File: solmxgrp.gi

package info (click to toggle)
gap 4r4p9-1
  • links: PTS
  • area: main
  • in suites: etch, etch-m68k
  • size: 27,120 kB
  • ctags: 6,735
  • sloc: ansic: 96,692; sh: 3,254; makefile: 319; perl: 11; awk: 6
file content (1156 lines) | stat: -rw-r--r-- 45,864 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
#############################################################################
##
#W  solmxgrp.gi			GAP Library		       Gene Cooperman
#W							     and Scott Murray
##
#H  @(#)$Id: solmxgrp.gi,v 4.16 2002/04/15 10:05:22 sal Exp $
##
#Y  Copyright (C)  1996,  Lehrstuhl D fuer Mathematik,  RWTH Aachen,  Germany
#Y  (C) 1999 School Math and Comp. Sci., University of St.  Andrews, Scotland
#Y  Copyright (C) 2002 The GAP Group
##
##  REFERENCE:
##   E.M. Luks, ``Computing in solvable matrix groups'',
##   Proc. 33^{rd}$ IEEE Foundations of Computer Science (FOCS-33), 1992,
##   pp.~111-120.
##  (group membership and related algorithms (Size, Random, Enumerator, etc.)
##   currently implemented through abelian, and nilpotent,
##   will be extended to solvable in next release)
##
##  Cleaning up of code:
##    Testing for Cyclic and QuotientToAdditiveGroup should be
##       combined in routine:  if IsBaseCaseGroup(G) then ...
##    The method, InvariantSubspaceOrCyclicGroup, "for abelian non-char.
##       p-group" is too long and hence should be rewritten.
##
Revision.solmxgrp_gi :=
    "@(#)$Id: solmxgrp.gi,v 4.16 2002/04/15 10:05:22 sal Exp $";

# InfoChain already declared.
#DeclareInfoClass("InfoChain");
# default info level is 0
#SetInfoLevel(InfoChain, 1);

#############################################################################
##
#F  SetIsCyclicWithSize( <G>, <gen>, <size> )
##
InstallGlobalFunction( SetIsCyclicWithSize,
    function(G, gen, size)
        if size = 1 then SetIsTrivial(G,true); return; fi;
        if IsOne(gen) then Error("internal error"); fi;
        SetIsCyclic(G,true);
        SetGeneratorOfCyclicGroup(G,gen);
        SetSize(G,size);
        IsPGroup(G); # It's cheap to test it now.
    end );

#############################################################################
##
#F  ConjugateMatrixActionToLinearAction( <g> )
##
InstallGlobalFunction( ConjugateMatrixActionToLinearAction, function(g)
    local i, j, d, ginv, zero, one, basisMatrix, newLinearMatrix;
    if not IsMatrix(g) then Error("Invalid input"); fi;
    d := Length(g);
    basisMatrix := List( [1..d], x->List([1..d],x->Zero(g[1][1])) );
    zero := Zero(g[1][1]);
    one := One(DefaultFieldOfMatrix(g));
    newLinearMatrix := [];
    ginv := g^(-1);
    for i in [1..d] do
        for j in [1..d] do
            basisMatrix[i][j] := one;
            Add( newLinearMatrix, Flat(ginv * basisMatrix * g) );
            basisMatrix[i][j] := zero;
        od;
    od;
    # return transpose for action, matrix * vec
    return TransposedMat( newLinearMatrix );
end );            

#############################################################################
##
#F  ConjugateMatrixGroupToLinearGroup( <G> )
##
ConjugateMatrixGroupToLinearGroup := function( G )
    return List( GeneratorsOfGroup( G ), g->[g, ConjugateMatrixActionToLinearAction(g) ] );
end;

#############################################################################
#############################################################################
##
##  Abelian matrix groups
##
#############################################################################
#############################################################################

#############################################################################
##
#M  MakeHomChain( <G> )
##
##  
##
InstallMethod( MakeHomChain, "for arbitrary group", true,
        [ IsGroup ], 0,
    function( G )
        # Test abelian first.  It's cheaper.
        if IsFFEMatrixGroup(G) and IsAbelian(G) then
            return MakeHomChain(G);
        elif IsFFEMatrixGroup(G) and IsNilpotentGroup(G) then
            return MakeHomChain(G);
        fi;
        Error("MakeHomChain currently implemented only for nilpotent groups");
    end );
InstallMethod( MakeHomChain, "for nilpotent group with chain", true,
               [ IsGroup and IsNilpotentGroup and HasChainSubgroup ], 0,
    G -> ChainSubgroup(G) );
InstallMethod( MakeHomChain, "for abelian group", true,
               [ IsGroup and IsAbelian ], 0,
    function( G )
        local PowerFnc, SetPGroup, pGroups, pgroupGens, otherPGens, first, pow, H;
        PowerFnc := power -> (g->g^power);
        SetPGroup := function( H, p, exponent)
            SetIsPGroup(H, true );
            SetPrimePGroup( H, p );
            SetExponent( H, exponent );
            if Length(GeneratorsOfGroup(H)) = 1 then
                SetIsCyclicWithSize( H, GeneratorsOfGroup(H)[1], exponent );
            fi;
            # UseSubsetRelation( G, H );
            return H;
        end;
        #Returns list of triples, [p,pgroupGens,exponentOfPGroup]
        pgroupGens := PGroupGeneratorsOfAbelianGroup( G );
        if Length(pgroupGens) = 0 then
            if not IsTrivial(G) then Error("internal error: not triv"); fi;
            SetIsTrivial( G, true );
            Info(InfoChain, 1, "Abelian group is trivial");
            return G;
        fi;
        if Length(pgroupGens) = 1 then
            SetPGroup( G, pgroupGens[1][1], pgroupGens[1][3] );
            Info(InfoChain, 1, "Abelian group is a p-group");
            return MakeHomChain( G );
        fi;
        Info(InfoChain, 1, "Making abelian chain as direct product of ",
                           Length(pgroupGens), " p-groups:  ",
                           List(pgroupGens,x->x[1]));
        pGroups := List( pgroupGens,
                         x -> SetPGroup(SubgroupNC(G,x[2]), x[1], x[3]) );

