1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
|
#############################################################################
##
#W reesmat.gd GAP library Andrew Solomon
##
#H @(#)$Id: reesmat.gd,v 4.12.4.1 2006/08/22 13:28:59 jamesm Exp $
##
#Y Copyright (C) 1997, Lehrstuhl D fuer Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St. Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## This file contains the declarations for Rees Matrix semigroups
Revision.reesmat_gd :=
"@(#)$Id: reesmat.gd,v 4.12.4.1 2006/08/22 13:28:59 jamesm Exp $";
#1
## In this section we describe {\GAP} functions for Rees matrix semigroups
## and Rees 0-matrix semigroups.
## The importance of this construction is that
## Rees Matrix semigroups over groups
## are exactly the completely simple semigroups, and Rees 0-matrix
## semigroups over groups are the completely 0-simple semigroups
##
## Recall that a Rees Matrix semigroup is constructed from a semigroup (the
## underlying semigroup), and a matrix.
## A Rees Matrix semigroup element is a triple (<s>, <i>, <lambda>)
## where <s> is an element of the underlying semigroup <S> and
## <i>, <lambda> are indices.
## This can be thought of as a matrix with zero everywhere
## except for an occurrence of <s> at row <i> and column <lambda>.
## The multiplication is defined by
## $(i, s, \lambda)*(j, t, \mu) = (i, s P_{\lambda j} t, \mu)$ where
## $P$ is the defining matrix of the semigroup.
## In the case that the underlying semigroup has a zero we can make the
## ReesZeroMatrixSemigroup, wherein all elements whose <s> entry is the
## zero of the underlying semigroup are identified to the unique zero of
## the Rees 0-matrix semigroup.
##
#############################################################################
##
#F ReesMatrixSemigroup( <S>, <matrix> )
##
## for a semigroup <S> and <matrix> whose entries are in <S>.
## Returns the Rees Matrix semigroup with multiplication defined by
## <matrix>.
##
DeclareGlobalFunction( "ReesMatrixSemigroup" );
#############################################################################
##
#F ReesZeroMatrixSemigroup( <S>, <matrix> )
##
## for a semigroup <S> with zero, and <matrix> over <S>
## returns the Rees 0-Matrix semigroup such that all elements
## $(i, 0, \lambda)$ are identified to zero.
##
## The zero in <S> is found automatically. If
## one cannot be found, an error is signalled.
##
DeclareGlobalFunction( "ReesZeroMatrixSemigroup" );
#############################################################################
##
#A IsomorphismReesMatrixSemigroup( <obj> )
## If <S> is a completely simple (resp. zero simple) semigroup, returns
## an isomorphism to a Rees matrix semigroup over a group (resp. zero
## group).
##
DeclareAttribute("IsomorphismReesMatrixSemigroup",IsSemigroup);
#############################################################################
##
#C IsReesMatrixSemigroupElement(<e>)
#C IsReesZeroMatrixSemigroupElement(<e>)
##
## is the category of elements of a Rees (0-) matrix semigroup.
## Returns true if <e> is an element of a Rees Matrix semigroup.
##
DeclareCategory( "IsReesMatrixSemigroupElement", IsAssociativeElement );
DeclareCategory( "IsReesZeroMatrixSemigroupElement", IsMultiplicativeElement );
#############################################################################
##
#C IsReesMatrixSemigroupElementCollection
#C IsReesZeroMatrixSemigroupElementCollection
##
## Created now so that lists of things in the category
## IsSubsemigroupReesMatrixSemigroup are given the category
## CategoryCollections(IsSubsemigroupReesMatrixSemigroup).
## Otherwise these lists (and other collections) won't create the
## collections category. See CollectionsCategory in the manual.
##
DeclareCategoryCollections( "IsReesMatrixSemigroupElement");
DeclareCategoryCollections( "IsReesZeroMatrixSemigroupElement");
#############################################################################
##
#F ReesMatrixSemigroupElement( <R>, <a>, <i>, <lambda> )
#F ReesZeroMatrixSemigroupElement( <R>, <a>, <i>, <lambda> )
##
## for a Rees matrix semigroup <R>, <a> in `UnderlyingSemigroup(<R>)',
## <i> and <lambda> in the row (resp. column) ranges of <R>,
## returns the element of <R> corresponding to the
## matrix with zero everywhere and <a> in row <i> and column <x>.
##
DeclareGlobalFunction( "ReesMatrixSemigroupElement" );
DeclareGlobalFunction( "ReesZeroMatrixSemigroupElement" );
#############################################################################
##
#C IsSubsemigroupReesMatrixSemigroup( <T> )
#C IsSubsemigroupReesZeroMatrixSemigroup( <T> )
##
## is the category of Rees matrix semigroups.
## The functions return `true' if <T> is a (subsemigroup of a)
## Rees (0-)matrix semigroup.
##
DeclareSynonymAttr( "IsSubsemigroupReesMatrixSemigroup",
IsSemigroup and IsReesMatrixSemigroupElementCollection);
DeclareSynonymAttr( "IsSubsemigroupReesZeroMatrixSemigroup",
IsSemigroup and IsReesZeroMatrixSemigroupElementCollection);
#############################################################################
##
#P IsReesMatrixSemigroup( <T> )
