by right transversal operation, given kernel",IsFamFamFam,
[IsGroup,IsGroup,IsGroup],0,
function(G,U,N)
return DoFactorCosetAction(G,U,N);
end);
InstallMethod(FactorCosetAction,"by right transversal operation, Niceo",
IsIdenticalObj,[IsGroup and IsHandledByNiceMonomorphism,IsGroup],0,
function(G,U)
local hom;
hom:=RestrictedNiceMonomorphism(NiceMonomorphism(G),G);
return hom*DoFactorCosetAction(Image(hom,G),Image(hom,U));
end);
InstallOtherMethod(FactorCosetAction,
"by right transversal operation, given kernel, Niceo",IsFamFamFam,
[IsGroup and IsHandledByNiceMonomorphism,IsGroup,IsGroup],0,
function(G,U,N)
local hom;
hom:=RestrictedNiceMonomorphism(NiceMonomorphism(G),G);
return hom*DoFactorCosetAction(Image(hom,G),Image(hom,U),Image(hom,N));
end);
#############################################################################
##
#M DoCheapActionImages(G) . . . . . . . . . . All cheap operations for G
##
InstallMethod(DoCheapActionImages,true,[IsGroup],0,Ignore);
InstallMethod(DoCheapActionImages,true,[IsPermGroup],0,
function(G)
local dom,o,bl,i,j,b,op,pool;
pool:=NaturalHomomorphismsPool(G);
if pool.GopDone=false then
dom:=MovedPoints(G);
# orbits
o:=OrbitsDomain(G,dom);
o:=Set(List(o,Set));
# do orbits and test for blocks
bl:=[];
for i in o do
op:=ActionHomomorphism(G,i,"surjective");
if i<>dom then
AddNaturalHomomorphismsPool(G,Stabilizer(G,i,OnTuples),
op,Length(i));
fi;
if Length(i)<500 and Size(Image(op,G))>10*Length(i) then
# all blocks
for j in AllBlocks(Image(op,G)) do
j:=i{j}; # preimage
b:=Orbit(G,j,OnSets);
Add(bl,Immutable(Set(b)));
od;
else
# one block system
b:=Blocks(G,i);
if Length(b)>1 then
Add(bl,Immutable(Set(b)));
fi;
fi;
od;
for i in bl do
op:=ActionHomomorphism(G,i,OnSets,"surjective");
b:=KernelOfMultiplicativeGeneralMapping(op);
#AH kernel is blockstab intersect.
#b:=g;
#for j in i do
# b:=StabilizerOfBlockNC(b,j);
#od;
AddNaturalHomomorphismsPool(G,b,op);
od;
pool.GopDone:=true;
fi;
end);
#############################################################################
##
#F ImproveActionDegreeByBlocks( <G>, <N> , hom )
## extension of <U> in <G> such that \bigcap U^g=N remains valid
##
InstallGlobalFunction(ImproveActionDegreeByBlocks,function(G,N,oh)
local gimg,img,dom,b,improve,bp,bb,i,k,bestdeg,subo,op,bc,bestblock,bdom,
bestop,sto,gimgbas,subomax;
Info(InfoFactor,1,"try to find block systems");
# remember that we computed the blocks
b:=NaturalHomomorphismsPool(G);
# special case to use it for improving a permutation representation
if Size(N)=1 then
Info(InfoFactor,1,"special case for trivial subgroup");
b.ker:=[N];
b.ops:=[oh];
b.cost:=[Length(MovedPoints(Range(oh)))];
b.lock:=[false];
b.blocksdone:=[false];
subomax:=20;
else
subomax:=500;
fi;
i:=PositionSet(b.ker,N);
if b.blocksdone[i] then
return DegreeNaturalHomomorphismsPool(G,N); # we have done it already
fi;
b.blocksdone[i]:=true;
