File: ring.gd

package info (click to toggle)
gap 4r4p9-1
  • links: PTS
  • area: main
  • in suites: etch, etch-m68k
  • size: 27,120 kB
  • ctags: 6,735
  • sloc: ansic: 96,692; sh: 3,254; makefile: 319; perl: 11; awk: 6
file content (850 lines) | stat: -rw-r--r-- 32,401 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
#############################################################################
##
#W  ring.gd                     GAP library                     Thomas Breuer
##
#H  @(#)$Id: ring.gd,v 4.54.2.2 2005/11/26 14:02:14 gap Exp $
##
#Y  Copyright (C)  1997,  Lehrstuhl D fuer Mathematik,  RWTH Aachen,  Germany
#Y  (C) 1998 School Math and Comp. Sci., University of St.  Andrews, Scotland
#Y  Copyright (C) 2002 The GAP Group
##
##  This file declares the operations for rings.
##
Revision.ring_gd :=
    "@(#)$Id: ring.gd,v 4.54.2.2 2005/11/26 14:02:14 gap Exp $";


#############################################################################
##
#P  IsNearRing( <R> )
##
##  A *near-ring* in {\GAP} is a near-additive group
##  (see~"IsNearAdditiveGroup") that is also a semigroup (see~"IsSemigroup"),
##  such that addition `+' and multiplication `\*' are right distributive
##  (see~"IsRDistributive").
##  Any associative ring (see~"IsRing") is also a near-ring.
##
DeclareSynonymAttr( "IsNearRing",
    IsNearAdditiveGroup and IsMagma and IsRDistributive and IsAssociative );


#############################################################################
##
#P  IsNearRingWithOne( <R> )
##
##  A *near-ring-with-one* in {\GAP} is a near-ring (see~"IsNearRing")
##  that is also a magma-with-one (see~"IsMagmaWithOne").
##
##  Note that the identity and the zero of a near-ring-with-one need *not* be
##  distinct.
##  This means that a near-ring that consists only of its zero element can be
##  regarded as a near-ring-with-one.
##
DeclareSynonymAttr( "IsNearRingWithOne", IsNearRing and IsMagmaWithOne );


#############################################################################
##
#A  AsNearRing( <C> )
##
##  If the elements in the collection <C> form a near-ring then `AsNearRing'
##  returns this near-ring, otherwise `fail' is returned.
##
DeclareAttribute( "AsNearRing", IsNearRingElementCollection );


#############################################################################
##
#P  IsRing( <R> )
##
##  A *ring* in {\GAP} is an additive group (see~"IsAdditiveGroup")
##  that is also a magma (see~"IsMagma"),
##  such that addition `+' and multiplication `\*' are distributive.
##
##  The multiplication need *not* be associative (see~"IsAssociative").
##  For example, a Lie algebra (see~"Lie Algebras") is regarded as a
##  ring in {\GAP}.
##
DeclareSynonymAttr( "IsRing",
    IsAdditiveGroup and IsMagma and IsDistributive );


#############################################################################
##
#P  IsRingWithOne( <R> )
##
##  A *ring-with-one* in {\GAP} is a ring (see~"IsRing")
##  that is also a magma-with-one (see~"IsMagmaWithOne").
##
##  Note that the identity and the zero of a ring-with-one need *not* be
##  distinct.
##  This means that a ring that consists only of its zero element can be
##  regarded as a ring-with-one.
#T shall we force *every* trivial ring to be a ring-with-one
#T by installing an implication?
##
##  This is especially useful in the case of finitely presented rings,
##  in the sense that each factor of a ring-with-one is again a
##  ring-with-one.
##
DeclareSynonymAttr( "IsRingWithOne", IsRing and IsMagmaWithOne );


#############################################################################
##
#A  AsRing( <C> )
##
##  If the elements in the collection <C> form a ring then `AsRing' returns
##  this ring, otherwise `fail' is returned.
##
DeclareAttribute( "AsRing", IsRingElementCollection );


#############################################################################
##
#A  GeneratorsOfRing( <R> )
##
##  `GeneratorsOfRing' returns a list of elements such that the ring <R> is
##  the closure of these elements under addition, multiplication,
##  and taking additive inverses.
##
DeclareAttribute( "GeneratorsOfRing", IsRing );


