1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965
|
#############################################################################
##
#W grp.gd GAP library Thomas Breuer
#W & Frank Celler
#W & Bettina Eick
#W & Heiko Theissen
##
#H @(#)$Id: grp.gd,v 4.188.2.5 2006/03/28 17:33:31 gap Exp $
##
#Y Copyright (C) 1997, Lehrstuhl D fuer Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St. Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## This file contains the declarations of operations for groups.
##
#1
## Unless explicitly declared otherwise, all subgroup series are descending.
## That is they are stored in decreasing order.
#2
## If a group <U> is created as a subgroup of another group <G>, <G>
## becomes the parent of <U>. There is no `universal' parent group,
## parent-child chains can be arbitrary long. {\GAP} stores the result of some
## operations (such as `Normalizer') with the parent as an attribute.
Revision.grp_gd :=
"@(#)$Id: grp.gd,v 4.188.2.5 2006/03/28 17:33:31 gap Exp $";
#############################################################################
##
#V InfoGroup
##
## is the info class for the generic group theoretic functions
## (see~"Info Functions").
##
DeclareInfoClass( "InfoGroup" );
#############################################################################
##
#C IsGroup( <obj> )
##
## A group is a magma-with-inverses (see~"IsMagmaWithInverses")
## and associative (see~"IsAssociative") multiplication.
##
## `IsGroup' tests whether the object <obj> fulfills these conditions,
## it does *not* test whether <obj> is a set of elements that forms a group
## under multiplication;
## use `AsGroup' (see~"AsGroup") if you want to perform such a test.
## (See~"Categories" for details about categories.)
##
DeclareSynonym( "IsGroup", IsMagmaWithInverses and IsAssociative );
InstallTrueMethod( IsFiniteOrderElementCollection, IsGroup and IsFinite );
#############################################################################
##
#A GeneratorsOfGroup( <G> )
##
## returns a list of generators of the group <G>.
## If <G> has been created by the command `GroupWithGenerators'
## (see~"GroupWithGenerators"), with argument <gens>, then
## the list returned by `GeneratorsOfGroup' will be equal to <gens>.
##
DeclareSynonymAttr( "GeneratorsOfGroup", GeneratorsOfMagmaWithInverses );
#############################################################################
##
#O GroupString( <G>, <name> )
##
## returns a short string (usually less than one line) with information
## about the group <G>. <name> is a display name if the group <G> does
## not have one.
DeclareOperation( "GroupString", [IsGroup,IsString] );
#############################################################################
##
#A NameIsomorphismClass( <G> ) . . . . . . . . . . . . . . . . experimental
##
DeclareAttribute( "NameIsomorphismClass", IsGroup );
#############################################################################
##
#P IsCyclic( <G> )
##
## A group is *cyclic* if it can be generated by one element.
## For a cyclic group, one can compute a generating set consisting of only
## one element using `MinimalGeneratingSet' (see~"MinimalGeneratingSet").
##
DeclareProperty( "IsCyclic", IsGroup );
InstallSubsetMaintenance( IsCyclic, IsGroup and IsCyclic, IsGroup );
InstallFactorMaintenance( IsCyclic,
IsGroup and IsCyclic, IsObject, IsGroup );
InstallTrueMethod( IsCyclic, IsGroup and IsTrivial );
InstallTrueMethod( IsCommutative, IsGroup and IsCyclic );
#############################################################################
##
#P IsElementaryAbelian( <G> )
##
## A group <G> is elementary abelian if it is commutative and if there is a
## prime $p$ such that the order of each element in <G> divides $p$.
##
DeclareProperty( "IsElementaryAbelian", IsGroup );
InstallSubsetMaintenance( IsElementaryAbelian,
IsGroup and IsElementaryAbelian, IsGroup );
InstallFactorMaintenance( IsElementaryAbelian,
IsGroup and IsElementaryAbelian, IsObject, IsGroup );
InstallTrueMethod( IsElementaryAbelian, IsGroup and IsTrivial );
#############################################################################
##
#P IsFinitelyGeneratedGroup( <G> )
##
## tests whether the group <G> can be generated by a finite number of
## generators. (This property is mainly used to obtain finiteness
## conditions.)
##
## Note that this is a pure existence statement. Even if a group is known
## to be generated by a finite number of elements, it can be very hard or
## even impossible to obtain such a generating set if it is not known.
##
DeclareProperty( "IsFinitelyGeneratedGroup", IsGroup );
InstallFactorMaintenance( IsFinitelyGeneratedGroup,
IsGroup and IsFinitelyGeneratedGroup, IsObject, IsGroup );
InstallTrueMethod( IsFinitelyGeneratedGroup, IsGroup and IsTrivial );
#############################################################################
##
#P IsSubsetLocallyFiniteGroup(<U>) . . . . test if a group is locally finite
##
## A group is called locally finite if every finitely generated subgroup is
## finite. This property checks whether the group <U> is a subset of a
## locally finite group. This is used to check whether finite generation
## will imply finiteness, as it does for example for permutation groups.
##
DeclareProperty( "IsSubsetLocallyFiniteGroup", IsGroup );
# this true method will enforce that many groups are finite, which is needed
# implicitly
InstallTrueMethod( IsFinite, IsFinitelyGeneratedGroup and IsGroup
and IsSubsetLocallyFiniteGroup );
InstallTrueMethod( IsSubsetLocallyFiniteGroup, IsFinite and IsGroup );
InstallSubsetMaintenance( IsSubsetLocallyFiniteGroup,
IsGroup and IsSubsetLocallyFiniteGroup, IsGroup );
#############################################################################
##
#M IsSubsetLocallyFiniteGroup( <G> ) . . . . . . . . . . for magmas of FFEs
##
InstallTrueMethod( IsSubsetLocallyFiniteGroup, IsFFECollection and IsMagma );
#############################################################################
#3
## The following filters and operations indicate capabilities of {\GAP}.
## They can be used in the method selection or algorithms to check whether
## it is feasible to compute certain operations for a given group.
## In general, they return `true' if good algorithms for the given arguments
## are available in {\GAP}.
## An answer `false' indicates that no method for this group may exist,
## or that the existing methods might run into problems.
##
## Typical examples when this might happen is with finitely presented
## groups, for which many of the methods cannot be guaranteed to succeed in
## all situations.
##
## The willingness of {\GAP} to perform certain operations may change,
## depending on which further information is known about the arguments.
## Therefore the filters used are not implemented as properties but as
## ``other filters'' (see~"Properties" and~"Other Filters").
##
#############################################################################
##
#F CanEasilyTestMembership( <grp> )
##
## This filter indicates whether a group can test membership of
## elements in <grp> (via the operation `in') in reasonable time.
## It is used by the method selection to decide whether an algorithm
## that relies on membership tests may be used.
##
DeclareFilter( "CanEasilyTestMembership" );
#############################################################################
##
#F CanComputeSizeAnySubgroup( <grp> )
##
## This filter indicates whether <grp> can easily compute the size of any
## subgroup. (This is for example advantageous if one can test that a
## stabilizer index equals the length of the orbit computed so far to stop
## early.)
##
DeclareFilter( "CanComputeSizeAnySubgroup" );
InstallTrueMethod(CanEasilyTestMembership,CanComputeSizeAnySubgroup);
InstallTrueMethod(CanComputeSize,CanComputeSizeAnySubgroup);
InstallTrueMethod( CanComputeSize, IsTrivial );
# these implications can create problems with some fp groups. Therefore we
# are a bit less eager
#InstallTrueMethod( CanComputeSizeAnySubgroup, IsTrivial );
#InstallTrueMethod( CanEasilyTestMembership, IsTrivial );
#############################################################################
##
#F CanComputeIndex( <G>, <H> )
##
## This filter indicates whether the index $[G:H]$ (which might
## be `infinity') can be computed. It assumes that $H\le G$. (see
## "CanComputeIsSubset")
DeclareOperation( "CanComputeIndex", [IsGroup,IsGroup] );
#############################################################################
##
#P KnowsHowToDecompose( <G> )
#O KnowsHowToDecompose( <G>, <gens> )
##
## Tests whether the group <G> can decompose elements in the generators
## <gens>. If <gens> is not given it tests, whether it can decompose in the
## generators given in `GeneratorsOfGroup'.
##
## This property can be used for example to check whether a
## `GroupHomomorphismByImages' can be reasonably defined from this group.
DeclareProperty( "KnowsHowToDecompose", IsGroup );
DeclareOperation( "KnowsHowToDecompose", [ IsGroup, IsList ] );
#############################################################################
##
#P IsPGroup( <G> ) . . . . . . . . . . . . . . . . . is a group a p-group ?