if not IsPermGroup(Range(oh)) then
return 1;
fi;
gimg:=Image(oh,G);
gimgbas:=false;
if HasBaseOfGroup(gimg) then
gimgbas:=Filtered(BaseOfGroup(gimg),i->ForAny(GeneratorsOfGroup(gimg),
j->i^j<>i));
fi;
img:=gimg;
dom:=MovedPoints(img);
bdom:=fail;
if IsTransitive(img,dom) then
# one orbit: Blocks
repeat
b:=Blocks(img,dom);
improve:=false;
if Length(b)>1 then
if Length(dom)<40000 then
subo:=ApproximateSuborbitsStabilizerPermGroup(img,dom[1]);
subo:=Difference(List(subo,i->i[1]),dom{[1]});
else
subo:=fail;
fi;
bc:=First(b,i->dom[1] in i);
if subo<>fail and (Length(subo)<=subomax) then
Info(InfoFactor,2,"try all seeds");
# if the degree is not too big or if we are desparate then go for
# all blocks
# greedy approach: take always locally best one (otherwise there
# might be too much work to do)
bestdeg:=Length(dom);
bp:=[]; #Blocks pool
i:=1;
while i<=Length(subo) do
if subo[i] in bc then
bb:=b;
else
bb:=Blocks(img,dom,[dom[1],subo[i]]);
fi;
if Length(bb)>1 and not (bb[1] in bp or Length(bb)>bestdeg) then
Info(InfoFactor,3,"found block system ",Length(bb));
# new nontriv. system found
AddSet(bp,bb[1]);
# store action
op:=1;# remove old homomorphism to free memory
if bdom<>fail then
bb:=Set(List(bb,i->Immutable(Union(bdom{i}))));
fi;
op:=ActionHomomorphism(gimg,bb,OnSets,"surjective");
if HasSize(gimg) and not HasStabChainMutable(gimg) then
sto:=StabChainOptions(Range(op));
sto.limit:=Size(gimg);
# try only with random (will exclude some chances, but is
# quicker. If the size is OK we have a proof anyhow).
sto.random:=100;
# if gimgbas<>false then
# SetBaseOfGroup(Range(op),
# List(gimgbas,i->PositionProperty(bb,j->i in j)));
# fi;
if Size(Range(op))=Size(gimg) then
sto.random:=1000;
k:=TrivialSubgroup(gimg);
op:=oh*op;
SetKernelOfMultiplicativeGeneralMapping(op,PreImage(oh,k));
AddNaturalHomomorphismsPool(G,
KernelOfMultiplicativeGeneralMapping(op),
op,Length(bb));
else
k:=[]; # do not trigger improvement
fi;
else
k:=KernelOfMultiplicativeGeneralMapping(op);
SetSize(Range(op),Index(gimg,k));
op:=oh*op;
SetKernelOfMultiplicativeGeneralMapping(op,PreImage(oh,k));
AddNaturalHomomorphismsPool(G,
KernelOfMultiplicativeGeneralMapping(op),
op,Length(bb));
fi;
# and note whether we got better
#improve:=improve or (Size(k)=1);
if Size(k)=1 and Length(bb)<bestdeg then
improve:=true;
bestdeg:=Length(bb);
bestblock:=bb;
bestop:=op;
fi;
fi;
# break the test loop if we found a fairly small block system
# (iterate greedily immediately)
if improve and bestdeg<i then
i:=Length(dom);
fi;
i:=i+1;
od;
else
Info(InfoFactor,2,"try only one system");
op:=1;# remove old homomorphism to free memory
if bdom<>fail then
b:=Set(List(b,i->Immutable(Union(bdom{i}))));
fi;
op:=ActionHomomorphism(gimg,b,OnSets,"surjective");
if HasSize(gimg) and not HasStabChainMutable(gimg) then
sto:=StabChainOptions(Range(op));
sto.limit:=Size(gimg);
