1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
|
#############################################################################
##
#W matrix.gd GAP library Thomas Breuer
#W & Frank Celler
#W & Alexander Hulpke
#W & Heiko Theissen
#W & Martin Schoenert
##
#H @(#)$Id: matrix.gd,v 4.81.2.7 2006/08/22 10:35:54 gap Exp $
##
#Y Copyright (C) 1997, Lehrstuhl D fuer Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St. Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## This file contains those functions that mainly deal with matrices.
##
Revision.matrix_gd :=
"@(#)$Id: matrix.gd,v 4.81.2.7 2006/08/22 10:35:54 gap Exp $";
#############################################################################
##
#V InfoMatrix
##
## The info class for matrix operations is `InfoMatrix'.
##
DeclareInfoClass( "InfoMatrix" );
#############################################################################
##
#F PrintArray( <array> )
##
## pretty-prints the array <array>.
##
DeclareGlobalFunction("PrintArray");
#############################################################################
##
#P IsGeneralizedCartanMatrix( <A> )
##
## The square matrix <A> is a generalized Cartan Matrix if and only if
## 1. `A[i][i] = 2' for all $i$,
## 2. `A[i][j]' are nonpositive integers for $i \not= j$,
## 3. `A[i][j] = 0' implies `A[j][i] = 0'.
##
DeclareProperty( "IsGeneralizedCartanMatrix", IsMatrix );
#############################################################################
##
#O IsDiagonalMat( <mat> )
##
## returns true if mat has only zero entries off the main diagonal, false
## otherwise.
##
DeclareOperation("IsDiagonalMat",[IsMatrix]);
#############################################################################
##
#O IsUpperTriangularMat( <mat> )
##
## returns true if mat has only zero entries below the main diagonal, false
## otherwise.
##
DeclareOperation("IsUpperTriangularMat",[IsMatrix]);
#############################################################################
##
#O IsLowerTriangularMat( <mat> )
##
## returns true if mat has only zero entries below the main diagonal, false
## otherwise.
##
DeclareOperation("IsLowerTriangularMat",[IsMatrix]);
#############################################################################
##
#O DiagonalOfMat( <mat> )
##
## returns the diagonal of <mat> as a list.
##
DeclareGlobalFunction( "DiagonalOfMat" );
#############################################################################
##
#A BaseMat( <mat> ) . . . . . . . . . . base for the row space of a matrix
##
## returns a basis for the row space generated by the rows of <mat> in the
## form of an immutable matrix.
##
DeclareAttribute( "BaseMat", IsMatrix );
#############################################################################
##
#O BaseMatDestructive( <mat> )
##
## Does the same as `BaseMat', with the difference that it may destroy
## the matrix <mat>. The matrix <mat> must be mutable.
##
DeclareOperation( "BaseMatDestructive", [ IsMatrix ] );
#############################################################################
##
#A BaseOrthogonalSpaceMat( <mat> )
##
## Let $V$ be the row space generated by the rows of <mat> (over any field
## that contains all entries of <mat>). `BaseOrthogonalSpaceMat( <mat> )'
## computes a base of the orthogonal space of $V$.
##
## The rows of <mat> need not be linearly independent.
##
#T Note that this means to transpose twice ...
##
DeclareAttribute( "BaseOrthogonalSpaceMat", IsMatrix );
#############################################################################
##
#A DefaultFieldOfMatrix( <mat> )
##
## For a matrix <mat>, `DefaultFieldOfMatrix' returns either a field
## (not necessarily the smallest one) containing all entries of <mat>,
## or `fail'.
##
## If <mat> is a matrix of finite field elements or a matrix of cyclotomics,
## `DefaultFieldOfMatrix' returns the default field generated by the matrix
## entries (see~"Creating Finite Fields" and "Operations for Cyclotomics").
##
DeclareAttribute( "DefaultFieldOfMatrix", IsMatrix );
#############################################################################
##
#A DepthOfUpperTriangularMatrix( <mat> )
##
## If <mat> is an upper triangular matrix this attribute returns the
## index of the first nonzero diagonal.
##
DeclareAttribute( "DepthOfUpperTriangularMatrix", IsMatrix );
#############################################################################
##
#A DeterminantMat( <mat> ) . . . . . . . . . . . . . determinant of a matrix
#F Determinant( <mat> )
##
## returns the determinant of the square matrix <mat>.
##
## These methods assume implicitly that <mat> is defined over an
## integral domain whose quotient field is implemented in {\GAP}. For
## matrices defined over an arbitrary commutative ring with one
## see~"DeterminantMatDivFree".
##
DeclareAttribute( "DeterminantMat", IsMatrix );
#############################################################################
##
#O DeterminantMatDestructive( <mat> )
