File: grppcaut.gi

package info (click to toggle)
gap 4r4p9-1
  • links: PTS
  • area: main
  • in suites: etch, etch-m68k
  • size: 27,120 kB
  • ctags: 6,735
  • sloc: ansic: 96,692; sh: 3,254; makefile: 319; perl: 11; awk: 6
file content (974 lines) | stat: -rw-r--r-- 31,176 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
#############################################################################
##
#W  grppcaut.gi                 GAP library                      Bettina Eick
##
#Y  Copyright (C)  1997,  Lehrstuhl D fuer Mathematik,  RWTH Aachen, Germany
#Y  (C) 1998 School Math and Comp. Sci., University of St.  Andrews, Scotland
#Y  Copyright (C) 2002 The GAP Group
##
Revision.grppcaut_gi :=
    "@(#)$Id: grppcaut.gi,v 4.50 2003/06/06 21:13:16 gap Exp $";

#############################################################################
##
#F CheckAuto( auto )
##
CheckAuto := function( auto )
    local new,mapi;
    mapi:=MappingGeneratorsImages(auto);
    new := GroupGeneralMappingByImages( Source(auto), Range(auto),
           mapi[1], mapi[2] );
    if Source( auto ) <> Range( auto ) then 
        Print("source and range differ \n");
        return false;
    fi;
    if not IsGroupHomomorphism( new ) then
        Print("no group hom \n");
        return false;
    fi;
    if not IsBijective( new ) then
        Print("no bijection \n");
        return false;
    fi;
    return true;
end;

#############################################################################
##
#F InducedActionFactor( mats, fac, low )
##
InducedActionFactor := function( mats, fac, low )
    local sml, upp, d, i, b, t;
    sml := List( mats, x -> [] );
    upp := Concatenation( fac, low );
    d   := Length( fac );
    for i in [1..Length(mats)] do
        for b in fac do
            t := SolutionMat( upp, b*mats[i] ){[1..d]};
            Add( sml[i], t );
        od;
    od;
    return sml; 
end;

#############################################################################
##
#F CoefficientsOfVector( v, fac, low )
##
CoefficientsOfVector := function( v, fac, low )
    local upp, d;
    upp := Concatenation( fac, low );
    d   := Length( fac );
    return SolutionMat( upp, v ){[1..d]};
end;

#############################################################################
##
#F StabilizerByMatrixOperation( C, v, cohom )
##
StabilizerByMatrixOperation := function( C, v, cohom )
    local modu, bases, l, m, incl, gens, ind, vec, tmp, upp,
          low, fac, i,oper;

    # the trivial case 
    if Size( C ) = 1 then return C; fi;

    # choose gens 
    if HasPcgs( C ) then 
        gens := Pcgs( C );
    else 
        gens := GeneratorsOfGroup( C ); 
    fi;

    # compute matrix operation
    oper := MatrixOperationOfCPGroup( cohom, gens );

    # construct module to use meataxe
    if CHOP then
        modu  := GModuleByMats( oper, cohom.module.field );
        bases := SMTX.BasesCompositionSeries( modu );
        l     := Length( bases );
        Info( InfoMatOrb, 1, " MO: found comp series of length ",l);
        Info( InfoMatOrb, 1, " MO: with dimensions ",List(bases, Length));

        # compute m
        m := 1;
        incl := false;
        while not incl do
            m := m + 1;
            incl := IsList( SolutionMat( bases[m], v ) );
        od;
        Info( InfoMatOrb, 1, " MO: v is included in ",m,"th subspace");
    else
        bases := [[], oper[1]^0];
        m     := 2;
    fi;

    # the first factor includes v
    fac := BaseSteinitzVectors( bases[m], bases[m-1] ).factorspace;
    ind := InducedActionFactor( oper, fac, bases[m-1] );
    vec := CoefficientsOfVector( v, fac, bases[m-1] );
    tmp := OrbitStabilizer( C, vec, gens, ind, OnRight );
    SetSize( tmp.stabilizer, Size( C ) / Length( tmp.orbit ) );
    C   := tmp.stabilizer;
    Info( InfoMatOrb, 1, " MO: found orbit of length ",Length(tmp.orbit) );