# try only with random (will exclude some chances, but is
# quicker. If the size is OK we have a proof anyhow).
sto.random:=100;
# if gimgbas<>false then
# SetBaseOfGroup(Range(op),
# List(gimgbas,i->PositionProperty(b,j->i in j)));
# fi;
if Size(Range(op))=Size(gimg) then
sto.random:=1000;
k:=TrivialSubgroup(gimg);
op:=oh*op;
SetKernelOfMultiplicativeGeneralMapping(op,PreImage(oh,k));
AddNaturalHomomorphismsPool(G,
KernelOfMultiplicativeGeneralMapping(op),
op,Length(b));
else
k:=[]; # do not trigger improvement
fi;
else
k:=KernelOfMultiplicativeGeneralMapping(op);
SetSize(Range(op),Index(gimg,k));
# keep action knowledge
op:=oh*op;
SetKernelOfMultiplicativeGeneralMapping(op,PreImage(oh,k));
AddNaturalHomomorphismsPool(G,
KernelOfMultiplicativeGeneralMapping(op),
op,Length(b));
fi;
if Size(k)=1 then
improve:=true;
bestblock:=b;
bestop:=op;
fi;
fi;
if improve then
# update mapping
bdom:=bestblock;
img:=Image(bestop,G);
dom:=MovedPoints(img);
fi;
fi;
until improve=false;
fi;
Info(InfoFactor,1,"end of blocks search");
return DegreeNaturalHomomorphismsPool(G,N);
end);
#############################################################################
##
#F SmallerDegreePermutationRepresentation( <G> )
##
InstallGlobalFunction(SmallerDegreePermutationRepresentation,function(G)
local H,o,i,s,gut,erg,k,loop;
if not IsTransitive(G,MovedPoints(G)) then
o:=ShallowCopy(OrbitsDomain(G,MovedPoints(G)));
Sort(o,function(a,b)return Length(a)<Length(b);end);
for loop in [1..2] do
s:=[];
# Try subdirect product
k:=G;
gut:=[];
for i in [1..Length(o)] do
s:=Stabilizer(k,o[i],OnTuples);
if Size(s)<Size(k) then
k:=s;
Add(gut,i);
fi;
od;
# reduce each orbit separately
o:=o{gut};
# second run: now take the big orbits first
Sort(o,function(a,b)return Length(a)>Length(b);end);
od;
erg:=List(GeneratorsOfGroup(G),i->());
for i in [1..Length(o)] do
s:=ActionHomomorphism(G,o[i],OnPoints,"surjective");
s:=s*SmallerDegreePermutationRepresentation(Image(s));
erg:=SubdirectDiagonalPerms(erg,List(GeneratorsOfGroup(G),i->Image(s,i)));
od;
if NrMovedPoints(erg)<NrMovedPoints(G) then
s:=Group(erg,()); # `erg' arose from `SubdirectDiagonalPerms'
SetSize(s,Size(G));
s:=GroupHomomorphismByImagesNC(G,s,GeneratorsOfGroup(G),erg);
SetIsBijective(s,true);
return s;
fi;
return IdentityMapping(G);
fi;
# if the original group has no stabchain we probably do not want to keep
# it (or a homomorphisms pool) there -- make a copy for working
# intermediately with it.
if not HasStabChainMutable(G) then
H:= GroupWithGenerators( GeneratorsOfGroup( G ),One(G) );
if HasSize(G) then
SetSize(H,Size(G));
fi;
if HasBaseOfGroup(G) then
SetBaseOfGroup(H,BaseOfGroup(G));
fi;
else
H:=G;
fi;
ImproveActionDegreeByBlocks(H,TrivialSubgroup(H),IdentityMapping(H));
return GetNaturalHomomorphismsPool(H,TrivialSubgroup(H));
end);
#############################################################################
##
#F GenericFindActionKernel random search for subgroup with faithful core
##
BADINDEX:=1000; # the index that is too big
GenericFindActionKernel:=function(arg)
local G,N,u,v,bv,cnt,zen,uc,nu,totalcnt,interupt,cor,badi;
G:=arg[1];
N:=arg[2];
uc:=TrivialSubgroup(G);
# look if it is worth to look at action on N
# if not abelian: later replace by abelian Normal subgroup
if IsAbelian(N) and (Size(N)>50 or Index(G,N)<Factorial(Size(N)))
and Size(N)<50000 then
zen:=Centralizer(G,N);
if Size(zen)=Size(N) then
cnt:=0;
repeat
cnt:=cnt+1;
zen:=Centralizer(G,Random(N));
if Size(Core(G,zen))=Size(N) and
