1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
|
#############################################################################
##
#W oprt.gd GAP library Heiko Thei"sen
##
#H @(#)$Id: oprt.gd,v 4.89.2.1 2005/08/25 15:05:25 gap Exp $
##
#Y Copyright (C) 1997, Lehrstuhl D fuer Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St. Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
Revision.oprt_gd :=
"@(#)$Id: oprt.gd,v 4.89.2.1 2005/08/25 15:05:25 gap Exp $";
DeclareInfoClass( "InfoAction" );
DeclareSynonym( "InfoOperation",InfoAction );
#############################################################################
##
#C IsExternalSet(<obj>)
##
## An *external set* specifies an action <act>: $<Omega> \times <G> \to
## <Omega>$ of a group <G> on a domain <Omega>. The external set knows the group,
## the domain and the actual acting function.
## Mathematically, an external set is the set~<Omega>, which is endowed with
## the action of a group <G> via the group action <act>. For this reason
## {\GAP} treats external sets as a domain whose elements are the elements
## of <Omega>. An external set is always a union of orbits.
## Currently the domain~<Omega> must always be finite.
## If <Omega> is not a list, an enumerator for <Omega> is automatically chosen.
##
DeclareCategory( "IsExternalSet", IsDomain );
OrbitishReq := [ IsGroup, IsListOrCollection, IsObject,
IsList,
IsList,
IsFunction ];
OrbitsishReq := [ IsGroup, IsListOrCollection,
IsList,
IsList,
IsFunction ];
#############################################################################
##
#R IsExternalSubset(<obj>)
##
## An external subset is the restriction of an external set to a subset
## of the domain (which must be invariant under the action). It is again an
## external set.
##
DeclareRepresentation( "IsExternalSubset",
IsComponentObjectRep and IsAttributeStoringRep and IsExternalSet,
[ "start" ] );
#############################################################################
##
#R IsExternalOrbit(<obj>)
##
## An external orbit is an external subset consisting of one orbit.
##
DeclareRepresentation( "IsExternalOrbit",
IsExternalSubset, [ "start" ] );
DeclareCategory( "IsExternalSetByPcgs", IsExternalSet );
# The following two integer variables give position in which the `Type' of an
# external set can store the `Type' of its external subsets resp. external
# orbits (to avoid repeated calls of `NewType').
BindGlobal( "XSET_XSSETTYPE", 4 );
BindGlobal( "XSET_XORBTYPE", 5 );
#############################################################################
##
#R IsExternalSetDefaultRep(<obj>)
#R IsExternalSetByActorsRep(<obj>)
##
## External sets can be specified directly (`IsExternalSetDefaultRep'), or
## via <gens> and <acts> (`IsExternalSetByActorsRep').
##
DeclareRepresentation( "IsExternalSetDefaultRep",
IsAttributeStoringRep and IsExternalSet,
[ ] );
DeclareRepresentation( "IsExternalSetByActorsRep",
IsAttributeStoringRep and IsExternalSet,
[ "generators", "operators", "funcOperation" ] );
DeclareSynonym( "IsExternalSetByOperatorsRep",IsExternalSetByActorsRep);
#############################################################################
##
#A ActingDomain( <xset> )
##
## This attribute returns the group with which the external set <xset> was
## defined.
DeclareAttribute( "ActingDomain", IsExternalSet );
#############################################################################
##
#A HomeEnumerator( <xset> )
##
## returns an enumerator of the domain <Omega> with which <xset> was defined.
## For external subsets, this is different from `Enumerator( <xset> )',
## which enumerates only the subset.
##
DeclareAttribute( "HomeEnumerator", IsExternalSet );
DeclareRepresentation( "IsActionHomomorphism",
IsGroupHomomorphism and IsAttributeStoringRep and
IsPreimagesByAsGroupGeneralMappingByImages, [ ] );
DeclareRepresentation( "IsActionHomomorphismByActors",
IsActionHomomorphism, [ ] );
DeclareRepresentation("IsActionHomomorphismSubset",IsActionHomomorphism,[]);
#############################################################################
##
#A ActionKernelExternalSet( <xset> )
##
## This attribute gives the kernel of the `ActionHomomorphism' for <xset>.
##
#T At the moment no methods exist, the attribute is solely used to transfer
#T information.
DeclareAttribute( "ActionKernelExternalSet", IsExternalSet );
#############################################################################
##
#R IsActionHomomorphismByBase(<obj>)
##
## This is chosen if `HasBaseOfGroup( <xset> )'.
##
DeclareRepresentation( "IsActionHomomorphismByBase",
IsActionHomomorphism, [ ] );
#############################################################################
##
#R IsConstituentHomomorphism(<obj>)
##
DeclareRepresentation( "IsConstituentHomomorphism",
IsActionHomomorphism, [ "conperm" ] );
DeclareRepresentation( "IsBlocksHomomorphism",
IsActionHomomorphism, [ "reps" ] );
#############################################################################
##
#R IsLinearActionHomomorphism(<hom>)
##
## This representation is chosen for action homomorphisms from matrix
## groups acting naturally on a set of vectors.
##
DeclareRepresentation( "IsLinearActionHomomorphism",
IsActionHomomorphism,
[ ] );
#############################################################################
##
#A LinearActionBasis(<hom>)
##
## for action homomorphisms in the representation
## `IsLinearActionHomomorphism', this attribute contains a vector space
## basis as subset of the domain or `fail' if the domain does not span the
## vector space that the group acts on.
## groups acting naturally on a set of vectors.
##
DeclareAttribute( "LinearActionBasis",IsLinearActionHomomorphism);
#############################################################################
##
#A FunctionAction( <xset> )
##
## the acting function <act> of <xset>
DeclareAttribute( "FunctionAction", IsExternalSet );
#############################################################################
##
#A StabilizerOfExternalSet( <xset> ) . stabilizer of `Representative(xset)'