        # Be nice and tell GAP what we discovered, but don't pay cost
        #  of creating all the homomorphisms for embeddings and projections
        # If GAP knows about p-groups, it can do the homomorphisms on demand.
        first := [1];
        ForAll( pgroupGens,
                function( x ) Add( first, first[Length(first)]+Length(x[2]) );
                              return true;
                end );
        # MODIFYING ORIGINAL GENERATORS OF G; MAKE SURE THIS IS SHALLOW COPY
        # MySetGeneratorsOfGroup( G, Concatenation( List(pgroupGens, x->x[2]) ) );
        G!.PGroupGenerators := Concatenation( List(pgroupGens, x->x[2]) );

        while Length(pgroupGens) > 1 do
            SetDirectProductInfo( G,
                rec( groups := pGroups, first := first,
                     embeddings := [], projections := [] ) );
            otherPGens := pgroupGens{[2..Length(pgroupGens)]};
            if Length(pgroupGens) > 2 then
                H := SubgroupNC(G, Concatenation(List(otherPGens, x->x[2])));
            else H := pGroups[Length(pGroups)];
            fi;
            UseSubsetRelation( G, H );
            pow := ChineseRem( List(pgroupGens,x->x[3]),
                               Concatenation([1], List(otherPGens,x->0)) );
            if pow = 1 then Error("pow = 1, identity projection"); fi;
            ChainSubgroupByProjectionFunction( G, H, pGroups[1],
                                              PowerFnc(pow) );
            # This should be inside ChainSubgroupByProjectionFunction()
            MakeHomChain( QuotientGroup( Transversal( H ) ) );
            G := H;
            pgroupGens := otherPGens;
            pGroups := pGroups{[2..Length(pGroups)]};
            first := first{Flat([1,[3..Length(first)]])} + 1 - first[2];
            first[1] := 1;
        od;
        return MakeHomChain(H);
    end );

#############################################################################
##
#M  BasisOfHomCosetAddMatrixGroup( <> )
##
## GAP has V := VectorSpace(FieldOfMatrixGroup(quo), GeneratorsOfGroup(quo));
##    but how does one bootstrap up to get Dimension(V) and Basis(V)?
##    This may go away when there's a clearer way to do it in GAP.
##    This should work for IsAdditiveQuotientGroup, IsAdditiveGroup,
##    and IsFFEMatrixGroup
## LeftModuleByGenerators() also works, but again, GAP refuses to find
##     a basis for it.
## SemiEchelonBasis(V) fails with UseSubsetRelation(arg[1], S);
##
InstallGlobalFunction( BasisOfHomCosetAddMatrixGroupFnc,
function( G )
     local gens, oneOfGroup, g, v, c, basis, residue, firsts, tmp,
           b, i, fld, one, zero, fldSize, MyIntFFE, MyAdditiveOrder;
     # A better way (valid for additive groups, too) is:
     # field := Field( GeneratorsOfNearAdditiveGroup(G));
     # one := One(field);
     # why does FieldOfMatrixGroup work? IsFFEMatrixGroup(G)?
     if IsFFEMatrixGroup(G) then
         gens := GeneratorsOfGroup(G);
         oneOfGroup := One(G);
         fld := FieldOfMatrixGroup(G);
     elif IsAdditiveGroup(G) and HasGeneratorsOfNearAdditiveGroup(G) then
         gens := GeneratorsOfNearAdditiveGroup(G);
         oneOfGroup := Zero(G);
         if not IsEmpty(gens) then fld := Field(Flat(gens));
         else fld := Field(Flat(One(G)));
         fi;
     else Error("can't handle this case");
     fi;
     one := One(fld);
     zero := Zero(fld);
     fldSize := Size(fld);
     # HACK:  until GAP fixes IntFFE(); returns fail if impossible (not error)
     MyIntFFE := f -> First([0..fldSize], i -> f=i*one);
     basis := [];
     residue := [];
     firsts := [];
     for g in gens do
         v := Flat(g);
         for i in [1..Length(basis)] do
             c := PositionNot( v, zero );
             if c > Length(v) then break; fi; # g is now zero vector
             b := Flat(basis[i]); # for finding b[c];  Faster without Flat()
             c := PositionNot( b, zero );
             c := MyIntFFE( v[c] / b[c] );
             if c = fail then # then switch gen with current basis vector
                 tmp := g; g := basis[i]; basis[i] := tmp;
                 tmp := v; v := b; b[i] := tmp;
                 c := MyIntFFE( v[c] / b[c] );
                 if c = fail then Error("internal error"); fi;
             fi;
             g := g - c * basis[i];
             v := Flat(g);
         od;
         if g = oneOfGroup then Add(residue,g); # One(G) is 0 matrix here
         else Add(basis,g);
         fi;
     od;
     Sort(basis);  # GAP Sort works by side effect, only.
     basis := Reversed(basis);
     if IsFFEMatrixGroup(G) or IsQuotientToAdditiveGroup(G) then
         SetSize( G, Product( basis, Order ) );
     elif IsAdditiveGroup(G) then # What's GAP for Order() of elt in add. grp?
         #GAP should have Size() method for IsAdditiveGroup as below:
         # SizeOfChainOfGroup() calls this for now.
         MyAdditiveOrder := function(g)
             if IsZero(g) then return 1;
             else return Size(DefaultFieldOfMatrix(g));
             fi;
         end;
         SetSize( G, Product( basis, MyAdditiveOrder ) );
     fi;
     firsts := List(basis, v->PositionNot(v,zero));
     return rec(basis := basis, firsts := firsts, residue := residue);
end );

# This should eventually generalize to something like:
#    BasisOfAdditiveMatrixGroup, for which both of these are example.
InstallMethod( BasisOfHomCosetAddMatrixGroup, "by linear algebra", true,
    [ IsGroup and IsQuotientToAdditiveGroup ], 0,
    BasisOfHomCosetAddMatrixGroupFnc );
InstallMethod( BasisOfHomCosetAddMatrixGroup, "by linear algebra", true,
    [ IsAdditiveGroup ], 0, BasisOfHomCosetAddMatrixGroupFnc );