##
## returns `true' if the object <T> is a (whole) Rees matrix semigroup.
##
DeclareSynonymAttr( "IsReesMatrixSemigroup",
IsSubsemigroupReesMatrixSemigroup and IsWholeFamily);
#############################################################################
##
#A SandwichMatrixOfReesMatrixSemigroup( <R> )
#A SandwichMatrixOfReesZeroMatrixSemigroup( <R> )
##
## each return the defining matrix of the Rees (0-) matrix semigroup.
##
DeclareAttribute("SandwichMatrixOfReesMatrixSemigroup", IsSubsemigroupReesMatrixSemigroup);
DeclareAttribute("SandwichMatrixOfReesZeroMatrixSemigroup", IsSubsemigroupReesZeroMatrixSemigroup);
#############################################################################
##
#A RowsOfReesMatrixSemigroup( <R> )
#A RowsOfReesZeroMatrixSemigroup( <R> )
##
## return the number of rows in the defining matrix of <R>.
##
DeclareAttribute("RowsOfReesMatrixSemigroup",IsSubsemigroupReesMatrixSemigroup );
DeclareAttribute("RowsOfReesZeroMatrixSemigroup",IsSubsemigroupReesZeroMatrixSemigroup );
#############################################################################
##
#A ColumnsOfReesMatrixSemigroup( <R> )
#A ColumnsOfReesZeroMatrixSemigroup( <R> )
##
## return the number of columns in the defining matrix of <R>.
##
DeclareAttribute("ColumnsOfReesMatrixSemigroup",IsSubsemigroupReesMatrixSemigroup);
DeclareAttribute("ColumnsOfReesZeroMatrixSemigroup",IsSubsemigroupReesZeroMatrixSemigroup);
#############################################################################
##
#A UnderlyingSemigroupOfReesMatrixSemigroup( <R> )
#A UnderlyingSemigroupOfReesZeroMatrixSemigroup( <R> )
##
## return the underlying semigroup containing the entries in the defining
## matrix of <R>.
##
DeclareAttribute("UnderlyingSemigroupOfReesMatrixSemigroup",
IsSubsemigroupReesMatrixSemigroup);
DeclareAttribute("UnderlyingSemigroupOfReesZeroMatrixSemigroup",
IsSubsemigroupReesZeroMatrixSemigroup);
#############################################################################
##
#A RowIndexOfReesMatrixSemigroupElement( <x> )
#A RowIndexOfReesZeroMatrixSemigroupElement( <x> )
#A ColumnIndexOfReesMatrixSemigroupElement( <x> )
#A ColumnIndexOfReesZeroMatrixSemigroupElement( <x> )
#A UnderlyingElementOfReesMatrixSemigroupElement( <x> )
#A UnderlyingElementOfReesZeroMatrixSemigroupElement( <x> )
##
## For an element <x> of a Rees Matrix semigroup, of the form
## `(<i>, <s>, <lambda>)',
## the row index is <i>, the column index is <lambda> and the
## underlying element is <s>.
## If we think of an element as a matrix then this corresponds to
## the row where the non-zero entry is, the column where the
## non-zero entry is and the entry at that position, respectively.
##
DeclareAttribute("RowIndexOfReesMatrixSemigroupElement",
IsReesMatrixSemigroupElement);
DeclareAttribute("RowIndexOfReesZeroMatrixSemigroupElement",
IsReesZeroMatrixSemigroupElement);
DeclareAttribute("ColumnIndexOfReesMatrixSemigroupElement",
IsReesMatrixSemigroupElement);
DeclareAttribute("ColumnIndexOfReesZeroMatrixSemigroupElement",
IsReesZeroMatrixSemigroupElement);
DeclareAttribute("UnderlyingElementOfReesMatrixSemigroupElement",
IsReesMatrixSemigroupElement);
DeclareAttribute("UnderlyingElementOfReesZeroMatrixSemigroupElement",
IsReesZeroMatrixSemigroupElement);
#############################################################################
##
#P IsReesZeroMatrixSemigroup( <T> )
##
## returns `true' if the object <T> is a (whole) Rees 0-matrix semigroup.
##
DeclareSynonymAttr( "IsReesZeroMatrixSemigroup",
IsSubsemigroupReesZeroMatrixSemigroup and IsWholeFamily);
############################################################################
##
#P ReesZeroMatrixSemigroupElementIsZero( <x> )
##
## returns `true' if <x> is the zero of the Rees 0-matrix semigroup.
##
DeclareProperty("ReesZeroMatrixSemigroupElementIsZero",
IsReesZeroMatrixSemigroupElement);
############################################################################
##
#A AssociatedReesMatrixSemigroupOfDClass( <D> )
##
## Given a regular <D> class of a finite semigroup, it can be viewed as a
## Rees matrix semigroup by identifying products which do not lie in the
## <D> class with zero, and this is what it is returned.
##
## Formally, let $I_1$ be the ideal of all J classes less than or equal to
## <D>, $I_2$ the ideal of all J classes *strictly* less than <D>,
## and $\rho$ the Rees congruence associated with $I_2$. Then $I/\rho$
## is zero-simple. Then `AssociatedReesMatrixSemigroupOfDClass( <D> )'
## returns this zero-simple semigroup as a Rees matrix semigroup.
##
DeclareAttribute("AssociatedReesMatrixSemigroupOfDClass", IsGreensDClass);
#############################################################################
##
#E reesmat.gd . . . . . . . . . . . . . . . . . . . . . . . . . . ends here
##
|