##
## computes the stabilizer of `Representative(<xset>)'
## The stabilizer must have the acting group <G> of <xset> as its parent.
##
DeclareAttribute( "StabilizerOfExternalSet", IsExternalSet );
#############################################################################
##
#A CanonicalRepresentativeOfExternalSet( <xset> )
##
## The canonical representative of an external set may only depend on <G>,
## <Omega>, <act> and (in the case of external subsets) `Enumerator( <xset> )'.
## It must not depend, e.g., on the representative of an external orbit.
## {\GAP} does not know methods for every external set to compute a
## canonical representative . See
## "CanonicalRepresentativeDeterminatorOfExternalSet".
##
DeclareAttribute( "CanonicalRepresentativeOfExternalSet", IsExternalSet );
#############################################################################
##
#A CanonicalRepresentativeDeterminatorOfExternalSet( <xset> )
##
## returns a function that
## takes as arguments the acting group and the point. It returns a list
## of length 3: [<canonrep>, <stabilizercanonrep>, <conjugatingelm>].
## (List components 2 and 3 are optional and do not need to be bound.)
## An external set is only guaranteed to be able to compute a canonical
## representative if it has a
## `CanonicalRepresentativeDeterminatorOfExternalSet'.
DeclareAttribute( "CanonicalRepresentativeDeterminatorOfExternalSet",
IsExternalSet );
#############################################################################
##
#A ActorOfExternalSet( <xset> )
##
## returns an element mapping `Representative(<xset>)' to
## `CanonicalRepresentativeOfExternalSet(<xset>)' under the given
## action.
##
DeclareAttribute( "ActorOfExternalSet", IsExternalSet );
DeclareSynonymAttr( "OperatorOfExternalSet", ActorOfExternalSet );
#############################################################################
##
#F OrbitsishOperation( <name>, <reqs>, <usetype>, <AorP> ) . orbits-like op.
##
## is used to create operations like `Orbits'.
## This function creates an attribute or a property, respectively,
## and installs several default methods.
##
## The new operation, e.g., `Orbits', can be called either as
## `Orbits( <xset> )' for an external set <xset>, or as
## `Orbits( <G> )' for a permutation group, meaning the orbits on the moved
## points of <G> via `OnPoints', or as
## `Orbits( <G>, <Omega>[, <gens>, <acts>][, <act>] )', with a group <G>, a
## domain or list <Omega>, generators <gens> of <G>, and corresponding elements
## <acts> that act on <Omega> via the function <act>;
## the default of <gens> and <acts> is a list of group generators of <G>,
## the default of <act> is `OnPoints'.
##
## Only methods for the five-argument version need to be installed for
## doing the real work.
## (And of course methods for one argument in case one wants to define
## a new meaning of the attribute.)
##
## The operation has name <name>, and its arguments are required to have
## the filters in the list <reqs>.
##
## If the Boolean <usetype> is `true' then the external set itself is used
## as an argument of the five-argument version instead of <Omega>,
## in order to enable the installation of methods that use the type of
## the external set.
##
BindGlobal( "OrbitsishOperation", function( name, reqs, usetype, NewAorP )
local nname, op;
# Create the attribute or property.
op:= NewAorP( name, IsExternalSet );
BIND_GLOBAL( name, op );
nname:= "Set"; APPEND_LIST_INTR( nname, name );
BIND_GLOBAL( nname, SETTER_FILTER( op ) );
nname:= "Has"; APPEND_LIST_INTR( nname, name );
BIND_GLOBAL( nname, TESTER_FILTER( op ) );
# Make a declaration for non-default methods.
DeclareOperation( name, reqs );
# Install the default methods.
# 1. `op( <xset> )'
# (The `usetype' value concerns only the `return' statement.)
if usetype then
InstallMethod( op,
"for an external set",
true,
[ IsExternalSet ], 0,
function( xset )
local G, gens, acts, act;
G := ActingDomain( xset );
if IsExternalSetByActorsRep( xset ) then
gens := xset!.generators;
acts := xset!.operators;
act := xset!.funcOperation;
else
if CanEasilyComputePcgs( G ) then
gens := Pcgs( G );
else
gens := GeneratorsOfGroup( G );
fi;
acts := gens;
act := FunctionAction( xset );
fi;
return op( G, xset, gens, acts, act );
end );
else
InstallMethod( op,
"for an external set",
true,
[ IsExternalSet ], 0,
function( xset )
local G, gens, acts, act;
G := ActingDomain( xset );
if IsExternalSetByActorsRep( xset ) then
gens := xset!.generators;
acts := xset!.operators;
act := xset!.funcOperation;
else
if CanEasilyComputePcgs( G ) then
gens := Pcgs( G );
else
gens := GeneratorsOfGroup( G );
fi;
acts := gens;
act := FunctionAction( xset );
fi;
return op( G, Enumerator( xset ), gens, acts, act );
end );
fi;
# 2. `op( <permgrp> )'
InstallOtherMethod( op,
"for a permutation group",
true,
[ IsPermGroup ], 0,
function( G )
local gens;
gens:= GeneratorsOfGroup( G );
return op( G, MovedPoints( G ), gens, gens, OnPoints );
end );
# 3. `op( <G>, <Omega> )' with group <G> and domain or list <Omega>
# (add group generators and `OnPoints' as default arguments)
InstallOtherMethod( op,
"for a group and a domain or list",
true,
[ IsGroup, IsObject ], 0,
function( G, D )
local gens;