#############################################################################
##
#A  GeneratorsOfRingWithOne( <R> )
##
##  `GeneratorsOfRingWithOne' returns a list of elements
##  such that the ring <R> is the closure of these elements
##  under addition, multiplication, taking additive inverses, and taking
##  the identity element `One( <R> )'.
##
##  <R> itself need *not* be known to be a ring-with-one.
##
DeclareAttribute( "GeneratorsOfRingWithOne", IsRingWithOne );


#############################################################################
##
#O  RingByGenerators( <C> ) . . . . . . .  ring gener. by elements in a coll.
##
##  `RingByGenerators' returns the ring generated by the elements in the
##  collection <C>,
##  i.~e., the closure of <C> under addition, multiplication,
##  and taking additive inverses.
##
DeclareOperation( "RingByGenerators", [ IsCollection ] );


#############################################################################
##
#O  DefaultRingByGenerators( <coll> ) . . . . default ring containing a coll.
##
DeclareOperation( "DefaultRingByGenerators", [ IsCollection ] );


#############################################################################
##
#F  Ring( <r> ,<s>, ... )  . . . . . . . . . . ring generated by a collection
#F  Ring( <coll> ) . . . . . . . . . . . . . . ring generated by a collection
##
##  In the first form `Ring' returns the smallest ring that
##  contains all the elements <r>, <s>... etc.
##  In the second form `Ring' returns the smallest ring that
##  contains all the elements in the collection <coll>.
##  If any element is not an element of a ring or if the elements lie in no
##  common ring an error is raised.
##
##  `Ring' differs from `DefaultRing' (see~"DefaultRing") in that it returns
##  the smallest ring in which the elements lie, while `DefaultRing' may
##  return a larger ring if that makes sense.
##
DeclareGlobalFunction( "Ring" );


#############################################################################
##
#O  RingWithOneByGenerators( <coll> )
##
##  `RingWithOneByGenerators' returns the ring-with-one generated by the
##  elements in the collection <coll>, i.~e., the closure of <coll> under
##  addition, multiplication, taking additive inverses,
##  and taking the identity of an element.
##
DeclareOperation( "RingWithOneByGenerators", [ IsCollection ] );


#############################################################################
##
#F  RingWithOne( <r>, <s>, ... )  . . ring-with-one generated by a collection
#F  RingWithOne( <C> )  . . . . . . . ring-with-one generated by a collection
##
##  In the first form `RingWithOne' returns the smallest ring with one that
##  contains all the elements <r>, <s>... etc.
##  In the second form `RingWithOne' returns the smallest ring with one that
##  contains all the elements in the collection <C>.
##  If any element is not an element of a ring or if the elements lie in no
##  common ring an error is raised.
##
DeclareGlobalFunction( "RingWithOne" );


#############################################################################
##
#F  DefaultRing( <r> ,<s>, ... )  . . .  default ring containing a collection
#F  DefaultRing( <coll> ) . . . . . . .  default ring containing a collection
##
##  In the first form `DefaultRing' returns a ring that contains
##  all the elements <r>, <s>, ... etc.
##  In the second form `DefaultRing' returns a ring that contains
##  all the elements in the collection <coll>.
##  If any element is not an element of a ring or if the elements lie in no
##  common ring an error is raised.
##
##  The ring returned by `DefaultRing' need not be the smallest ring in which
##  the elements lie.
##  For example for elements from cyclotomic fields,
##  `DefaultRing' may return the ring of integers of the smallest cyclotomic
##  field in which the elements lie, which need not be the smallest ring
##  overall, because the elements may in fact lie in a smaller number field
##  which is itself not a cyclotomic field.
##
##  (For the exact definition of the default ring of a certain type of
##  elements, look at the corresponding method installation.)
##
##  `DefaultRing' is used by the ring functions like `Quotient', `IsPrime',
##  `Factors', or `Gcd' if no explicit ring is given.
##
##  `Ring' (see~"Ring") differs from `DefaultRing' in that it returns the
##  smallest ring in which the elements lie, while `DefaultRing' may return
##  a larger ring if that makes sense.
##
DeclareGlobalFunction( "DefaultRing" );