#############################################################################
##
#F  SiftVector( <basisVecList>, <vec> )
#F  SiftVector( <basisVecList> )
##
InstallGlobalFunction( SiftVector, function(arg)
    local basisVecs, b, firsts, zero, one, fldSize, MyIntFFE, fnc;
    # HACK:  until GAP fixes IntFFE(); returns fail if impossible (not error)
    MyIntFFE := f -> First([0..fldSize], i -> f=i*one);
    basisVecs := arg[1];
    b := List(basisVecs, Flat);
    zero := Zero(b[1][1]);
    one := One(b[1][1]);
    fldSize := Size(Field(Flat(b)));
    firsts := List( b, i->PositionNot(i,zero) );
    if 0 in firsts then Error("internal error"); fi;

    fnc := function(vec)
        local i, c, v;
        for i in [1..Length(b)] do
            v := Flat(vec);  # time for Flat dominated by arithmetic below
            c := MyIntFFE( v[firsts[i]] / b[i][firsts[i]] );
            if c = fail then return fail;
            else vec := vec - c * basisVecs[i];
            fi;
        od;
        return vec;
    end;

    if Length(arg)=2 then return fnc(arg[2]); else return fnc; fi;
end );

#############################################################################
##
#M  SiftFunction( <> )
##
##  
##
InstallMethod( SiftFunction,
    "for abelian quotient to additive group (by lin. algebra)", true,
    [ IsGroup and IsFFEMatrixGroup and IsQuotientToAdditiveGroup ], 0,
    G -> SiftVector( BasisOfHomCosetAddMatrixGroup(G).basis ) );

#############################################################################
##
#M  MakeHomChain( <> )
##
##  
##
InstallMethod( MakeHomChain, "by linear algebra", true,
    [ IsGroup and IsFFEMatrixGroup and IsQuotientToAdditiveGroup ], 0,
function( G )
     local SiftFnc;
     SiftFnc := SiftFunction(G);
     Info(InfoChain, 2, "Extending chain by kernel of abelian image.");
     # This is different from homomorphism transversal.
     # In hom transv, we induce a quotient group
     # Here we want a simple sift, in fact from quotient group to ord. grp.
     ChainSubgroupBySiftFunction( Source(G),
     KernelOfMultiplicativeGeneralMapping(G),
                         g->SourceElt(SiftFnc(HomCoset(Homomorphism(G),g))) );
     if HasSize(G) then SetSize(TransversalOfChainSubgroup(Source(G)), Size(G)); fi;
     if IsTrivial(KernelOfMultiplicativeGeneralMapping(G)) then return
     KernelOfMultiplicativeGeneralMapping(G); fi;
     return MakeHomChain(KernelOfMultiplicativeGeneralMapping(G));
end );

##  Currently, Cyclic and QuotientToAdditiveGroup are manageable.
##  If the argument, G, is already a manageable group, it returns G, itself.
ManageableQuotientOfAbelianPGroup :=
    function( G )
        local subspace, hom, V, fnc, kernel, quo, quo2, grp;
        Info(InfoChain, 2, "Making abelian ", PrimePGroup(G), "-group chain");
        if IsQuotientToAdditiveGroup(G) then # base case
            Error("internal error:  base case");
        fi;
        if ForAny(GeneratorsOfGroup(G), IsZero) then
            Error("internal error:  zero matrix");
        fi;
        if not IsPGroup(G) or not IsAbelian(G) then Error("wrong arg"); fi;
        subspace := InvariantSubspaceOrCyclicGroup( G );
        if IsVectorSpace( subspace ) then
          Info(InfoChain, 2, "Invariant subspace of rank ",
                 Dimension(subspace), " in dimension ",
                 Length(GeneratorsOfVectorSpace(subspace)[1]), " found.");
          Info(InfoChain, 2, "Trying action on invariant subspace");
          hom := NaturalHomomorphismByInvariantSubspace
                                                          ( G, subspace );
          if ForAll( GeneratorsOfGroup(G), g -> IsOne(ImageElm(hom,g)) ) then
             Info(InfoChain, 2, "Trying action on quotient of invar. subspace");
             hom := NaturalHomomorphismByFixedPointSubspace
							  ( G, subspace );
          fi;
          if ForAll( GeneratorsOfGroup(G), g -> IsOne(ImageElm(hom,g)) ) then
              Info(InfoChain, 2, "Trying homomorphism to Hom(V,W)");
              hom := NaturalHomomorphismByHomVW( G, subspace );
              Info(InfoChain, 2, "Creating QuotientToAdditiveGroup");
          fi;
          ChainSubgroupByHomomorphism( hom );
          quo := QuotientGroup(TransversalOfChainSubgroup(G));
          # After calling this, we might discover quo is cyclic.
          IsAbelian(quo);  # Tell GAP quo is abelian in case not propagated.
          # MakeHomChain(quo); # this need only be ChainSubgroup(quo);
          if IsQuotientToAdditiveGroup(quo) then return quo; fi;
          quo2 := ManageableQuotientOfAbelianPGroup(quo);
          if HasIsCyclic(quo) and IsCyclic(quo) then
              # MakeHomChain(quo);
              return quo;
          fi;
          return QuotientGroupByChainHomomorphicImage(quo, quo2);
        else
          Info(InfoChain, 2, PrimePGroup(G), "-group is cyclic.");
          if not HasGeneratorOfCyclicGroup(subspace) then
              Error("internal error:  cyclic group missing single generator");
          fi;
          SetIsCyclicWithSize( G, GeneratorOfCyclicGroup(subspace),
                                  Size(subspace) );
          return G;
        fi;
    end;