if CanEasilyComputePcgs( G ) then
gens:= Pcgs( G );
else
gens:= GeneratorsOfGroup( G );
fi;
if IsDomain( D ) then
D:= Enumerator( D );
fi;
return op( G, D, gens, gens, OnPoints );
end );
# 4. `op( <G>, <Omega> )' with permutation group <G> and domain or list
# <Omega>
# of integers
# (if <Omega> equals the moved points of <G> then call `op( <G> )')
InstallOtherMethod( op,
"for a permutation group and a domain or list of integers",
true,
[ IsPermGroup, IsListOrCollection ], 0,
function( G, D )
if D = MovedPoints( G ) then
return op( G );
else
TryNextMethod();
fi;
end );
# 5. `op( <G>, <Omega>, <act> )' with group <G>, domain or list <Omega>,
# and function <act>
# (add group generators as default arguments)
InstallOtherMethod( op,
"for a group, a domain or list, and a function",
true,
[ IsGroup, IsObject, IsFunction ], 0,
function( G, D, act )
local gens;
if CanEasilyComputePcgs( G ) then
gens:= Pcgs( G );
else
gens:= GeneratorsOfGroup( G );
fi;
if IsDomain( D ) then
D:= Enumerator( D );
fi;
return op( G, D, gens, gens, act );
end );
# 6. `op( <G>, <Omega>, <act> )' with permutation group <G>,
# domain or list <Omega> of integers, and function <act>
# (if <Omega> equals the moved points of <G> and <act> equals `OnPoints'
# then call `op( <G> )')
InstallOtherMethod( op,
"for permutation group, domain or list of integers, and function",
true,
[ IsPermGroup, IsListOrCollection, IsFunction ], 0,
function( G, D, act )
if D = MovedPoints( G ) and IsIdenticalObj( act, OnPoints ) then
return op( G );
else
TryNextMethod();
fi;
end );
# 7. `op( <G>, <Omega>, <gens>, <acts> )' with group <G>,
# domain or list <Omega>, and two lists <gens>, <acts>
# (add default value `OnPoints')
InstallOtherMethod( op,
"for a group, a domain or list, and two lists",
true,
[ IsGroup, IsObject, IsList, IsList ], 0,
function( G, D, gens, acts )
if IsDomain( D ) then
D:= Enumerator( D );
fi;
return op( G, D, gens, acts, OnPoints );
end );
# 8. `op( <G>, <Omega>, <gens>, <acts>, <act> )' with group <G>,
# domain <Omega>, two lists <gens>, <acts>, and function <act>
# (delegate to a (non-default!) method with <Omega> a list)
InstallOtherMethod( op,
"for a group, a domain, two lists, and a function",
true,
[ IsGroup, IsDomain, IsList, IsList, IsFunction ], 0,
function( G, D, gens, acts, act )
return op( G, Enumerator( D ), gens, acts, act );
end );
end );
#############################################################################
##
#F OrbitishFO( <name>, <reqs>, <famrel>, <usetype>,<realenum> )
##
## is used to create operations like `Orbit'.
## This function is analogous to `OrbitsishOperation',
## but for operations <orbish> like `Orbit( <G>, <Omega>, <pnt> )'.
## Since the return values of these operations depend on the additional
## argument <pnt>, there is no associated attribute.
## The family relation <famrel> is required for the families of the 2nd and
## 3rd argument (e.g., `IsCollsElms' for `Orbit').
##
## <usetype> can also be an attribute (`BlocksAttr' or `MaximalBlocksAttr').
## In this case, if only one of the two arguments <Omega> and <pnt> is given,
## blocks with no seed are computed, they are stored as attribute values
## according to the rules of `OrbitsishOperation'.
##
## If the 5th argument is set to `true', the action for an external set
## should use the enumerator (otherwise it uses the HomeEnumerator). This will
## make a difference for external orbits as part of a larger domain.
##
DeclareOperation( "PreOrbishProcessing", [IsGroup]);
InstallMethod( PreOrbishProcessing, [IsGroup], x->x );
BindGlobal( "OrbitishFO", function( name, reqs, famrel, usetype,realenum )
local str, nname, orbish, func;
# Create the operation.
str:= SHALLOW_COPY_OBJ( name );
APPEND_LIST_INTR( str, "Op" );
orbish := NewOperation( str, reqs );
BIND_GLOBAL( str, orbish );
# Create the wrapper function.
func := function( arg )
local G, D, pnt, gens, acts, act, xset, p, attrG, result,le;
# Get the arguments.
if Length( arg ) <= 2 and IsExternalSet( arg[ 1 ] ) then
xset := arg[ 1 ];
if Length(arg)>1 then
# force immutability
pnt := Immutable(arg[ 2 ]);
else
# `Blocks' like operations
pnt:=[];
fi;
G := ActingDomain( xset );
if realenum then
D:=Enumerator(xset);
else
if HasHomeEnumerator( xset ) then
D := HomeEnumerator( xset );
fi;
fi;
if IsExternalSetByActorsRep( xset ) then
gens := xset!.generators;
acts := xset!.operators;
act := xset!.funcOperation;
else
act := FunctionAction( xset );
fi;
elif 2 <= Length( arg ) then
le:=Length(arg);
G := arg[ 1 ];
if IsFunction( arg[ le ] ) then
act := arg[ le ];
le:=le-1;
else
act := OnPoints;
fi;
if Length( arg ) > 2
and famrel( FamilyObj( arg[ 2 ] ), FamilyObj( arg[ 3 ] ) )
# for blocks on the groups elements
and not (IsOperation(usetype) and le=4)
then
D := arg[ 2 ];
if IsDomain( D ) then
D := Enumerator( D );
fi;
p := 3;
else
p := 2;
fi;
pnt := Immutable(arg[ p ]);
if Length( arg ) > p + 1 then
gens := arg[ p + 1 ];
acts := arg[ p + 2 ];
fi;
else
Error( "usage: ", name, "(<xset>,<pnt>)\n",
"or ", name, "(<G>[,<Omega>],<pnt>[,<gens>,<acts>][,<act>])" );
fi;
G := PreOrbishProcessing(G);
if not IsBound( gens ) then
if CanEasilyComputePcgs( G ) then
gens := Pcgs( G );
else
gens := GeneratorsOfGroup( G );
fi;
acts := gens;
fi;