Index(G,zen)<Index(G,uc) then
uc:=zen;
fi;
# until enough searched or just one orbit
until cnt=9 or (Index(G,zen)+1=Size(N));
else
Info(InfoFactor,3,"centralizer too big");
fi;
fi;
# try a random extension step
# (We might always first add a random element and get something bigger)
v:=N;
bv:=v;
#if Length(arg)=3 then
## in one example 512->90, ca. 40 tries
#cnt:=Int(arg[3]/10);
#else
#cnt:=25;
#fi;
totalcnt:=0;
interupt:=false;
cnt:=20;
badi:=BADINDEX;
repeat
u:=v;
repeat
repeat
if Length(arg)<4 or Random([1,2])=1 then
nu:=ClosureGroup(u,Random(G));
else
nu:=ClosureGroup(u,Random(arg[4]));
fi;
totalcnt:=totalcnt+1;
if Length(arg)>2 and Minimum(Index(G,v),arg[3])<20000
and 10*totalcnt>Minimum(Index(G,v),arg[3]) then
# interupt if we're already quite good
interupt:=true;
fi;
# Abbruchkriterium: Bis kein Normalteiler, es sei denn, es ist N selber
# (das brauchen wir, um in einigen trivialen F"allen abbrechen zu
# k"onnen)
until
# der Index ist nicht so klein, da"s wir keine Chance haben
((Index(G,nu)>50 or Factorial(Index(G,nu))>=Index(G,N)) and
not IsNormal(G,nu)) or IsSubset(u,nu) or interupt;
u:=nu;
until
# und die Gruppe ist nicht zuviel schlechter als der
# beste bekannte Index. Daf"ur brauchen wir aber wom"oglich mehrfache
# Erweiterungen.
interupt or (((Length(arg)=2 or Index(G,u)<=100*arg[3])));
cor:=Core(G,u);
if Size(u)>Size(v) and Size(cor)=Size(N) then
v:=u;
fi;
# store known information(we do't act, just store the subgroup.
# Thus this is fairly cheap
AddNaturalHomomorphismsPool(G,cor,u,Index(G,u));
Info(InfoFactor,2," ext ",cnt,": ",Index(G,u)," ",Index(G,v)," ",
v=u,":",totalcnt);
cnt:=cnt-1;
if Size(v)>Size(bv) then
bv:=v;
fi;
if cnt=0 and DegreeNaturalHomomorphismsPool(G,N)>badi then
Info(InfoWarning,2,"index unreasonably large, iterating");
badi:=Int(badi*11/10);
cnt:=20;
v:=N; # all new
fi;
until interupt or cnt<=0 or Index(G,bv)<100;
u:=bv;
if Index(G,uc)<Index(G,u) then
Info(InfoFactor,1,"use centralizer");
u:=uc;
fi;
# will we need the coset operation?
if (Length(arg)=2 and Index(G,u)<10000)
or(Length(arg)>2 and arg[3]>Index(G,u)) then
u:=FactorCosetAction(G,u,N); #stores implicitely!
AddNaturalHomomorphismsPool(G,N,u);
ImproveActionDegreeByBlocks(G,N,u); # computes and stores
return GetNaturalHomomorphismsPool(G,N);
else
# too big, rely on canonical routine
return fail;
fi;
end;
#############################################################################
##
#M FindActionKernel(<G>) . . . . . . . . . . . . . . . . . . . . generic
##
InstallMethod(FindActionKernel,"generic for finite groups",IsIdenticalObj,
[IsGroup and IsFinite,IsGroup],0,
function(G,N)
return GenericFindActionKernel(G,N);
end);
InstallMethod(FindActionKernel,"general case: can't do",IsIdenticalObj,
[IsGroup,IsGroup],0,
function(G,N)
return fail;
end);
#############################################################################
##
#M FindActionKernel(<G>) . . . . . . . . . . . . . . . . . . . . permgrp
##
InstallMethod(FindActionKernel,"perm",IsIdenticalObj,
[IsPermGroup,IsPermGroup],0,
function(G,N)
local o,oo,s,i,u,m,v,cnt,comb,bestdeg,dom,blocksdone,pool;
if Index(G,N)<50 then
# small index, anything is OK
return GenericFindActionKernel(G,N);
else
# get the known ones, including blocks &c. which might be of use
DoCheapActionImages(G);
pool:=NaturalHomomorphismsPool(G);
dom:=MovedPoints(G);
# store regular to have one anyway
bestdeg:=Index(G,N);
AddNaturalHomomorphismsPool(G,N,N,bestdeg);
blocksdone:=false;