##
## A *$p$-group* is a finite group whose order (see~"Size") is of the form
## $p^n$ for a prime integer $p$ and a nonnegative integer $n$.
## `IsPGroup' returns `true' if <G> is a $p$-group, and `false' otherwise.
##
DeclareProperty( "IsPGroup", IsGroup );
InstallSubsetMaintenance( IsPGroup,
IsGroup and IsPGroup, IsGroup );
InstallFactorMaintenance( IsPGroup,
IsGroup and IsPGroup, IsObject, IsGroup );
InstallTrueMethod( IsPGroup, IsGroup and IsTrivial );
InstallTrueMethod( IsPGroup, IsGroup and IsElementaryAbelian );
#############################################################################
##
#A PrimePGroup( <G> )
##
## If <G> is a nontrivial $p$-group (see~"IsPGroup"), `PrimePGroup' returns
## the prime integer $p$;
## if <G> is trivial then `PrimePGroup' returns `fail'.
## Otherwise an error is issued.
##
DeclareAttribute( "PrimePGroup", IsPGroup );
#############################################################################
##
#A PClassPGroup( <G> )
##
## The $p$-class of a $p$-group <G> (see~"IsPGroup")
## is the length of the lower $p$-central series (see~"PCentralSeries")
## of <G>.
## If <G> is not a $p$-group then an error is issued.
##
DeclareAttribute( "PClassPGroup", IsPGroup );
#############################################################################
##
#A RankPGroup( <G> )
##
## For a $p$-group <G> (see~"IsPGroup"), `RankPGroup' returns the *rank* of
## <G>, which is defined as the minimal size of a generating system of <G>.
## If <G> is not a $p$-group then an error is issued.
##
DeclareAttribute( "RankPGroup", IsPGroup );
#############################################################################
##
#P IsNilpotentGroup( <G> )
##
## A group is *nilpotent* if the lower central series
## (see~"LowerCentralSeriesOfGroup" for a definition) reaches the trivial
## subgroup in a finite number of steps.
##
DeclareProperty( "IsNilpotentGroup", IsGroup );
InstallSubsetMaintenance( IsNilpotentGroup,
IsGroup and IsNilpotentGroup, IsGroup );
InstallFactorMaintenance( IsNilpotentGroup,
IsGroup and IsNilpotentGroup, IsObject, IsGroup );
InstallTrueMethod( IsNilpotentGroup, IsGroup and IsCommutative );
InstallTrueMethod( IsNilpotentGroup, IsGroup and IsPGroup );
#############################################################################
##
#P IsPerfectGroup( <G> )
##
## A group is *perfect* if it equals its derived subgroup
## (see~"DerivedSubgroup").
##
DeclareProperty( "IsPerfectGroup", IsGroup );
InstallFactorMaintenance( IsPerfectGroup,
IsGroup and IsPerfectGroup, IsObject, IsGroup );
#############################################################################
##
#P IsSporadicSimpleGroup( <G> )
##
## A group is *sporadic simple* if it is one of the $26$ sporadic simple
## groups; these are (in {\ATLAS} notation, see~\cite{CCN85}) $M_{11}$,
## $M_{12}$, $J_1$, $M_{22}$, $J_2$, $M_{23}$, $HS$, $J_3$, $M_{24}$,
## $M^cL$, $He$, $Ru$, $Suz$, $O^{\prime}N$, $Co_3$, $Co_2$, $Fi_{22}$,
## $HN$, $Ly$, $Th$, $Fi_{23}$, $Co_1$, $J_4$, $Fi_{24}^{\prime}$, $B$,
## and $M$.
##
## This property can be used for example for selecting the character tables
## of the sporadic simple groups,
## see the documentation of the {\GAP} package CTblLib.
##
DeclareProperty( "IsSporadicSimpleGroup", IsGroup );
InstallIsomorphismMaintenance( IsSporadicSimpleGroup,
IsGroup and IsSporadicSimpleGroup, IsGroup );
#############################################################################
##
#P IsSimpleGroup( <G> )
##
## A group is *simple* if it is nontrivial and has no nontrivial normal
## subgroups.
##
DeclareProperty( "IsSimpleGroup", IsGroup );
InstallIsomorphismMaintenance( IsSimpleGroup,
IsGroup and IsSimpleGroup, IsGroup );
InstallTrueMethod( IsSimpleGroup, IsGroup and IsSporadicSimpleGroup );
#############################################################################
##
#P IsSupersolvableGroup( <G> )
##
## A finite group is *supersolvable* if it has a normal series with cyclic
## factors.
##
DeclareProperty( "IsSupersolvableGroup", IsGroup );
InstallSubsetMaintenance( IsSupersolvableGroup,
IsGroup and IsSupersolvableGroup, IsGroup );
InstallFactorMaintenance( IsSupersolvableGroup,
IsGroup and IsSupersolvableGroup, IsObject, IsGroup );
InstallTrueMethod( IsSupersolvableGroup, IsNilpotentGroup );
#############################################################################
##
#P IsMonomialGroup( <G> )
##
## A finite group is *monomial* if every irreducible complex character is
## induced from a linear character of a subgroup.
##
DeclareProperty( "IsMonomialGroup", IsGroup );
InstallFactorMaintenance( IsMonomialGroup,
IsGroup and IsMonomialGroup, IsObject, IsGroup );
InstallTrueMethod( IsMonomialGroup, IsSupersolvableGroup and IsFinite );
#############################################################################
##
#P IsSolvableGroup( <G> )
##
## A group is *solvable* if the derived series (see~"DerivedSeriesOfGroup"
## for a definition)
## reaches the trivial subgroup in a finite number of steps.
##
## For finite groups this is the same as being polycyclic
## (see~"IsPolycyclicGroup"),
## and each polycyclic group is solvable,
## but there are infinite solvable groups that are not polycyclic.
##
DeclareProperty( "IsSolvableGroup", IsGroup );
InstallSubsetMaintenance( IsSolvableGroup,
IsGroup and IsSolvableGroup, IsGroup );
InstallFactorMaintenance( IsSolvableGroup,
IsGroup and IsSolvableGroup, IsObject, IsGroup );
InstallTrueMethod( IsSolvableGroup, IsMonomialGroup );
InstallTrueMethod( IsSolvableGroup, IsSupersolvableGroup );
#############################################################################
##
#P IsPolycyclicGroup( <G> )
##
## A group is polycyclic if it has a subnormal series with cyclic factors.
## For finite groups this is the same as if the group is solvable
## (see~"IsSolvableGroup").
##
DeclareProperty( "IsPolycyclicGroup", IsGroup );
InstallTrueMethod( IsSolvableGroup, IsPolycyclicGroup );
InstallTrueMethod( IsPolycyclicGroup, IsSolvableGroup and IsFinite );
InstallTrueMethod( IsPolycyclicGroup,
IsNilpotentGroup and IsFinitelyGeneratedGroup );
#############################################################################
##
#A AbelianInvariants( <G> )
##
## returns the abelian invariants (also sometimes called primary
## decomposition) of the commutator factor group of the
## group <G>. These are given as a list of prime-powers or zeroes and
## describe the
## structure of $G/G'$ as a direct product of cyclic groups of prime power
## (or infinite) order.
##
## (See "IndependentGeneratorsOfAbelianGroup" to obtain actual generators).
##
DeclareAttribute( "AbelianInvariants", IsGroup );