# In the case of `[Maximal]Blocks', where $G$ is a permutation group
# acting on its moved points, use an attribute for $G$.
attrG := IsOperation( usetype )
and gens = acts
and act = OnPoints
and not IsBound( D )
and HasMovedPoints( G )
and pnt = MovedPoints( G );
if attrG and IsBound( xset ) and Tester( usetype )( xset ) then
result := usetype( xset );
elif attrG and Tester( usetype )( G ) then
result := usetype( G );
elif usetype = true and IsBound( xset ) then
result := orbish( G, xset, pnt, gens, acts, act );
elif IsBound( D ) then
result := orbish( G, D, pnt, gens, acts, act );
else
# The following line is also executed when `Blocks(<G>, <Omega>, <act>)'
# is called to compute blocks with no seed, but then <pnt> is really
# <Omega>, i.e., the operation domain!
result := orbish( G, pnt, gens, acts, act );
fi;
# Store the result in the case of an attribute `[Maximal]BlocksAttr'.
if attrG then
if IsBound( xset ) then
Setter( usetype )( xset, result );
fi;
Setter( usetype )( G, result );
fi;
return result;
end;
BIND_GLOBAL( name, func );
end );
#############################################################################
##
#O ActionHomomorphism(<G>,<Omega> [,<gens>,<acts>] [,<act>] [,"surjective"])
#A ActionHomomorphism( <xset> [,"surjective"] )
#A ActionHomomorphism( <action> )
##
## computes a homomorphism from <G> into the symmetric group on $|<Omega>|$
## points that gives the permutation action of <G> on <Omega>.
##
## By default the homomorphism returned by `ActionHomomorphism' is not
## necessarily surjective (its `Range' is the full symmetric group) to
## avoid unnecessary computation of the image. If the optional string
## argument `"surjective"' is given, a surjective homomorphism is created.
##
## The third version (which is supported only for {\GAP}3 compatibility)
## returns the action homomorphism that belongs to the image
## obtained via `Action' (see "Action").
##
DeclareGlobalFunction( "ActionHomomorphism" );
DeclareAttribute( "ActionHomomorphismAttr", IsExternalSet );
DeclareGlobalFunction( "ActionHomomorphismConstructor" );
#############################################################################
##
#A SurjectiveActionHomomorphismAttr( <xset> )
##
## returns an action homomorphism for <xset> which is surjective.
## (As the `Image' of this homomorphism has to be computed to obtain the
## range, this may take substantially longer
## than `ActionHomomorphism'.)
DeclareAttribute( "SurjectiveActionHomomorphismAttr", IsExternalSet );
#############################################################################
##
#A UnderlyingExternalSet( <ohom> )
##
## The underlying set of an action homomorphism is the external set on
## which it was defined.
DeclareAttribute( "UnderlyingExternalSet", IsActionHomomorphism );
#############################################################################
##
#F DoSparseActionHomomorphism(<G>,<start>,<gens>,<acts>,<act>,<phash>,<sort>)
##
## is the function implementing the sparse action homomorphisms and syntax is
## as for these. <phash> must be an injective ({\GAP})-function, for
## example a perfect hash, element comparisons are done in its range.
## Unless a fast enumeration is known, `IdFunc' should be used. If <sort>
## is true, the action domain for the resulting homomorphism will be
## sorted.
DeclareGlobalFunction("DoSparseActionHomomorphism");
#############################################################################
##
#O SparseActionHomomorphism( <G>, <Omega>, <start> [,<gens>,<acts>] [,<act>] )
#O SortedSparseActionHomomorphism(<G>,<Omega>,<start>[,<gens>,<acts>] [,<act>])
##
## `SparseActionHomomorphism' computes the
## `ActionHomomorphism(<G>,<dom>[,<gens>,<acts>][,<act>])', where <dom>
## is the union of the orbits `Orbit(<G>,<pnt>[,<gens>,<acts>][,<act>])'
## for all points <pnt> from <start>. If <G> acts on a very large domain
## <Omega> not surjectively this may yield a permutation image of
## substantially smaller degree than by action on <Omega>.
##
## The operation `SparseActionHomomorphism' will only use `=' comparisons
## of points in the orbit. Therefore it can be used even if no good `\<'
## comparison method exists. However the image group will depend on the
## generators <gens> of <G>.
##
## The operation `SortedSparseActionHomomorphism' in contrast
## will sort the orbit and thus produce an image group which is not
## dependent on these generators.
##
OrbitishFO( "SparseActionHomomorphism", OrbitishReq,
IsIdenticalObj, false,false );
OrbitishFO( "SortedSparseActionHomomorphism", OrbitishReq,
IsIdenticalObj, false,false );
#############################################################################
##
#O ImageElmActionHomomorphism( <op>,<elm> )
##
## computes the image of <elm> under the action homomorphism <op> and is
## guaranteed to use the action (and not the `AsGHBI', this is required
## in some methods to bootstrap the range).
DeclareGlobalFunction( "ImageElmActionHomomorphism" );
#############################################################################
##
#O Action( <G>, <Omega> [<gens>,<acts>] [,<act>] )
#A Action( <xset> )
##
## returns the `Image' group of `ActionHomomorphism' called with the same
## parameters.
##
## Note that (for compatibility reasons to be able to get the
## action homomorphism) this image group internally stores the action
## homomorphism. If <G> or <Omega> are exteremly big, this can cause memory
## problems. In this case compute only generator images and form the image
## group yourself.
DeclareGlobalFunction( "Action" );
#############################################################################
##
#O ExternalSet( <G>, <Omega>[, <gens>, <acts>][, <act>] )