    # loop over the remaining factors
    for i in Reversed( [1..m-2] ) do
        if Length( tmp.orbit ) > 1 then 
            if HasPcgs( C ) then
                gens := Pcgs( C );
            else
                gens := GeneratorsOfGroup( C );
            fi;
            oper := MatrixOperationOfCPGroup( cohom, gens );
        fi;
        upp  := Concatenation( [v], bases[i+1] );
        low  := bases[i];
        fac  := BaseSteinitzVectors( upp, low ).factorspace;
        ind  := InducedActionFactor( oper, fac, low );
        vec  := CoefficientsOfVector( v, fac, low );
        tmp  := OrbitStabilizer( C, vec, gens, ind, OnRight );
        SetSize( tmp.stabilizer, Size( C ) / Length( tmp.orbit ) );
        C    := tmp.stabilizer;
        Info( InfoMatOrb, 1, " MO: found orbit of length ", 
                                Length(tmp.orbit));
    od;
    return C;
end;

#############################################################################
##
#F TransferPcgsInfo( A, pcsA, rels )
##
TransferPcgsInfo := function( A, pcsA, rels )
    local pcgsA;
    pcgsA := PcgsByPcSequenceNC( ElementsFamily( FamilyObj( A ) ), pcsA );
    SetRelativeOrders( pcgsA, rels );
    SetOneOfPcgs( pcgsA, One(A) );
    SetPcgs( A, pcgsA );
    SetFilterObj( A, CanEasilyComputePcgs );
end;

#############################################################################
##
#F BlockStabilizer( G, bl )
##
BlockStabilizer := function( G, bl )
    local sub, sortbl, f, len, pos, L, new;

    # the trivial blocksys is useless
    if ForAll( bl, x -> Length(x) = 1 ) then return G; fi;
    if Length( bl ) = 1 then return G; fi;
    sub := Filtered( bl, x -> Length(x) > 1 );
    len := Set( List( sub, x -> Length(x) ) );
    pos := List( len, x -> Filtered(sub, y -> Length(y) = x ) );
    L   := ShallowCopy( G );
    Sort( pos, function( x, y ) return Length(x) < Length( y ); end);

    sortbl := function( sys )
        local i;
        for i in [1..Length(sys)] do
            Sort( sys[i] );
        od;
        Sort( sys, function( x, y ) return x[1] < y[1]; end);
    end;
    sortbl( sub );

    f := function( pt, perm )
        local new;
        new := List( pt, x -> List( x, y -> y^perm) );
        sortbl( new );
        return new;
    end;

    # now loop
    for new in pos do
        if Length( new ) = 1 then
            L := Stabilizer( L, new[1], OnSets );
        else
            L := Stabilizer( L, new, f );
        fi;
    od;
        
    return L;
end;

#############################################################################
##
#F InducedActionAutGroup( epi, weights, s, n, A )
##
InducedActionAutGroup := function( epi, weights, s, n, A )
    local M, H, F, pcgsM, indices, pcsN, N, d, gensN, G, free, words,
          comp, aut, imgs, mat, w, m, exp, tup, gensG, field, D, gensA;

    M := KernelOfMultiplicativeGeneralMapping( epi );
    H := Source( epi );
    F := Image( epi );
    pcgsM := Pcgs( M );
    field := GF( weights[s][3] );

    # construct p-subgroup of H 
    indices := Filtered( [1..s-1], x -> weights[x][1] = weights[s][1] 
                                   and  weights[x][3] = weights[s][3] );
    pcsN  := Pcgs( H ){indices};
    N     := SubgroupNC( H, pcsN );
    d     := Length( indices );
    gensN := pcsN{[1..d]};

    # construct words for pcgsM in gensN
    G     := FreeGroup( d );
    gensG := GeneratorsOfGroup( G );
    free  := GroupHomomorphismByImagesNC( G, N, gensG, gensN );
    words := List( pcgsM, x -> PreImagesRepresentative( free, x ) );

    # compute images of words
    comp := [];
    if CanEasilyComputePcgs( A ) then
        gensA := Pcgs( A );
    else
        gensA := GeneratorsOfGroup( A );
    fi;
    for aut in gensA do
        imgs := List( gensN, x -> Image( aut, Image( epi, x ) ) );
        imgs := List( imgs, x -> PreImagesRepresentative( epi, x ) );
        mat := [];
        for w in words do
            m := MappedWord( w, gensG, imgs );
            exp := ExponentsOfPcElement( pcgsM, m ) * One( field );
            Add( mat, exp );
        od;
        tup := Tuple( [aut, mat] );
        Add( comp, tup );
    od; 