#############################################################################
##
#A AsGroup( <D> ) . . . . . . . . . . . . . collection <D>, viewed as group
##
## if the elements of the collection <D> form a group the command returns
## this group, otherwise it returns `fail'.
##
DeclareAttribute( "AsGroup", IsCollection );
#############################################################################
##
#A ChiefSeries( <G> )
##
## is a series of normal subgroups of <G> which cannot be refined further.
## That is there is no normal subgroup $N$ of <G> with $U_i > N > U_{i+1}$.
## This attribute returns *one* chief series (of potentially many
## possibilities).
##
DeclareAttribute( "ChiefSeries", IsGroup );
#############################################################################
##
#O ChiefSeriesUnderAction( <H>, <G> )
##
## returns a series of normal subgroups of <G> which are invariant under
## <H> such that the series cannot be refined any further. <G> must be
## a subgroup of <H>.
## This attribute returns *one* such series (of potentially many
## possibilities).
##
DeclareOperation( "ChiefSeriesUnderAction", [ IsGroup, IsGroup ] );
#############################################################################
##
#O ChiefSeriesThrough( <G>, <l> )
##
## is a chief series of the group <G> going through the normal subgroups in
## the list <l>. <l> must be a list of normal subgroups of <G> contained in
## each other, sorted by descending size. This attribute returns *one*
## chief series (of potentially many possibilities).
##
DeclareOperation( "ChiefSeriesThrough", [ IsGroup, IsList ] );
#############################################################################
##
#A CommutatorFactorGroup( <G> )
##
## computes the commutator factor group $<G>/<G>^{\prime}$ of the group <G>.
##
DeclareAttribute( "CommutatorFactorGroup", IsGroup );
#############################################################################
##
#A CompositionSeries( <G> )
##
## A composition series is a subnormal series which cannot be refined.
## This attribute returns *one* composition series (of potentially many
## possibilities).
##
DeclareAttribute( "CompositionSeries", IsGroup );
#T and for module?
#############################################################################
##
#F DisplayCompositionSeries( <G> )
##
## Displays a composition series of <G> in a nice way, identifying the
## simple factors.
##
DeclareGlobalFunction( "DisplayCompositionSeries" );
#############################################################################
##
#A ConjugacyClasses( <G> )
##
## returns the conjugacy classes of elements of <G> as a list of
## `ConjugacyClass'es of <G> (see~`ConjugacyClass'
## ("ConjugacyClass") for details). It is guaranteed that the class of the
## identity is in the first position, the further arrangement depends on
## the method chosen (and might be different for equal but not identical
## groups).
##
## For very small groups (of size up to 500) the classes will be computed
## by the conjugation action of <G> on itself
## (see~"ConjugacyClassesByOrbits"). This can be deliberately switched off
## using the ``{`noaction'}'' option shown below.
##
## For solvable groups, the default method to compute the classes is by
## homomorphic lift
## (see section~"Conjugacy Classes in Solvable Groups").
##
## For other groups the method of \cite{HulpkeClasses} is employed.
##
## `ConjugacyClasses' supports the following options that can be used to
## modify this strategy:
## \beginitems
## `random'&The classes are computed by random search. See
## `ConjugacyClassesByRandomSearch' ("ConjugacyClassesByRandomSearch")
## below.
##
## `action'&The classes are computed by action of <G> on itself See
## `ConjugacyClassesByOrbits' ("ConjugacyClassesByOrbits")
## below.
##
## `noaction'&Even for small groups
## `ConjugacyClassesByOrbits' ("ConjugacyClassesByOrbits")
## is not used as a default. This can be useful if the elements of the
## group use a lot of memory.
## \enditems
##
DeclareAttribute( "ConjugacyClasses", IsGroup );
#############################################################################
##
#A ConjugacyClassesMaximalSubgroups( <G> )
##
## returns the conjugacy classes of maximal subgroups of <G>.
## Representatives of the classes can be computed directly by
## `MaximalSubgroupClassReps' (see "MaximalSubgroupClassReps").
##
DeclareAttribute( "ConjugacyClassesMaximalSubgroups", IsGroup );
#############################################################################
##
#A MaximalSubgroups( <G> )
##
## returns a list of all maximal subgroups of <G>. This may take up much
## space, therefore the command should be avoided if possible. See
## "ConjugacyClassesMaximalSubgroups".
##
DeclareAttribute( "MaximalSubgroups", IsGroup );
#############################################################################
##
#A MaximalSubgroupClassReps( <G> )
##
## returns a list of conjugacy representatives of the maximal subgroups
## of <G>.
##
DeclareAttribute("MaximalSubgroupClassReps",IsGroup);
#############################################################################
##
#A PerfectResiduum( <G> )
##
## is the smallest normal subgroup of <G> that has a solvable factor group.
##
DeclareAttribute( "PerfectResiduum", IsGroup );
#############################################################################
##
#A RepresentativesPerfectSubgroups( <G> )
#A RepresentativesSimpleSubgroups( <G> )
##
## returns a list of conjugacy representatives of perfect (respectively
## simple) subgroups of <G>.
## This uses the library of perfect groups (see "PerfectGroup"), thus it
## will issue an error if the library is insufficient to determine all
## perfect subgroups.
##
DeclareAttribute( "RepresentativesPerfectSubgroups", IsGroup );
DeclareAttribute( "RepresentativesSimpleSubgroups", IsGroup );
#############################################################################
##
#A ConjugacyClassesPerfectSubgroups( <G> )
##
## returns a list of the conjugacy classes of perfect subgroups of <G>.
## (see "RepresentativesPerfectSubgroups".)
##
DeclareAttribute( "ConjugacyClassesPerfectSubgroups", IsGroup );
#############################################################################
##
#A ConjugacyClassesSubgroups( <G> )
##
## This attribute returns a list of all conjugacy classes of subgroups of
## the group <G>.
## It also is applicable for lattices of subgroups (see~"LatticeSubgroups").
## The order in which the classes are listed depends on the method chosen by
## {\GAP}.
## For each class of subgroups, a representative can be accessed using
## `Representative' (see~"Representative").
##
DeclareAttribute( "ConjugacyClassesSubgroups", IsGroup );
#############################################################################
##
#A LatticeSubgroups( <G> )
##
## computes the lattice of subgroups of the group <G>. This lattice has
## the conjugacy classes of subgroups as attribute
## `ConjugacyClassesSubgroups' (see~"ConjugacyClassesSubgroups") and
## permits one to test maximality/minimality relations.
##
DeclareAttribute( "LatticeSubgroups", IsGroup );
#############################################################################
##
#A DerivedLength( <G> )
##
## The derived length of a group is the number of steps in the derived
## series. (As there is always the group, it is the series length minus 1.)
##
DeclareAttribute( "DerivedLength", IsGroup );
#############################################################################
##
#A HirschLength( <G> )
##
## Suppose that <G> is polycyclic-by-finite; that is, there exists a
## polycyclic normal subgroup N in <G> with [G : N] finite. Then the Hirsch
## length of <G> is the number of infinite cyclic factors in a polycyclic
## series of N. This is an invariant of <G>.
##
DeclareAttribute( "HirschLength", IsGroup );
InstallIsomorphismMaintenance( HirschLength,
IsGroup and HasHirschLength,
IsGroup );
#############################################################################
##
#A DerivedSeriesOfGroup( <G> )
##
## The derived series of a group is obtained by $U_{i+1}=U_i'$. It stops
## if $U_i$ is perfect.
##
DeclareAttribute( "DerivedSeriesOfGroup", IsGroup );
#############################################################################
##
#A DerivedSubgroup( <G> )
##
## The derived subgroup $G'$ of $G$ is the subgroup generated by all
## commutators of pairs of elements of $G$. It is normal in $G$ and the
## factor group $G/G'$ is the largest abelian factor group of $G$.
##
DeclareAttribute( "DerivedSubgroup", IsGroup );