##
## creates the external set for the action <act> of <G> on <Omega>.
## <Omega> can be either a proper set or a domain which is represented as
## described in "Domains" and "Collections".
##
OrbitsishOperation( "ExternalSet", OrbitsishReq, false, NewAttribute );
DeclareGlobalFunction( "ExternalSetByFilterConstructor" );
DeclareGlobalFunction( "ExternalSetByTypeConstructor" );
#############################################################################
##
#O RestrictedExternalSet( <xset>, <U> )
##
## If <U> is a subgroup of the `ActingDomain' of <xset> this operation
## returns an external set for the same action which has the
## `ActingDomain' <U>.
##
DeclareOperation("RestrictedExternalSet",[IsExternalSet,IsGroup]);
#############################################################################
##
#O ExternalSubset(<G>,<xset>,<start>,[<gens>,<acts>,]<act>)
##
## constructs the external subset of <xset> on the union of orbits of the
## points in <start>.
##
OrbitishFO( "ExternalSubset",
[ IsGroup, IsList, IsList,
IsList,
IsList,
IsFunction ], IsIdenticalObj, true, false );
#############################################################################
##
#O ExternalOrbit( <G>, <Omega>, <pnt>, [<gens>,<acts>,] <act> )
##
## constructs the external subset on the orbit of <pnt>. The
## `Representative' of this external set is <pnt>.
##
OrbitishFO( "ExternalOrbit", OrbitishReq, IsCollsElms, true, false );
#############################################################################
##
#O Orbit( <G>[,<Omega>], <pnt>, [<gens>,<acts>,] <act> )
##
## The orbit of the point <pnt> is the list of all images of <pnt> under
## the action.
##
## (Note that the arrangement of points in this list is not defined by the
## operation.)
##
## The orbit of <pnt> will always contain one element that is *equal* to
## <pnt>, however for performance reasons this element is not necessarily
## *identical* to <pnt>, in particular if <pnt> is mutable.
##
OrbitishFO( "Orbit", OrbitishReq, IsCollsElms, false, false );
#############################################################################
##
#O Orbits( <G>, <seeds>[, <gens>, <acts>][, <act>] )
#A Orbits( <xset> )
##
## returns a duplicate-free list of the orbits of the elements in <seeds>
## under the action <act> of <G>
##
## (Note that the arrangement of orbits or of points within one orbit is
## not defined by the operation.)
##
OrbitsishOperation( "Orbits", OrbitsishReq, false, NewAttribute );
#############################################################################
##
#O OrbitsDomain( <G>, <Omega>[, <gens>, <acts>][, <act>] )
#A OrbitsDomain( <xset> )
##
## returns a list of the orbits of <G> on the domain <Omega> (given as
## lists) under the action <act>.
##
## This operation is often faster than `Orbits'.
## The domain <Omega> must be closed under the action of <G>, otherwise an
## error can occur.
##
## (Note that the arrangement of orbits or of points within one orbit is
## not defined by the operation.)
##
OrbitsishOperation( "OrbitsDomain", OrbitsishReq, false, NewAttribute );
#############################################################################
##
#O OrbitLength( <G>, <Omega>, <pnt>, [<gens>,<acts>,] <act> )
##
## computes the length of the orbit of <pnt>.
##
OrbitishFO( "OrbitLength", OrbitishReq, IsCollsElms, false, false );
#############################################################################
##
#O OrbitLengths( <G>, <seeds>[, <gens>, <acts>][, <act>] )
#A OrbitLengths( <xset> )
##
## computes the lengths of all the orbits of the elements in <seegs> under
## the action <act> of <G>.
##
OrbitsishOperation( "OrbitLengths", OrbitsishReq, false, NewAttribute );
#############################################################################
##
#O OrbitLengthsDomain( <G>, <Omega>[, <gens>, <acts>][, <act>] )
#A OrbitLengthsDomain( <xset> )
##
## computes the lengths of all the orbits of <G> on <Omega>.
##
## This operation is often faster than `OrbitLengths'.
## The domain <Omega> must be closed under the action of <G>, otherwise an
## error can occur.
##
OrbitsishOperation( "OrbitLengthsDomain", OrbitsishReq, false, NewAttribute );
#############################################################################
##
#O OrbitStabilizer( <G>, [<Omega>,] <pnt>, [<gens>,<acts>,] <act> )
##
## computes the orbit and the stabilizer of <pnt> simultaneously in a
## single Orbit-Stabilizer algorithm.
##
## The stabilizer must have <G> as its parent.
##
OrbitishFO( "OrbitStabilizer", OrbitishReq, IsCollsElms, false,false );
#############################################################################
##
#O ExternalOrbits( <G>, <Omega>[, <gens>, <acts>][, <act>] )
#A ExternalOrbits( <xset> )
##
## computes a list of `ExternalOrbit's that give the orbits of <G>.
##
OrbitsishOperation( "ExternalOrbits", OrbitsishReq, true, NewAttribute );
#############################################################################
##
#O ExternalOrbitsStabilizers( <G>, <Omega>[, <gens>, <acts>][, <act>] )
#A ExternalOrbitsStabilizers( <xset> )
##
## In addition to `ExternalOrbits', this operation also computes the
## stabilizers of the representatives of the external orbits at the same
## time. (This can be quicker than computing the `ExternalOrbits' first and
## the stabilizers afterwards.)
##
OrbitsishOperation( "ExternalOrbitsStabilizers", OrbitsishReq,
true, NewAttribute );
#############################################################################
##
#O Transitivity( <G>, <Omega>[, <gens>, <acts>][, <act>] )
#A Transitivity( <xset> )
##
## returns the degree $k$ (a non-negative integer) of transitivity of the
## action implied by the arguments, i.e. the largest integer $k$ such that
## the action is $k$-transitive. If the action is not transitive `0' is
## returned.
##
## An action is *$k$-transitive* if every $k$-tuple of points can be
## mapped simultaneously to every other $k$-tuple.
##
OrbitsishOperation( "Transitivity", OrbitsishReq, false, NewAttribute );
#############################################################################
##
#O Blocks( <G>, <Omega>[, <seed>][, <gens>, <acts>][, <act>] )
#A Blocks( <xset>[, <seed>] )
