1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
|
#############################################################################
##
#W semiring.gd GAP library Thomas Breuer
##
#H @(#)$Id: semiring.gd,v 4.5 2002/04/15 10:05:22 sal Exp $
##
#Y Copyright (C) 1999, Lehrstuhl D fuer Mathematik, RWTH Aachen, Germany
#Y (C) 1999 School Math and Comp. Sci., University of St. Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## This file declares the operations for semirings.
##
Revision.semiring_gd :=
"@(#)$Id: semiring.gd,v 4.5 2002/04/15 10:05:22 sal Exp $";
#############################################################################
##
#P IsLDistributive( <C> )
##
## is `true' if the relation $a * ( b + c ) = ( a * b ) + ( a * c )$
## holds for all elements $a$, $b$, $c$ in the collection <C>,
## and `false' otherwise.
##
DeclareProperty( "IsLDistributive", IsRingElementCollection );
InstallSubsetMaintenance( IsLDistributive,
IsRingElementCollection and IsLDistributive,
IsRingElementCollection );
InstallFactorMaintenance( IsLDistributive,
IsRingElementCollection and IsLDistributive,
IsObject,
IsRingElementCollection );
#############################################################################
##
#P IsRDistributive( <C> )
##
## is `true' if the relation $( a + b ) * c = ( a * c ) + ( b * c )$
## holds for all elements $a$, $b$, $c$ in the collection <C>,
## and `false' otherwise.
##
DeclareProperty( "IsRDistributive", IsRingElementCollection );
InstallSubsetMaintenance( IsRDistributive,
IsRingElementCollection and IsRDistributive,
IsRingElementCollection );
InstallFactorMaintenance( IsRDistributive,
IsRingElementCollection and IsRDistributive,
IsObject,
IsRingElementCollection );
#############################################################################
##
#P IsDistributive( <C> )
##
## is `true' if the collection <C> is both left and right distributive,
## and `false' otherwise.
##
DeclareSynonymAttr( "IsDistributive", IsLDistributive and IsRDistributive );
#############################################################################
##
#P IsSemiring( <S> )
##
## A *semiring* in {\GAP} is an additive magma (see~"IsAdditiveMagma")
## that is also a magma (see~"IsMagma"),
## such that addition `+' and multiplication `\*' are distributive.
##
## The multiplication need *not* be associative (see~"IsAssociative").
## For example, a Lie algebra (see~"Lie Algebras") is regarded as a
## semiring in {\GAP}.
## A semiring need not have an identity and a zero element,
## see~"IsSemiringWithOne" and "IsSemiringWithZero".
##
DeclareSynonymAttr( "IsSemiring",
IsAdditiveMagma and IsMagma and IsDistributive );
#############################################################################
##
#P IsSemiringWithOne( <S> )
##
## A *semiring-with-one* in {\GAP} is a semiring (see~"IsSemiring")
## that is also a magma-with-one (see~"IsMagmaWithOne").
##
## Note that a semiring-with-one need not contain a zero element
## (see~"IsSemiringWithZero").
##
DeclareSynonymAttr( "IsSemiringWithOne",
IsAdditiveMagma and IsMagmaWithOne and IsDistributive );
#############################################################################
##
#P IsSemiringWithZero( <S> )
##
## A *semiring-with-zero* in {\GAP} is a semiring (see~"IsSemiring")
## that is also an additive magma-with-zero (see~"IsAdditiveMagmaWithZero").
##
## Note that a semiring-with-zero need not contain an identity element
## (see~"IsSemiringWithOne").
##
DeclareSynonymAttr( "IsSemiringWithZero",
IsAdditiveMagmaWithZero and IsMagma and IsDistributive );
#############################################################################
##
#P IsSemiringWithOneAndZero( <S> )
##
DeclareSynonymAttr( "IsSemiringWithOneAndZero",
IsAdditiveMagmaWithZero and IsMagmaWithOne and IsDistributive );
#############################################################################
##
#A GeneratorsOfSemiring( <S> )
##
## `GeneratorsOfSemiring' returns a list of elements such that
## the semiring <S> is the closure of these elements
## under addition and multiplication.
##
DeclareAttribute( "GeneratorsOfSemiring", IsSemiring );
#############################################################################
##
#A GeneratorsOfSemiringWithOne( <S> )
##
## `GeneratorsOfSemiringWithOne' returns a list of elements such that
## the semiring <R> is the closure of these elements
## under addition, multiplication, and taking the identity element
## `One( <S> )'.
##
## <S> itself need *not* be known to be a semiring-with-one.
##
DeclareAttribute( "GeneratorsOfSemiringWithOne", IsSemiringWithOne );
#############################################################################
##
#A GeneratorsOfSemiringWithZero( <S> )
##
## `GeneratorsOfSemiringWithZero' returns a list of elements such that
## the semiring <S> is the closure of these elements
## under addition, multiplication, and taking the zero element
## `Zero( <S> )'.
##
## <S> itself need *not* be known to be a semiring-with-zero.
##
DeclareAttribute( "GeneratorsOfSemiringWithZero", IsSemiringWithZero );
#############################################################################
##
#A GeneratorsOfSemiringWithOneAndZero( <S> )
##
DeclareAttribute( "GeneratorsOfSemiringWithOneAndZero",
IsSemiringWithOneAndZero );
#############################################################################
##
#A AsSemiring( <C> )
