1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178
|
#############################################################################
##
#W list.gd GAP library Martin Schoenert
#W & Werner Nickel
##
#H @(#)$Id: list.gd,v 4.89.2.7 2006/08/28 08:56:36 gap Exp $
##
#Y Copyright (C) 1997, Lehrstuhl D fuer Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St. Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## This file contains the definition of operations and functions for lists.
##
Revision.list_gd :=
"@(#)$Id: list.gd,v 4.89.2.7 2006/08/28 08:56:36 gap Exp $";
#############################################################################
##
#C IsList( <obj> ) . . . . . . . . . . . . . . . test if an object is a list
##
## tests whether <obj> is a list.
##
DeclareCategoryKernel( "IsList", IsListOrCollection, IS_LIST );
#############################################################################
##
#V ListsFamily . . . . . . . . . . . . . . . . . . . . . . . family of lists
##
BIND_GLOBAL( "ListsFamily", NewFamily( "ListsFamily", IsList ) );
#############################################################################
##
#R IsPlistRep . . . . . . . . . . . . . . . . representation of plain lists
##
DeclareRepresentationKernel( "IsPlistRep",
IsInternalRep, [], IS_OBJECT, IS_PLIST_REP );
#############################################################################
##
#C IsConstantTimeAccessList( <list> )
##
## This category indicates whether the access to each element of the list
## <list> will take roughly the same time.
## This is implied for example by `IsList and IsInternalRep',
## so all strings, Boolean lists, ranges, and internally represented plain
## lists are in this category.
##
## But also other enumerators (see~"Enumerators") can lie in this category
## if they guarantee constant time access to their elements.
##
DeclareCategory( "IsConstantTimeAccessList", IsList );
InstallTrueMethod( IsConstantTimeAccessList, IsList and IsInternalRep );
#############################################################################
##
#P IsSmallList . . . . . . . . . . . . . . . lists of length at most $2^28$
#V MAX_SIZE_LIST_INTERNAL
##
## We need this property to describe for which lists the default methods for
## comparison, assignment, addition etc. are applicable.
## Note that these methods call `LEN_LIST', and for that the list must be
## small.
## Of course every internally represented list is small,
## and every empty list is small.
##
DeclareProperty( "IsSmallList", IsList );
InstallTrueMethod( IsSmallList, IsList and IsInternalRep );
InstallTrueMethod( IsFinite, IsList and IsSmallList );
InstallTrueMethod( IsSmallList, IsList and IsEmpty );
BIND_GLOBAL( "MAX_SIZE_LIST_INTERNAL", 2^(8*GAPInfo.BytesPerVariable-4) - 1 );
#############################################################################
##
#A Length( <list> ) . . . . . . . . . . . . . . . . . . . length of a list
##
## returns the *length* of the list <list>, which is defined to be the index
## of the last bound entry in <list>.
##
DeclareAttributeKernel( "Length", IsList, LENGTH );
#############################################################################
##
#o IsBound( <list>[<pos>] ) . . . . . . . . test for an element from a list
##
DeclareOperationKernel( "IsBound[]",
[ IsList, IS_INT ],
ISB_LIST );
#############################################################################
##
#o <list>[<pos>] . . . . . . . . . . . . . . . select an element from a list
##
DeclareOperationKernel( "[]",
[ IsList, IS_INT ],
ELM_LIST );
#############################################################################
##
#o <list>{<poss>} . . . . . . . . . . . . . . . select elements from a list
##
DeclareOperationKernel( "{}",
[ IsList, IsList ],
ELMS_LIST );
#############################################################################
##
#o Elm0List( <list>, <pos> )
##
DeclareOperationKernel( "Elm0List",
[ IsList, IS_INT ],
ELM0_LIST );
#############################################################################
##
#O Unbind( <list>[<pos>] )
##
#DeclareOperation("Unbind")
DeclareOperationKernel( "Unbind[]",
[ IsList and IsMutable, IS_INT ],
UNB_LIST );
#############################################################################
##
#o <list>[<pos>] := <obj>
##
DeclareOperationKernel( "[]:=",
[ IsList and IsMutable, IS_INT, IsObject ],
ASS_LIST );
#############################################################################
##
#o <list>{<poss>} := <objs>
##
DeclareOperationKernel( "{}:=",
[ IsList and IsMutable, IsList, IsList ],
ASSS_LIST );
#############################################################################
##
#A ConstantTimeAccessList( <list> )
##
## `ConstantTimeAccessList' returns an immutable list containing the same
## elements as the list <list> (which may have holes) in the same order.
## If <list> is already a constant time access list,
## `ConstantTimeAccessList' returns an immutable copy of <list> directly.
## Otherwise it puts all elements and holes of <list> into a new list and
## makes that list immutable.
##
DeclareAttribute( "ConstantTimeAccessList", IsList );
#############################################################################
##
#F AsSSortedListList( <list> )