    # add size and check solubility
    D := GroupByGenerators( comp, Tuple( [ One( A ),
             Immutable( IdentityMat(Length(pcgsM), field) )]));
    SetSize( D, Size( A ) );
    if CanEasilyComputePcgs( A ) then
        TransferPcgsInfo( D, comp, RelativeOrders( gensA ) );
    fi;
   
    return D;
end;

#############################################################################
##
#F Fingerprint( G, U )
##
if not IsBound( MyFingerprint ) then MyFingerprint := false; fi;

FingerprintSmall := function( G, U )
    return [IdGroup( U ), Size( CommutatorSubgroup(G,U) )];
end;

FingerprintMedium := function( G, U )
    local w, cl, id;

    # some general stuff
    w := LGWeights( SpecialPcgs( U ) );
    id := [w, Size( CommutatorSubgroup( G, U ) )];

    # about conjugacy classes
    cl := OrbitsDomain( U, AsList( U ), OnPoints );
    cl := List( cl, x -> [Length(x), Order( x[1] ) ] );
    Sort( cl );
    Add( id, cl );

    return id;
end;

FingerprintLarge := function( G, U )
    return [Size(U), Size( DerivedSubgroup( U ) ),
            Size( CommutatorSubgroup( G, U ) )];
end;

Fingerprint := function ( G, U )
    if not IsBool( MyFingerprint ) then
        return MyFingerprint( G, U );
    fi;
    if ID_AVAILABLE( Size( U ) ) <> fail then 
        return FingerprintSmall( G, U );
    elif Size( U ) <= 1000 then
        return FingerprintMedium( G, U );
    else
        return FingerprintLarge( G, U );
    fi;
end;

#############################################################################
##
#F NormalizingReducedGL( spec, s, n, M )
##
NormalizingReducedGL := function( spec, s, n, M )
    local G, p, d, field, B, U, hom, pcgs, pcs, rels, w,
          S, L,
          f, P, norm,
          pcgsN, pcgsM, pcgsF, 
          orb, part,
          par, done, i, elm, elms, pcgsH, H, tup, pos, 
          perms, V;

    G      := GroupOfPcgs( spec );
    d      := M.dimension;
    field  := M.field;
    p      := Characteristic( field );
    B      := GL( d, p );
    U      := SubgroupNC( B, M.generators );

    # the trivial case 
    if d = 1 then 
        hom := IsomorphismPermGroup( B );
        pcgs := Pcgs( Image( hom ) );
        pcs := List( pcgs, x -> PreImagesRepresentative( hom, x ) );
        TransferPcgsInfo( B, pcs, RelativeOrders( pcgs ) );
        return B;
    fi;

    # first find out, whether there are characteristic subspaces
    # -> compute socle series and chain stabilising mat group
    S := B;

    # in case that we cannot compute a perm rep of pgl
    if p^d > 10000 then
        return S;
    fi;

    # otherwise use a perm rep of pgl and find a small admissible subgroup
    norm := NormedRowVectors( field^d );
    f := function( pt, op ) return NormedRowVector( pt * op ); end;
    hom := ActionHomomorphism( S, norm, f );
    P := Image( hom );
    L := ShallowCopy(P);

    # compute corresponding subgroups to mins
    pcgsN := InducedPcgsByPcSequenceNC( spec, spec{[s..Length(spec)]} );
    pcgsM := InducedPcgsByPcSequenceNC( spec, spec{[n..Length(spec)]} );
    pcgsF := pcgsN mod pcgsM;

    # use fingerprints
    done := [];
    part := [];
    for i in [1..Length(norm)] do
        elm := PcElementByExponentsNC( pcgsF, norm[i] );
        elms := Concatenation( [elm], pcgsM );
        pcgsH := InducedPcgsByPcSequenceNC( spec, elms );
        H := SubgroupByPcgs( G, pcgsH );
        tup := Fingerprint( G, H );
        pos := Position( done, tup );
        if IsBool( pos ) then
            Add( part, [i] );
            Add( done, tup );
        else
            Add( part[pos], i );
        fi;
    od;
    Sort( part, function( x, y ) return Length(x) < Length(y); end );

    # compute partition stablizer
    if Length(part) > 1 then
        for par in part do 
            if Length( part ) = 1 then
                L := Stabilizer( L, par[1], OnPoints );
            else
                L := Stabilizer( L, par, OnSets );
            fi;
        od;
    fi;
    Info( InfoOverGr, 1, "found partition ",part );