##
## computes a block system for the action. If
## <seed> is not given and the action is imprimitive, a minimal nontrivial
## block system will be found.
## If <seed> is given, a block system in which <seed>
## is the subset of one block is computed.
## The action must be transitive.
##
DeclareAttribute( "BlocksAttr", IsExternalSet );
OrbitishFO( "Blocks",
[ IsGroup, IsList, IsList,
IsList,
IsList,
IsFunction ], IsIdenticalObj, BlocksAttr,true );
#############################################################################
##
#O MaximalBlocks( <G>, <Omega> [,<seed>] [,<gens>,<acts>] [,<act>] )
#A MaximalBlocks( <xset> [,<seed>] )
##
## returns a block system that is maximal with respect to inclusion.
## maximal with respect to inclusion) for the action of <G> on <Omega>.
## If <seed> is given, a block system in which <seed>
## is the subset of one block is computed.
##
DeclareAttribute( "MaximalBlocksAttr", IsExternalSet );
OrbitishFO( "MaximalBlocks",
[ IsGroup, IsList, IsList,
IsList,
IsList,
IsFunction ], IsIdenticalObj, MaximalBlocksAttr,true );
#T the following syntax would be nice for consistency as well:
## RepresentativesMinimalBlocks(<G>,<Omega>[,<seed>][,<gens>,<acts>][,<act>])
## RepresentativesMinimalBlocks( <xset>, <seed> )
#############################################################################
##
#O RepresentativesMinimalBlocks(<G>,<Omega>[,<gens>,<acts>][,<act>])
#A RepresentativesMinimalBlocks( <xset> )
##
## computes a list of block representatives for all minimal (i.e blocks are
## minimal with respect to inclusion) nontrivial block systems for the
## action.
##
DeclareAttribute( "RepresentativesMinimalBlocksAttr", IsExternalSet );
OrbitishFO( "RepresentativesMinimalBlocks",
[ IsGroup, IsList, IsList,
IsList,
IsList,
IsFunction ], IsIdenticalObj, RepresentativesMinimalBlocksAttr,true );
#############################################################################
##
#O Earns( <G>, <Omega>[, <gens>, <acts>][, <act>] )
#A Earns( <xset> )
##
## returns a list of the elementary abelian regular (when acting on <Omega>)
## normal subgroups of <G>.
##
## At the moment only methods for a primitive group <G> are implemented.
##
OrbitsishOperation( "Earns", OrbitsishReq, false, NewAttribute );
#############################################################################
##
#O IsTransitive( <G>, <Omega>[, <gens>, <acts>][, <act>] )
#P IsTransitive( <xset> )
##
## returns `true' if the action implied by the arguments is transitive, or
## `false' otherwise.
##
## \index{transitive}
## We say that a group <G> acts *transitively* on a domain <D> if and
## only if for every pair of points <d> and <e> there is an element
## <g> of <G> such that $d^g = e$.
##
OrbitsishOperation( "IsTransitive", OrbitsishReq, false, NewProperty );
#############################################################################
##
#O IsPrimitive( <G>, <Omega>[, <gens>, <acts>][, <act>] )
#P IsPrimitive( <xset> )
##
## returns `true' if the action implied by the arguments is primitive, or
## `false' otherwise.
##
## \index{primitive}
## An action is *primitive* if it is transitive and the action admits no
## nontrivial block systems. See~"Block Systems".
##
OrbitsishOperation( "IsPrimitive", OrbitsishReq, false, NewProperty );
#############################################################################
##
#O IsPrimitiveAffine( <G>, <Omega>[, <gens>, <acts>][, <act>] )
#P IsPrimitiveAffine( <xset> )
##
OrbitsishOperation( "IsPrimitiveAffine", OrbitsishReq, false, NewProperty );
#############################################################################
##
#O IsSemiRegular( <G>, <Omega>[, <gens>, <acts>][, <act>] )
#P IsSemiRegular( <xset> )
##
## returns `true' if the action implied by the arguments is semiregular, or
## `false' otherwise.
##
## \index{semiregular}
## An action is *semiregular* is the stabilizer of each point is the
## identity.
##
OrbitsishOperation( "IsSemiRegular", OrbitsishReq, false, NewProperty );
#############################################################################
##
#O IsRegular( <G>, <Omega>[, <gens>, <acts>][, <act>] )
#P IsRegular( <xset> )
##
## returns `true' if the action implied by the arguments is regular, or
## `false' otherwise.
##
## \index{regular}
## An action is *regular* if it is both semiregular (see~"IsSemiRegular")
## and transitive (see~"IsTransitive!for group actions"). In this case every
## point <pnt> of <Omega> defines a one-to-one correspondence between <G>
## and <Omega>.
##
OrbitsishOperation( "IsRegular", OrbitsishReq, false, NewProperty );
#############################################################################
##
#O RankAction( <G>, <Omega>[, <gens>, <acts>][, <act>] )
#A RankAction( <xset> )
##
## returns the rank of a transitive action, i.e. the number of orbits of
## the point stabilizer.
##
OrbitsishOperation( "RankAction", OrbitsishReq, false, NewAttribute );
#############################################################################
##
#F Permutation( <g>, <Omega>[, <gens>, <acts>][, <act>] )
#F Permutation( <g>, <xset> )