#############################################################################
##
#A MaximalAbelianQuotient(<grp>) . . . . Max abelian quotient
##
## returns an epimorphism from <grp> onto the maximal abelian quotient of
## <grp>. The kernel of this epimorphism is the derived subgroup.
DeclareAttribute( "MaximalAbelianQuotient",IsGroup);
#############################################################################
##
#A CommutatorLength( <G> )
##
## returns the minimal number $n$ such that each element
## in the derived subgroup (see~"DerivedSubgroup") of the group <G> can be
## written as a product of (at most) $n$ commutators of elements in <G>.
##
DeclareAttribute( "CommutatorLength", IsGroup );
#############################################################################
##
#A DimensionsLoewyFactors( <G> )
##
## This operation computes the dimensions of the factors of the Loewy
## series of <G>. (See \cite{Hup82}, p. 157 for the slightly complicated
## definition of the Loewy Series.)
##
## The dimensions are computed via the `JenningsSeries' without computing
## the Loewy series itself.
DeclareAttribute( "DimensionsLoewyFactors", IsGroup );
#############################################################################
##
#A ElementaryAbelianSeries( <G> )
#A ElementaryAbelianSeriesLargeSteps( <G> )
#A ElementaryAbelianSeries( [<G>,<NT1>,<NT2>,...] )
##
## returns a series of normal subgroups of $G$ such that all factors are
## elementary abelian. If the group is not solvable (and thus no such series
## exists) it returns `fail'.
##
## The variant `ElementaryAbelianSeriesLargeSteps' tries to make the steps
## in this series large (by eliminating intermediate subgroups if possible)
## at a small additional cost.
##
## In the third variant, an elementary abelian series through the given
## series of normal subgroups is constructed.
##
DeclareAttribute( "ElementaryAbelianSeries", IsGroup );
DeclareAttribute( "ElementaryAbelianSeriesLargeSteps", IsGroup );
#############################################################################
##
#A Exponent( <G> )
##
## The exponent $e$ of a group <G> is the lcm of the orders of its
## elements, that is, $e$ is the smallest integer such that $g^e=1$ for all
## $g\in G$
##
DeclareAttribute( "Exponent", IsGroup );
InstallIsomorphismMaintenance( Exponent, IsGroup and HasExponent, IsGroup );
#############################################################################
##
#A FittingSubgroup( <G> )
##
## The Fitting subgroup of a group <G> is its largest nilpotent normal
## subgroup.
##
DeclareAttribute( "FittingSubgroup", IsGroup );
#############################################################################
##
#A PrefrattiniSubgroup( <G> )
##
## returns a Prefrattini subgroup of the finite solvable group <G>.
## A factor $M/N$ of $G$ is called a Frattini factor if $M/N \leq
## \phi(G/N)$ holds. The group $P$ is a Prefrattini subgroup of $G$ if $P$
## covers each Frattini chief factor of $G$, and if for each maximal
## subgroup of $G$ there exists a conjugate maximal subgroup, which
## contains $P$. In a finite solvable group $G$ the Prefrattini subgroups
## form a characteristic conjugacy class of subgroups and the intersection
## of all these subgroups is the Frattini subgroup of $G$.
##
DeclareAttribute( "PrefrattiniSubgroup", IsGroup );
#############################################################################
##
#A FrattiniSubgroup( <G> )
##
## The Frattini subgroup of a group <G> is the intersection of all maximal
## subgroups of <G>.
##
DeclareAttribute( "FrattiniSubgroup", IsGroup );
#############################################################################
##
#A InvariantForm( <D> )
##
DeclareAttribute( "InvariantForm", IsGroup );
#############################################################################
##
#A JenningsSeries( <G> )
##
## For a $p$-group <G>, this function returns its Jennings series.
## This series is defined by setting
## $G_1=G$ and for $i\geq 0$, $G_{i+1}=[G_i,G]G_j^p$, where $j$ is the
## smallest integer $\geq i/p$.
##
DeclareAttribute( "JenningsSeries", IsGroup );
#############################################################################
##
#A LowerCentralSeriesOfGroup( <G> )
##
## The lower central series of a group <G> is defined as $U_{i+1}:=[G,U_i]$.
## It is a central series of normal subgroups.
## The name derives from the fact that $U_i$ is contained in the $i$-th
## step subgroup of any central series.
##
DeclareAttribute( "LowerCentralSeriesOfGroup", IsGroup );
#############################################################################
##
#A NilpotencyClassOfGroup( <G> )
##
## The nilpotency class of a nilpotent group <G> is the number of steps in
## the lower central series of <G> (see "LowerCentralSeriesOfGroup");
##
## If <G> is not nilpotent an error is issued.
##
DeclareAttribute( "NilpotencyClassOfGroup", IsGroup );
#############################################################################
##
#A MaximalNormalSubgroups( <G> )
##
## is a list containing those proper normal subgroups of the group <G>
## that are maximal among the proper normal subgroups.
##
DeclareAttribute( "MaximalNormalSubgroups", IsGroup );
#############################################################################
##
#A NormalMaximalSubgroups( <G> )
##
DeclareAttribute( "NormalMaximalSubgroups", IsGroup );
#############################################################################
##
#A MinimalNormalSubgroups( <G> )
##
## is a list containing those nontrivial normal subgroups of the group <G>
## that are minimal among the nontrivial normal subgroups.
##
DeclareAttribute( "MinimalNormalSubgroups", IsGroup );
#############################################################################
##
#A NormalSubgroups( <G> )
##
## returns a list of all normal subgroups of <G>.
##
DeclareAttribute( "NormalSubgroups", IsGroup );
#############################################################################
##
#F NormalSubgroupsAbove( <G>, <N>, <avoid> )
##
DeclareGlobalFunction("NormalSubgroupsAbove");
############################################################################
##
#A NrConjugacyClasses( <G> )
##
## returns the number of conjugacy classes of <G>.
##
DeclareAttribute( "NrConjugacyClasses", IsGroup );
#############################################################################
##
#F Omega( <G>, <p>[, <n>] )
##
## For a <p>-group <G>, one defines
## $\Omega_{<n>}(<G>) = \{ g\in <G> \mid g^{<p>^{<n>}} = 1 \}$.
## The default value for <n> is `1'.
##
## *@At the moment methods exist only for abelian <G> and <n>=1.@*
##
DeclareGlobalFunction( "Omega" );
DeclareOperation( "OmegaOp", [ IsGroup, IsPosInt, IsPosInt ] );
DeclareAttribute( "ComputedOmegas", IsGroup, "mutable" );
#############################################################################
##
#F Agemo( <G>, <p>[, <n>] )
##
## For a <p>-group <G>, one defines
## $\mho_{<n>}(G) = \langle g^{<p>^{<n>}} \mid g\in <G> \rangle$.
## The default value for <n> is `1'.
##
DeclareGlobalFunction( "Agemo" );
DeclareOperation( "AgemoOp", [ IsGroup, IsPosInt, IsPosInt ] );
DeclareAttribute( "ComputedAgemos", IsGroup, "mutable" );
#############################################################################
##
#A RadicalGroup( <G> )
##
## is the radical of <G>, i.e., the largest solvable normal subgroup of <G>.
##
DeclareAttribute( "RadicalGroup", IsGroup );
#############################################################################
##
#A RationalClasses( <G> )
##
## returns a list of the rational classes of the group <G>. (See
## "RationalClass".)
##
DeclareAttribute( "RationalClasses", IsGroup );
#############################################################################
##
#A GeneratorsSmallest( <G> )
##
## returns a ``smallest'' generating set for the group <G>. This is the
## lexicographically (using {\GAP}s order of group elements) smallest list
## $l$ of elements of <G> such that $G=\langle l\rangle$ and
## $l_i\not\in\langle l_1,\ldots,l_{i-1}\rangle$ (in particular $l_1$ is
## not the one of the group). The comparison of two groups via
## lexicographic comparison of their sorted element lists yields the same
## relation as lexicographic comparison of their smallest generating sets.
##
DeclareAttribute( "GeneratorsSmallest", IsGroup );
#############################################################################
##
#A LargestElementGroup( <G> )
##
## returns the largest element of <G> with respect to the ordering `\<' of
## the elements family.
##
DeclareAttribute( "LargestElementGroup", IsGroup );
#############################################################################
##
#A MinimalGeneratingSet( <G> )
