1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542
|
#############################################################################
##
#W stbc.gd GAP library Heiko Thei"sen
#W 'Akos Seress
##
#H @(#)$Id: stbc.gd,v 4.45 2002/04/15 10:05:23 sal Exp $
##
#Y Copyright (C) 1997, Lehrstuhl D fuer Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St. Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
Revision.stbc_gd :=
"@(#)$Id: stbc.gd,v 4.45 2002/04/15 10:05:23 sal Exp $";
#############################################################################
##
#F StabChain( <G>[, <options>] )
#F StabChain( <G>, <base> )
#O StabChainOp( <G>, <options> )
#A StabChainMutable( <G> )
#A StabChainMutable( <permhomom> )
#A StabChainImmutable( <G> )
##
## These commands compute a stabilizer chain for the permutation group <G>;
## additionally, `StabChainMutable' is also an attribute for the group
## homomorphism <permhomom> whose source is a permutation group.
##
## `StabChainOp' is an operation with two arguments <G> and <options>,
## the latter being a record which controls some aspects of the computation
## of a stabilizer chain (see below);
## `StabChainOp' returns a *mutable* stabilizer chain.
## `StabChainMutable' is a *mutable* attribute for groups or homomorphisms,
## its default method for groups is to call `StabChainOp' with empty
## options record.
## `StabChainImmutable' is an attribute with *immutable* values;
## its default method dispatches to `StabChainMutable'.
##
## `StabChain' is a function with first argument a permutation group <G>,
## and optionally a record <options> as second argument.
## If the value of `StabChainImmutable' for <G> is already known and if this
## stabilizer chain matches the requirements of <options>,
## `StabChain' simply returns this stored stabilizer chain.
## Otherwise `StabChain' calls `StabChainOp' and returns an immutable copy
## of the result; additionally, this chain is stored as `StabChainImmutable'
## value for <G>.
## If no <options> argument is given,
## its components default to the global variable `DefaultStabChainOptions'
## (see~"DefaultStabChainOptions").
## If <base> is a list of positive integers,
## the version `StabChain( <G>, <base> )' defaults to
## `StabChain( <G>, rec( base:= <base> ) )'.
##
## If given, <options> is a record whose components specify properties of
## the desired stabilizer chain or which may help the algorithm.
## Default values for all of them can be given in the global variable
## `DefaultStabChainOptions' (see~"DefaultStabChainOptions").
## The following options are supported.
## \beginitems
## `base' (default an empty list) &
## A list of points, through which the resulting stabilizer chain
## shall run.
## For the base $B$ of the resulting stabilizer chain <S> this means
## the following.
## If the `reduced' component of <options> is `true' then those points
## of `base' with nontrivial basic orbits form the initial segment
## of $B$, if the `reduced' component is `false' then `base' itself
## is the initial segment of $B$.
## Repeated occurrences of points in `base' are ignored.
## If a stabilizer chain for <G> is already known then the stabilizer
## chain is computed via a base change.
##
## `knownBase' (no default value) &
## A list of points which is known to be a base for the group.
## Such a known base makes it easier to test whether a permutation
## given as a word in terms of a set of generators is the identity,
## since it suffices to map the known base with each factor
## consecutively, rather than multiplying the whole permutations
## (which would mean to map every point).
## This speeds up the Schreier-Sims algorithm which is used when a new
## stabilizer chain is constructed;
## it will not affect a base change, however.
## The component `knownBase' bears no relation to the `base'
## component, you may specify a known base `knownBase' and a desired
## base `base' independently.
##
## `reduced' (default `true') &
## If this is `true' the resulting stabilizer chain <S> is reduced,
## i.e., the case $G^{(i)} = G^{(i+1)}$ does not occur.
## Setting `reduced' to `false' makes sense only if the component
## `base' (see above) is also set;
## in this case all points of `base' will occur in the base $B$ of <S>,
## even if they have trivial basic orbits.
## Note that if `base' is just an initial segment of $B$,
## the basic orbits of the points in $B \setminus `base'$ are always
## nontrivial.
##
## `tryPcgs' (default `true') &
## If this is `true' and either the degree is at most 100 or the group
## is known to be solvable, {\GAP} will first try to construct a pcgs
## (see Chapter~"Polycyclic Groups") for <G> which will succeed and
## implicitly construct a stabilizer chain if <G> is solvable.
## If <G> turns out non-solvable, one of the other methods will be used.
## This solvability check is comparatively fast, even if it fails,
## and it can save a lot of time if <G> is solvable.
##
## `random' (default `1000') &
## If the value is less than~$1000$,
## the resulting chain is correct with probability
## at least~$`random'/1000$.
## The `random' option is explained in more detail
## in~"Randomized Methods for Permutation Groups".
##
## `size' (default `Size( <G> )' if this is known,
## i.e., if `HasSize( <G> )' is `true') &
## If this component is present, its value is assumed to be the order
## of the group <G>.
## This information can be used to prove that a non-deterministically
## constructed stabilizer chain is correct.
## In this case, {\GAP} does a non-deterministic construction until the
## size is correct.
##
## `limit' (default `Size( Parent( <G> ) )' or
## `StabChainOptions( Parent( <G> ) ).limit' if this is present) &
## If this component is present, it must be greater than or equal to
## the order of <G>.
## The stabilizer chain construction stops if size `limit' is reached.
## \enditems
##
DeclareGlobalFunction( "StabChain" );