# use subgroup that fixes a base of N
# get orbits of a suitable stabilizer.
o:=BaseOfGroup(N);
s:=Stabilizer(G,o,OnTuples);
if Size(s)>1 then
cnt:=Filtered(OrbitsDomain(s,dom),i->Length(i)>1);
for i in cnt do
v:=ClosureGroup(N,Stabilizer(s,i[1]));
if Size(v)>Size(N) and Index(G,v)<2000 then
u:=Core(G,v);
AddNaturalHomomorphismsPool(G,u,v,Index(G,v));
fi;
od;
# try also intersections
CloseNaturalHomomorphismsPool(G,N);
bestdeg:=DegreeNaturalHomomorphismsPool(G,N);
Info(InfoFactor,1,"Base Stabilizer and known, best Index ",bestdeg);
if bestdeg<500 and bestdeg<Index(G,N) then
# should be better...
bestdeg:=ImproveActionDegreeByBlocks(G,N,
GetNaturalHomomorphismsPool(G,N));
blocksdone:=true;
Info(InfoFactor,2,"Blocks improve to ",bestdeg);
fi;
fi;
# then we should look at the orbits of the normal subgroup to see,
# whether anything stabilizing can be of use
o:=Filtered(OrbitsDomain(N,dom),i->Length(Orbit(G,i[1]))>Length(i));
Apply(o,Set);
oo:=OrbitsDomain(G,o,OnSets);
s:=G;
for i in oo do
s:=StabilizerOfBlockNC(s,i[1]);
od;
Info(InfoFactor,2,"stabilizer of index ",Index(G,s));
m:=Core(G,s); # the normal subgroup we get this way.
AddNaturalHomomorphismsPool(G,m,s,Index(G,s));
if Size(m)=Size(N) and Index(G,s)<bestdeg then
bestdeg:=Index(G,s);
blocksdone:=false;
Info(InfoFactor,2,"Orbits Stabilizer improves to index ",bestdeg);
elif Size(m)>Size(N) then
# no hard work for trivial cases
if 2*Index(G,N)>Length(o) then
# try to find a subgroup, which does not contain any part of m
# For wreath products (the initial aim), the following method works
# fairly well
v:=Subgroup(G,Filtered(GeneratorsOfGroup(G),i->not i in m));
v:=SmallGeneratingSet(v);
cnt:=Length(v);
repeat
for comb in Combinations([1..Length(v)],cnt) do
#Print(">",comb,"\n");
u:=Subgroup(G,v{comb});
o:=ClosureGroup(N,u);
if Index(G,o)<bestdeg and Size(Core(G,o))=Size(N) then
bestdeg:=Index(G,o);
AddNaturalHomomorphismsPool(G,N,o,bestdeg);
blocksdone:=false;
cnt:=0;
fi;
od;
cnt:=cnt-1;
until cnt<=0;
fi;
fi;
Info(InfoFactor,2,"Orbits Stabilizer, Best Index ",bestdeg);
# first force blocks
if (not blocksdone) and bestdeg<200 and bestdeg<Index(G,N) then
bestdeg:=ImproveActionDegreeByBlocks(G,N,
GetNaturalHomomorphismsPool(G,N));
blocksdone:=true;
Info(InfoFactor,2,"Blocks improve to ",bestdeg);
fi;
if bestdeg=Index(G,N) or
(bestdeg>400 and not(bestdeg<=2*NrMovedPoints(G))) then
if GenericFindActionKernel(G,N,bestdeg,s)<>fail then
blocksdone:=true;
fi;
Info(InfoFactor,1," Random search found ",
DegreeNaturalHomomorphismsPool(G,N));
#if (bestdeg>500 and Index(G,o)<5000) or Index(G,o)<bestdeg then
# # tell 'IODBB' not to doo too much blocksearch
# o:=ImproveActionDegreeByBlocks(G,o,N,bestdeg<Index(G,o));
# Info(InfoFactor,1," Blocks improve to ",Index(G,o),"\n");
#fi;
fi;
if not blocksdone then
ImproveActionDegreeByBlocks(G,N,GetNaturalHomomorphismsPool(G,N));
fi;
return GetNaturalHomomorphismsPool(G,N);
return o;
fi;
end);
#############################################################################
##
#M FindActionKernel(<G>) . . . . . . . . . . . . . . . . . . . . generic
##
InstallMethod(FindActionKernel,"Niceo",IsIdenticalObj,
[IsGroup and IsHandledByNiceMonomorphism,IsGroup],0,
function(G,N)
local hom;
hom:=NiceMonomorphism(G);
return hom*GenericFindActionKernel(Image(hom,G),Image(hom,N));
end);