##
## returns a generating set of <G> of minimal possible length.
##
DeclareAttribute( "MinimalGeneratingSet", IsGroup );
#############################################################################
##
#A SmallGeneratingSet(<G>) small generating set (hopefully even irredundant)
##
## returns a generating set of <G> which has few elements. As neither
## irredundancy, nor minimal length is proven it runs much faster than
## `MinimalGeneratingSet'. It can be used whenever a short generating set is
## desired which not necessarily needs to be optimal.
##
DeclareAttribute( "SmallGeneratingSet", IsGroup );
#############################################################################
##
#A SupersolvableResiduum( <G> )
##
## is the supersolvable residuum of the group <G>, that is,
## its smallest normal subgroup $N$ such that the factor group $<G> / N$ is
## supersolvable.
##
DeclareAttribute( "SupersolvableResiduum", IsGroup );
#############################################################################
##
#F SupersolvableResiduumDefault( <G> ) . . . . supersolvable residuum of <G>
##
## For a group <G>, `SupersolvableResiduumDefault' returns a record with the
## following components.
## \beginitems
## `ssr': &
## the supersolvable residuum of <G>, that is,
## the largest normal subgroup $N$ of <G> such that the factor group
## $<G> / N$ is supersolvable,
##
## `ds': &
## a chain of normal subgroups of <G>,
## descending from <G> to the supersolvable residuum,
## such that any refinement of this chain is a normal series.
## \enditems
##
DeclareGlobalFunction( "SupersolvableResiduumDefault" );
#############################################################################
##
#A ComplementSystem( <G> )
##
## A complement system of a group <G> is a set of Hall-$p'$-subgroups of
## <G>, where $p'$ runs through the subsets of prime factors of $|<G>|$
## that omit exactly one prime.
## Every pair of subgroups from this set commutes as subgroups.
## Complement systems exist only for solvable groups, therefore
## `ComplementSystem' returns `fail' if the group <G> is not solvable.
##
DeclareAttribute( "ComplementSystem", IsGroup );
#############################################################################
##
#A SylowSystem( <G> )
##
## A Sylow system of a group <G> is a set of Sylow subgroups of <G> such
## that every pair of Sylow subgroups from this set commutes as subgroups.
## Sylow systems exist only for solvable groups. The operation returns
## `fail' if the group <G> is not solvable.
##
DeclareAttribute( "SylowSystem", IsGroup );
#############################################################################
##
#A HallSystem( <G> )
##
## returns a list containing one Hall-$P$ subgroup for each set $P$ of primes
## which occur in the order of <G>.
## Hall systems exist only for solvable groups. The operation returns
## `fail' if the group <G> is not solvable.
##
DeclareAttribute( "HallSystem", IsGroup );
#############################################################################
##
#A TrivialSubgroup( <G> ) . . . . . . . . . . trivial subgroup of group <G>
##
DeclareSynonymAttr( "TrivialSubgroup", TrivialSubmagmaWithOne );
#############################################################################
##
#A Socle( <G> ) . . . . . . . . . . . . . . . . . . . . . . . . socle of <G>
##
## The socle of the group <G> is the subgroup generated by
## all minimal normal subgroups.
##
DeclareAttribute( "Socle", IsGroup );
#############################################################################
##
#A UpperCentralSeriesOfGroup( <G> )
##
## The upper central series of a group <G> is defined as an ending series
## $U_i/U_{i+1}:=Z(G/U_{i+1})$.
## It is a central series of normal subgroups.
## The name derives from the fact that $U_i$ contains every $i$-th step
## subgroup of a central series.
##
DeclareAttribute( "UpperCentralSeriesOfGroup", IsGroup );
#############################################################################
##
#O EulerianFunction( <G>, <n> )
##
## returns the number of <n>-tuples $(g_1, g_2, \ldots g_n)$ of elements
## of the group <G> that generate the whole group <G>.
## The elements of an <n>-tuple need not be different. If the Library of
## Tables of Marks (see Chapter "Tables of Marks") covers the group <G>,
## you may also use `EulerianFunctionByTom' (see "EulerianFunctionByTom").
##
DeclareOperation( "EulerianFunction", [ IsGroup, IsPosInt ] );
#############################################################################
##
#F AgemoAbove( <G>, <C>, <p> )
##
DeclareGlobalFunction( "AgemoAbove" );
#############################################################################
##
#O AsSubgroup( <G>, <U> )
##
## creates a subgroup of <G> which contains the same elements as <U>
##
DeclareOperation( "AsSubgroup", [ IsGroup, IsGroup ] );
#############################################################################
##
#O ClassMultiplicationCoefficient( <G>, <i>, <j>, <k> )
#O ClassMultiplicationCoefficient( <G>, <C_i>, <C_j>, <C_k> )
##
DeclareOperation( "ClassMultiplicationCoefficient",
[ IsGroup, IsPosInt, IsPosInt, IsPosInt ] );
DeclareOperation( "ClassMultiplicationCoefficient",
[ IsGroup, IsCollection, IsCollection, IsCollection ] );
#############################################################################
##
#F ClosureGroupDefault( <G>, <elm> ) . . . . . closure of group with element
##
## This functions returns the closure of the group <G> with the element
## <elm>.
## If <G> has the attribute `AsSSortedList' then also the result has this
## attribute.
## This is used to implement the default method for `Enumerator'
## (see~"Enumerator") and `EnumeratorSorted' (see~"EnumeratorSorted").
##
DeclareGlobalFunction( "ClosureGroupDefault" );
#############################################################################
##
#O ClosureGroup( <G>, <obj> ) . . . closure of group with element or group
##
## creates the group generated by the elements of <G> and <obj>.
## <obj> can be either an element or a collection of elements,
## in particular another group.
##
DeclareOperation( "ClosureGroup", [ IsGroup, IsObject ] );
#############################################################################
##
#F ClosureGroupAddElm( <G>, <elm> )
#F ClosureGroupCompare( <G>, <elm> )
#F ClosureGroupIntest( <G>, <elm> )
##
## These three functions together with `ClosureGroupDefault' implement the
## main methods for `ClosureGroup' (see~"ClosureGroup").
## In the ordering given, they just add <elm> to the generators, remove
## duplicates and identity elements, and test whether <elm> is already
## contained in <G>.
##
DeclareGlobalFunction( "ClosureGroupAddElm" );
DeclareGlobalFunction( "ClosureGroupCompare" );
DeclareGlobalFunction( "ClosureGroupIntest" );
#############################################################################
##
#F ClosureSubgroup( <G>, <obj> )
#F ClosureSubgroupNC( <G>, <obj> )
##
## For a group <G> that stores a parent group (see~"Parents"),
## `ClosureSubgroup' calls `ClosureGroup' (see~"ClosureGroup") with the same
## arguments;
## if the result is a subgroup of the parent of <G> then the parent of <G>
## is set as parent of the result, otherwise an error is raised.
## The check whether the result is contained in the parent of <G> is omitted
## by the `NC' version. As a wrong parent might imply wrong properties this
## version should be used with care.
##
DeclareGlobalFunction( "ClosureSubgroup" );
DeclareGlobalFunction( "ClosureSubgroupNC" );
#############################################################################
##
#O CommutatorSubgroup( <G>, <H> )
##
## If <G> and <H> are two groups of elements in the same family, this
## operation returns the group generated by all commutators
## $[ g, h ] = g^{-1} h^{-1} g h$ (see~"Comm") of elements $g \in <G>$ and
## $h \in <H>$, that is the group
## $\left\langle [ g, h ] \mid g \in <G>, h \in <H> \right\rangle$.
##
DeclareOperation( "CommutatorSubgroup", [ IsGroup, IsGroup ] );
#############################################################################
##
#O ConjugateGroup( <G>, <obj> ) . . . . . . conjugate of group <G> by <obj>
##
## returns the conjugate group of <G>, obtained by applying the conjugating
## element <obj>.
## To form a conjugate (group) by any object acting via `^', one can use
## the infix operator `^'.
##
DeclareOperation( "ConjugateGroup", [ IsGroup, IsObject ] );
#############################################################################
##
#O ConjugateSubgroup( <G>, <g> )
##
DeclareOperation( "ConjugateSubgroup",
[ IsGroup and HasParent, IsMultiplicativeElementWithInverse ] );
#############################################################################
##
#O ConjugateSubgroups( <G>, <U> )