    # use operation of G on norm
    orb := OrbitsDomain( U, norm, f );
    part := List( orb, x -> List( x, y -> Position( norm, y ) ) );

    # was: L := BlockStabilizer( L, part );
    part:=List(part,Set);
    L:=PartitionStabilizerPermGroup(L,part);
    Info( InfoOverGr, 1, "found blocksystem ",part );

    # compute normalizer of module
    perms := List( M.generators, x -> Image( hom, x ) );
    V := SubgroupNC( P, perms );
    L := Normalizer( L, V );
    Info( InfoOverGr, 1, "computed normalizer of size ", Size(L));

    # go back to mat group
    B := List( GeneratorsOfGroup(L), x -> PreImagesRepresentative(hom,x) );
    w := PrimitiveRoot(field)* Immutable( IdentityMat( d, field ) );
    B := SubgroupNC( S, Concatenation( B, [w] ) );

    if IsSolvableGroup( L ) then
        pcgs := List( Pcgs(L), x -> PreImagesRepresentative( hom, x ) );
        Add( pcgs, w );
        rels := ShallowCopy( RelativeOrders( Pcgs(L) ) );
        Add( rels, p-1 );
        TransferPcgsInfo( B, pcgs, rels );
    fi;

    SetSize( B, Size( L )*(p-1) );
    return B;
end;

#############################################################################
##
#F CocycleSQ( epi, field )
##
CocycleSQ := function( epi, field )
    local H, F, N, pcsH, pcsN, pcgsH, o, n, d, z, c, i, j, h, exp, p, k;

    # set up
    H     := Source( epi );
    F     := Image( epi );
    N     := KernelOfMultiplicativeGeneralMapping( epi );
    pcsH  := List( Pcgs( F ), x -> PreImagesRepresentative( epi, x ) );
    pcsN  := Pcgs( N );
    pcgsH := PcgsByPcSequence( ElementsFamily( FamilyObj( H ) ), 
                               Concatenation( pcsH, pcsN ) );
    o     := RelativeOrders( pcgsH );
    n     := Length( pcsH );
    d     := Length( pcsN );
    z     := One( field );
    
    # initialize cocycle
    c := List( [1..d*(n^2 + n)/2], x -> Zero( field ) );

    # add relators
    for i in [1..n] do
        for j in [1..i] do
            if i = j then
                h := pcgsH[i]^o[i];
            else
                h := pcgsH[i]^pcgsH[j];
            fi; 
            exp := ExponentsOfPcElement( pcgsH, h ){[n+1..n+d]} * z;
            p   := (i^2 - i)/2 + j - 1;
            for k in [1..d] do
                c[p*d+k] := exp[k];
            od;
        od;
    od;

    # check
    if c = 0 * c then return 0; fi;
    return c;
end;
             
#############################################################################
##
#F InduciblePairs( C, epi, M )
##
InduciblePairs := function( C, epi, M )
    local F, cc, c, stab, b;

    if HasSize( C ) and Size( C ) = 1 then return C; fi;

    # get groups
    F := Image( epi );

    # get cohomology
    cc := TwoCohomology( F, M );
    Info( InfoAutGrp, 2, "computed cohomology with dim ",
          Dimension(Image(cc.cohom)));
    # get cocycle
    c := CocycleSQ( epi, M.field );
    b := Image( cc.cohom, c );

    # compute stabilizer of b
    stab := StabilizerByMatrixOperation( C, b, cc );
    return stab;
end;
   
MatricesOfRelator := function( rel, gens, inv, mats, field, d )
    local n, m, L, s, i, mat;

    # compute left hand side
    n := Length( mats );
    m := Length( rel );
    L := ListWithIdenticalEntries( n, Immutable( NullMat( d, d, field ) ) );
    while m > 0 do
        s := Subword( rel, 1, 1 );
        i := Position( gens, s );
        if not IsBool( i ) and m > 1 then
            mat := MappedWord(Subword( rel, 2, m ), gens, mats);
            L[i] := L[i] + mat;
        elif not IsBool( i ) then
            L[i] := L[i] + IdentityMat( d, field );
        else
            i := Position( inv, s );
            mat := MappedWord( rel, gens, mats );
            L[i] := L[i] - mat;
        fi;
        if m > 1 then rel := Subword( rel, 2, m ); fi;
        m   := m - 1;
    od;
    return L;
end;

VectorOfRelator := function( rel, gens, imgsF, pcsH, pcsN, nu, field )
    local w, s, r;