##
## `AsSSortedListList' returns an immutable list containing the same elements
## as the *internally represented* list <list> (which may have holes)
## in strictly sorted order.
## If <list> is already immutable and strictly sorted,
## `AsSSortedListList' returns <list> directly.
## Otherwise it makes a deep copy, and makes that copy immutable.
## `AsSSortedListList' is an internal function.
##
#DeclareOperationKernel( "AsSSortedListList",
# [ IsList ],
# AS_LIST_SORTED_LIST );
#T 1996/10/28 fceller at the moment this is defined as function in kernel.g
DeclareSynonym( "AsSSortedListList", AS_LIST_SORTED_LIST );
#############################################################################
##
#A AsPlist( <l> )
##
## `AsList' returns a list in the repreentation `IsPlistRep' that is equal
## to the list <l>. It is used before calling kernel functions to sort
## plists.
DeclareOperation( "AsPlist", [IsListOrCollection] );
#############################################################################
##
#C IsDenseList( <obj> )
##
## A list is *dense* if it has no holes, i.e., contains an element at every
## position up to the length.
## It is absolutely legal to have lists with holes.
## They are created by leaving the entry between the commas empty.
## Holes at the end of a list are ignored.
## Lists with holes are sometimes convenient when the list represents
## a mapping from a finite, but not consecutive,
## subset of the positive integers.
# DeclareCategory("IsDenseList",IsList);
DeclareCategoryKernel( "IsDenseList", IsList, IS_DENSE_LIST );
InstallTrueMethod( IsDenseList, IsList and IsEmpty );
#############################################################################
##
#C IsHomogeneousList( <obj> )
##
## returns `true' if <obj> is a list and it is homogeneous, or `false'
## otherwise.
##
## A *homogeneous* list is a dense list whose elements lie in the same
## family (see~"Families").
## The empty list is homogeneous but not a collection (see~"Collections"),
## a nonempty homogeneous list is also a collection.
#T can we guarantee this?
##
#DeclareCategory("IsHomogeneousList",IsList);
DeclareCategoryKernel( "IsHomogeneousList", IsDenseList, IS_HOMOG_LIST );
#############################################################################
##
#M IsHomogeneousList( <coll_and_list> ) . . for a collection that is a list
#M IsHomogeneousList( <empty> ) . . . . . . . . . . . . . for an empty list
##
InstallTrueMethod( IsHomogeneousList, IsList and IsCollection );
InstallTrueMethod( IsHomogeneousList, IsList and IsEmpty );
#############################################################################
##
#M IsFinite( <homoglist> )
##
InstallTrueMethod( IsFinite, IsHomogeneousList and IsInternalRep );
#############################################################################
##
#P IsSortedList( <obj> )
##
## returns `true' if <obj> is a list and it is sorted, or `false' otherwise.
##
## \index{sorted list}
## A list <list> is *sorted* if it is dense (see~"IsDenseList")
## and satisfies the relation $<list>[i] \leq <list>[j]$ whenever $i \< j$.
## Note that a sorted list is not necessarily duplicate free
## (see~"IsDuplicateFree" and "IsSSortedList").
##
## Many sorted lists are in fact homogeneous (see~"IsHomogeneousList"),
## but also non-homogeneous lists may be sorted
## (see~"Comparison Operations for Elements").
##
DeclareProperty( "IsSortedList", IsList);
#############################################################################
##
#P IsSSortedList( <obj> )
#P IsSet( <obj> )
##
## returns `true' if <obj> is a list and it is strictly sorted, or `false'
## otherwise. `IsSSortedList' is short for ``is strictly sorted list'';
## `IsSet' is just a synonym for `IsSSortedList'.
##
## \index{strictly sorted list}
## A list <list> is *strictly sorted* if it is sorted (see~"IsSortedList")
## and satisfies the relation $<list>[i] \lneqq <list>[j]$ whenever $i\< j$.
## In particular, such lists are duplicate free (see~"IsDuplicateFree").
##
## In sorted lists, membership test and computing of positions can be done
## by binary search, see~"Sorted Lists and Sets".
#T This should belong to `IsSortedList' not to `IsSSortedList'
#T (but see the comment below)!
##
## (Currently there is little special treatment of lists that are sorted
## but not strictly sorted.
## In particular, internally represented lists will *not* store that they
## are sorted but not strictly sorted.)
##
#DeclareProperty( "IsSSortedList", IsList);
DeclarePropertyKernel( "IsSSortedList", IsList, IS_SSORT_LIST );
DeclareSynonym( "IsSet", IsSSortedList );
InstallTrueMethod( IsSortedList, IsSSortedList );
InstallTrueMethod( IsSSortedList, IsList and IsEmpty );
#T #############################################################################
#T ##
#T #p IsNSortedList( <list> )
#T ##
#T ## returns `true' if the list <list> is not sorted (see~"IsSortedList").