#############################################################################
##
#M NaturalHomomorphismByNormalSubgroup( <G>, <N> ) . . mapping G ->> G/N
## this function returns an epimorphism from G
## with kernel N. The range of this mapping is a suitable (isomorphic)
## permutation group (with which we can compute much easier).
InstallMethod(NaturalHomomorphismByNormalSubgroupOp,
"search for operation",IsIdenticalObj,[IsGroup,IsGroup],0,
function(G,N)
local h;
# catch the trivial case N=G
if CanComputeIndex(G,N) and Index(G,N)=1 then
h:=GroupByGenerators( [], () ); # a new group is created
h:=GroupHomomorphismByImagesNC( G, h, GeneratorsOfGroup( G ),
List( GeneratorsOfGroup( G ), i -> () )); # a new group is created
SetKernelOfMultiplicativeGeneralMapping( h, G );
return h;
fi;
# catch trivial case N=1 (IsTrivial might not be set)
if (HasSize(N) and Size(N)=1) or (HasGeneratorsOfGroup(N) and
ForAll(GeneratorsOfGroup(N),IsOne)) then
return IdentityMapping(G);
fi;
# check, whether we already know a factormap
DoCheapActionImages(G);
h:=GetNaturalHomomorphismsPool(G,N);
if h=fail then
# now we try to find a suitable operation
h:=FindActionKernel(G,N);
if h<>fail then
Info(InfoFactor,1,"Action of degree ",
Length(MovedPoints(Range(h)))," found");
else
Error("I don't know how to find a natural homomorphism for <N> in <G>");
# nothing had been found, still rely on 'NatHom'
h:= NaturalHomomorphismByNormalSubgroup( G, N );
fi;
fi;
# return the map
return h;
end);
#############################################################################
##
#M NaturalHomomorphismByNormalSubgroup( <G>, <N> ) . . for solvable factors
##
NH_TRYPCGS_LIMIT:=30000;
InstallMethod( NaturalHomomorphismByNormalSubgroupOp,
"test if known/try solvable factor for permutation groups",
IsIdenticalObj, [ IsPermGroup, IsPermGroup ], 0,
function( G, N )
local map, pcgs, A,h;
h:=GetNaturalHomomorphismsPool(G,N);
if h<>fail then
return h;
fi;
if Minimum(Index(G,N),NrMovedPoints(G))>NH_TRYPCGS_LIMIT then
TryNextMethod();
fi;
# Make a pcgs based on an elementary abelian series (good for ag
# routines).
pcgs := TryPcgsPermGroup( [ G, N ], false, false, true );
if not IsModuloPcgs( pcgs ) then
TryNextMethod();
fi;
# Construct the pcp group <A> and the bijection between <A> and <G>.
A := PermpcgsPcGroupPcgs( pcgs, pcgs!.permpcgsNormalSteps, false );
UseFactorRelation( G, N, A );
map := EpiPcByModpcgs( G, A, pcgs, GeneratorsOfGroup( A ) );
SetIsSurjective( map, true );
SetKernelOfMultiplicativeGeneralMapping( map, N );
return map;
end );
#############################################################################
##
#E factgrp.gi . . . . . . . . . . . . . . . . . . . . . . . . . . ends here
##
|