    # compute right hand side
    w := MappedWord( rel, gens, imgsF )^-1;
    s := MappedWord( rel, gens, pcsH );
    r := ExponentsOfPcElement( pcsN, w * Image( nu, s ) ) * One(field);
    return r;
end;

#############################################################################
##
#F LiftInduciblePair( epi, ind, M, weight )
##
LiftInduciblePair := function( epi, ind, M, weight )
    local H, F, N, pcgsF, pcsH, pcsN, pcgsH, n, d, imgsF, imgsN, nu, P, 
          gensP, invP, relsP, l, E, v, k, rel, u, vec, L, r, i,
          elm, auto, imgsH, j, h, opmats;

    # set up
    H := Source( epi );
    F := Image( epi );
    N := KernelOfMultiplicativeGeneralMapping( epi );


    pcgsF := Pcgs( F );
    pcsH  := List( pcgsF, x -> PreImagesRepresentative( epi, x ) );
    pcsN  := Pcgs( N );
    pcgsH := PcgsByPcSequence( ElementsFamily( FamilyObj( H ) ),
                               Concatenation( pcsH, pcsN ) );
    n     := Length( pcsH ); 
    d     := Length( pcsN );

    # use automorphism of F
    imgsF := List( pcgsF, x -> Image( ind[1], x ) );
    opmats := List( imgsF, x -> MappedPcElement( x, pcgsF, M.generators ) );
    imgsF := List( imgsF, x -> PreImagesRepresentative( epi, x ) );

    # use automorphism of N
    imgsN := List( pcsN, x -> ExponentsOfPcElement( pcsN, x ) );
    imgsN := List( imgsN, x -> x * ind[2] );
    imgsN := List( imgsN, x -> PcElementByExponentsNC( pcsN, x ) ); 

    # in the split case this is all to do
    if weight[2] = 1 then
        imgsH := Concatenation( imgsF, imgsN );
        auto  := GroupHomomorphismByImagesNC( H, H, AsList(pcgsH), imgsH );
    
        SetIsBijective( auto, true );
        SetKernelOfMultiplicativeGeneralMapping( auto, TrivialSubgroup( H ) );

        return auto;
    fi;

    # add correction
    nu := GroupHomomorphismByImagesNC( N, N, AsList( pcsN ), imgsN );
    P := Range( IsomorphismFpGroupByPcgs( pcgsF, "g" ) );
    gensP := GeneratorsOfGroup( FreeGroupOfFpGroup( P ) );
    invP  := List( gensP, x -> x^-1 );
    relsP := RelatorsOfFpGroup( P );
    l := Length( relsP );

    E := List( [1..n*d], x -> List( [1..l*d], y -> true ) );
    v := [];
    for k in [1..l] do
        rel := relsP[k];
        L   := MatricesOfRelator( rel, gensP, invP, opmats, M.field, d );
        r   := VectorOfRelator( rel, gensP, imgsF, pcsH, pcsN, nu, M.field );
  
        # add to big system
        Append( v, r );
        for i in [1..n] do
            for j in [1..d] do
                for h in [1..d] do
                    E[d*(i-1)+j][d*(k-1)+h] := L[i][j][h];
                od;
            od;
        od;
    od;

    # solve system
    u := SolutionMat( E, v );
    if u = fail then Error("no lifting found"); fi;

    # correct images 
    for i in [1..n] do
        vec := u{[d*(i-1)+1..d*i]};
        elm := PcElementByExponentsNC( pcsN, vec );
        imgsF[i] := imgsF[i] * elm;
    od;

    # set up automorphisms
    imgsH := Concatenation( imgsF, imgsN );
    auto  := GroupHomomorphismByImagesNC( H, H, AsList( pcgsH ), imgsH );
    
    SetIsBijective( auto, true );
    SetKernelOfMultiplicativeGeneralMapping( auto, TrivialSubgroup( H ) );

    return auto;
end;

#############################################################################
##
#F AutomorphismGroupElAbGroup( G, B )
##
AutomorphismGroupElAbGroup := function( G, B )
    local pcgs, p, d, mats, autos, mat, imgs, auto, A;