#############################################################################
##
#F  Subring( <R>, <gens> ) . . . . . . . . subring of <R> generated by <gens>
#F  SubringNC( <R>, <gens> ) . . . . . . . subring of <R> generated by <gens>
##
##  returns the ring with parent <R> generated by the elements in
##  <gens>. When the second form, `SubringNC' is used, it is *not* checked
##  whether all elements in <gens> lie in <R>. 
##
DeclareGlobalFunction( "Subring" );
DeclareGlobalFunction( "SubringNC" );


#############################################################################
##
#F  SubringWithOne( <R>, <gens> )   .  subring-with-one of <R> gen. by <gens>
#F  SubringWithOneNC( <R>, <gens> ) .  subring-with-one of <R> gen. by <gens>
##
##  returns the ring with one with parent <R> generated by the elements in
##  <gens>. When the second form, `SubringNC' is used, it is *not* checked
##  whether all elements in <gens> lie in <R>. 
##
DeclareGlobalFunction( "SubringWithOne" );
DeclareGlobalFunction( "SubringWithOneNC" );


#############################################################################
##
#O  ClosureRing( <R>, <r> )
#O  ClosureRing( <R>, <S> )
##
##  For a ring <R> and either an element <r> of its elements family or a ring
##  <S>, `ClosureRing' returns the ring generated by both arguments.
##
DeclareOperation( "ClosureRing", [ IsRing, IsObject ] );


#############################################################################
##
#C  IsUniqueFactorizationRing( <R> )
##
##  A ring <R> is called a *unique factorization ring* if it is an integral
##  ring (see~"IsIntegralRing"),
##  and every element has a unique factorization into irreducible elements,
##  i.e., a  unique representation as product  of irreducibles (see
##  "IsIrreducibleRingElement").
##  Unique in this context means unique up to permutations of the factors and
##  up to multiplication of the factors by units (see~"Units").
##
##  Mathematically, a field should therefore also be a  unique factorization
##  ring, since every element is a unit. In {\GAP}, however, at least at present
##  fields do not lie in the filter `IsUniqueFactorizationRing' 
##  (see~"IsUniqueFactorizationRing"), since 
##  Operations such as `Factors', `Gcd', `StandardAssociate' and so on do
##  not apply to fields (the results would be trivial, and not
##  especially useful) and Methods which require their arguments to
##  lie in `IsUniqueFactorizationRing' expect these Operations to work.
##
##  (Note that we cannot install a subset maintained method for this category
##  since the factorization of an element needs not exist in a subring.
##  As an example, consider the subring $4 \N + 1$ of the ring $4 \Z + 1$;
##  in the subring, the element $3 \cdot 3 \cdot 11 \cdot 7$ has the two
##  factorizations $33 \cdot 21 = 9 \cdot 77$, but in the large ring there
##  is the unique factorization $(-3) \cdot (-3) \cdot (-11) \cdot (-7)$,
##  and it is easy to see that every element in $4 \Z + 1$ has a unique
##  factorization.)
##
DeclareCategory( "IsUniqueFactorizationRing", IsRing );


#############################################################################
##
#C  IsEuclideanRing( <R> )
##
##  A ring $R$ is called a Euclidean ring if it is an integral ring and
##  there exists a function $\delta$, called the Euclidean degree, from
##  $R-\{0_R\}$ to the nonnegative integers, such that for every pair $r \in
##  R$ and $s \in  R-\{0_R\}$ there exists an element $q$ such that either
##  $r - q s = 0_R$ or $\delta(r - q s) \< \delta( s )$. In {\GAP} the
##  Euclidean degree $\delta$ is implicitly built into an ring and cannot be
##  changed.  The existence of this division with remainder implies that the
##  Euclidean algorithm can be applied to compute a greatest common divisor
##  of two elements, which in turn implies that $R$ is a unique
##  factorization ring.
##
#T more general: new category ``valuated domain''?
##
DeclareCategory( "IsEuclideanRing",
    IsRingWithOne and IsUniqueFactorizationRing );


#############################################################################
##
#P  IsAnticommutative( <R> )
##
##  is `true' if the relation $a * b = - b * a$
##  holds for all elements $a$, $b$ in the ring <R>,
##  and `false' otherwise.
##
DeclareProperty( "IsAnticommutative", IsRing );