#T ##
#T DeclarePropertyKernel( "IsNSortedList", IsDenseList, IS_NSORT_LIST );
#T (is currently not really supported)
#############################################################################
##
#P IsDuplicateFree( <obj> )
#P IsDuplicateFreeList( <obj> )
##
## `IsDuplicateFree(<obj>);' returns `true' if <obj> is both a list or
## collection, and it is duplicate free; otherwise it returns `false'.
## `IsDuplicateFreeList' is a synonym for `IsDuplicateFree and IsList'.
##
## \index{duplicate free}
## A list is *duplicate free* if it is dense and does not contain equal
## entries in different positions.
## Every domain (see~"Domains") is duplicate free.
##
DeclareProperty( "IsDuplicateFree", IsListOrCollection );
DeclareSynonymAttr( "IsDuplicateFreeList", IsDuplicateFree and IsList );
InstallTrueMethod( IsDuplicateFree, IsList and IsSSortedList );
#############################################################################
##
#P IsPositionsList(<obj>)
##
#T 1996/09/01 M.Schoenert should inherit from `IsHomogeneousList'
#T but the empty list is a positions list but not homogeneous
##
DeclarePropertyKernel( "IsPositionsList", IsDenseList, IS_POSS_LIST );
#############################################################################
##
#C IsTable( <obj> )
##
## A *table* is a nonempty list of homogeneous lists which lie in the same
## family.
## Typical examples of tables are matrices (see~"Matrices").
##
#DeclareCategory("IsTable",IsHomogeneousList);
DeclareCategoryKernel( "IsTable", IsHomogeneousList and IsCollection,
IS_TABLE_LIST );
#############################################################################
##
#O Position( <list>, <obj>[, <from>] ) . . . position of an object in a list
##
## returns the position of the first occurrence <obj> in <list>,
## or <fail> if <obj> is not contained in <list>.
## If a starting index <from> is given, it
## returns the position of the first occurrence starting the search *after*
## position <from>.
##
## Each call to the two argument version is translated into a call of the
## three argument version, with third argument the integer zero `0'.
## (Methods for the two argument version must be installed as methods for
## the version with three arguments, the third being described by
## `IsZeroCyc'.)
##
DeclareOperationKernel( "Position", [ IsList, IsObject ], POS_LIST );
DeclareOperation( "Position", [ IsList, IsObject, IS_INT ] );
#############################################################################
##
#F Positions( <list>, <obj> ) . . . . . . . positions of an object in a list
#O PositionsOp( <list>, <obj> ) . . . . . . . . . . . . underlying operation
##
## returns the positions of *all* occurrences of <obj> in <list>.
##
DeclareGlobalFunction( "Positions" );
DeclareOperation( "PositionsOp", [ IsList, IsObject ] );
#############################################################################
##
#O PositionCanonical( <list>, <obj> ) . . . position of canonical associate
##
## returns the position of the canonical associate of <obj> in <list>.
## The definition of this associate depends on <list>.
## For internally represented lists it is defined as the element itself
## (and `PositionCanonical' thus defaults to `Position', see~"Position"),
## but for example for certain enumerators (see~"Enumerators") other
## canonical associates can be defined.
##
## For example `RightTransversal' defines the canonical associate to be the
## element in the transversal defining the same coset of a subgroup in a
## group.
##
DeclareOperation( "PositionCanonical", [ IsList, IsObject ]);
#############################################################################
##
#O PositionNthOccurrence(<list>,<obj>,<n>) pos. of <n>th occurrence of <obj>
##
## returns the position of the <n>-th occurrence of <obj> in <list> and
## returns `fail' if <obj> does not occur <n> times.
##
DeclareOperation( "PositionNthOccurrence", [ IsList, IsObject, IS_INT ] );
#############################################################################
##
#F PositionSorted( <list>, <elm> ) . . position of an object in sorted list
#F PositionSorted( <list>, <elm>, <func> )