    # create matrices
    pcgs := Pcgs( G );
    p := RelativeOrders( pcgs )[1];
    d := Length( pcgs );

    if CanEasilyComputePcgs( B ) then
        mats := Pcgs( B );
    else
        mats := GeneratorsOfGroup( B );
    fi;

    autos := [];
    for mat in mats do
        imgs := List( pcgs, x -> PcElementByExponentsNC( pcgs, 
                            ExponentsOfPcElement( pcgs, x ) * mat ) ); 
        auto := GroupHomomorphismByImagesNC( G, G, AsList( pcgs ), imgs );
 
        SetIsBijective( auto, true );
        SetKernelOfMultiplicativeGeneralMapping( auto, TrivialSubgroup( G ) );
        Add( autos, auto );
    od;

    A := GroupByGenerators( autos, IdentityMapping( G ) );
    SetSize( A, Size( B ) );
    if IsPcgs( mats ) then
        TransferPcgsInfo( A, autos, RelativeOrders( mats ) );
    fi;
    
    return A;
end;

#############################################################################
##
#F AutomorphismGroupSolvableGroup( G )
##
AutomorphismGroupSolvableGroup := function( G )
    local spec, weights, first, m, pcgsU, F, pcgsF, A, i, s, n, p, H, 
          pcgsH, pcgsN, N, epi, mats, M, autos, ocr, elms, e, list, imgs,
          auto, tmp, hom, gens, P, C, B, D, pcsA, rels, iso, xset,
          gensA, new,as;

    # get LG series
    spec    := SpecialPcgs(G);
    weights := LGWeights( spec );
    first   := LGFirst( spec );
    m       := Length( spec );

    # set up with GL
    Info( InfoAutGrp, 2, "set up computation for grp with weights ",
                          weights);
    pcgsU := InducedPcgsByPcSequenceNC( spec, spec{[first[2]..m]} );
    pcgsF := spec mod pcgsU;
    F     := PcGroupWithPcgs( pcgsF );
    M     := rec( field := GF( weights[1][3] ),
                  dimension := first[2]-1,
                  generators := [] );
    B     := NormalizingReducedGL( spec, 1, first[2], M );
    A     := AutomorphismGroupElAbGroup( F, B );

    # run down series
    for i in [2..Length(first)-1] do

        # get factor
        s := first[i];
        n := first[i+1];
        p := weights[s][3];
        Info( InfoAutGrp, 2, "start ",i,"th layer with weight ",weights[s],
                             "^", n-s,
                             " and automorphism group of size ",Size(A));

        # set up
        pcgsU := InducedPcgsByPcSequenceNC( spec, spec{[n..m]} );
        H     := PcGroupWithPcgs( spec mod pcgsU );
        pcgsH := Pcgs( H );
        ocr   := rec( group := H, generators := pcgsH );
        # we will modify the generators later!

        pcgsN := InducedPcgsByPcSequenceNC( pcgsH, pcgsH{[s..n-1]} );
        ocr.modulePcgs := pcgsN;
	ocr.generators:=ocr.generators mod NumeratorOfModuloPcgs(pcgsN);

        N     := SubgroupByPcgs( H, pcgsN ); 
        epi := GroupHomomorphismByImagesNC( H, F, AsList( pcgsH ), 
               Concatenation( Pcgs(F), List( [s..n-1], x -> One(F) ) ) );
        SetKernelOfMultiplicativeGeneralMapping( epi, N );

        # get module
        mats := LinearOperationLayer( H, pcgsH{[1..s-1]}, pcgsN );
        M    := GModuleByMats( mats, GF( p ) );
                  
        # compatible / inducible pairs
        if weights[s][2] = 1 then
            Info( InfoAutGrp, 2,"compute reduced gl ");
            B := NormalizingReducedGL( spec, s, n, M );

	    # A and B will not be used later, so it is no problem to 
	    # replace them by other groups with fewer generators
            B:=SubgroupNC(B,SmallGeneratingSet(B));
	    if HasPcgs(A) 
	     and Length(Pcgs(A))<Length(GeneratorsOfGroup(A)) then
	      as:=Size(A);
	      A:=Group(Pcgs(A),One(A));
	      SetSize(A,as);
	    fi;

            D := DirectProduct( A, B ); 
            Info( InfoAutGrp, 2,"compute compatible pairs in group of size ",
                                  Size(A), " x ",Size(B),", ",
				  Length(GeneratorsOfGroup(D))," generators");
            C := CompatiblePairs( F, M, D );
        else
            Info( InfoAutGrp, 2,"compute reduced gl ");
            B := NormalizingReducedGL( spec, s, n, M );