##
## Does the same as `DeterminantMat', with the difference that it may
## destroy its argument. The matrix <mat> must be mutable.
##
DeclareOperation( "DeterminantMatDestructive", [ IsMatrix and IsMutable] );
#############################################################################
##
#O DeterminantMatDivFree( <mat> )
##
## returns the determinant of a square matrix <mat> over an arbitrary
## commutative ring with one using the division free method of
## Mahajan and Vinay \cite{MV97}.
##
DeclareOperation("DeterminantMatDivFree",[IsMatrix]);
#############################################################################
##
#A DimensionsMat( <mat> ) . . . . . . . . . . . . . dimensions of a matrix
##
## is a list of length 2, the first being the number of rows, the second
## being the number of columns of the matrix <mat>.
##
DeclareAttribute( "DimensionsMat", IsMatrix );
#############################################################################
##
#O ElementaryDivisorsMat([<ring>,] <mat>)
#F ElementaryDivisorsMatDestructive(<ring>,<mat>)
##
## `ElementaryDivisors' returns a list of the elementary divisors, i.e., the
## unique <d> with `<d>[<i>]' divides `<d>[<i>+1]' and <mat> is equivalent
## to a diagonal matrix with the elements `<d>[<i>]' on the diagonal.
## The operations are performed over the ring <ring>, which must contain
## all matrix entries. For compatibility reasons it can be omitted and
## defaults to `Integers'.
##
## The function `ElementaryDivisorsMatDestructive' produces the same result
## but in the process destroys the contents of <mat>.
##
DeclareOperation( "ElementaryDivisorsMat", [IsRing,IsMatrix] );
DeclareGlobalFunction( "ElementaryDivisorsMatDestructive" );
#############################################################################
##
#O TriangulizedNullspaceMatNT(<mat>)
##
## This returns the triangulized nullspace of the matrix <mat>, without
## transposing it. This is used in `TriangulizedNullspaceMat', and
## `TriangulizedNullspaceMatDestructive'.
##
DeclareOperation( "TriangulizedNullspaceMatNT", [ IsMatrix ] );
#############################################################################
##
#A NullspaceMat( <mat> ) . . . . . . basis of solutions of <vec> * <mat> = 0
#A TriangulizedNullspaceMat(<mat>)
##
## returns a list of row vectors that form a basis of the vector space of
## solutions to the equation `<vec>*<mat>=0'. The result is an immutable
## matrix. This basis is not guaranteed to be in any specific form.
##
## The variant `TriangulizedNullspaceMat' returns a basis of the nullspace
## in triangulized form as is often needed for algorithms.
##
DeclareAttribute( "NullspaceMat", IsMatrix );
DeclareAttribute( "TriangulizedNullspaceMat", IsMatrix );
#############################################################################
##
#O NullspaceMatDestructive( <mat> )
#O TriangulizedNullspaceMatDestructive(<mat>)
##
## This function does the same as `NullspaceMat'. However, the latter function
## makes a copy of <mat> to avoid having to change it. This function
## does not do that; it returns the null space and may destroy <mat>;
## this saves a lot of memory in case <mat> is big. The matrix <mat>
## must be mutable.
##
## The variant `TriangulizedNullspaceMatDestructive' returns a basis of the
## nullspace in triangulized form. It may destroy the matrix <mat>.
##
DeclareOperation( "NullspaceMatDestructive", [ IsMatrix and IsMutable] );
DeclareOperation( "TriangulizedNullspaceMatDestructive", [ IsMatrix and IsMutable] );
#############################################################################
##
#O GeneralisedEigenvalues( <F>, <A> )
#O GeneralizedEigenvalues( <F>, <A> )
##
## The generalised eigenvalues of the matrix <A> over the field <F>.
##
DeclareOperation( "GeneralisedEigenvalues", [ IsRing, IsMatrix ] );
DeclareSynonym( "GeneralizedEigenvalues", GeneralisedEigenvalues );
#############################################################################
##
#O GeneralisedEigenspaces( <F>, <A> )
#O GeneralizedEigenspaces( <F>, <A> )
##
## The generalised eigenspaces of the matrix <A> over the field <F>.
##
DeclareOperation( "GeneralisedEigenspaces", [ IsRing, IsMatrix ] );
DeclareSynonym( "GeneralizedEigenspaces", GeneralisedEigenspaces );
#############################################################################
##
#O Eigenvalues( <F>, <A> )
##
## The eigenvalues of the matrix <A> over the field <F>.
##
DeclareOperation( "Eigenvalues", [ IsRing, IsMatrix ] );
#############################################################################
##
#O Eigenspaces( <F>, <A> )
##
## The eigenspaces of the matrix <A> over the field <F>.
##
DeclareOperation( "Eigenspaces", [ IsRing, IsMatrix ] );
#############################################################################
##
#O Eigenvectors( <F>, <A> )