##
## In the first form `PositionSorted' returns the position of the element
## <elm> in the sorted list <list>.
##
## In the second form `PositionSorted' returns the position of the element
## <elm> in the list <list>, which must be sorted with respect to <func>.
## <func> must be a function of two arguments that returns `true' if the
## first argument is less than the second argument and `false' otherwise.
##
## `PositionSorted' returns <pos> such that $<list>[<pos>-1] \< <elm>$ and
## $<elm> \le <list>[<pos>]$.
## That means, if <elm> appears once in <list>, its position is returned.
## If <elm> appears several times in <list>, the position of the first
## occurrence is returned.
## If <elm> is not an element of <list>, the index where <elm> must be
## inserted to keep the list sorted is returned.
##
## `PositionSorted' uses binary search, whereas `Position' can in general
## use only linear search, see the remark at the beginning
## of~"Sorted Lists and Sets".
## For sorting lists, see~"Sorting Lists",
## for testing whether a list is sorted, see~"IsSortedList" and
## "IsSSortedList".
##
## Specialized functions for certain kinds of lists must be installed
## as methods for the operation `PositionSortedOp'.
##
# we catch plain lists by a function to avoid method selection
DeclareGlobalFunction( "PositionSorted" );
DeclareOperation( "PositionSortedOp", [ IsList, IsObject ] );
DeclareOperation( "PositionSortedOp", [ IsList, IsObject, IsFunction ] );
#T originally was
#T DeclareOperation( "PositionSorted", [ IsHomogeneousList, IsObject ] );
#T note the problem with inhomogeneous lists that may be sorted
#T (although they cannot store this and claim that they are not sorted)
#############################################################################
##
#F PositionSet( <list>, <obj> )
#F PositionSet( <list>, <obj>, <func> )
##
## `PositionSet' is a slight variation of `PositionSorted'.
## The only difference to `PositionSorted' is that `PositionSet' returns
## `fail' if <obj> is not in <list>.
##
DeclareGlobalFunction( "PositionSet" );
#############################################################################
##
#O PositionProperty(<list>,<func>) . position of an element with a property
##
## returns the first position of an element in the list <list> for which the
## property tester function <func> returns `true'.
##
DeclareOperation( "PositionProperty", [ IsDenseList, IsFunction ] );
#############################################################################
##
#O PositionBound( <list> ) . . . . position of first bound element in a list
##
## returns the first index for which an element is bound in the list <list>.
## For the empty list it returns `fail'.
##
DeclareOperation( "PositionBound", [ IsList ] );
#############################################################################
##
#O PositionSublist( <list>, <sub> )
#O PositionSublist( <list>, <sub>, <from> )
##
## returns the smallest index in the list <list> at which a sublist equal to
## <sub> starts.
## If <sub> does not occur the operation returns `fail'.
## The second version starts searching *after* position <from>.
##
## To determine whether <sub> matches <list> at a particular position, use
## `IsMatchingSublist' instead (see "IsMatchingSublist").
##
DeclareOperation( "PositionSublist", [ IsList,IsList,IS_INT ] );
#############################################################################
##
#O PositionFirstComponent(<list>,<obj>)
##
## returns the index <i> in <list> such that $<list>[<i>][1]=<obj>$ or the
## place where such an entry should be added (cf PositionSorted).
##
DeclareOperation("PositionFirstComponent",[IsList,IsObject]);
#############################################################################
##
#O IsMatchingSublist( <list>, <sub> )
#O IsMatchingSublist( <list>, <sub>, <at> )
##
## returns `true' if <sub> matches a sublist of <list> from position 1 (or
## position <at>, in the case of the second version), or `false', otherwise.
## If <sub> is empty `true' is returned. If <list> is empty but <sub> is
## non-empty `false' is returned.
##
## If you actually want to know whether there is an <at> for which
## `IsMatchingSublist( <list>, <sub>, <at> )' is true, use a construction
## like `PositionSublist( <list>, <sub> ) <> fail' instead
## (see "PositionSublist"); it's more efficient.
##
DeclareOperation( "IsMatchingSublist", [ IsList,IsList,IS_INT ] );
#############################################################################
##
#F IsQuickPositionList( <list> )
##
## This filter indicates that a position test in <list> is quicker than
## about 5 or 6 element comparisons for ``smaller''. If this is the case it
## can be beneficial to use `Position' in <list> and a bit list than
## ordered lists to represent subsets of <list>.
##
DeclareFilter( "IsQuickPositionList" );
#############################################################################
##
#O Add( <list>, <obj> ) . . . . . . . . add an element to the end of a list
#O Add( <list>, <obj>, <pos> ) . . . . . . add an element anywhere in a list
##
## adds the element <obj> to the mutable list <list>. The two argument version
## adds <obj> at the end of <list>,
## i.e., it is equivalent to the assignment
## `<list>[ Length(<list>) + 1 ] := <obj>', see~"list element!assignment".
##
## The three argument version adds <obj> in position <pos>, moving all later
## elements of the list (if any) up by one position. Any holes at or after
## position <pos> are also moved up by one position, and new holes are created
## before <pos> if they are needed.
##
## Nothing is returned by `Add', the function is only called for its side
## effect.
#DeclareOperation( "Add", [ IsList, IsObject ] );
DeclareOperationKernel( "Add", [ IsList and IsMutable, IsObject ], ADD_LIST );
DeclareOperation( "Add", [ IsList and IsMutable, IsObject, IS_INT ]);
#############################################################################
##
#O Remove( <list> ) . . . . . . . . remove an element from the end of a list
#O Remove( <list>, <pos> ) . remove an element from position <pos> of a list
##
## removes an element from <list>. The one argument form removes the last
## element. The two argument form removes the element in position <pos>,
## moving all subsequent elements down one position. Any holes after
## position <pos> are also moved down by one position.
##
## Remove( <list> ) always returns the removed element. In this case <list>
## must be non-empty. Remove( <list>, <pos> )
## returns the old value of <list>[<pos>] if it was bound, and nothing if it
## was not. Note that accessing or assigning the return value of this form of
## the Remove operation is only safe when you *know* that there will be a
## value, otherwise it will cause an error.
##
DeclareOperation( "Remove", [IsList and IsMutable]);
DeclareOperation( "Remove", [IsList and IsMutable, IS_INT]);