	    # A and B will not be used later, so it is no problem to 
            B:=SubgroupNC(B,SmallGeneratingSet(B));
	    if HasPcgs(A) 
	     and Length(Pcgs(A))<Length(GeneratorsOfGroup(A)) then
	      as:=Size(A);
	      A:=Group(Pcgs(A),One(A));
	      SetSize(A,as);
	    fi;

            D := DirectProduct( A, B ); 
            if weights[s][1] > 1 then
                Info( InfoAutGrp, 2,
                      "compute compatible pairs in group of size ",
                       Size(A), " x ",Size(B),", ",
		       Length(GeneratorsOfGroup(D))," generators");
                D := CompatiblePairs( F, M, D );
            fi;
            Info( InfoAutGrp,2, "compute inducible pairs in a group of size ",
                  Size( D ));
            C := InduciblePairs( D, epi, M );
        fi;


        # lift
        Info( InfoAutGrp, 2, "lift back ");
        if Size( C ) = 1 then
            gens := [];
        elif CanEasilyComputePcgs( C ) then
            gens := Pcgs( C );
        else
            gens  := GeneratorsOfGroup( C );
        fi;
        autos := List( gens, x -> LiftInduciblePair( epi, x, M, weights[s] ) );
        
        # add H^1
        Info( InfoAutGrp, 2, "add derivations ");

        elms := BasisVectors( Basis( OCOneCocycles( ocr, false ) ) );
        for e in elms do
            list := ocr.cocycleToList( e );
            imgs := List( [1..s-1], x -> pcgsH[x] * list[x] );
            Append( imgs, pcgsH{[s..n-1]} );
            auto := GroupHomomorphismByImagesNC( H, H,
                        AsList( pcgsH ), imgs );
           
            SetIsBijective( auto, true );
            SetKernelOfMultiplicativeGeneralMapping(auto, TrivialSubgroup(H));

            Add( autos, auto );
        od;
        Info( InfoAutGrp, 2, Length(autos)," generating automorphisms");

        # set up for iteration
        F := ShallowCopy( H );
        A := GroupByGenerators( autos );
        SetSize( A, Size( C ) * p^Length(elms) );
        if Size(C) = 1 then
            rels := List( [1..Length(elms)], x-> p );
            TransferPcgsInfo( A, autos, rels );
        elif CanEasilyComputePcgs( C ) then
            rels := Concatenation( RelativeOrders(gens), 
                                   List( [1..Length(elms)], x-> p ) );
            TransferPcgsInfo( A, autos, rels );
        fi;

        # if possible reduce the number of generators of A
        if Size( F ) <= 1000 and not CanEasilyComputePcgs( A ) then
            Info( InfoAutGrp, 2, "nice the gen set of A ");
            xset := ExternalSet( A, AsList( F ) );
            hom  := ActionHomomorphism( xset, "surjective");
            P    := Image( hom );
            if IsSolvableGroup( P ) then
                pcsA := List( Pcgs(P), x -> PreImagesRepresentative( hom, x ));
                TransferPcgsInfo( A, pcsA, RelativeOrders( Pcgs(P) ) );
            else
                imgs := SmallGeneratingSet( P );
                gens := List( imgs, x -> PreImagesRepresentative( hom, x ) );
                tmp  := Size( A );
                A := GroupByGenerators( gens, One( A ) );
                SetSize( A, tmp );
            fi;
        fi;
    od; 

    # the last step
    gensA := GeneratorsOfGroup( A );
    # try to reduce the generator set
    if HasPcgs(A) and Length(Pcgs(A))<Length(gensA) then
      gensA:=Pcgs(A);
    fi;

    iso   := GroupHomomorphismByImagesNC( F, G, Pcgs(F), spec );
    autos := [];
    for auto in gensA do
        imgs := List( Pcgs(F), x -> Image( iso, Image( auto, x ) ) );
        new  := GroupHomomorphismByImagesNC( G, G, spec, imgs );
        SetIsBijective( new, true );
        SetKernelOfMultiplicativeGeneralMapping(new, TrivialSubgroup(F));
        Add( autos, new );
    od;
    B := GroupByGenerators( autos );
    SetSize( B, Size(A) );
    return B;
end;

#############################################################################
##
#F AutomorphismGroupFrattFreeGroup( G )
##
AutomorphismGroupFrattFreeGroup := function( G )
    local F, K, gensF, gensK, gensG, A, 
          iso, P, gensU, k, aut, U, hom, N, gensN,
          full, n, imgs, i, m, a, l, new, size, 
          pr, p, S, pcgsS, T, ocr, elms, e, list, B;