##
## The eigenspaces of the matrix <A> over the field <F>.
##
DeclareOperation( "Eigenvectors", [ IsRing, IsMatrix ] );
#############################################################################
##
#A ProjectiveOrder( <mat> )
##
## Returns an integer n and a finite field element e such that <A>^n = eI.
## <mat> must be a matrix defined over a finite field.
##
DeclareAttribute( "ProjectiveOrder", IsMatrix );
#############################################################################
##
#F OrderMatTrial( <mat>,<lim> )
##
## tries to compute the order of <mat> (of small order) by mapping the
## basis vectors under <mat>. This is done at most <lim> times, if the
## matrix order has not been determined at this point (or if the matrix is
## not invertible) `fail' is returned.
##
DeclareGlobalFunction( "OrderMatTrial" );
#############################################################################
##
#A RankMat( <mat> ) . . . . . . . . . . . . . . . . . . . rank of a matrix
##
## If <mat> is a matrix whose rows span a free module over the ring
## generated by the matrix entries and their inverses
## then `RankMat' returns the dimension of this free module.
## Otherwise `fail' is returned.
##
## Note that `RankMat' may perform a Gaussian elimination.
## For large rational matrices this may take very long,
## because the entries may become very large.
##
DeclareAttribute( "RankMat", IsMatrix );
#############################################################################
##
#O RankMatDestructive( <mat> ) . . . . . . . . . . . . . rank of a matrix
##
## `RankMatDestructive' returns the same result as "RankMat" but may
## modify its argument in the process, if this saves time or memory
##
DeclareOperation( "RankMatDestructive", [IsMatrix and IsMutable]);
#############################################################################
##
#A SemiEchelonMat( <mat> )
##
## A matrix over a field $F$ is in semi-echelon form if the first nonzero
## element in each row is the identity of $F$,
## and all values exactly below these pivots are the zero of $F$.
##
## `SemiEchelonMat' returns a record that contains information about
## a semi-echelonized form of the matrix <mat>.
##
## The components of this record are
##
## \beginitems
## `vectors'&
## list of row vectors, each with pivot element the identity of $F$,
##
## `heads'&
## list that contains at position <i>, if nonzero, the number of the
## row for that the pivot element is in column <i>.
## \enditems
##
DeclareAttribute( "SemiEchelonMat", IsMatrix );
#############################################################################
##
#O SemiEchelonMatDestructive( <mat> )
##
## This does the same as `SemiEchelonMat( <mat> )', except that it may
## (and probably will) destroy the matrix <mat>.
##
DeclareOperation( "SemiEchelonMatDestructive", [ IsMatrix and IsMutable] );
#############################################################################
##
#A SemiEchelonMatTransformation( <mat> )
##
## does the same as `SemiEchelonMat' but additionally stores the linear
## transformation $T$ performed on the matrix.
## The additional components of the result are
##
## \beginitems
## `coeffs'&
## a list of coefficients vectors of the `vectors' component,
## with respect to the rows of <mat>, that is, `coeffs * mat'
## is the `vectors' component.
##
## `relations'&
## a list of basis vectors for the (left) null space of <mat>.
## \enditems
##
DeclareAttribute( "SemiEchelonMatTransformation", IsMatrix );
#############################################################################
##
#O SemiEchelonMatTransformationDestructive( <mat> )
##
## This does the same as `SemiEchelonMatTransformation( <mat> )', except that it may
## (and probably will) destroy the matrix <mat>.
##
DeclareOperation( "SemiEchelonMatTransformationDestructive", [
IsMatrix and IsMutable ] );
#############################################################################
##
#F SemiEchelonMatsNoCo( <mats> )
##
## The function that does the work for `SemiEchelonMats' and
## `SemiEchelonMatsDestructive'.
##
DeclareGlobalFunction( "SemiEchelonMatsNoCo" );
#############################################################################
##
#O SemiEchelonMats( <mats> )
##
## A list of matrices over a field $F$ is in semi-echelon form if the
## list of row vectors obtained on concatenating the rows of each matrix
## is a semi-echelonized matrix (see "SemiEchelonMat").
##
## `SemiEchelonMats' returns a record that contains information about
## a semi-echelonized form of the list <mats> of matrices.
##
## The components of this record are
##
## \beginitems
## `vectors'&
## list of matrices, each with pivot element the identity of $F$,
##
## `heads'&
## matrix that contains at position [<i>,<j>], if nonzero,
## the number of the matrix that has the pivot element in
## this position
## \enditems
##
DeclareOperation( "SemiEchelonMats", [ IsList ] );
#############################################################################
##
#O SemiEchelonMatsDestructive( <mats> )