##
## If the elements in the collection <C> form a semiring
## then `AsSemiring' returns this semiring,
## otherwise `fail' is returned.
##
DeclareAttribute( "AsSemiring", IsRingElementCollection );
#############################################################################
##
#A AsSemiringWithOne( <C> )
##
## If the elements in the collection <C> form a semiring-with-one
## then `AsSemiringWithOne' returns this semiring-with-one,
## otherwise `fail' is returned.
##
DeclareAttribute( "AsSemiringWithOne", IsRingElementCollection );
#############################################################################
##
#A AsSemiringWithZero( <C> )
##
## If the elements in the collection <C> form a semiring-with-zero
## then `AsSemiringWithZero' returns this semiring-with-zero,
## otherwise `fail' is returned.
##
DeclareAttribute( "AsSemiringWithZero", IsRingElementCollection );
#############################################################################
##
#A AsSemiringWithOneAndZero( <C> )
##
## If the elements in the collection <C> form a semiring-with-one-and-zero
## then `AsSemiringWithOneAndZero' returns this semiring-with-one-and-zero,
## otherwise `fail' is returned.
##
DeclareAttribute( "AsSemiringWithOneAndZero", IsRingElementCollection );
#############################################################################
##
#O ClosureSemiring( <S>, <s> )
#O ClosureSemiring( <S>, <T> )
##
## For a semiring <S> and either an element <s> of its elements family
## or a semiring <T>,
## `ClosureSemiring' returns the semiring generated by both arguments.
##
DeclareOperation( "ClosureSemiring", [ IsSemiring, IsObject ] );
#############################################################################
##
#O SemiringByGenerators( <C> ) . . . semiring gener. by elements in a coll.
##
## `SemiringByGenerators' returns the semiring generated by the elements
## in the collection <C>,
## i.~e., the closure of <C> under addition and multiplication.
##
DeclareOperation( "SemiringByGenerators", [ IsCollection ] );
#############################################################################
##
#O SemiringWithOneByGenerators( <C> )
##
## `SemiringWithOneByGenerators' returns the semiring-with-one generated by
## the elements in the collection <C>, i.~e., the closure of <C> under
## addition, multiplication, and taking the identity of an element.
##
DeclareOperation( "SemiringWithOneByGenerators", [ IsCollection ] );
#############################################################################
##
#O SemiringWithZeroByGenerators( <C> )
##
DeclareOperation( "SemiringWithZeroByGenerators", [ IsCollection ] );
#############################################################################
##
#O SemiringWithOneAndZeroByGenerators( <C> )
##
DeclareOperation( "SemiringWithOneAndZeroByGenerators", [ IsCollection ] );
#############################################################################
##
#F Semiring( <r> ,<s>, ... ) . . . . . . semiring generated by a collection
#F Semiring( <C> ) . . . . . . . . . . . semiring generated by a collection
##
## In the first form `Semiring' returns the smallest semiring that
## contains all the elements <r>, <s>... etc.
## In the second form `Semiring' returns the smallest semiring that
## contains all the elements in the collection <C>.
## If any element is not an element of a semiring or if the elements lie in
## no common semiring an error is raised.
##
DeclareGlobalFunction( "Semiring" );
#############################################################################
##
#F SemiringWithOne( <r>, <s>, ... )
#F SemiringWithOne( <C> )
##
## In the first form `SemiringWithOne' returns the smallest
## semiring-with-one that contains all the elements <r>, <s>... etc.
## In the second form `SemiringWithOne' returns the smallest
## semiring-with-one that contains all the elements in the collection <C>.
## If any element is not an element of a semiring or if the elements lie in
## no common semiring an error is raised.
##
DeclareGlobalFunction( "SemiringWithOne" );
#############################################################################
##
#F SemiringWithZero( <r>, <s>, ... )
#F SemiringWithZero( <C> )
##
DeclareGlobalFunction( "SemiringWithZero" );
#############################################################################
##
#F SemiringWithOneAndZero( <r>, <s>, ... )
#F SemiringWithOneAndZero( <C> )
##
DeclareGlobalFunction( "SemiringWithOneAndZero" );
#############################################################################
##
#F Subsemiring( <S>, <gens> )
#F SubsemiringNC( <S>, <gens> )
##
DeclareGlobalFunction( "Subsemiring" );
DeclareGlobalFunction( "SubsemiringNC" );
#############################################################################
##
#F SubsemiringWithOne( <S>, <gens> )
#F SubsemiringWithOneNC( <S>, <gens> )
##
DeclareGlobalFunction( "SubsemiringWithOne" );
DeclareGlobalFunction( "SubsemiringWithOneNC" );
#############################################################################
##
#F SubsemiringWithZero( <S>, <gens> )
#F SubsemiringWithZeroNC( <S>, <gens> )
##
DeclareGlobalFunction( "SubsemiringWithZero" );
DeclareGlobalFunction( "SubsemiringWithZeroNC" );
#############################################################################
##
#F SubsemiringWithOneAndZero( <S>, <gens> )
#F SubsemiringWithOneAndZeroNC( <S>, <gens> )
##
DeclareGlobalFunction( "SubsemiringWithOneAndZero" );
DeclareGlobalFunction( "SubsemiringWithOneAndZeroNC" );
#############################################################################
##
#A CentralIdempotentsOfSemiring( <S> )
##
## For a semiring <S>, this function returns
## a list of central primitive idempotents such that their sum is
## the identity element of <S>.
## Therefore <S> is required to have an identity.
##
DeclareAttribute( "CentralIdempotentsOfSemiring", IsSemiring );
#############################################################################
##
#E
|