    # create fitting subgroup
    if HasSocle( G ) and HasSocleComplement( G ) then
        F := Socle( G );
        K := SocleComplement( G );
    else
        F := FittingSubgroup( G );
        K := Complementclasses( G, F )[1];
    fi;
    gensF := Pcgs( F );
    gensK := Pcgs( K );
    gensG := Concatenation( gensK, gensF );

    # create automorhisms
    Info( InfoAutGrp, 2, "get aut grp of socle ");
    A := AutomorphismGroupAbelianGroup( F );

    # go over to perm rep
    Info( InfoAutGrp, 2, "compute perm rep ");
    iso := IsomorphismPermGroup( A );
    P   := Image( iso );

    # compute subgroup
    Info( InfoAutGrp, 2, "compute subgroup ");
    gensU := [];
    for k in gensK do
        imgs := List( gensF, y -> y ^ k );
        aut := GroupHomomorphismByImagesNC( F, F, gensF, imgs ); 
        # CheckAuto( aut );
        Add( gensU, Image( iso, aut ) );
    od;
    U := SubgroupNC( P, gensU );
    hom := GroupHomomorphismByImagesNC( K, U, gensK, gensU );


    # get normalizer
    Info( InfoAutGrp, 2, "compute normalizer ");
    N := Normalizer( P, U );
    gensN := GeneratorsOfGroup( N );

    # create automorphisms of G
    Info( InfoAutGrp, 2, "compute preimages ");
    full  := [];
    for n in gensN do
        imgs := [];
        for i in [1..Length(gensK)] do
            m := gensU[i]^n;
            a := PreImagesRepresentative( hom, m );
            Add( imgs, a );
        od;
        l := PreImagesRepresentative( iso, n );
        Append( imgs, List( gensF, x -> Image( l, x ) ) );
        new := GroupHomomorphismByImagesNC( G, G, gensG, imgs );
        SetIsBijective( new, true );
        SetKernelOfMultiplicativeGeneralMapping(new, TrivialSubgroup(G));
        Add( full, new );
    od;
    size := Size(N);

    # add derivations
    Info( InfoAutGrp, 2, "add derivations ");
    pr  := Set( FactorsInt( Size( F ) ) );
    for p in pr do

        # create subgroup
        S := SylowSubgroup( F, p );
        pcgsS := InducedPcgs( gensF, S );
        T := SubgroupNC( G, Concatenation( gensK, pcgsS ) );
        ocr := rec( group := T,
                    generators := gensK,
                    modulePcgs := pcgsS );

        # compute 1-cocycles
        elms := BasisVectors( Basis( OCOneCocycles( ocr, false ) ) );
        for e in elms do
            list := ocr.cocycleToList( e );
            imgs := List( [1..Length(gensK)], x -> gensK[x] * list[x] );
            Append( imgs, gensF );
            new := GroupHomomorphismByImagesNC( G, G, gensG, imgs );
            SetIsBijective( new, true );
            SetKernelOfMultiplicativeGeneralMapping(new, TrivialSubgroup(G));
            Add( full, new );
        od;
        size := size * ocr.char^Length(elms);
    od;

    # create automorphism group
    B := GroupByGenerators( full, IdentityMapping( G ) );
    SetSize( B, size );

    return B;
end;

#############################################################################
##
#M AutomorphismGroup( G )
##
InstallMethod( AutomorphismGroup, 
               "finite solvable groups",
               true,
               [IsGroup and IsFinite and 
                CanEasilyComputePcgs],
               0,
function( G )
    local A;
    if IsAbelian( G ) then TryNextMethod(); fi;
    A := AutomorphismGroupSolvableGroup(G);
    SetIsAutomorphismGroup( A, true );
    SetIsGroupOfAutomorphismsFiniteGroup( A, true );
    SetIsFinite( A, true );
    return A;
end );
             
#############################################################################
##
#M AutomorphismGroup( G )
##
InstallMethod( AutomorphismGroup, 
               "finite frattini free solvable groups",
               true,
               [IsGroup and IsFinite and 
                IsFrattiniFree],
               0,
function( G )
    local A;
    if IsAbelian( G ) then TryNextMethod(); fi;
    A := AutomorphismGroupFrattFreeGroup(G);
    SetIsAutomorphismGroup( A, true );
    SetIsFinite( A, true );
    return A;
end );