#############################################################################
##
#O Append( <list1>, <list2> ) . . . . . . . . . . . append a list to a list
##
## adds the elements of the list <list2> to the end of the mutable list
## <list1>, see~"sublist!assignment".
## <list2> may contain holes, in which case the corresponding entries in
## <list1> will be left unbound.
## `Append' returns nothing, it is only called for its side effect.
##
## Note that `Append' changes its first argument, while `Concatenation'
## (see~"Concatenation") creates a new list and leaves its arguments
## unchanged.
# DeclareOperation( "Append", [ IsList and IsMutable, IsList ])
DeclareOperationKernel( "Append", [ IsList and IsMutable, IsList ],
APPEND_LIST );
#############################################################################
##
#F Apply( <list>, <func> ) . . . . . . . . apply a function to list entries
##
## `Apply' applies the function <func> to every element of the dense and
## mutable list <list>,
## and replaces each element entry by the corresponding return value.
##
## `Apply' changes its argument.
## The nondestructive counterpart of `Apply' is `List' (see~"List").
##
DeclareGlobalFunction( "Apply" );
#############################################################################
##
#F Concatenation( <list1>, <list2>, ... ) . . . . . concatenation of lists
#F Concatenation( <list> ) . . . . . . . . . . . . . concatenation of lists
##
## In the first form `Concatenation' returns the concatenation of the lists
## <list1>, <list2>, etc.
## The *concatenation* is the list that begins with the elements of <list1>,
## followed by the elements of <list2>, and so on.
## Each list may also contain holes, in which case the concatenation also
## contains holes at the corresponding positions.
##
## In the second form <list> must be a dense list of lists <list1>, <list2>,
## etc., and `Concatenation' returns the concatenation of those lists.
##
## The result is a new mutable list, that is not identical to any other
## list.
## The elements of that list however are identical to the corresponding
## elements of <list1>, <list2>, etc. (see~"Identical Lists").
##
## Note that `Concatenation' creates a new list and leaves its arguments
## unchanged, while `Append' (see~"Append") changes its first argument.
## For computing the union of proper sets, `Union' can be used,
## see~"Union" and "Sorted Lists and Sets".
##
DeclareGlobalFunction( "Concatenation" );
#############################################################################
##
#O Compacted( <list> ) . . . . . . . . . . . . . . remove holes from a list
##
## returns a new mutable list that contains the elements of <list>
## in the same order but omitting the holes.
##
DeclareOperation( "Compacted", [ IsList ] );
#############################################################################
##
#O Collected( <list> ) . . . . . . . . . . collect like elements from a list
##
## returns a new list <new> that contains for each element <elm> of the list
## <list> a list of length two, the first element of this is <elm>
## itself and the second element is the number of times <elm> appears in
## <list>.
## The order of those pairs in <new> corresponds to the ordering of
## the elements elm, so that the result is sorted.
##
## For all pairs of elements in <list> the comparison via `\<' must be
## defined.
##
DeclareOperation( "Collected", [ IsList ] );
#############################################################################
##
#O DuplicateFreeList( <list> ) . . . . duplicate free list of list elements
#O Unique( <list> )
##
## returns a new mutable list whose entries are the elements of the list
## <list> with duplicates removed.
## `DuplicateFreeList' only uses the `=' comparison and will not sort the
## result.
## Therefore `DuplicateFreeList' can be used even if the elements of <list>
## do not lie in the same family.
## `Unique' is an alias for `DuplicateFreeList'.
##
DeclareOperation( "DuplicateFreeList", [ IsList ] );
DeclareSynonym( "Unique", DuplicateFreeList );
#############################################################################
##
#A AsDuplicateFreeList( <list> ) . . . duplicate free list of list elements
##
## returns the same result as `DuplicateFreeList' (see~"DuplicateFreeList"),
## except that the result is immutable.
##
DeclareAttribute( "AsDuplicateFreeList", IsList );
#############################################################################
##
#O DifferenceLists(<list1>,<list2>) . list without elements in another list
##
## This operation accepts two lists <list1> and <list2> and returns a list
## containing the elements in <list1> that do not lie in <list2>. The
## elements of the resulting list are in the same order as they are in
## <list1>. The result of this operation is the same as that of the
## operation `Difference' (see~"Difference") except that the first argument
## is not treated as a proper set,
## and therefore the result need not be sorted.
##
## What about duplicates?
## This definition is not satisfactory!!!
##
DeclareOperation( "DifferenceLists", [IsList, IsList] );
#############################################################################
##
#O Flat( <list> ) . . . . . . . list of elements of a nested list structure
##
## returns the list of all elements that are contained in the list <list>
## or its sublists.
## That is, `Flat' first makes a new empty list <new>.
## Then it loops over the elements <elm> of <list>.
## If <elm> is not a list it is added to <new>,
## otherwise `Flat' appends `Flat( <elm> )' to <new>.
##
DeclareOperation( "Flat", [ IsList ] );