#############################################################################
##
#M  MakeHomChain( <> )
##
##GDC - Problem:  Really, this should apply only if it's not
##       HomCosetAddRep.  However, ordinary groups are okay.
##       I'd really like a property:  IsFFEMatrixGroup and IsNotHomCosetAddGroup
##
InstallMethod( MakeHomChain, "for abelian p-group", true,
    [ IsGroup and IsFFEMatrixGroup and IsAbelian and IsPGroup ], 0,
    function( G )
        local quo, kernel;
        quo := ManageableQuotientOfAbelianPGroup(G);
        if IsIdenticalObj(quo,G) then # then HasGeneratorOfCyclicGroup(G)
            MakeHomChain(G);
            return quo; # then not a quotient grp
        else
          IsAbelian(quo); # Special Kernel method for abelian grp
          Info(InfoChain, 2, "Finding kernel of quotient group acting on",
                          " subspace of dimension ",
                          DimensionOfMatrixGroup(quo) );
	  # sets KernelOfMultiplicativeGeneralMapping(Homomorphism(quo))
          kernel := KernelOfHomQuotientGroup(quo); 
          # Now that we have the full kernel, make new ChainSubgroup(grp)
          ChainSubgroupByHomomorphism( Homomorphism(quo) );
          if IsTrivial(kernel) then return kernel;
          else return MakeHomChain( kernel );
          fi;
        fi;
    end );

#############################################################################
##
#M  MakeHomChain( <> )
##
##  We need IsFFEMatrixGroup, or we lose to IsFFEMatrixGroup and IsAbelian
##
InstallMethod( MakeHomChain, "for cyclic p-groups", true,
    [ IsGroup and IsFFEMatrixGroup and IsCyclic and IsPGroup ], 0,
    function( G )
        if IsUniformMatrixGroup( G ) or HasGeneratorOfCyclicGroup( G ) then
            return ChainSubgroupBySiftFunction( G, TrivialSubgroup(G),
                                                SiftFunction( G ) );
        else TryNextMethod(); return;
        fi;
    end );


#############################################################################
#############################################################################
##
##  Abelian matrix p-groups:
##
#############################################################################
#############################################################################

#############################################################################
##
#M  InvariantSubspaceOrCyclicGroup( <H> )
##
##  Lemma 4.4 of Luks reference:  returns proper invariant subspace
##     or return isomorphic cyclic group with GeneratorOfCyclicGroup
##     attribute and Size attribute set
##
InstallMethod( InvariantSubspaceOrCyclicGroup, "for abelian group", true,
    [ IsFFEMatrixGroup and IsAbelian ], 0,
    function( H )
        if Length( GeneratorsOfGroup(H) ) = 1 then
            SetIsCyclicWithSize( H, H.1, Order(H.1) );
            return InvariantSubspaceOrCyclicGroup( H );
        else TryNextMethod(); return;
        fi;
    end );
InstallMethod( InvariantSubspaceOrCyclicGroup, "for abelian p-group", true,
    [ IsFFEMatrixGroup and IsAbelian and IsPGroup ], 0,
    function( H )
        IsCharacteristicMatrixPGroup( H );  # Have GAP decide true or false
        return InvariantSubspaceOrCyclicGroup( H );
    end );
InstallMethod( InvariantSubspaceOrCyclicGroup, "for trivial group", true,
    [ IsTrivial ], 0, H -> H );
InstallMethod( InvariantSubspaceOrCyclicGroup, "for abelian char. p-group",true,
    [ IsFFEMatrixGroup and IsAbelian and IsPGroup and IsCharacteristicMatrixPGroup ], 0,
    function( H )
    local gen, gens, space;

    space := UnderlyingVectorSpace(H);
    for gen in GeneratorsOfGroup( H ) do
        # Must first test IsTrivial(space) due to bug in GAP-4r1
        if not IsTrivial(space) then
            space := Intersection2( space, FixedPointSpace( gen ) );
        fi;
    od;
    # This is because char(H) = p
    if space = TrivialSubspace( space ) then
        Error("This shouldn't occur in characteristic case.");
        SetIsCyclic(H,true);
        return H;
    fi;
    return space;
end );
##
##      This method is too long.  It should now be a short routine that
##      calls InvariantSubspaceOrUniformCyclicPGroup()
##      followed by SiftFunction() for cyclic matrix p-Group.  - Gene
##
InstallMethod( InvariantSubspaceOrCyclicGroup, "for abelian non-char. p-group",
    true,
    [ IsFFEMatrixGroup and IsAbelian and IsPGroup and IsNoncharacteristicMatrixPGroup ],
    0,
    function( H )
    local Horig, p, gens, tmp, h, k, h1, k1, ordH, ordK, h1inv,
          space, trivSpace, r, CopyGroup, MySetGeneratorsOfGroup;

 ##  NOTE:  ShallowCopy(G) silently refuses to make a copy of G.
 CopyGroup := function( G )
    local H;
    H := Group( GeneratorsOfGroup(G) );
    # This should SetPrimePGroup() for H
    UseIsomorphismRelation( G, H );
    return H;
 end;

 # We should not be doing this -- Scott.
 # Agreed.  The usage here is to pass in the "shell of a group", and
 # recursively add generators to the shell, to avoid the overhead of
 # destructively modifying a generator list, and constantly making
 # temporary groups based on it.  When this function is rewritten,
 # we can remove this.		-- Gene.
 MySetGeneratorsOfGroup :=
    function(G,gens) G!.GeneratorsOfMagmaWithInverses := gens; end;