##
## Does the same as `SemiEchelonmats', except that it may destroy
## its argument. Therefore the argument must be a list of matrices
## that re mutable.
##
DeclareOperation( "SemiEchelonMatsDestructive", [ IsList ] );
#############################################################################
##
#A TransposedMatImmutable( <mat> ) . . . . . . . . . transposed of a matrix
#A TransposedMatAttr( <mat> ) . . . . . . . . . . . transposed of a matrix
#A TransposedMat( <mat> ) . . . . . . . . . . . . . transposed of a matrix
#O TransposedMatMutable( <mat> ) . . . . . . . . . . transposed of a matrix
#O TransposedMatOp( <mat> ) . . . . . . . . . . . . transposed of a matrix
##
## These functions all return the transposed of the matrix <mat>, i.e.,
## a matrix <trans> such that `<trans>[<i>][<k>] = <mat>[<k>][<i>]' holds.
##
## They differ only w.r.t. the mutability of the result.
##
## `TransposedMat' is an attribute and hence returns an immutable result.
## `TransposedMatMutable' is guaranteed to return a new *mutable* matrix.
##
## `TransposedMatImmutable' and `TransposedMatAttr' are synonyms of
## `TransposedMat',
## and `TransposedMatOp' is a synonym of `TransposedMatMutable',
## in analogy to operations such as `Zero' (see~"Zero").
##
DeclareAttribute( "TransposedMatImmutable", IsMatrix );
DeclareSynonymAttr( "TransposedMatAttr", TransposedMatImmutable );
DeclareSynonymAttr( "TransposedMat", TransposedMatImmutable );
DeclareOperation( "TransposedMatMutable", [ IsMatrix ] );
DeclareSynonym( "TransposedMatOp", TransposedMatMutable );
DeclareSynonym( "MutableTransposedMat", TransposedMatMutable ); # needed?
#############################################################################
##
#O MutableTransposedMatDestructive( <mat> )
##
## `MutableTransposedMatDestructive' returns the transpose of the mutable
## matrix <mat>. It may, but does not have to, destroy the contents
## of <mat> in the process. In particular, the returned matrix may be
## identical to <mat>, having been transposed in place.
##
DeclareOperation( "MutableTransposedMatDestructive", [IsMatrix and IsMutable] );
#############################################################################
##
#O TransposedMatDestructive( <mat> )
##
## If <mat> is a mutable matrix, then the transposed
## is computed by swapping the entries in <mat>. In this way <mat> gets
## changed. In all other cases the transposed is computed by `TransposedMat'.
##
DeclareOperation( "TransposedMatDestructive", [ IsMatrix ] );
############################################################################
##
#P IsMonomialMatrix( <mat> )
##
## A matrix is monomial if and only if it has exactly one nonzero entry in
## every row and every column.
##
DeclareProperty( "IsMonomialMatrix", IsMatrix );
#############################################################################
##
#O InverseMatMod( <mat>, <obj> )
##
## For a square matrix <mat>, `InverseMatMod' returns a matrix <inv>
## such that `<inv> * <mat>' is congruent to the identity matrix modulo
## <obj>, if such a matrix exists, and `fail' otherwise.
##
DeclareOperation( "InverseMatMod", [ IsMatrix, IsObject ] );
#############################################################################
##
#O KroneckerProduct( <mat1>, <mat2> )
##
## The Kronecker product of two matrices is the matrix obtained when
## replacing each entry <a> of <mat1> by the product `<a>*<mat2>' in one
## matrix.
##
DeclareOperation( "KroneckerProduct", [ IsMatrix, IsMatrix ] );
#############################################################################
##
#O SolutionMatNoCo( <mat>, <vec> )
##
## Does thework for `SolutionMat' and `SolutionMatDestructive'.
##
DeclareOperation( "SolutionMatNoCo", [ IsMatrix, IsRowVector ] );
#############################################################################
##
#O SolutionMat( <mat>, <vec> ) . . . . . . . . . . one solution of equation
##
## returns a row vector <x> that is a solution of the equation `<x> * <mat>
## = <vec>'. It returns `fail' if no such vector exists.
##
DeclareOperation( "SolutionMat", [ IsMatrix, IsRowVector ] );
#############################################################################
##
#O SolutionMatDestructive( <mat>, <vec> )
##
## Does the same as `SolutionMat( <mat>, <vec> )' except that it may
## destroy the matrix <mat>. The matrix <mat> must be mutable.
##
DeclareOperation( "SolutionMatDestructive", [ IsMatrix and IsMutable, IsRowVector ] );