InstallSubsetMaintenance( IsAnticommutative,
    IsRing and IsAnticommutative, IsRing );

InstallFactorMaintenance( IsAnticommutative,
    IsRing and IsAnticommutative, IsObject, IsRing );


#############################################################################
##
#P  IsIntegralRing( <R> )
##
##  A ring-with-one <R> is integral if it is commutative, contains no
##  nontrivial zero divisors,
##  and if its identity is distinct from its zero.
##
DeclareProperty( "IsIntegralRing", IsRing );

InstallSubsetMaintenance( IsIntegralRing,
    IsRing and IsIntegralRing, IsRing and IsNonTrivial );

InstallTrueMethod( IsIntegralRing,
    IsRing and IsMagmaWithInversesIfNonzero and IsNonTrivial );
InstallTrueMethod( IsIntegralRing,
    IsUniqueFactorizationRing and IsNonTrivial );


#############################################################################
##
#P  IsJacobianRing( <R> )
##
##  is `true' if the Jacobi identity holds in <R>, and `false' otherwise.
##  The Jacobi identity means that $x \* (y \* z) + z \* (x \* y) + 
##  y \* (z \* x)$
##  is the zero element of <R>, for all elements $x$, $y$, $z$ in <R>.
##
DeclareProperty( "IsJacobianRing", IsRing );

InstallTrueMethod( IsJacobianRing,
    IsJacobianElementCollection and IsRing );

InstallSubsetMaintenance( IsJacobianRing,
    IsRing and IsJacobianRing, IsRing );

InstallFactorMaintenance( IsJacobianRing,
    IsRing and IsJacobianRing, IsObject, IsRing );


#############################################################################
##
#P  IsZeroSquaredRing( <R> )
##
##  is `true' if $a * a$ is the zero element of the ring <R>
##  for all $a$ in <R>, and `false' otherwise.
##
DeclareProperty( "IsZeroSquaredRing", IsRing );

InstallTrueMethod( IsAnticommutative, IsRing and IsZeroSquaredRing );

InstallTrueMethod( IsZeroSquaredRing,
    IsZeroSquaredElementCollection and IsRing );

InstallSubsetMaintenance( IsZeroSquaredRing,
    IsRing and IsZeroSquaredRing, IsRing );

InstallFactorMaintenance( IsZeroSquaredRing,
    IsRing and IsZeroSquaredRing, IsObject, IsRing );


#############################################################################
##
#P  IsZeroMultiplicationRing( <R> )
##
##  is `true' if $a * b$ is the zero element of the ring <R>
##  for all $a, b$ in <R>, and `false' otherwise.
##
DeclareProperty( "IsZeroMultiplicationRing", IsRing );

InstallTrueMethod( IsZeroSquaredRing, IsRing and IsZeroMultiplicationRing );
InstallTrueMethod( IsAssociative, IsRing and IsZeroMultiplicationRing );
InstallTrueMethod( IsCommutative, IsRing and IsZeroMultiplicationRing );
# The implication to `IsAnticommutative' follows from `IsZeroSquaredRing'.

InstallSubsetMaintenance( IsZeroMultiplicationRing,
    IsRing and IsZeroMultiplicationRing, IsRing );

InstallFactorMaintenance( IsZeroMultiplicationRing,
    IsRing and IsZeroMultiplicationRing, IsObject, IsRing );


#############################################################################
##
#A  Units( <R> )
##
##  `Units' returns the group of units of the ring <R>.
##  This may either be returned as a list or as a group.
##
##  An element $r$ is called a *unit* of a ring $R$, if $r$ has an inverse in
##  $R$.
##  It is easy to see that the set of units forms a multiplicative group.
##
DeclareAttribute( "Units", IsRing );


#############################################################################
##
#O  Factors( <R>, <r> )
#O  Factors( <r> )
##
##  In the first form `Factors' returns the factorization of the ring
##  element <r> in the ring <R>.
##  In the second form `Factors' returns the factorization of the ring
##  element <r> in its default ring (see "DefaultRing").
##  The factorization is returned as a list of primes (see "IsPrime").
##  Each element in the list is a standard associate (see
##  "StandardAssociate") except the first one, which is multiplied by a unit
##  as necessary to have `Product( Factors( <R>, <r> )  )  = <r>'.
##  This list is usually also sorted, thus smallest prime factors come first.
##  If <r> is a unit or zero, `Factors( <R>, <r> ) = [ <r> ]'.
##
#T Who does really need the additive structure?
#T We could define `Factors' for arbitrary commutative monoids.
##
DeclareOperation( "Factors", [ IsRing, IsRingElement ] );