    Horig := H;
    p := PrimePGroup( Horig );
    H := CopyGroup(Horig);
    # SET UP PROBLEM
    gens := GeneratorsOfGroup( H );
    tmp := Filtered( gens, g -> not IsOne(g) );
    if Length(tmp) < Length(gens) then
        gens := tmp;
        MySetGeneratorsOfGroup( H, gens );
    fi;
    if Length(gens) < 2 then
        if Length(gens) = 0 then SetIsTrivial( H, true );
        else SetIsCyclicWithSize( Horig, gens[1], Order(gens[1]) );
        fi;
        return InvariantSubspaceOrUniformCyclicPGroup( Horig );
    fi;
    h := gens[1];
    k := gens[2];
    ordH := Order(h);
    ordK := Order(k);
    if ordH < ordK then
        tmp := h;
        h := k;
        k := tmp;
        tmp := ordH;
        ordH := ordK;
        ordK := tmp;
    fi;
    # ALGORITHM
    h1 := h^(ordH/p);
    k1 := k^(ordK/p);
    space := FixedPointSpace( h1 );
    trivSpace := TrivialSubspace(space);
    if trivSpace <> space then return space; fi;
    h1inv := h1^(-1);
    for r in [0..p-1] do
        space := FixedPointSpace( h1inv^r*k1 );
        if space <> trivSpace then
            if space <> UnderlyingVectorSpace(H) then
                return space;
            else break;
            fi;
        fi;
    od;
    if space = trivSpace then Error("internal error: no FixedPointSpace"); fi;
    if k1 <> h1^r then Error("internal error:  k1 <> h1^r"); fi;
    tmp := h^((-r)*ordH/ordK) * k;
    if IsOne( tmp ) then
        gens := Concatenation( [h], gens{[3..Length(gens)]} );
    else gens := Concatenation( [h, tmp], gens{[3..Length(gens)]} );
    fi;
    # Change generating set of this group:
    MySetGeneratorsOfGroup( H, gens );
    space := InvariantSubspaceOrCyclicGroup( H );
    return space;
    if IsVectorSpace(space) then return space;
    else # else space is really a cyclic group.
      SetIsCyclicWithSize( Horig, GeneratorOfCyclicGroup(space), Size(space) );
      return Horig;
    fi;
    # return InvariantSubspaceOrCyclicGroup( AsSubgroup( H, Group(gens) ) );
end );

#############################################################################
##
#M  InvariantSubspaceOrUniformCyclicPGroup( <G> )
##
##  Matrix group is uniform if fixed point space of every element
##    is either the trivial space or the entire space.
##
InstallMethod(InvariantSubspaceOrUniformCyclicPGroup, "for matrix group", true,
[IsFFEMatrixGroup], 0,
    function( G )
    local p, gens, g, space;
    if not (IsFFEMatrixGroup and IsCyclic and IsPGroup) then
        Error("implemented only for cyclic matrix p-groups");
    fi;
    p := PrimePGroup(G);
    if p=fail then
        # the group is trivial
        SetIsUniformMatrixGroup( G, true );
        return G;
    fi;
    if HasGeneratorOfCyclicGroup(G) then gens := [ GeneratorOfCyclicGroup(G) ];
    else gens := GeneratorsOfGroup(G);
    fi;
    for g in gens do
        if not IsOne(g) then
            space := FixedPointSpace( g^(Order(g)/p) );
            if space <> UnderlyingVectorSpace(g)
               and Dimension(space) <> 0 then
                return FixedPointSpace( g^(Order(g)/p) );
            fi;
        fi;
    od;
    SetIsUniformMatrixGroup( G, true );
    return G;
end);

#############################################################################
##
#M  SiftFunction( <> )
##
##  For group of size $p^r$, performs in $r p$ multiplies and 
##     uses O(1) space.  Alternative is $r\log p$ multiplies
##     storing $r\log p$ matrices via Schreier tree.
##  Comment below shows how to turn it into $r \log p$ multiplies
##     while storing $\log p$ vectors.
##
InstallMethod( SiftFunction, "for cyclic matrix p-groups", true,
    [ IsGroup and IsFFEMatrixGroup and IsCyclic and IsPGroup ], 0,
    function( H )
    local gens, cyclicGen, ordCyclicGen, p,
        cyclicGen1, cyclicGen1inv, space, 
	underlyingVectorSpace, trivSpace, SiftFnc;
    gens := Filtered( GeneratorsOfGroup(H), g -> not IsOne(g) );
    if Length(gens) = 0 then return k -> k; fi;
    cyclicGen := GeneratorOfCyclicGroup( H );
    ordCyclicGen := Order( cyclicGen );
    p := PrimePGroup( H );
    underlyingVectorSpace := UnderlyingVectorSpace( H );
    trivSpace := TrivialSubspace( underlyingVectorSpace );
    #if not IsUniformMatrixGroup( H ) then Error("not uniform matrix grp"); fi;
        cyclicGen1 := cyclicGen^(ordCyclicGen/p);
        # space := FixedPointSpace( cyclicGen1 );
        # if space = trivSpace then 
        #     Error("cyclicGen is identity");
        # elif space <> underlyingVectorSpace then
        #     Error("matrix group is not uniform");
        # fi;
        cyclicGen1inv := cyclicGen1^(-1);
    # PRODUCE SIFT FUNCTION
    SiftFnc := function( k )
        local ordK, space, k1, tmp, r;
        ordK := Order(k);
        if ordK = 1 then return k; fi; # k is identity
        if ordCyclicGen mod ordK <> 0 then return k; fi; # k not in group
        k1 := k^(ordK/p);
        tmp := k1;
        # Saving image of base vector of < cyclicGen > would
        #     allow one to quickly find r.  So, this part could
        #     use our Random Schreier Sims code.
        for r in [0..p-1] do
            if IsOne(tmp) then break; fi;
            # NOW:  tmp = cyclicGen1inv^r * k1
            # space := FixedPointSpace( tmp );
            # if space <> trivSpace then
            #     if space = underlyingVectorSpace then break;
            #     else return k; # H uniform.  So tmp not in H
            #     fi;
            # fi;
            tmp := tmp * cyclicGen1inv;
        od;
        # if space = trivSpace then Error("cyclicGen1 is identity"); fi;
        if not IsOne(tmp) then return k; fi;
        # NOW:  cyclicGen1^r = k1
        tmp := cyclicGen^((-r)*ordCyclicGen/ordK) * k;
        # NOW:  Order(k)/Order(tmp) >= p
        if IsOne(tmp) then return tmp;
        else return SiftFnc(tmp);
        fi;
    end;
    return SiftFnc;
end );