############################################################################
##
#O SumIntersectionMat( <M1>, <M2> ) . . sum and intersection of two spaces
##
## performs Zassenhaus' algorithm to compute bases for the sum and the
## intersection of spaces generated by the rows of the matrices <M1>, <M2>.
##
## returns a list of length 2, at first position a base of the sum, at
## second position a base of the intersection. Both bases are in
## semi-echelon form (see~"Echelonized matrices").
##
DeclareOperation( "SumIntersectionMat", [ IsMatrix, IsMatrix ] );
#############################################################################
##
#O TriangulizeMat( <mat> ) . . . . . bring a matrix in upper triangular form
##
## applies the Gaussian Algorithm to the mutable matrix <mat> and changes
## <mat> such that it is in upper triangular
## normal form (sometimes called ``Hermite normal form'').
##
DeclareOperation( "TriangulizeMat", [ IsMatrix and IsMutable ] );
#############################################################################
##
#F TriangulizeMatGF2( <mat> ). . . . bring a matrix in upper triangular form
##
## special function for the GF2 case
##
DeclareGlobalFunction("TriangulizeMatGF2");
#############################################################################
##
#O UpperSubdiagonal( <mat>, <pos> )
##
## returns a mutable list containing the entries of the <pos>th upper
## subdiagonal of <mat>.
##
DeclareOperation( "UpperSubdiagonal", [ IsMatrix, IsPosInt ] );
#############################################################################
##
#F BaseFixedSpace( <mats> ) . . . . . . . . . . . . calculate fixed points
##
## `BaseFixedSpace' returns a list of row vectors that form a base of the
## vector space $V$ such that $v M = v$ for all $v$ in $V$ and all matrices
## $M$ in the list <mats>. (This is the common eigenspace of all matrices
## in <mats> for the eigenvalue 1.)
##
DeclareGlobalFunction( "BaseFixedSpace" );
#############################################################################
##
#F BaseSteinitzVectors( <bas>, <mat> )
##
## find vectors extending mat to a basis spanning the span of <bas>.
## Both <bas> and <mat> must be matrices of full (row) rank. It returns a
## record with the following components:
## \beginitems
## `subspace'&is a basis of the space spanned by <mat> in upper triangular
## form with leading ones at all echelon steps and zeroes above these ones.
##
## `factorspace'& is a list of extending vectors in upper triangular form.
##
## `factorzero'& is a zero vector.
##
## `heads'& is a list of integers which can be used to decompose vectors in
## the basis vectors. The <i>th entry indicating the vector
## that gives an echelon step at position <i>.
## A negative number indicates an echelon step in the subspace, a positive
## number an echelon step in the complement, the absolute value gives the
## position of the vector in the lists `subspace' and `factorspace'.
## \enditems
##
DeclareGlobalFunction( "BaseSteinitzVectors" );
#############################################################################
##
#F BlownUpMat( <B>, <mat> )
##
## Let <B> be a basis of a field extension $F / K$,
## and <mat> a matrix whose entries are all in $F$.
## (This is not checked.)
## `BlownUpMat' returns a matrix over $K$ that is obtained by replacing each
## entry of <mat> by its regular representation w.r.t.~<B>.
##
## More precisely,
## regard <mat> as the matrix of a linear transformation on the row space
## $F^n$ w.r.t.~the $F$-basis with vectors $(v_1, ldots, v_n)$, say,
## and suppose that the basis <B> consists of the vectors
## $(b_1, \ldots, b_m)$;
## then the returned matrix is the matrix of the linear transformation
## on the row space $K^{mn}$ w.r.t.~the $K$-basis whose vectors are
## $(b_1 v_1, \ldots b_m v_1, \ldots, b_m v_n)$.
##
## Note that the linear transformations act on *row* vectors, i.e.,
## each row of the matrix is a concatenation of vectors of <B>-coefficients.
##
DeclareGlobalFunction( "BlownUpMat" );
#############################################################################
##
#F BlownUpVector( <B>, <vector> )
##
## Let <B> be a basis of a field extension $F / K$,
## and <vector> a row vector whose entries are all in $F$.
## `BlownUpVector' returns a row vector over $K$ that is obtained by
## replacing each entry of <vector> by its coefficients w.r.t.~<B>.
##
## So `BlownUpVector' and `BlownUpMat' (see~"BlownUpMat") are compatible
## in the sense that for a matrix <mat> over $F$,
## `BlownUpVector( <B>, <mat> \* <vector> )'
## is equal to
## `BlownUpMat( <B>, <mat> ) \* BlownUpVector( <B>, <vector> )'.
##
DeclareGlobalFunction( "BlownUpVector" );
#############################################################################
##
#O DiagonalizeMat(<ring>,<mat>)
##
## brings the mutable matrix <mat>, considered as a matrix over <ring>,
## into diagonal form by elementary row and column operations.
##
DeclareOperation( "DiagonalizeMat", [IsRing,IsMatrix and IsMutable] );