##
## computes the permutation that corresponds to the action of <g> on the
## permutation domain <Omega> (a list of objects that are permuted). If an
## external set <xset> is given, the permutation domain is the `HomeEnumerator'
## of this external set (see Section~"External Sets").
## Note that the points of the returned permutation refer to the positions
## in <Omega>, even if <Omega> itself consists of integers.
##
## If <g> does not leave the domain invariant, or does not map the domain
## injectively `fail' is returned.
##
DeclareGlobalFunction( "Permutation" );
DeclareOperation( "PermutationOp", [ IsObject, IsList, IsFunction ] );
#############################################################################
##
#F PermutationCycle( <g>, <Omega>, <pnt> [,<act>] )
#O PermutationCycleOp( <g>, <Omega>, <pnt>, <act> )
##
## computes the permutation that represents the cycle of <pnt> under the
## action of the element <g>.
##
DeclareGlobalFunction( "PermutationCycle" );
DeclareOperation( "PermutationCycleOp",
[ IsObject, IsList, IsObject, IsFunction ] );
#############################################################################
##
#O Cycle( <g>, <Omega>, <pnt> [,<act>] )
##
## returns a list of the points in the cycle of <pnt> under the action of the
## element <g>.
##
DeclareGlobalFunction( "Cycle" );
DeclareOperation( "CycleOp", [ IsObject, IsList, IsObject, IsFunction ] );
#############################################################################
##
#O Cycles( <g>, <Omega> [,<act>] )
##
## returns a list of the cycles (as lists of points) of the action of the
## element <g>.
##
DeclareGlobalFunction( "Cycles" );
DeclareOperation( "CyclesOp", [ IsObject, IsList, IsFunction ] );
#############################################################################
##
#O CycleLength( <g>, <Omega>, <pnt> [,<act>] )
##
## returns the length of the cycle of <pnt> under the action of the element
## <g>.
##
DeclareGlobalFunction( "CycleLength" );
DeclareOperation( "CycleLengthOp",
[ IsObject, IsList, IsObject, IsFunction ] );
#############################################################################
##
#O CycleLengths( <g>, <Omega>, [,<act>] )
##
## returns the lengths of all the cycles under the action of the element
## <g> on <Omega>.
##
DeclareGlobalFunction( "CycleLengths" );
DeclareOperation( "CycleLengthsOp",
[ IsObject, IsList, IsFunction ] );
#############################################################################
##
#O CycleIndex( <g>, <Omega>, [,<act>] )
#O CycleIndex( <G>, <Omega>, [,<act>] )
##
## The *cycle index* of a permutation <g> acting on <Omega> is defined as
## $$z(g)= s_1^{c_1(g)}s_2^{c_2(g)}\cdots s_n^{c_n(g)}$$ where $c_k(g)$ is
## the number of $k$-cycles in the cycle decomposition of $g$ and the $s_i$
## are indeterminates.
##
## The *cycle index* of a group $G$ is defined as
## $Z(G)=\frac{1}{|G|}\sum_{g\in G} z(g)$.
##
## The indeterminates used by `CycleIndex' are the indeterminates $1$ to
## $n$ over the rationals (see~"Indeterminate").
##
DeclareGlobalFunction( "CycleIndex" );
DeclareOperation( "CycleIndexOp",
[ IsObject, IsListOrCollection, IsFunction ] );
#############################################################################
##
#O RepresentativeAction( <G> [,<Omega>], <d>, <e> [,<gens>,<acts>] [,<act>] )
##
## computes an element of <G> that maps <d> to <e> under the given
## action and returns `fail' if no such element exists.
##
DeclareGlobalFunction( "RepresentativeAction" );
DeclareOperation( "RepresentativeActionOp",
[ IsGroup, IsList, IsObject, IsObject, IsFunction ] );
#############################################################################
##
#F Stabilizer( <G> [,<Omega>], <pnt> [,<gens>,<acts>] [,<act>] )
##
## computes the stabilizer in <G> of the point <pnt>, that is the subgroup
## of those elements of <G> that fix <pnt>.
## The stabilizer will have <G> as its parent.
##
DeclareGlobalFunction( "Stabilizer" );
OrbitishFO( "StabilizerFunc", OrbitishReq, IsCollsElms, false,false );
BindGlobal( "StabilizerOp", StabilizerFuncOp );
#############################################################################
##
#F StabilizerPcgs( <pcgs>, <pnt> [,<acts>] [,<act>] )
##
## computes the stabilizer in the group generated by <pcgs> of the point
## <pnt>. If given, <acts> are elements by which <pcgs> acts, <act> is
## the acting function. This function returns a pcgs for the stabilizer
## which is induced by the `ParentPcgs' of <pcgs>, that is it is compatible
## with <pcgs>.
##
DeclareGlobalFunction( "StabilizerPcgs" );
#############################################################################
##
#F OrbitStabilizerAlgorithm( <G>, <Omega>, <blist>, <gens>,<acts>, <pntact> )
##
## This operation should not be called by a user. It is documented however
## for purposes to extend or maintain the group actions package.
##
## `OrbitStabilizerAlgorithm' performs an orbit stabilizer algorithm for
## the group <G> acting with the generators <gens> via the generator images
## <gens> and the group action <act> on the element <pnt>. (For
## technical reasons <pnt> and <act> are put in one record with components
## `pnt' and `act' respectively.)
##
## The <pntact> record may carry a component <stabsub>. If given, this must
## be a subgroup stabilizing *all* points in the domain and can be used to
## abbreviate stabilizer calculations.
##
## The argument <Omega> (which may be replaced by `false' to be ignored) is
## the set within which the orbit is computed (once the orbit is the full
## domain, the orbit calculation may stop). If <blist> is given it must be
## a bit list corresponding to <Omega> in which elements which have been found
## already will be ``ticked off'' with `true'. (In particular, the entries
## for the orbit of <pnt> still must be all set to `false'). Again the
## remaining action domain (the bits set initially to `false') can be
## used to stop if the orbit cannot grow any longer.
## Another use of the bit list is if <Omega> is an enumerator which can
## determine `PositionCanonical's very quickly. In this situation it can be
## worth to search images not in the orbit found so far, but via their
## position in <Omega> and use a the bit list to keep track whether the
## element is in the orbit found so far.
##
DeclareOperation( "OrbitStabilizerAlgorithm",
[IsGroup,IsObject,IsObject,IsList,IsList,IsRecord] );
DeclareGlobalFunction( "OrbitByPosOp" );