#############################################################################
##
#O  IsAssociated( <R>, <r>, <s> )
#O  IsAssociated( <r>, <s> )
##
##  In the first form `IsAssociated' returns `true' if the two ring elements
##  <r> and <s> are associated in the ring <R> and `false' otherwise.
##  In the second form `IsAssociated' returns `true' if the two ring elements
##  <r> and <s> are associated in their default ring (see "DefaultRing") and
##  `false' otherwise.
##
##  Two elements $r$ and $s$ of a ring $R$ are called *associated* if there
##  is a unit $u$ of $R$ such that $r u = s$.
##
DeclareOperation( "IsAssociated", [ IsRing, IsRingElement, IsRingElement ] );


#############################################################################
##
#O  Associates( <R>, <r> )
#O  Associates( <r> )
##
##  In the first form `Associates' returns the set of associates of <r> in
##  the ring <R>.
##  In the second form `Associates' returns the set of associates of the
##  ring element <r> in its default ring (see "DefaultRing").
##
##  Two elements $r$ and $s$ of a ring $R$ are called *associated* if there
##  is a unit $u$ of $R$ such that $r u = s$.
##
DeclareOperation( "Associates",
    [ IsRing, IsRingElement ] );


#############################################################################
##
#O  IsUnit( <R>, <r> )  . . . . . . . . .  check whether <r> is a unit in <R>
#O  IsUnit( <r> ) . . . . . . check whether <r> is a unit in its default ring
##
##  In the first form `IsUnit' returns `true' if <r> is a unit in the ring
##  <R>.
##  In the second form `IsUnit' returns `true' if the ring element <r> is a
##  unit in its default ring (see "DefaultRing").
##
##  An element $r$ is called a *unit* in a ring $R$, if $r$ has an inverse in
##  $R$.
##
##  `IsUnit' may call `Quotient'.
#T really?
##
DeclareOperation( "IsUnit", [ IsRing, IsRingElement ] );


#############################################################################
##
#O  InterpolatedPolynomial( <R>, <x>, <y> ) . . . . . . . . . . interpolation
##
##  `InterpolatedPolynomial' returns, for given lists <x>, <y> of elements in
##  a ring <R> of the same length $n$, say, the unique  polynomial of  degree
##  less than $n$ which has value <y>[$i$] at <x>[$i$], 
##  for all $i\in\{1,\ldots,n\}$. 
##  Note that the elements in <x> must be distinct.
##
DeclareOperation( "InterpolatedPolynomial",
    [ IsRing, IsHomogeneousList, IsHomogeneousList ] );


#############################################################################
##
#O  Quotient( <R>, <r>, <s> )
#O  Quotient( <r>, <s> )
##
##  In the first form `Quotient' returns the quotient of the two ring
##  elements <r> and <s> in the ring <R>.
##  In the second form `Quotient' returns the quotient of the two ring
##  elements <r> and <s> in their default ring.
##  It returns `fail' if the quotient does not exist in the respective ring.
##
##  (To perform the division in the quotient field of a ring, use the
##  quotient operator `/'.)
##
DeclareOperation( "Quotient", [ IsRing, IsRingElement, IsRingElement ] );


#############################################################################
##
#O  StandardAssociate( <R>, <r> )
#O  StandardAssociate( <r> )
##
##  In the first form `StandardAssociate' returns the standard associate of
##  the ring element <r> in the ring <R>.
##  In the second form `StandardAssociate' returns the standard associate of
##  the ring element <r> in its default ring (see "DefaultRing").
##
##  The *standard associate* of a ring element $r$ of $R$ is an associated
##  element of $r$ which is, in a ring dependent way, distinguished among the
##  set of associates of $r$.
##  For example, in the ring of integers the standard associate is the
##  absolute value.
##
DeclareOperation( "StandardAssociate", [ IsRing, IsRingElement ] );