#############################################################################
##
#F IdentityMat( <m> [, <F>] ) . . . . . . . identity matrix of a given size
##
## returns a (mutable) <m>$\times$<m> identity matrix over the field given
## by <F> (i.e. the smallest field containing the element <F> or <F> itself
## if it is a field).
##
DeclareGlobalFunction( "IdentityMat" );
#############################################################################
##
#O MutableCopyMat( <mat> ) . . . . . . . . . . Copies a matrix
##
## `MutableCopyMat' returns a fully mutable copy of the matrix <mat>.
##
## The default method does `List(<mat>,ShallowCopy)' and thus may also
## be called for the empty list, returning a new empty list.
##
DeclareOperation( "MutableCopyMat", [IsList] );
#############################################################################
##
#F MutableIdentityMat( <m> [, <F>] ) mutable identity matrix of a given size
##
## returns a (mutable) <m>$\times$<m> identity matrix over the field given
## by <F>.
## This is identical to `IdentityMat' and is present in {\GAP}~4.1
## only for the sake of compatibility with beta-releases.
## It should *not* be used in new code.
##
DeclareSynonym( "MutableIdentityMat", IdentityMat );
#############################################################################
##
#F NullMat( <m>, <n> [, <F>] ) . . . . . . . . . null matrix of a given size
##
## returns a (mutable) <m>$\times$<n> null matrix over the field given by
## <F>.
##
DeclareGlobalFunction( "NullMat" );
#############################################################################
##
#F MutableNullMat( <m>, <n> [, <F>] ) mutable null matrix of a given size
##
## returns a (mutable) <m>$\times$<n> null matrix over the field given
## by <F>.
## This is identical to `NullMat' and is present in {\GAP}~4.1
## only for the sake of compatibility with beta-releases.
## It should *not* be used in new code.
##
DeclareSynonym( "MutableNullMat", NullMat );
#############################################################################
##
#F NullspaceModQ( <E>, <q> ) . . . . . . . . . . . .nullspace of <E> mod <q>
##
## <E> must be a matrix of integers and <q> a prime power.
## Then `NullspaceModQ' returns the set of all vectors of integers modulo
## <q>, which solve the homogeneous equation system given by <E> modulo <q>.
##
DeclareGlobalFunction( "NullspaceModQ" );
#############################################################################
##
#F BasisNullspaceModN( <M>, <n> ) . . . . . . . . nullspace of <E> mod <n>
##
## <M> must be a matrix of integers modulo <n> and <n> a positive integer.
## Then 'NullspaceModQ' returns a set <B> of vectors such that every <v>
## such that <v> <M> = 0 modulo <n> can be expressed by a Z-linear combination
## of elements of <M>.
##
DeclareGlobalFunction ("BasisNullspaceModN");
#############################################################################
##
#F PermutationMat( <perm>, <dim> [, <F> ] ) . . . . . . permutation matrix
##
## returns a matrix in dimension <dim> over the field given by <F> (i.e.
## the smallest field containing the element <F> or <F> itself if it is a
## field) that
## represents the permutation <perm> acting by permuting the basis vectors
## as it permutes points.
##
DeclareGlobalFunction( "PermutationMat" );
#############################################################################
##
#F DiagonalMat( <vector> ) . . . . . . . . . . . . . . . . . diagonal matrix
##
## returns a diagonal matrix <mat> with the diagonal entries given by
## <vector>.
##
DeclareGlobalFunction( "DiagonalMat" );
#############################################################################
##
#F ReflectionMat( <coeffs> )
#F ReflectionMat( <coeffs>, <root> )
#F ReflectionMat( <coeffs>, <conj> )
#F ReflectionMat( <coeffs>, <conj>, <root> )
##
## Let <coeffs> be a row vector.
## `ReflectionMat' returns the matrix of the reflection in this vector.
##
## More precisely, if <coeffs> is the coefficients of a vector $v$ w.r.t. a
## basis $B$ (see~"Basis"), say, then the returned matrix describes the
## reflection in $v$ w.r.t. $B$ as a map on a row space, with action from
## the right.
##
## The optional argument <root> is a root of unity that determines the order
## of the reflection. The default is a reflection of order 2.
## For triflections one should choose a third root of unity etc.
## (see~"ref:E").
##
## <conj> is a function of one argument that conjugates a ring element.
## The default is `ComplexConjugate'.
##
## The matrix of the reflection in $v$ is defined as
## $$
## M = I_n + \overline{v^{tr}} . \frac{w-1}{v \overline{v^{tr}}} . v
## $$
## where `$w$ = root',
## $n$ is the length of the coefficient list,
## and `$\overline{\vphantom{x}}$' denotes the conjugation.
##
DeclareGlobalFunction( "ReflectionMat" );
#############################################################################
##
#F RandomInvertibleMat( <m> [, <R>] ) . . . make a random invertible matrix
##
## `RandomInvertibleMat' returns a new mutable invertible random
## matrix with <m> rows and columns with elements taken from the ring
## <R>, which defaults to `Integers'.
##
DeclareGlobalFunction( "RandomInvertibleMat" );