##
## returns a list of all images of the group <U> under conjugation action
## by <G>.
##
DeclareOperation( "ConjugateSubgroups", [ IsGroup, IsGroup ] );
#############################################################################
##
#O Core( <S>, <U> )
##
## If <S> and <U> are groups of elements in the same family, this
## operation
## returns the core of <U> in <S>, that is the intersection of all
## <S>-conjugates of <U>.
##
InParentFOA( "Core", IsGroup, IsGroup, DeclareAttribute );
#############################################################################
##
#O CosetTable( <G>, <H> )
##
## returns the coset table of the finitely presented group <G> on the cosets
## of the subgroup <H>.
##
## Basically a coset table is the permutation representation of the finitely
## presented group on the cosets of a subgroup (which need not be faithful
## if the subgroup has a nontrivial core). Most of the set theoretic and
## group functions use the regular representation of <G>, i.e., the coset
## table of <G> over the trivial subgroup.
##
## The coset table is returned as a list of lists. For each generator of
## <G> and its inverse the table contains a generator list. A generator
## list is simply a list of integers. If <l> is the generator list for the
## generator <g> and if `<l>[<i>] = <j>' then generator <g> takes the coset
## <i> to the coset <j> by multiplication from the right. Thus the
## permutation representation of <G> on the cosets of <H> is obtained by
## applying `PermList' to each generator list (see "PermList").
##
DeclareOperation( "CosetTable", [ IsGroup, IsGroup ] );
#############################################################################
##
#O CosetTableNormalClosure( <G>, <H> )
##
## returns the coset table of the finitely presented group <G> on the cosets
## of the normal closure of the subgroup <H>.
##
DeclareOperation( "CosetTableNormalClosure", [ IsGroup, IsGroup ] );
#############################################################################
##
#F FactorGroup( <G>, <N> )
#O FactorGroupNC( <G>, <N> )
##
## returns the image of the `NaturalHomomorphismByNormalSubgroup(<G>,<N>)'.
## The `NC' version does not test whether <N> is normal in <G>.
##
DeclareGlobalFunction( "FactorGroup" );
DeclareOperation( "FactorGroupNC", [ IsGroup, IsGroup ] );
#############################################################################
##
#O Index( <G>, <U> )
#O IndexNC( <G>, <U> )
##
## For a subgroup <U> of the group <G>, `Index' returns the index
## $[<G>:<U>] = {|<G>| \over |<U>|}$ of <U> in <G>.
## The `NC' version does not test whether <U> is contained in <G>.
##
InParentFOA( "Index", IsGroup, IsGroup, DeclareAttribute );
DeclareOperation( "IndexNC", [ IsGroup, IsGroup ] );
#############################################################################
##
#A IndexInWholeGroup( <G> )
##
## If the family of elements of <G> itself forms a group <P>, this
## attribute returns the index of <G> in <P>.
DeclareAttribute( "IndexInWholeGroup", IsGroup );
#############################################################################
##
#A IndependentGeneratorsOfAbelianGroup( <A> )
##
## returns a set of generators <g> of prime-power order of the abelian
## group <A> such that <A> is the direct product of the cyclic groups
## generated by the $g_i$.
##
DeclareAttribute( "IndependentGeneratorsOfAbelianGroup",
IsGroup and IsAbelian );
#############################################################################
##
#O IsConjugate( <G>, <x>, <y> )
#O IsConjugate( <G>, <U>, <V> )
##
## tests whether the elements <x> and <y> or the subgroups <U> and <V> are
## conjugate under the action of <G>. (They do not need to be contained in
## <G>.) This command is only a shortcut to
## `RepresentativeAction'.
##
DeclareOperation( "IsConjugate", [ IsGroup, IsObject, IsObject ] );
#############################################################################
##
#O IsNormal( <G>, <U> )
##
## returns `true' if the group <G> normalizes the group <U>
## and `false' otherwise.
##
## A group <G> *normalizes* a group <U> if and only if for every $g \in <G>$
## and $u \in <U>$ the element $u^g$ is a member of <U>.
## Note that <U> need not be a subgroup of <G>.
##
InParentFOA( "IsNormal", IsGroup, IsGroup, DeclareProperty );
#############################################################################
##
#O IsCharacteristicSubgroup(<G>,<N>)
##
## tests whether <N> is invariant under all automorphisms of <G>.
DeclareOperation( "IsCharacteristicSubgroup", [IsGroup,IsGroup] );
#############################################################################
##
#F IsPNilpotent( <G>, <p> )
##
## A group is $p$-nilpotent if it possesses a normal $p$-complement.
##
KeyDependentOperation( "IsPNilpotent", IsGroup, IsPosInt, "prime" );
#############################################################################
##
#F IsPSolvable( <G>, <p> )
##
## A group is $p$-solvable if every chief factor is either not divisible
## by $p$ or solvable.
##
## *@Currently no method is installed!@*
##
KeyDependentOperation( "IsPSolvable", IsGroup, IsPosInt, "prime" );
#############################################################################
##
#F IsSubgroup( <G>, <U> )
##
## `IsSubgroup' returns `true' if <U> is a group that is a subset of the
## domain <G>.
## This is actually checked by calling `IsGroup( <U> )' and
## `IsSubset( <G>, <U> )';
## note that special methods for `IsSubset' (see~"IsSubset") are available
## that test only generators of <U> if <G> is closed under the group
## operations.
## So in most cases,
## for example whenever one knows already that <U> is a group,
## it is better to call only `IsSubset'.
##
DeclareGlobalFunction( "IsSubgroup" );
#############################################################################
##
#O IsSubnormal( <G>, <U> )
##
## A subgroup <U> of the group <G> is subnormal if it is contained in a
## subnormal series of <G>.
##
DeclareOperation( "IsSubnormal", [ IsGroup, IsGroup ] );
#############################################################################
##
#O NormalClosure( <G>, <U> )
##
## The normal closure of <U> in <G> is the smallest normal subgroup of <G>
## which contains <U>.
##
InParentFOA( "NormalClosure", IsGroup, IsGroup, DeclareAttribute );
#############################################################################
##
#O NormalIntersection( <G>, <U> )
##
## computes the intersection of <G> and <U>, assuming that <G> is normalized
## by <U>. This works faster than `Intersection', but will not produce the
## intersection if <G> is not normalized by <U>.
DeclareOperation( "NormalIntersection", [ IsGroup, IsGroup ] );
#############################################################################
##
#O Normalizer( <G>, <U> )
#O Normalizer( <G>, <g> )
##
## Computes the normalizer $N_G(U)$, that is the stabilizer of $U$ under
## the conjugation action of $G$.
## The second form computes $N_G(\langle g\rangle)$.
##
InParentFOA( "Normalizer", IsGroup, IsObject, DeclareAttribute );
#############################################################################
##
#O CentralizerModulo(<G>,<N>,<elm>) full preimage of C_(G/N)(elm.N)
##
## Computes the full preimage of the centralizer $C_{G/N}(elm\cdot N)$ in
## <G> (without necessarily constructing the factor group).
##
DeclareOperation("CentralizerModulo", [IsGroup,IsGroup,IsObject]);
#############################################################################
##
#F PCentralSeries( <G>, <p> )
##
## The $p$-central series of $G$ is defined by $U_1:=G$,
## $U_i:=[G,U_{i-1}]U_{i-1}^p$.
##
KeyDependentOperation( "PCentralSeries", IsGroup, IsPosInt, "prime" );
#############################################################################
##
#F PRump( <G>, <p> )
##
## The *$p$-rump* of a group $G$ is the subgroup $G' G^p$ for a prime $p$.
##
KeyDependentOperation( "PRump", IsGroup, IsPosInt, "prime" );
#############################################################################
##
#F PCore( <G>, <p> )