#############################################################################
#############################################################################
##
##  Normal closure and Kernel of quotient group:
##
#############################################################################
#############################################################################

##  Create normal closure with a chain.
NormalClosureByChain := function(grp, subgp)
    local gens, h, g, count, tmp, x;
    if IsTrivial(subgp) then return subgp; fi;
    if IsAbelian(grp) then return subgp; fi;
    # Take randomized generators of normal closure
    subgp := SubgroupNC( grp,
                         List([1..5], i->RandomNormalSubproduct(grp,subgp)) );
    #Test if subgp is cyclic:
    # Routines about should be used to add more effic. method for IsCyclic(G)
    #   for GAP matrix groups.
    # This part can be slow, because GAP may use NiceObject() to compute Size()
    if HasSize(subgp) then
        g := First( GeneratorsOfGroup(subgp), h->Order(h)=Size(subgp) );
    else
        #This part can be simplified when NiceObject() isn't default.
        g := fail;
        for x in GeneratorsOfGroup(subgp) do
            tmp := Group([x]);
            MakeHomChain(tmp);
            if First(GeneratorsOfGroup(subgp), h->not IsOne(Sift(tmp,h)))
               = fail then
                g := x;
                break;
            fi;
        od;
    fi;
    if g <> fail then SetGeneratorOfCyclicGroup( subgp, g ); fi;
    # Form subgroup chain
    MakeHomChain(subgp);
    # Deterministically test it and extend it
    gens := List(GeneratorsOfGroup(subgp));
    for h in gens do
        for g in GeneratorsOfGroup(grp) do
            #Current GAP default for IN can call NiceObject()
            if not IsOne(Sift(subgp,h^g)) then
            # if not h^g in subgp then
		Add( gens, h^g );
                subgp := Group(gens);
                MakeHomChain(subgp);
            fi;
        od;
    od;
    return subgp;
end;

#############################################################################
##
#M  KernelOfHomQuotientGroup( <> )
##
##This should be generally useful in GAP.  It finds the kernel of
##   any homomorphism to an abelian group.
##
##This would be more efficient if we picked out a non-redundant
##   (independent) generating set for the abelian group, and then
##   used commutator relations on only those.  GAP has function
##   IndependentGeneratorsOfAbelianGroup() of unknown efficiency.
##   Or, we could program it ourselves.
##
InstallMethod( KernelOfHomQuotientGroup,
        "for abelian quotient group via presentation", true,
        [ IsHomQuotientGroup and IsAbelian ], 0,
    function( quo )
        local indGenSet, gens, gens2, SiftFnc, hom, rels, srcGrp, kerGrp ;

        # if IsQuotientToAdditiveGroup(quo) then
        #     indGenSet := BasisOfHomCosetAddMatrixGroup(quo);
        #     gens2 := indGenSet.basis;
        #     SiftFnc := SiftVector(indGenSet.basis);
        #     rels := indGenSet.residue;
        # else Error("KernelOfMultiplicativeGeneralMapping() not implemented for this case.");
        # fi;
        # Append( rels, List( gens2, SiftFnc ) );
        # If all source groups of quo are abelian, this is unnec.
        # Append(rels, ListX( gens2, gens2,
        #                     function(g1,g2) return Comm(g1,g2); end ) );
        # if not ForAll(rels, IsOne) then
        #     Error("internal error: invalid relation of presentation");
        # fi;

        #gens := GeneratorsOfGroup(quo);
        #rels := List( gens, g -> Sift(quo,g) );
        #if not ForAll(rels, IsOne) then
        #    Error("internal error: invalid relation of presentation");
        #fi;
        #rels := List( rels, g -> SourceElt(quo,g) );
        #gens2 := List( gens2, g->SourceElt(g) );
        #Append(rels, ListX(gens2,gens2,function(g1,g2) return Comm(g1,g2);end));

        IsPGroup( quo ); # Have GAP check this.

        srcGrp := Source(Homomorphism(quo));
        # TrivialQuotientSubgroup is where the presentations are formed.
        kerGrp := TrivialQuotientSubgroup( quo );
        # gdc - can't use Source(kerGrp) here.  Note bug in quotientgp.gi
        kerGrp := Group(List(GeneratorsOfGroup(kerGrp), g->SourceElt(g)));
        kerGrp := NormalClosureByChain( srcGrp, kerGrp );
        if not IsTrivial(kerGrp) then
            kerGrp := Group( Filtered( GeneratorsOfGroup(kerGrp),
                                       g -> not IsTrivialHomCoset(g) ) );
        fi;
        UseSubsetRelationNC(srcGrp,kerGrp);
        hom := Homomorphism(quo);
        SetKernelOfMultiplicativeGeneralMapping( hom, kerGrp );
        if IsTrivial(kerGrp) then Info(InfoChain, 2,
                                         "  (kernel is trivial)\n");
        fi;

        if HasSize(kerGrp) and HasSize(srcGrp) and 
           Size(kerGrp) = Size(srcGrp) then
            Error("internal error:  kernel not smaller");
        fi;
        return kerGrp;
end );

##  InstallMethod( KernelOfMultiplicativeGeneralMapping, "Monte Carlo algorithm for quotient group", true,
##          [ IsTransvByHomomorphism ], 0,
##      function( transv )
##      local hom, G, i, gens;
##      hom := Homomorphism(transv);
##      G := Source( hom );
##      gens := [];
##      for i in [1..15] do  # HACK
##          Add(gens, SiftOneLevel( transv, PseudoRandom(G) ) );
##      od;
##      # ChainSubgroup(G) is already kernel of hom;  Can set relations now.
##      if not HasKernelOfMultiplicativeGeneralMapping(hom) then
##          Error("internal error:  missing kernel to hom");
##      fi;
##      MySetGeneratorsOfGroup( KernelOfMultiplicativeGeneralMapping(hom), gens );
##      UseSubsetRelation( Source(hom), KernelOfMultiplicativeGeneralMapping(hom) );
##      UseFactorRelation( Source(hom), KernelOfMultiplicativeGeneralMapping(hom), Image(hom) );
##      UseIsomorphismRelation( Image(hom), QuotientGroup(transv) );
##      return KernelOfMultiplicativeGeneralMapping(hom);
##  end);