#############################################################################
##
#F RandomMat( <m>, <n> [, <R>] ) . . . . . . . . . . . make a random matrix
##
## `RandomMat' returns a new mutable random matrix with <m> rows and
## <n> columns with elements taken from the ring <R>, which defaults
## to `Integers'.
##
DeclareGlobalFunction( "RandomMat" );
#############################################################################
##
#F RandomUnimodularMat( <m> ) . . . . . . . . . . random unimodular matrix
##
## returns a new random mutable <m>$\times$<m> matrix with integer
## entries that is invertible over the integers.
##
DeclareGlobalFunction( "RandomUnimodularMat" );
#############################################################################
##
#F SimultaneousEigenvalues( <matlist>, <expo> ) . . . . . . . . .eigenvalues
##
## The matrices in <matlist> must be matrices over GF(<q>) for some
## prime <q>. Together, they must generate an abelian p-group of
## exponent <expo>.
## Then the eigenvalues of <mat> in the splitting field `GF(<q>^<r>)' for
## some <r> are powers of an element $\xi$ in the splitting field, which is
## of order <expo>. `SimultaneousEigenvalues' returns a matrix of
## integers mod <expo>, say $(a_{i,j})$, such that the power
## $\xi^{a_{i,j}}$ is an eigenvalue of the <i>-th matrix in <matlist> and
## the eigenspaces of the different matrices to the eigenvalues
## $\xi^{a_{i,j}}$ for fixed <j> are equal.
##
DeclareGlobalFunction( "SimultaneousEigenvalues" );
#############################################################################
##
#F TraceMat( <mat> ) . . . . . . . . . . . . . . . . . . . trace of a matrix
#F Trace( <mat> )
##
## The trace of a square matrix is the sum of its diagonal entries.
##
DeclareGlobalFunction( "TraceMat" );
#############################################################################
##
#A JordanDecomposition( <mat> )
##
## `JordanDecomposition( <mat > )' returns a list `[S,N]' such that
## `S' is a semisimple matrix and `N' is nilpotent. Furthermore, `S'
## and `N' commute and `<mat>=S+N'.
##
DeclareAttribute( "JordanDecomposition", IsMatrix );
#############################################################################
##
#F FlatBlockMat( <blockmat> ) . . . . . . . . convert block matrix to matrix
##
DeclareGlobalFunction( "FlatBlockMat" );
#############################################################################
##
#F DirectSumMat( <matlist> ) . . . . . . . . . . . create block diagonal mat
##
DeclareGlobalFunction( "DirectSumMat" );
#############################################################################
##
#F EmptyMatrix( <char> )
##
## is an empty (ordinary) matrix in characteristic <char> that can be added
## to or multiplied with empty lists (representing zero-dimensional row
## vectors). It also acts (via `^') on empty lists.
##
#T store in the family as an attribute?
##
DeclareGlobalFunction( "EmptyMatrix" );
#############################################################################
##
#F OnSubspacesByCanonicalBasis(<bas>,<mat>)
##
## implements the operation of a matrix group on subspaces of a vector
## space. <bas> must be a list of (linearly independent) vectors which
## forms a basis of the subspace in Hermite normal form. <mat> is an
## element of the acting matrix group. The function returns a mutable
## matrix which gives the basis of the image of the subspace in Hermite
## normal form. (In other words: it triangulizes the product of <bas> with
## <mat>.)
##
DeclareGlobalFunction("OnSubspacesByCanonicalBasis");
#############################################################################
##
#F OnSubspacesByCanonicalBasisGF2(<bas>,<mat>)
##
## is a special version of `OnSubspacesByCanonicalBasis' for matrices over
## GF2.
##
DeclareSynonym("OnSubspacesByCanonicalBasisGF2",OnSubspacesByCanonicalBasis);
#############################################################################
##
#A CharacteristicPolynomial( <mat> )
#O CharacteristicPolynomial( [[<F>, <E>, ] <mat> [, <ind>] )