##
## \atindex{O_p(G)!see PCore}{@$O_p(G)$!see \noexpand`PCore'}
## The *$p$-core* of <G> is the largest normal $p$-subgroup of <G>. It is the
## core of a $p$-Sylow subgroup of <G>.
##
KeyDependentOperation( "PCore", IsGroup, IsPosInt, "prime" );
#############################################################################
##
#O SubnormalSeries( <G>, <U> )
##
## If <U> is a subgroup of <G> this operation returns a subnormal series
## that descends from <G> to a subnormal subgroup <V>$\ge$<U>. If <U> is
## subnormal, <V>=<U>.
InParentFOA( "SubnormalSeries", IsGroup, IsGroup, DeclareAttribute );
#############################################################################
##
#F SylowSubgroup( <G>, <p> )
##
## returns a Sylow $p$ subgroup of the finite group <G>.
## This is a $p$-subgroup of <G> whose index in <G> is coprime to $p$.
## `SylowSubgroup' computes Sylow subgroups via the operation
## `SylowSubgroupOp'.
##
KeyDependentOperation( "SylowSubgroup", IsGroup, IsPosInt, "prime" );
#############################################################################
##
#F SylowComplement( <G>, <p> )
##
## returns a $p$-Sylow complement of the finite group <G>. This is a
## subgroup <U> of order coprime to $p$ such that the index $[G:U]$ is a
## $p$-power.
## At the moment methods exist only if <G> is solvable and {\GAP} will
## issue an error if <G> is not solvable.
##
KeyDependentOperation( "SylowComplement", IsGroup, IsPosInt, "prime" );
#############################################################################
##
#F HallSubgroup( <G>, <P> )
##
## computes a $P$-Hall subgroup for a set $P$ of primes.
## This is a subgroup the order of which is only divisible by primes in $P$
## and whose index is coprime to all primes in $P$.
## The function computes Hall subgroups via the operation `HallSubgroupOp'.
## At the moment methods exist only if <G> is solvable and {\GAP} will
## issue an error if <G> is not solvable.
##
KeyDependentOperation( "HallSubgroup", IsGroup, IsList, ReturnTrue );
#############################################################################
##
#O NrConjugacyClassesInSupergroup( <U>, <G> )
##
DeclareOperation( "NrConjugacyClassesInSupergroup", [ IsGroup, IsGroup ] );
#############################################################################
##
#F Factorization( <G>, <elm> )
##
## returns a factorization of <elm> as word in the generators of <G> given in
## the attribute `GeneratorsOfGroup'. The component `<G>!.factFreeMap'
## will contain a map <map> from the group <G> to the free group in which
## the word is expressed. The attribute `MappingGeneratorsImages' of this
## map gives a list of generators and corresponding letters.
##
## The algorithm used computes all elements of the group to ensure a short
## word is found. Therefore this function should *not* be used when the
## group <G> has more than a few thousand elements. Because of this, one
## should not call this function within algorithms, but use
## homomorphisms instead.
DeclareGlobalFunction("Factorization");
#############################################################################
##
#O GroupByGenerators( <gens> ) . . . . . . . . . . . . . group by generators
#O GroupByGenerators( <gens>, <id> ) . . . . . . . . . . group by generators
##
## `GroupByGenerators' returns the group $G$ generated by the list <gens>.
## If a second argument <id> is present then this is stored as the identity
## element of the group.
##
## The value of the attribute `GeneratorsOfGroup' of $G$ need not be equal
## to <gens>.
## `GroupByGenerators' is called by `Group'.
##
DeclareOperation( "GroupByGenerators", [ IsCollection ] );
DeclareOperation( "GroupByGenerators",
[ IsCollection, IsMultiplicativeElementWithInverse ] );
#############################################################################
##
#O GroupWithGenerators( <gens> ) . . . . . . . . group with given generators
#O GroupWithGenerators( <gens>, <id> ) . . . . . group with given generators
##
## `GroupWithGenerators' returns the group $G$ generated by the list <gens>.
## If a second argument <id> is present then this is stored as the identity
## element of the group.
## The value of the attribute `GeneratorsOfGroup' of $G$ is equal to <gens>.
##
DeclareOperation( "GroupWithGenerators", [ IsCollection ] );
DeclareOperation( "GroupWithGenerators",
[ IsCollection, IsMultiplicativeElementWithInverse ] );
#############################################################################
##
#F Group( <gen>, ... )
#F Group( <gens> )
#F Group( <gens>, <id> )
##
## `Group( <gen>, ... )' is the group generated by the arguments <gen>, ...
##
## If the only argument <gens> is a list that is not a matrix then
## `Group( <gens> )' is the group generated by the elements of that list.
##
## If there are two arguments, a list <gens> and an element <id>, then
## `Group( <gens>, <id> )' is the group generated by the elements of
## <gens>, with identity <id>.
##
## Note that the value of the attribute `GeneratorsOfGroup' need not be
## equal to the list <gens> of generators entered as argument.
## Use `GroupWithGenerators' (see~"GroupWithGenerators") if you want to be
## sure that the argument <gens> is stored as value of `GeneratorsOfGroup'.
##
DeclareGlobalFunction( "Group" );
#############################################################################
##
#F Subgroup( <G>, <gens> ) . . . . . . . subgroup of <G> generated by <gens>
#F SubgroupNC( <G>, <gens> )
##
## creates the subgroup <U> of <G> generated by <gens>. The `Parent' of <U>
## will be <G>.
## The `NC' version does not check, whether the elements in <gens> actually
## lie in <G>.
##
DeclareSynonym( "Subgroup", SubmagmaWithInverses );
DeclareSynonym( "SubgroupNC", SubmagmaWithInversesNC );
#############################################################################
##
#F SubgroupByProperty( <G>, <prop> )
##
## creates a subgroup of <G> consisting of those elements fulfilling
## <prop> (which is a tester function).
## No test is done whether the property actually defines a subgroup.
##
## Note that currently very little functionality beyond an element test
## exists for groups created this way.
##
DeclareGlobalFunction( "SubgroupByProperty" );
#############################################################################
##
#A ElementTestFunction( <G> )
##
## This attribute contains a function that provides an element test for the
## group <G>.
##
DeclareAttribute( "ElementTestFunction", IsGroup );
#############################################################################
##
#F SubgroupShell( <G> )
##
## creates a subgroup of <G> which at this point is not yet specified
## further (but will be later, for example by assigning a generating set).
##
DeclareGlobalFunction( "SubgroupShell" );
#############################################################################
##
#C IsRightTransversal( <obj> )
##
DeclareCategory("IsRightTransversal",IsCollection);
DeclareCategoryCollections("IsRightTransversal");
#############################################################################
##
#O RightTransversal( <G>, <U> )
##
## A right transversal $t$ is a list of representatives for the set
## $<U> {\setminus} <G>$ of right
## cosets (consisting of cosets $Ug$) of $U$ in $G$.
##
## The object returned by `RightTransversal' is not a plain list, but an
## object that behaves like an immutable list of length $[<G>{:}<U>]$,
## except if <U> is the trivial subgroup of <G>
## in which case `RightTransversal' may return the sorted plain list of
## coset representatives.
##
## The operation `PositionCanonical(<t>,<g>)', called for a transversal <t>
## and an element <g> of <G>, will return the position of the
## representative in <t> that lies in the same coset of <U> as the element
## <g> does. (In comparison, `Position' will return `fail' if the element
## is not equal to the representative.) Functions that implement group
## actions such as `Action' or `Permutation' (see Chapter~"Group
## Actions") use `PositionCanonical', therefore it is possible to
## ``act'' on a right transversal to implement the action on the cosets.
## This is often much more efficient than acting on cosets.
##
InParentFOA( "RightTransversal", IsGroup, IsGroup, DeclareAttribute );
#############################################################################
##
#O IntermediateSubgroups( <G>, <U> )