# AH, 5-feb-99 This function is neither documented not used.
#DeclareGlobalFunction( "OrbitStabilizerListByGenerators" );
DeclareGlobalFunction( "SetCanonicalRepresentativeOfExternalOrbitByPcgs" );
DeclareGlobalFunction( "StabilizerOfBlockNC" );
#############################################################################
##
#O AbelianSubfactorAction(<G>,<M>,<N>)
##
## Let <G> be a group and $<M>\ge<N>$ be subgroups of a common parent that
## are normal under <G>, such that
## the subfactor $<M>/<N>$ is elementary abelian. The operation
## `AbelianSubfactorAction' returns a list `[<phi>,<alpha>,<bas>]' where
## <bas> is a list of elements of <M> which are representatives for a basis
## of $<M>/<N>$, <alpha> is a map from <M> into a $n$-dimensional row space
## over $GF(p)$ where $[<M>:<N>]=p^n$ that is the
## natural homomorphism of <M> by <N> with the quotient represented as an
## additive group. Finally <phi> is a homomorphism from <G>
## into $GL_n(p)$ that represents the action of <G> on the factor
## $<M>/<N>$.
##
## Note: If only matrices for the action are needed, `LinearActionLayer'
## might be faster.
##
DeclareOperation( "AbelianSubfactorAction",[IsGroup,IsGroup,IsGroup] );
#############################################################################
##
#F OnPoints( <pnt>, <g> )
##
## \index{conjugation}\index{action!by conjugation}
## returns `<pnt> ^ <g>'.
## This is for example the action of a permutation group on points,
## or the action of a group on its elements via conjugation.
## The action of a matrix group on vectors from the right is described by
## both `OnPoints' and `OnRight' (see~"OnRight").
# DeclareGlobalFunction("OnPoints");
#############################################################################
##
#F OnRight( <pnt>, <g> )
##
## returns `<pnt> \* <g>'.
## This is for example the action of a group on its elements via right
## multiplication,
## or the action of a group on the cosets of a subgroup.
## The action of a matrix group on vectors from the right is described by
## both `OnPoints' (see~"OnPoints") and `OnRight'.
# DeclareGlobalFunction("OnRight");
#############################################################################
##
#F OnLeftInverse( <pnt>, <g> )
##
## returns $<g>^{-1}$ `\* <pnt>'.
## Forming the inverse is necessary to make this a proper action,
## as in {\GAP} groups always act from the right.
##
## (`OnLeftInverse' is used for example in the representation of a right
## coset as an external set (see~"External Sets"), that is a right coset
## $Ug$ is an external set for the group $U$ acting on it via
## `OnLeftInverse'.)
# DeclareGlobalFunction("OnLeftInverse");
#############################################################################
##
#F OnSets( <set>, <g> )
##
## \index{action!on sets}\index{action!on blocks}
## Let <set> be a proper set (see~"Sorted Lists and Sets").
## `OnSets' returns the proper set formed by the images
## `OnPoints( <pnt>, <g> )' of all points <pnt> of <set>.
##
## `OnSets' is for example used to compute the action of a permutation group
## on blocks.
##
## (`OnTuples' is an action on lists that preserves the ordering of entries,
## see~"OnTuples".)
# DeclareGlobalFunction("OnSets");
#############################################################################
##
#F OnTuples( <tup>, <g> )
##
## Let <tup> be a list.
## `OnTuples' returns the list formed by the images
## `OnPoints( <pnt>, <g> )' for all points <pnt> of <tup>.
##
## (`OnSets' is an action on lists that additionally sorts the entries of
## the result, see~"OnSets".)
# DeclareGlobalFunction("OnTuples");
#############################################################################
##
#F OnPairs( <tup>, <g> )
##
## is a special case of `OnTuples' (see~"OnTuples") for lists <tup>
## of length 2.
# DeclareGlobalFunction("OnPairs");
#############################################################################
##
#F OnLines( <vec>, <g> )
##
## Let <vec> be a *normed* row vector, that is,
## its first nonzero entry is normed to the identity of the relevant field,
## `OnLines' returns the row vector obtained from normalizing
## `OnRight( <vec>, <g> )' by scalar multiplication from the left.
## This action corresponds to the projective action of a matrix group
## on 1-dimensional subspaces.
##
DeclareGlobalFunction("OnLines");
#############################################################################
##
#F OnSetsSets( <set>, <g> )
##
## Action on sets of sets;
## for the special case that the sets are pairwise disjoint,
## it is possible to use `OnSetsDisjointSets' (see~"OnSetsDisjointSets").
##
DeclareGlobalFunction( "OnSetsSets" );
#############################################################################
##
#F OnSetsDisjointSets( <set>, <g> )
##
## Action on sets of pairwise disjoint sets (see also~"OnSetsSets").
##
DeclareGlobalFunction( "OnSetsDisjointSets" );
#############################################################################
##
#F OnSetsTuples( <set>, <g> )
##
## Action on sets of tuples.
##
DeclareGlobalFunction("OnSetsTuples");
#############################################################################
##
#F OnTuplesSets( <set>, <g> )
##
## Action on tuples of sets.
##
DeclareGlobalFunction("OnTuplesSets");
#############################################################################
##
#F OnTuplesTuples( <set>, <g> )
##
## Action on tuples of tuples
##
DeclareGlobalFunction("OnTuplesTuples");
#############################################################################
##
#O DomainForAction( <pnt>, <acts>, <act> )
##
## returns a domain which will contain the orbit of <pnt> under the action
## <act> of the group
## generated by <acts>. (Such a domain can be helpful for obtaining
## a dictionary.)
## The default method returns `fail' to indicate that no special domain is
## defined, a special method exists for matrix groups over finite fields.
##
DeclareOperation("DomainForAction",[IsObject,IsListOrCollection,IsFunction]);
#############################################################################
##
#E
|