#############################################################################
#############################################################################
##
##  Cyclic matrix p-groups:
##  Exports:  Size, IN, Random, Enumerator, Sift
##  Internal:  GeneratorOfCyclicGroup, TrivialQuotientSubgroup (presentation)
##
#############################################################################
#############################################################################
        
#GeneratorOfCyclicGroup() only implemented currently for cases
#  needed by solmxgrp.gi;  solmxgrp.gi purposely doesn't compute
#  it in the general case --- because it is sometimes more efficient
#  to find an invariant subspace and recurse.
CanFindGeneratorOfCyclicGroup := function(G)
    if HasGeneratorOfCyclicGroup(G) then return true;
    elif Length(GeneratorsOfGroup(G)) = 1 then return true;
    elif IsFFEMatrixGroup(G) and HasIsCyclic(G) and IsCyclic(G) and
      HasIsPGroup(G) and IsPGroup(G) and
       IsUniformMatrixGroup(G) and IsNoncharacteristicMatrixPGroup(G) then
        return true;
    else return false;
    fi;
end;

#############################################################################
##
#M  Size( <G> )
##
InstallMethod( Size, "for cyclic matrix p-group", true,
        [ IsFFEMatrixGroup and IsCyclic and IsPGroup ], NICE_FLAGS+10,
        function (G)
            if CanFindGeneratorOfCyclicGroup(G) then
                return Order( GeneratorOfCyclicGroup( G ) );
            else TryNextMethod(); return;
            fi;
        end );
InstallMethod( Size, "for cyclic 1-gen. group", true,
        [ IsGroup and IsCyclic and HasGeneratorOfCyclicGroup ], NICE_FLAGS+10,
        G -> Order( GeneratorOfCyclicGroup( G ) ) );

#############################################################################
##
#M  Random( <G> )
##
InstallMethod( Random, "for cyclic matrix p-group", true,
        [ IsFFEMatrixGroup and IsCyclic and IsPGroup ], 0,
        function (G)
            if CanFindGeneratorOfCyclicGroup(G) then
                return GeneratorOfCyclicGroup( G )^Random([1..Size(G)]);
            else return; TryNextMethod();
            fi;
        end );

#############################################################################
##
#M  TrivialQuotientSubgroup( <G> )
##
##  Works on any group, but IsOne(gen) for all generators, gen
##  Useful for SourceElt(gen) if group is a quotient group.
##
InstallMethod( TrivialQuotientSubgroup,
        "for cyclic matrix p-group via presentation (assuming sift fnc)", true,
        [ IsFFEMatrixGroup and IsCyclic and IsPGroup ], 0,
        G -> SubgroupNC( G,
                # NOTE: Sift(G,g) = Sift(G)(g).  Should pre-compute Sift(G).
                Concatenation( List( GeneratorsOfGroup( G ), g->Sift(G,g) ),
                               # presentation for independent generators
                               [GeneratorOfCyclicGroup( G )^Size(G)] )));

#############################################################################
##
#M  Enumerator( <G> )
##
InstallMethod( Enumerator, "for cyclic matrix p-group", true,
        [ IsFFEMatrixGroup and IsCyclic and IsPGroup ], NICE_FLAGS,
        function (G)
          if CanFindGeneratorOfCyclicGroup(G) then
              return List( [0..Size(G)-1], i->GeneratorOfCyclicGroup(G)^i );
          else TryNextMethod(); return;
          fi;
        end );

#############################################################################
##
#M  IN( <G> )
##
InstallMethod( IN, "for cyclic matrix p-group", true,
        [ IsMultiplicativeElementWithInverse,
          IsFFEMatrixGroup and IsCyclic and IsPGroup ], NICE_FLAGS,
        function(g, G) return Sift(G, g) = One(G); end );

##
##  These next two do all the real work:
##

#############################################################################
##
#M  Sift( <G> )
##
InstallMethod( Sift, "for cyclic matrix p-group", true,
        [ IsFFEMatrixGroup and IsCyclic and IsPGroup and HasGeneratorOfCyclicGroup,
          IsMultiplicativeElementWithInverse ], 0,
        function(G, g) return SiftFunction(G)(g); end );


#############################################################################
#############################################################################
##
##  General abelian matrix group: (certain operations only)
##
#############################################################################
#############################################################################

##  gens must be IndependentAbelianGenerators
EnumerateIndependentAbelianProducts := function( G, gens )
        local first, rest;
        if Length(gens) = 0 then return One(G); fi;
        first := List( [0..Order(gens[1])-1], i->(gens[1])^i );
        if Length(gens) = 1 then return first;
        else
            rest := EnumerateIndependentAbelianProducts
                              ( G, gens{[2..Length(gens)]} );
            return ListX( first, rest, function(h,g) return h*g; end );
        fi;
end;

#############################################################################
##
#M  Enumerator( <G> )
##
InstallMethod( Enumerator, "for quotient to additive group", true,
        [ IsGroup and IsFFEMatrixGroup and IsQuotientToAdditiveGroup ],
        2*SUM_FLAGS+46,  # need to beat "system getter"
        G -> EnumerateIndependentAbelianProducts
                    (G, BasisOfHomCosetAddMatrixGroup(G).basis) );

#############################################################################
##
#M  Sift( <G>, <g> )
##
InstallMethod( Sift, "for quotient to additive group", true,
        [ IsGroup and IsFFEMatrixGroup and IsQuotientToAdditiveGroup,
          IsHomCosetToAdditiveElt ], 0,
        function(G, g) return SiftFunction(G)(g); end );