#############################################################################
##
#O  IsPrime( <R>, <r> )
#O  IsPrime( <r> )
##
##  In the first form `IsPrime' returns `true' if the ring element <r> is a
##  prime in the ring <R> and `false' otherwise.
##  In the second form `IsPrime' returns `true' if the ring element <r> is a
##  prime in its default ring (see "DefaultRing") and `false' otherwise.
##
##  An element $r$ of a ring $R$ is called *prime* if for each pair $s$ and
##  $t$ such that $r$ divides $s t$ the element $r$ divides either $s$ or
##  $t$.
##  Note that there are rings where not every irreducible element
##  (see "IsIrreducibleRingElement") is a prime.
##
DeclareOperation( "IsPrime", [ IsRing, IsRingElement ] );


#############################################################################
##
#O  IsIrreducibleRingElement( <R>, <r> )
#O  IsIrreducibleRingElement( <r> )
##
##  In the first form `IsIrreducibleRingElement' returns `true' if the ring
##  element <r> is irreducible in the ring <R> and `false' otherwise.
##  In the second form `IsIrreducibleRingElement' returns `true' if the ring
##  element <r> is irreducible in its default ring (see "DefaultRing") and
##  `false' otherwise.
##
##  An element $r$ of a ring $R$ is called *irreducible* if $r$ is not a
##  unit in $R$ and if there is no nontrivial factorization of $r$ in $R$,
##  i.e., if there is no representation of $r$ as product $s t$ such that
##  neither $s$ nor $t$ is a unit (see "IsUnit").
##  Each prime element (see "IsPrime") is irreducible.
##
DeclareOperation( "IsIrreducibleRingElement", [ IsRing, IsRingElement ] );


#############################################################################
##
#O  EuclideanDegree( <R>, <r> )
#O  EuclideanDegree( <r> )
##
##  In the first form `EuclideanDegree' returns the Euclidean degree of the
##  ring element in the ring <R>.
##  In the second form `EuclideanDegree' returns the Euclidean degree of the
##  ring element <r> in its default ring.
##  <R> must of course be a Euclidean ring (see "IsEuclideanRing").
##
DeclareOperation( "EuclideanDegree", [ IsEuclideanRing, IsRingElement ] );


#############################################################################
##
#O  EuclideanRemainder( <R>, <r>, <m> )
#O  EuclideanRemainder( <r>, <m> )
##
##  In the first form `EuclideanRemainder' returns the remainder of the ring
##  element <r> modulo the ring element <m> in the ring <R>.
##  In the second form `EuclideanRemainder' returns the remainder of the ring
##  element <r> modulo the ring element <m> in their default ring.
##  The ring <R> must be a Euclidean ring (see "IsEuclideanRing") otherwise
##  an error is signalled.
##
DeclareOperation( "EuclideanRemainder",
    [ IsEuclideanRing, IsRingElement, IsRingElement ] );


#############################################################################
##
#O  EuclideanQuotient( <R>, <r>, <m> )
#O  EuclideanQuotient( <r>, <m> )
##
##  In the first form `EuclideanQuotient' returns the Euclidean quotient of
##  the ring elements <r> and <m> in the ring <R>.
##  In the second form `EuclideanQuotient' returns the Euclidean quotient of
##  the ring elements <r> and <m> in their default ring.
##  The ring <R> must be a Euclidean ring (see "IsEuclideanRing") otherwise
##  an error is signalled.
##
DeclareOperation( "EuclideanQuotient",
    [ IsEuclideanRing, IsRingElement, IsRingElement ] );


#############################################################################
##
#O  QuotientRemainder( <R>, <r>, <m> )
#O  QuotientRemainder( <r>, <m> )
##
##  In the first form `QuotientRemainder' returns the Euclidean quotient
##  and the Euclidean remainder of the ring elements <r> and <m> in the ring
##  <R>.
##  In the second form `QuotientRemainder' returns the Euclidean quotient and
##  the Euclidean remainder of the ring elements <r> and <m> in their default
##  ring as pair of ring elements.
##  The ring <R> must be a Euclidean ring (see "IsEuclideanRing") otherwise
##  an error is signalled.
##
DeclareOperation( "QuotientRemainder",
    [ IsRing, IsRingElement, IsRingElement ] );