#############################################################################
##
#F Reversed( <list> ) . . . . . . . . . . . reverse the elements in a list
##
## returns a new mutable list, containing the elements of the dense list
## <list> in reversed order.
##
## The argument list is unchanged.
## The result list is a new list, that is not identical to any other list.
## The elements of that list however are identical to the corresponding
## elements of the argument list (see~"Identical Lists").
##
## `Reversed' implements a special case of list assignment, which can also
## be formulated in terms of the `{}' operator (see~"List Assignment").
##
DeclareGlobalFunction( "Reversed", [ IsDenseList ] );
#############################################################################
##
#O ReversedOp( <list> ) . . . . . . . . . . reverse the elements in a list
##
## `ReversedOp' is the operation called by `Reversed' if <list> is not
## an internal list.
## (Note that it would not make sense to turn this into an attribute
## because the result shall be mutable.)
##
DeclareOperation( "ReversedOp", [ IsDenseList ] );
#############################################################################
##
#F IsLexicographicallyLess( <list1>, <list2> )
##
## Let <list1> and <list2> be two dense lists, but not necessarily
## homogeneous (see~"IsDenseList", "IsHomogeneousList"),
## such that for each $i$, the entries in both lists at position $i$ can be
## compared via `\<'.
## `IsLexicographicallyLess' returns `true' if <list1> is smaller than
## <list2> w.r.t.~lexicographical ordering, and `false' otherwise.
##
DeclareGlobalFunction( "IsLexicographicallyLess" );
#############################################################################
##
#O Sort( <list> ) . . . . . . . . . . . . . . . . . . . . . . . sort a list
#O Sort( <list>, <func> ) . . . . . . . . . . . . . . . . . . . sort a list
##
## sorts the list <list> in increasing order.
## In the first form `Sort' uses the operator `\<' to compare the elements.
## (If the list is not homogeneous it is the users responsibility to ensure
## that `\<' is defined for all element pairs, see~"Comparison Operations
## for Elements")
## In the second form `Sort' uses the function <func> to compare elements.
## <func> must be a function taking two arguments that returns `true'
## if the first is regarded as strictly smaller than the second,
## and `false' otherwise.
##
## `Sort' does not return anything, it just changes the argument <list>.
## Use `ShallowCopy' (see "ShallowCopy") if you want to keep <list>. Use
## `Reversed' (see "Reversed") if you want to get a new list sorted in
## decreasing order.
##
## It is possible to sort lists that contain multiple elements which compare
## equal. It is not guaranteed that those elements keep their relative
## order, i.e., `Sort' is not stable.
##
DeclareOperation( "Sort", [ IsList and IsMutable ] );
DeclareOperation( "Sort", [ IsList and IsMutable, IsFunction ] );
#############################################################################
##
#O Sortex( <list> ) . . sort a list (stable), return the applied permutation
##
## sorts the list <list> via the operator`\<' and returns a permutation
## that can be applied to <list> to obtain the sorted list.
## (If the list is not homogeneous it is the user's responsibility to ensure
## that `\<' is defined for all element pairs,
## see~"Comparison Operations for Elements")
##
## `Permuted' (see~"Permuted") allows you to rearrange a list according to
## a given permutation.
##
DeclareOperation( "Sortex", [ IsList and IsMutable ] );
#############################################################################
##
#A SortingPerm( <list> )
##
## `SortingPerm' returns the same as `Sortex( <list> )' (see~"Sortex")
## but does *not* change the argument.
##
DeclareAttribute( "SortingPerm", IsList );
#############################################################################
##
#F PermListList( <list1>, <list2> ) . what permutation of <list1> is <list2>
##
## returns a permutation $p$ of `[ 1 .. Length( <list1> ) ]'
## such that `<list1>[i^$p$] = <list2>[i]'.
## It returns `fail' if there is no such permutation.
##
DeclareGlobalFunction( "PermListList" );
#############################################################################
##
#O SortParallel(<list>,<list2>) . . . . . . . . sort two lists in parallel
#O SortParallel( <list>, <list2>, <func> ) . . . sort two lists in parallel
##
## sorts the list <list1> in increasing order just as `Sort' (see~"Sort")
## does. In parallel it applies the same exchanges that are
## necessary to sort <list1> to the list <list2>, which must of course have
## at least as many elements as <list1> does.
##
DeclareOperation( "SortParallel",
[ IsDenseList and IsMutable, IsDenseList and IsMutable ] );
DeclareOperation( "SortParallel",
[ IsDenseList and IsMutable, IsDenseList and IsMutable, IsFunction ] );
#############################################################################
##
#F Maximum( <obj1>, <obj2> ... ) . . . . . . . . . . . . maximum of objects
#F Maximum( <list> )
##
## In the first form `Maximum' returns the *maximum* of its arguments,
## i.e., one argument <obj> for which $<obj> \ge <obj1>$, $<obj> \ge <obj2>$
## etc.
## In the second form `Maximum' takes a homogeneous list <list> and returns
## the maximum of the elements in this list.
##
DeclareGlobalFunction( "Maximum" );
#############################################################################
##
#F Minimum( <obj1>, <obj2> ... ) . . . . . . . . . . . . minimum of objects
#F Minimum( <list> )