#############################################################################
##
#M  TrivialQuotientSubgroup( <G> )
##
##  Works on any group, but primarily useful for quotient groups
##  IsOne(gen) for all generators, gen,
##    but SourceElt(gen) is non-trivial for a general quotient group.
##
InstallMethod( TrivialQuotientSubgroup,
        "for abelian matrix group via presentation (assuming Sift fnc)", true,
        [ IsFFEMatrixGroup and IsAbelian ], 0,
    function(G)
        local gens;
        gens := IndependentGeneratorsOfAbelianMatrixGroup(G);
        return SubgroupNC( G,
                Concatenation( List( GeneratorsOfGroup(G), g->Sift(G,g) ),
                               # presentation for independent generators
                               List( gens, g->g^Order(g) ),
                               ListX( gens, gens,
				      function(g1,g2) return Comm(g1,g2); end )
                             ));
end );


#############################################################################
#############################################################################
##
##  Additive abelian group:
##
#############################################################################
#############################################################################

#############################################################################
##
#M  TrivialQuotientSubgroup( <quo> )
##
InstallMethod( TrivialQuotientSubgroup,
        "for additive quotient group via presentation", true,
        [ IsQuotientToAdditiveGroup ], 0,
        function( quo )
        local indGenSet, gens, gens2, SiftFnc, hom, rels, srcGrp, kerGrp ;

  if not ForAll(GeneratorsOfGroup(quo), g->ImageElm(Homomorphism(g),SourceElt(g))
                         = ImageElt(g)) then
       Error("bad gens of grp");
  fi;
        indGenSet := BasisOfHomCosetAddMatrixGroup(quo);
        gens2 := indGenSet.basis;
  if not ForAll(gens2, g->ImageElm(Homomorphism(g),SourceElt(g))
                         = ImageElt(g)) then
       Error("bad gens2");
  fi;
        SiftFnc := SiftVector(indGenSet.basis);
        rels := indGenSet.residue;
        if not IsMutable(rels) then rels := List(rels); fi;
  if not ForAll(rels, g->ImageElm(Homomorphism(g),SourceElt(g))
                         = ImageElt(g)) then
       Error("bad residue");
  fi;
        Append( rels, List( gens2, g -> g^Order(g) ) );
  if not ForAll(rels, g->ImageElm(Homomorphism(g),SourceElt(g))
                         = ImageElt(g)) then
       Error("bad order");
  fi;
        Append( rels, List( gens2, SiftFnc ) );
        # If all source groups of quo are abelian, this is unnec.
        Append(rels, ListX( gens2, gens2,
                            function(g1,g2) return Comm(g1,g2); end ) );
        if not ForAll(rels, IsOne) then
            Error("internal error: invalid relation of presentation");
        fi;
        return SubgroupNC(quo, rels);
    end );

#############################################################################
#############################################################################
##
##  Nilpotent matrix groups:
##
#############################################################################
#############################################################################

##  Always try SizeUpperBound first.

#############################################################################
##
#M  CanFindNilpotentClassTwoElement( <G> )
##
InstallMethod( CanFindNilpotentClassTwoElement, "compute elt or fail", true,
    [ IsGroup ], 0,
function(G)
    local gens, g, count, i;
    gens := GeneratorsOfGroup( G );
    g := First(gens, h -> not IsInCenter(G,h));
    SetIsAbelian(G, g = fail);
    if IsAbelian(G) then return false; fi;
    # gdc -
    # Want max. length derived series for _nilpotent_ group of a given size.
    # There should be much better bound than LogInt(SizeUpperBound(G),2).
    # I can look it up some other time.
    for count in [1..LogInt(SizeUpperBound(G),2)] do
        i := PositionProperty(gens, h -> not IsInCenter(G,Comm(g,h)));
        if i = fail then
            SetNilpotentClassTwoElement(G,g);
            return true;
        else g := Comm(g,gens[i]);
        fi;
    od;
    return false;
end );

#############################################################################
##
#M  NilpotentClassTwoElement( <G> )
##
InstallMethod( NilpotentClassTwoElement,
    "by calling CanFindNilpotentClassTwoElement()", true, [ IsGroup ], 0,
function(G)
    if CanFindNilpotentClassTwoElement(G) then
        return NilpotentClassTwoElement(G);
    else TryNextMethod(); return;
    fi;
end );

#############################################################################
##
#F  NaturalHomomorphismByNilpotentClassTwoElement( <G> )
##
InstallGlobalFunction( NaturalHomomorphismByNilpotentClassTwoElement,
function(G)
    local elt;
    elt := NilpotentClassTwoElement(G);
    if elt = fail then return Error("abelian or not nilpotent"); fi;
    return GroupHomomorphismByFunction
       ( G, Group( List( GeneratorsOfGroup(G), h->Comm(h,elt) ) ),
         h->Comm(h,elt) );
end );

#############################################################################
##
#F  ManageableQuotientOfNilpotentGroup( <G> )
##

ManageableQuotientOfNilpotentGroup := function( G )
            local hom, quo;
            hom := NaturalHomomorphismByNilpotentClassTwoElement(G);
            ChainSubgroupByHomomorphism( hom );
            quo := QuotientGroup(TransversalOfChainSubgroup(G));
            IsAbelian(quo);  # Tell GAP quo is abelian in case not propagated.
            return quo;
        end;
        
        
#############################################################################
##
#M  MakeHomChain( <G> )
##

InstallMethod( MakeHomChain, "for nilpotent group", true,
        [ IsGroup and IsNilpotentGroup ], 0,
    function( G )
        local quo, kernel;
        if IsAbelian(G) then return MakeHomChain(G); fi;
        quo := ManageableQuotientOfNilpotentGroup(G);
        Info(InfoChain, 2, "Finding kernel of homomorphism by",
                           "nilpotent class 2 elt");
        IsAbelian(quo); # Special Kernel method for abelian grp
        MakeHomChain(quo);
        # sets Kernel(Homomorphism(quo))
        kernel := KernelOfHomQuotientGroup(quo);
        # Now that we have the full kernel, make new ChainSubgroup(grp)
        ChainSubgroupByHomomorphism( Homomorphism(quo) );
        if IsTrivial(kernel) then return kernel;
        else return MakeHomChain( kernel );
        fi;
    end );

#E