#############################################################################
##
#O  QuotientMod( <R>, <r>, <s>, <m> )
#O  QuotientMod( <r>, <s>, <m> )
##
##  In the first form `QuotientMod' returns the quotient of the ring
##  elements <r> and <s> modulo the ring element <m> in the ring <R>.
##  In the second form `QuotientMod' returns the quotient of the ring elements
##  <r> and  <s> modulo the ring element <m> in their default ring (see
##  "DefaultRing").
##  <R> must be a Euclidean ring (see "IsEuclideanRing") so that
##  `EuclideanRemainder' (see "EuclideanRemainder") can be applied.
##  If the modular quotient does not exist, `fail' is returned.
##
##  The quotient $q$ of $r$ and $s$ modulo $m$ is an element of $R$ such that
##  $q s = r$ modulo $m$, i.e., such that $q s - r$ is divisible by $m$ in
##  $R$ and that $q$ is either 0 (if $r$ is divisible by $m$) or the
##  Euclidean degree of $q$ is strictly smaller than the Euclidean degree of
##  $m$.
##
DeclareOperation( "QuotientMod",
    [ IsRing, IsRingElement, IsRingElement, IsRingElement ] );


#############################################################################
##
#O  PowerMod( <R>, <r>, <e>, <m> )
#O  PowerMod( <r>, <e>, <m> )
##
##  In the first form `PowerMod' returns the <e>-th power of the ring
##  element <r> modulo the ring element <m> in the ring <R>.
##  In the second form `PowerMod' returns the <e>-th power of the ring
##  element <r> modulo the ring element <m> in their default ring (see
##  "DefaultRing").
##  <e> must be an integer.
##  <R> must be a Euclidean ring (see "IsEuclideanRing") so that
##  `EuclideanRemainder' (see "EuclideanRemainder") can be applied to its
##  elements.
##
##  If $e$ is positive the result is $r^e$ modulo $m$.
##  If $e$ is negative then `PowerMod' first tries to find the inverse of $r$
##  modulo $m$, i.e., $i$ such that $i r = 1$ modulo $m$.
##  If the inverse does not exist an error is signalled.
##  If the inverse does exist `PowerMod' returns
##  `PowerMod( <R>, <i>, -<e>, <m> )'.
##
##  `PowerMod' reduces the intermediate values modulo $m$, improving
##  performance drastically when <e> is large and <m> small.
##
DeclareOperation( "PowerMod",
    [ IsRing, IsRingElement, IsInt, IsRingElement ] );


#############################################################################
##
#F  Gcd( <R>, <r1>, <r2>, ... )
#F  Gcd( <R>, <list> )
#F  Gcd( <r1>, <r2>, ... )
#F  Gcd( <list> )
##
##  In the first two forms `Gcd' returns the greatest common divisor of the
##  ring elements `<r1>, <r2>, ...' resp. of the ring elements in the list
##  <list> in the ring <R>.
##  In the second two forms `Gcd' returns the greatest common divisor of the
##  ring elements `<r1>, <r2>, ...' resp. of the ring elements in the list
##  <list> in their default ring (see "DefaultRing").
##  <R> must be a Euclidean ring (see "IsEuclideanRing") so that
##  `QuotientRemainder' (see "QuotientRemainder") can be applied to its
##  elements.
##  `Gcd' returns the standard associate (see "StandardAssociate") of the
##  greatest common divisors.
##
##  A greatest common divisor of the elements $r_1, r_2, \ldots$ of the
##  ring $R$ is an element of largest Euclidean degree (see
##  "EuclideanDegree") that is a divisor of $r_1, r_2, \ldots$ .
##
##  We define 
##  `Gcd( <r>, $0_{<R>}$ ) = Gcd( $0_{<R>}$, <r> ) = StandardAssociate( <r> )'
##  and `Gcd( $0_{<R>}$, $0_{<R>}$ ) = $0_{<R>}$'.
##
DeclareGlobalFunction( "Gcd" );


#############################################################################
##
#O  GcdOp( <R>, <r>, <s> )
#O  GcdOp( <r>, <s> )
##
##  `GcdOp' is the operation to compute the greatest common divisor of
##  two ring elements <r>, <s> in the ring <R> or in their default ring.
##