##
## In the first form `Minimum' returns the *minimum* of its arguments,
## i.e., one argument <obj> for which $<obj> \le <obj1>$, $<obj> \le <obj2>$
## etc.
## In the second form `Minimum' takes a homogeneous list <list> and returns
## the minimum of the elements in this list.
##
## Note that for both `Maximum' and `Minimum' the comparison of the objects
## <obj1>, <obj2> etc.~must be defined;
## for that, usually they must lie in the same family (see~"Families").
##
DeclareGlobalFunction( "Minimum" );
#############################################################################
##
#O MaximumList( <list> ) . . . . . . . . . . . . . . . . maximum of a list
#O MinimumList( <list> ) . . . . . . . . . . . . . . . . minimum of a list
##
## return the maximum resp.~the minimum of the elements in the list <list>.
## They are the operations called by `Maximum' resp.~`Minimum'.
## Methods can be installed for special kinds of lists.
## For example, there are special methods to compute the maximum resp.~the
## minimum of a range (see~"Ranges").
##
DeclareOperation( "MaximumList", [ IsList ] );
DeclareOperation( "MinimumList", [ IsList ] );
#############################################################################
##
#F Cartesian( <list1>, <list2> ... ) . . . . . . cartesian product of lists
#F Cartesian( <list> )
##
## In the first form `Cartesian' returns the cartesian product of the lists
## <list1>, <list2>, etc.
##
## In the second form <list> must be a list of lists <list1>, <list2>, etc.,
## and `Cartesian' returns the cartesian product of those lists.
##
## The *cartesian product* is a list <cart> of lists <tup>,
## such that the first element of <tup> is an element of <list1>,
## the second element of <tup> is an element of <list2>, and so on.
## The total number of elements in <cart> is the product of the lengths
## of the argument lists.
## In particular <cart> is empty if and only if at least one of the argument
## lists is empty.
## Also <cart> contains duplicates if and only if no argument list is empty
## and at least one contains duplicates.
##
## The last index runs fastest.
## That means that the first element <tup1> of <cart> contains the first
## element from <list1>, from <list2> and so on.
## The second element <tup2> of <cart> contains the first element from
## <list1>, the first from <list2>, an so on, but the last element of <tup2>
## is the second element of the last argument list.
## This implies that <cart> is a proper set if and only if all argument
## lists are proper sets (see~"Sorted Lists and Sets").
##
## The function `Tuples' (see~"Tuples") computes the <k>-fold cartesian
## product of a list.
##
DeclareGlobalFunction( "Cartesian" );
#############################################################################
##
#O Permuted(<list>,<perm>) . . . . . . . . . apply a permutation to a list
##
## returns a new list <new> that contains the elements of the
## list <list> permuted according to the permutation <perm>.
## That is `<new>[<i> ^ <perm>] = <list>[<i>]'.
##
## `Sortex' (see~"Sortex") allows you to compute a permutation that must
## be applied to a list in order to get the sorted list.
##
DeclareOperation( "Permuted", [ IsList, IS_PERM ] );
#############################################################################
##
#F IteratorList( <list> )
##
## `IteratorList' returns a new iterator that allows iteration over the
## elements of the list <list> (which may have holes) in the same order.
##
## If <list> is mutable then it is in principle possible to change <list>
## after the call of `IteratorList'.
## In this case all changes concerning positions that have not yet been
## reached in the iteration will also affect the iterator.
## For example, if <list> is enlarged then the iterator will iterate also
## over the new elements at the end of the changed list.
##
## *Note* that changes of <list> will also affect all shallow copies of
## <list>.
##
DeclareGlobalFunction( "IteratorList" );
#############################################################################
##
#F First( <list>, <func> ) . . find first element in a list with a property
##
## `First' returns the first element of the list <list> for which the unary
## function <func> returns `true'.
## <list> may contain holes.
## <func> must return either `true' or `false' for each element of <list>,
## otherwise an error is signalled.
## If <func> returns `false' for all elements of <list> then `First'
## returns `fail'.
##
## `PositionProperty' (see~"PositionProperty") allows you to find the
## position of the first element in a list that satisfies a certain
## property.
##
DeclareGlobalFunction( "First" );
#############################################################################
##
#O FirstOp( <list>, <func> )
##
## `FirstOp' is the operation called by `First' if <list> is not
## an internally represented list.
##
DeclareOperation( "FirstOp", [ IsListOrCollection, IsFunction ] );
#############################################################################
##
#O Iterated( <list>, <func> ) . . . . . . . iterate a function over a list
##
## returns the result of the iterated application of the function <func>,
## which must take two arguments, to the elements of the list <list>.
## More precisely `Iterated' returns the result of the following
## application,
## $<f>(\cdots <f>( <f>( <list>[1], <list>[2] ), <list>[3] ), \ldots,
## <list>[<n>] )$.
##
DeclareOperation( "Iterated", [ IsList, IsFunction ] );
#############################################################################
##
#F ListN( <list1>, <list2>, ..., <listn>, <f> )
##
## Applies the <n>-argument function <func> to the lists.
## That is, `ListN' returns the list whose <i>th entry is
## $<f>(<list1>[<i>], <list2>[<i>], \ldots, <listn>[<i>])$.
##
DeclareGlobalFunction( "ListN" );
#############################################################################
##
#F UnionBlist(<blist1>,<blist2>[,...])