##
## For a square matrix <mat>, `CharacteristicPolynomial' returns the
## *characteristic polynomial* of <mat>, that is, the `StandardAssociate'
## of the determinant of the
## matrix $<mat> - X \cdot I$, where $X$ is an indeterminate and $I$ is the
## appropriate identity matrix.
##
## If fields <F> and <E> are given, then <F> must be a subfield of <E>, and
## <mat> must have entries in <E>. Then `CharacteristicPolynomial' returns
## the characteristic polynomial of the <F>-linear mapping induced by <mat>
## on the underlying <E>-vector space of <mat>. In this case,
## the characteristic polynomial is computed using `BlownUpMat' (see~"BlownUpMat")
## for the field extension of $E/F$ generated by the default field.
## Thus, if $F = E$, the result is the same as for the one argument version.
##
## The returned polynomials are expressed in the indeterminate number <ind>.
## If <ind> is not given, it defaults to $1$.
##
## `CharacteristicPolynomial(<F>, <E>, <mat>)' is a multiple of the
## minimal polynomial `MinimalPolynomial(<F>, <mat>)'
## (see~"MinimalPolynomial").
##
## Note that, up to {\GAP} version 4.4.6, `CharacteristicPolynomial' only
## allowed to specify one field (corresponding to <F>) as an argument.
## That usage has been disabled because its definition turned out to be
## ambiguous and may have lead to unexpected results. (To ensure
## backward compatibility, it is still possible to use the old form
## if <F> contains the default field of the matrix, see~"DefaultFieldOfMatrix",
## but this feature will disappear in future versions of {\GAP}.)
##
DeclareAttribute( "CharacteristicPolynomial", IsMatrix );
DeclareOperation( "CharacteristicPolynomial", [ IsMatrix, IsPosInt ] );
DeclareOperation( "CharacteristicPolynomial",
[ IsRing, IsRing, IsMatrix, IsPosInt ] );
DeclareOperation( "CharacteristicPolynomial",
[ IsRing, IsRing, IsMatrix ] );
#############################################################################
##
#O CharacteristicPolynomialMatrixNC( <field>,<mat>,<indnum> )
##
## returns the characteristic polynomial for matrix <mat> which *must* be
## defined over <field>. No tests are performed.
DeclareOperation("CharacteristicPolynomialMatrixNC",
#IsField is not yet known
[IsRing,IsOrdinaryMatrix,IsPosInt]);
#############################################################################
##
#O MinimalPolynomialMatrixNC( <field>,<mat>,<indnum> )
##
## returns the minimal polynomial for matrix <mat> which *must* be
## defined over field>. No tests are performed.
DeclareOperation("MinimalPolynomialMatrixNC",
#IsField is not yet known
[IsRing,IsOrdinaryMatrix,IsPosInt]);
#############################################################################
##
#O FieldOfMatrixList( <matlist> )
##
## The smallest field containing all the entries of all matrices in
## <matlist>. As the algorithm must run through all matrix entries, this
## can be hard.
##
DeclareOperation("FieldOfMatrixList",[IsListOrCollection]);
#############################################################################
##
#O BaseField( <matrixorvector> )
##
## returns the base field of a matrix or a vector. This is only defined
## for wrapped matrices and vectors, not for plain lists. That is, for
## a plain list the operation returns fail. It is guaranteed
## that a call to this operation is only a very fast lookup.
##
DeclareOperation("BaseField",[IsObject]);
#############################################################################
##
#O ZeroVector( <len>, <vector> )
##
## returns a new mutable zero vector in the same representation as
## <vector> of a possibly different length <len>. The idea behind this
## is to be able to write code that preserves for example compression
## over a finite field but returning a vector of different length.
##
DeclareOperation("ZeroVector",[IsInt,IsObject]);
#############################################################################
##
#O ZeroMatrix( <rows>, <cols>, <matrix> )
##
## returns a new mutable zero matrix in the same representation as
## <matrix> of possibly different dimensions. The number of rows of
## the new matrix is <rows> and the number of columns is <cols>.
## The idea behind this is to be able to write code that preserves
## for example compression over a finite field.
##
DeclareOperation("ZeroMatrix",[IsInt,IsInt,IsObject]);
#############################################################################
##
#O IdentityMatrix( <rows>, <matrix> )
##
## returns a new mutable identity matrix in the same representation as
## <matrix> with <rows> rows.
##
DeclareOperation("IdentityMatrix",[IsInt,IsObject]);
#############################################################################
##
#O CopySubVector( <src>, <dst>, <scols>, <dcols> )
##
## returns nothing. Does `<dst>{<dcols>} := <src>{<scols>}'
## without creating an intermediate object and thus - at least in
## special cases - much more efficiently. For certain objects like
## compressed vectors this might be significantly more efficient if
## <scols> and <dcols> are ranges with increment 1.
##
DeclareOperation("CopySubVector", [IsObject,IsObject,IsList,IsList] );
#############################################################################
##
#O CopySubMatrix( <src>, <dst>, <srows>, <drows>, <scols>, <dcols> )
##
## returns nothing. Does `<dst>{<drows>}{<dcols>} := <src>{<srows>}{<scols>}'
## without creating an intermediate object and thus - at least in
## special cases - much more efficiently. For certain objects like
## compressed vectors this might be significantly more efficient if <scols>
## and <dcols> are ranges with increment 1.
##
DeclareOperation("CopySubMatrix",
[IsObject,IsObject,IsList,IsList,IsList,IsList]);
#############################################################################
##
#O ExtractSubMatrix( <mat>, <rows>, <cols> )
##
## Does <mat>{<rows>}{<cols>} and returns the result. Preserves the
## representation of the matrix.
##
DeclareOperation("ExtractSubMatrix", [IsObject,IsList,IsList]);
#############################################################################
##
#E
|