##
## returns a list of all subgroups of <G> that properly contain <U>; that
## is all subgroups between <G> and <U>. It returns a record with
## components `subgroups' which is a list of these subgroups as well as a
## component `inclusions' which lists all maximality inclusions among these
## subgroups.
## A maximality inclusion is given as a list `[<i>,<j>]' indicating that
## subgroup number <i> is a maximal subgroup of subgroup number <j>, the
## numbers 0 and 1+length(`subgroups') are used to denote <U> and <G>
## respectively.
##
DeclareOperation( "IntermediateSubgroups", [IsGroup, IsGroup] );
#############################################################################
##
#F IsomorphismTypeInfoFiniteSimpleGroup( <G> )
##
## For a finite simple group <G>, `IsomorphismTypeInfoFiniteSimpleGroup'
## returns a record with components `series', `name' and possibly `parameter',
## describing the isomorphism type of <G>.
## The component `name' is a string that gives name(s) for <G>,
## and `series' is a string that describes the following series.
##
## (If different characterizations of <G> are possible only one is given by
## `series' and `parameter', while `name' may give several names.)
## \beginlist
## \item{`"A"'} Alternating groups, `parameter' gives the natural degree.
##
## \item{`"L"'} Linear groups (Chevalley type $A$),
## `parameter' is a list [<n>,<q>] that indicates $L(n,q)$.
##
## \item{`"2A"'} Twisted Chevalley type ${}^2A$,
## `parameter' is a list [<n>,<q>] that indicates ${}^2A(n,q)$.
##
## \item{`"B"'} Chevalley type $B$,
## `parameter' is a list [<n>,<q>] that indicates $B(n,q)$.
##
## \item{`"2B"'} Twisted Chevalley type ${}^2B$,
## `parameter' is a value <q> that indicates ${}^2B(2,q)$.
##
## \item{`"C"'} Chevalley type $C$,
## `parameter' is a list [<n>,<q>] that indicates $C(n,q)$.
##
## \item{`"D"'} Chevalley type $D$,
## `parameter' is a list [<n>,<q>] that indicates $D(n,q)$.
##
## \item{`"2D"'} Twisted Chevalley type ${}^2D$,
## `parameter' is a list [<n>,<q>] that indicates ${}^2D(n,q)$.
##
## \item{`"3D"'} Twisted Chevalley type ${}^3D$,
## `parameter' is a value <q> that indicates ${}^3D(4,q)$.
##
## \item{`"E"'} Exceptional Chevalley type $E$,
## `parameter' is a list [<n>,<q>] that indicates $E_n(q)$.
## The value of <n> is 6,7 or 8.
##
## \item{`"2E"'} Twisted exceptional Chevalley type $E_6$,
## `parameter' is a value <q> that indicates ${}^2E_6(q)$.
##
## \item{`"F"'} Exceptional Chevalley type $F$,
## `parameter' is a value <q> that indicates $F(4,q)$.
##
## \item{`"2F"'} Twisted exceptional Chevalley type ${}^2F$ (Ree groups),
## `parameter' is a value <q> that indicates ${}^2F(4,q)$.
##
## \item{`"G"'} Exceptional Chevalley type $G$,
## `parameter' is a value <q> that indicates $G(2,q)$.
##
## \item{`"2G"'} Twisted exceptional Chevalley type ${}^2G$ (Ree groups),
## `parameter' is a value <q> that indicates ${}^2G(2,q)$.
##
## \item{`"Spor"'} Sporadic groups, `name' gives the name.
##
## \item{`"Z"'} Cyclic groups of prime size, `parameter' gives the size.
## \endlist
##
## An equal sign in the name denotes different naming schemes for the same
## group, a tilde sign abstract isomorphisms between groups constructed in a
## different way.
##
DeclareGlobalFunction( "IsomorphismTypeInfoFiniteSimpleGroup" );
#############################################################################
##
#A IsomorphismPcGroup( <G> )
##
## \index{isomorphic!pc group}
## returns an isomorphism from <G> onto an isomorphic PC group.
## The series chosen for this PC representation depends on
## the method chosen.
## <G> must be a polycyclic group of any kind, for example a solvable
## permutation group.
DeclareAttribute( "IsomorphismPcGroup", IsGroup );
#############################################################################
##
#A IsomorphismSpecialPcGroup( <G> )
##
## returns an isomorphism from <G> onto an isomorphic PC group whose family
## pcgs is a special pcgs. (This can be beneficial to the runtime of
## calculations.)
## <G> may be a polycyclic group of any kind, for example a solvable
## permutation group.
DeclareAttribute( "IsomorphismSpecialPcGroup", IsGroup );
#############################################################################
##
#A IsomorphismPermGroup( <G> )
##
## returns an isomorphism $\varphi$ from the group <G> onto
## a permutation group <P> which is isomorphic to <G>.
## The method will select a suitable permutation representation.
##
DeclareAttribute("IsomorphismPermGroup",IsGroup);
#############################################################################
##
#A IsomorphismFpGroup( <G> )
##
## returns an isomorphism from the given finite group <G> to a finitely
## presented group isomorphic to <G>. The function first *chooses a set of
## generators of <G>* and then computes a presentation in terms of these
## generators.
##
DeclareAttribute( "IsomorphismFpGroup", IsGroup );
#############################################################################
##
#A IsomorphismFpGroupByGenerators( <G>,<gens>[,<string>] )
#A IsomorphismFpGroupByGeneratorsNC( <G>,<gens>,<string> )
##
## returns an isomorphism from a finite group <G> to a finitely presented
## group <F> isomorphic to <G>. The generators of <F> correspond to the
## *generators of <G> given in the list <gens>*. If <string> is given it
## is used to name the generators of the finitely presented group.
##
## The NC version will avoid testing whether the elements in <gens>
## generate <G>.
##
DeclareGlobalFunction("IsomorphismFpGroupByGenerators");
DeclareOperation( "IsomorphismFpGroupByGeneratorsNC",
[ IsGroup, IsList, IsString ] );
DeclareOperation(
"IsomorphismFpGroupBySubnormalSeries", [IsGroup, IsList, IsString] );
DeclareOperation(
"IsomorphismFpGroupByCompositionSeries", [IsGroup, IsString] );
DeclareGlobalFunction( "IsomorphismFpGroupByPcgs" );
#############################################################################
##
#A PrimePowerComponents( <g> )
##
DeclareAttribute( "PrimePowerComponents", IsMultiplicativeElement );
#############################################################################
##
#O PrimePowerComponent( <g>, <p> )
##
DeclareOperation( "PrimePowerComponent",
[ IsMultiplicativeElement, IsPosInt ] );
#############################################################################
##
#O PowerMapOfGroup( <G>, <n>, <ccl> )
##
## is a list of positions, at position $i$ the position of the conjugacy
## class containing the <n>-th powers of the elements in the $i$-th class
## of the list <ccl> of conjugacy classes.
##
DeclareOperation( "PowerMapOfGroup", [ IsGroup, IsInt, IsHomogeneousList ] );
#############################################################################
##
#F PowerMapOfGroupWithInvariants( <G>, <n>, <ccl>, <invariants> )
##
## is a list of integers, at position $i$ the position of the conjugacy
## class containimg the <n>-th powers of elements in class $i$ of <ccl>.
## The list <invariants> contains all invariants besides element order
## that shall be used before membership tests.
##
## Element orders are tested first in any case since they may allow a
## decision without forming the <n>-th powers of elements.
##
DeclareGlobalFunction( "PowerMapOfGroupWithInvariants" );
#############################################################################
##
#O HasAbelianFactorGroup(<G>,<N>)
##
## tests whether $G/N$ is abelian (without explicitly
## constructing the factor group).
##
DeclareGlobalFunction("HasAbelianFactorGroup");
#############################################################################
##
#O HasElementaryAbelianFactorGroup(<G>,<N>)
##
## tests whether $G/N$ is elementary abelian (without explicitly
## constructing the factor group).
##
DeclareGlobalFunction("HasElementaryAbelianFactorGroup");
#############################################################################
##
#F IsGroupOfFamily(<G>)
##
## This filter indicates that the group <G> is the group which is stored in
## the family <fam> of its elements as `<fam>!.wholeGroup'.
##
DeclareFilter("IsGroupOfFamily");
#############################################################################
##
#F Group_PseudoRandom(<G>)
##
## Computes a pseudo-random element of <G> by product replacement.
## (This is installed as a method for `PseudoRandom' under the condition
## that generators are known.)
##
DeclareGlobalFunction("Group_PseudoRandom");
#############################################################################
##
#E
|