#F UnionBlist(<list>)
##
## In the first form `UnionBlist' returns the union of the boolean
## lists <blist1>, <blist2>, etc., which must have equal length. The
## *union* is a new boolean list such that `<union>[<i>] = <blist1>[<i>] or
## <blist2>[<i>] or ...'.
##
## The second form takes the union of all blists (which
## as for the first form must have equal length) in the list <list>.
DeclareGlobalFunction( "UnionBlist" );
#############################################################################
##
#F DifferenceBlist(<blist1>,<blist2>)
##
## returns the asymmetric set difference (exclusive or) of the two
## boolean lists <blist1> and <blist2>, which must have equal length.
## The *asymmetric set difference* is a new boolean list such that
## `<union>[<i>] = <blist1>[<i>] and not <blist2>[<i>]'.
DeclareGlobalFunction("DifferenceBlist");
#############################################################################
##
#F IntersectionBlist(<blist1>,<blist2>[,...])
#F IntersectionBlist(<list>)
##
## In the first form `IntersectionBlist' returns the intersection of
## the boolean lists <blist1>, <blist2>, etc., which must have equal
## length. The *intersection* is a new blist such that
## `<inter>[<i>] = <blist1>[<i>] and <blist2>[<i>] and ...'.
##
## In the second form <list> must be a list of boolean lists
## <blist1>, <blist2>, etc., which must have equal length, and
## `IntersectionBlist' returns the intersection of those boolean lists.
DeclareGlobalFunction( "IntersectionBlist" );
#############################################################################
##
#F ListWithIdenticalEntries( <n>, <obj> )
##
## is a list <list> of length <n> that has the object <obj> stored at each
## of the positions from 1 to <n>.
## Note that all elements of <lists> are identical, see~"Identical Lists".
##
DeclareGlobalFunction( "ListWithIdenticalEntries" );
#############################################################################
##
#F PlainListCopy( <list> ) . . . . . . . . make a plain list copy of a list
##
## This is intended for use in certain rare situations, such as before
## Objectifying. Normally, `ConstantAccessTimeList' should be enough.
##
DeclareGlobalFunction("PlainListCopy");
#############################################################################
##
#O PlainListCopyOp( <list> ) . . . . . . . .return a plain version of a list
##
## This Operation returns a list equal to its argument, in a plain list
## representation. This may be the argument converted in place, or
## may be new. It is only intended to be called by `PlainListCopy'.
##
DeclareOperation("PlainListCopyOp", [IsSmallList]);
#############################################################################
##
#O PositionNot( <list>, <val>[, <from-minus-one>] ) . . . . find not <val>
##
## For a list <list> and an object <val>, `PositionNot' returns the smallest
## nonnegative integer $n$ such that $<list>[n]$ is either unbound or
## not equal to <val>.
## If a nonnegative integer is given as optional argument <from-minus-one>
## then the first position larger than <from-minus-one> with this property
## is returned.
##
DeclareOperation( "PositionNot", [ IsList, IsObject ] );
DeclareOperation( "PositionNot", [ IsList, IsObject, IS_INT ] );
#############################################################################
##
#O PositionNonZero( <vec> ) . . . . . . . . Position of first non-zero entry
##
## For a row vector <vec>, `PositionNonZero' returns the position of the
## first non-zero element of <vec>, or `Length(<vec>)+1' if all entries of
## <vec> are zero.
##
## `PositionNonZero' implements a special case of `PositionNot'
## (see~"PositionNot").
## Namely, the element to be avoided is the zero element,
## and the list must be (at least) homogeneous
## because otherwise the zero element cannot be specified implicitly.
##
DeclareOperation( "PositionNonZero", [ IsHomogeneousList ] );
#T In principle, this could become an attribute ...
#############################################################################
##
#P IsDuplicateFreeCollection
##
## Needs to be after DeclareSynonym is declared
DeclareSynonym("IsDuplicateFreeCollection", IsCollection and IsDuplicateFree);
#############################################################################
##
#F HexStringBlist(<b>)
##
## takes a binary list and returns a hex string representing this blist.
DeclareGlobalFunction("HexStringBlist");
#############################################################################
##
#F HexStringBlistEncode(<b>)
##
## works like `HexStringBlist', but uses `s<xx>' (<xx> is a hex number up to
## 255) to indicate skips of zeroes.
DeclareGlobalFunction("HexStringBlistEncode");
#############################################################################
##
#F BlistStringDecode(<s>,[<l>])
##
## takes a string as produced by `HexStringBlist' and
## `HexStringBlistEncode' and returns a binary list. If a length <l> is
## given the list is filed with `false' or trimmed to obtain this length,
## otherwise the list has the length as given by the string (this might
## leave out or add some trailing `false' values.
DeclareGlobalFunction("BlistStringDecode");
#############################################################################
##
#E
|