DeclareOperation( "GcdOp",
    [ IsEuclideanRing, IsRingElement, IsRingElement ] );


#############################################################################
##
#F  GcdRepresentation( <R>, <r1>, <r2>, ... )
#F  GcdRepresentation( <R>, <list> )
#F  GcdRepresentation( <r1>, <r2>, ... )
#F  GcdRepresentation( <list> )
##
##  In the first two forms `GcdRepresentation' returns the representation of
##  the greatest common divisor of the ring elements `<r1>, <r2>, ...' resp.
##  of the ring elements in the list <list> in the ring <R>.
##  In the second two forms `GcdRepresentation' returns the representation of
##  the greatest common divisor of the ring elements `<r1>, <r2>, ...' resp.
##  of the ring elements in the list <list> in their default ring
##  (see "DefaultRing").
##  <R> must be a Euclidean ring (see "IsEuclideanRing") so that
##  `Gcd' (see "Gcd") can be applied to its elements.
##
##  The representation of the gcd  $g$ of  the elements $r_1, r_2, \ldots$
##  of a ring $R$ is a list of ring elements $s_1, s_2, \ldots$ of $R$,
##  such that $g = s_1 r_1 + s_2  r_2 + \cdots$.
##  That this representation exists can be shown using the Euclidean
##  algorithm, which in fact can compute those coefficients.
##
DeclareGlobalFunction( "GcdRepresentation" );


#############################################################################
##
#O  GcdRepresentationOp( <R>, <r>, <s> )
#O  GcdRepresentationOp( <r>, <s> )
##
##  `GcdRepresentationOp' is the operation to compute the representation of
##  the greatest common divisor of two ring elements <r>, <s> in the ring
##  <R> or in their default ring, respectively.
##
DeclareOperation( "GcdRepresentationOp",
    [ IsEuclideanRing, IsRingElement, IsRingElement ] );


#############################################################################
##
#F  Lcm( <R>, <r1>, <r2>, ... )
#F  Lcm( <R>, <list> )
#F  Lcm( <r1>, <r2>, ... )
#F  Lcm( <list> )
#T optional ``1'' in list version?
##
##  In the first two forms `Lcm' returns the least common multiple of the
##  ring elements `<r1>, <r2>, ...' resp. of the ring elements in the list
##  <list> in the ring <R>.
##  In the second two forms `Lcm' returns the least common multiple of the
##  ring elements `<r1>, <r2>, ...' resp. of the ring elements in the list
##  <list> in their default ring (see~"DefaultRing").
##
##  <R> must be a Euclidean ring (see~"IsEuclideanRing") so that `Gcd'
##  (see~"Gcd") can be applied to its elements.
##  `Lcm' returns the standard associate (see~"StandardAssociate") of the
##  least common multiples.
##
##  A least common multiple of the elements $r_1, r_2, \ldots$ of the
##  ring $R$ is an element of smallest Euclidean degree
##  (see~"EuclideanDegree") that is a multiple of $r_1, r_2, \ldots$ .
##
##  We define 
##  `Lcm( <r>, $0_{<R>}$ ) = Lcm( $0_{<R>}$, <r> ) = StandardAssociate( <r> )'
##  and `Lcm( $0_{<R>}$, $0_{<R>}$ ) = $0_{<R>}$'.
##
##  `Lcm' uses the equality $lcm(m,n) = m\*n / gcd(m,n)$ (see~"Gcd").
##
DeclareGlobalFunction( "Lcm" );


#############################################################################
##
#O  LcmOp( <R>, <r>, <s> )
#O  LcmOp( <r>, <s> )
##
##  `LcmOp' is the operation to compute the least common multiple of
##  two ring elements <r>, <s> in the ring <R> or in their default ring,
##  respectively.
##
DeclareOperation( "LcmOp",
    [ IsEuclideanRing, IsRingElement, IsRingElement ] );


#############################################################################
##
#O  PadicValuation( <r>, <p> )
##
##  `PadicValuation' is the operation to compute the <p>-adic valuation of
##  a ring element <r>.
##
DeclareOperation( "PadicValuation", [ IsRingElement, IsPosInt ] );

#############################################################################
##
#E