DeclareOperation( "StabChainOp", [ IsGroup, IsRecord ] );
DeclareAttribute( "StabChainMutable", IsObject, "mutable" );
DeclareAttribute( "StabChainImmutable", IsObject );
#############################################################################
##
#A StabChainOptions( <G> )
##
## is a record that stores the options with which the stabilizer chain
## stored in `StabChainImmutable' has been computed
## (see~"StabChain" for the options that are supported).
##
DeclareAttribute( "StabChainOptions", IsPermGroup, "mutable" );
#############################################################################
##
#V DefaultStabChainOptions
##
## are the options for `StabChain' which are set as default.
##
DeclareGlobalVariable( "DefaultStabChainOptions",
"default options for stabilizer chain calculations" );
#############################################################################
##
#F StabChainBaseStrongGenerators( <base>, <sgs>, <one> )
##
## If a base <base> for a permutation group $G$ and a strong generating set
## <sgs> for $G$ with respect to <base> are given. <one> must be the
## appropriate `One' (in most cases this will be `()').
## This function constructs a stabilizer chain without the need to find
## Schreier generators;
## so this is much faster than the other algorithms.
##
DeclareGlobalFunction( "StabChainBaseStrongGenerators" );
#############################################################################
##
#F CopyStabChain( <S> )
##
## This function returns a copy of the stabilizer chain <S>
## that has no mutable object (list or record) in common with <S>.
## The `labels' components of the result are possibly shared by several
## levels, but superfluous labels are removed.
## (An entry in `labels' is superfluous if it does not occur among the
## `genlabels' or `translabels' on any of the levels which share that
## `labels' component.)
##
## This is useful for stabiliser sub-chains that have been obtained as
## the (iterated) `stabilizer' component of a bigger chain.
##
DeclareGlobalFunction( "CopyStabChain" );
#############################################################################
##
#F CopyOptionsDefaults( <G>, <options> ) . . . . . . . copy options defaults
##
## sets components in a stabilizer chain options record <options> according
## to what is known about the group <G>. This can be used to obtain a new
## stabilizer chain for <G> quickly.
##
DeclareGlobalFunction( "CopyOptionsDefaults" );
#############################################################################
##
#F BaseStabChain( <S> )
##
## returns the base belonging to the stabilizer chain <S>.
##
DeclareGlobalFunction( "BaseStabChain" );
#############################################################################
##
#A BaseOfGroup( <G> )
##
## returns a base of the permutation group <G>.
## There is *no* guarantee that a stabilizer chain stored in <G>
## corresponds to this base!
##
DeclareAttribute( "BaseOfGroup", IsPermGroup );
#############################################################################
##
#F SizeStabChain( <S> )
##
## returns the product of the orbit lengths in the stabilizer chain <S>,
## that is, the order of the group described by <S>.
##
DeclareGlobalFunction( "SizeStabChain" );
#############################################################################
##
#F StrongGeneratorsStabChain( <S> )
##
## returns a strong generating set corresponding to the stabilizer chain <S>.
##
DeclareGlobalFunction( "StrongGeneratorsStabChain" );
#############################################################################
##
#F GroupStabChain([<G>,] <S> )
##
## constructs a permutation group with stabilizer chain <S>, i.e., a group
## with generators `Generators( <S> )' to which <S> is assigned as
## component `stabChain'. If the optional argument <G> is given, the
## result will have the parent <G>.
##
DeclareGlobalFunction( "GroupStabChain" );
#############################################################################
##
#F IndicesStabChain( <S> )
##
## returns a list of the indices of the stabilizers in the stabilizer
## chain <S>.
##
DeclareGlobalFunction( "IndicesStabChain" );
#############################################################################
##
#F ListStabChain( <S> )
##
## returns a list that contains at position $i$ the stabilizer of the first
## $i-1$ base points in the stabilizer chain <S>.
##
DeclareGlobalFunction( "ListStabChain" );
#############################################################################
##
#F OrbitStabChain( <S>, <pnt> )
##
## returns the orbit of <pnt> under the group described by the stabilizer
## chain <S>.
##
DeclareGlobalFunction( "OrbitStabChain" );
#############################################################################
##
#F ElementsStabChain( <S> )
##
## returns a list of all elements of the group described by the stabilizer
## chain <S>.
##
DeclareGlobalFunction( "ElementsStabChain" );
#############################################################################
##
#A MinimalStabChain(<G>)
##
## returns the reduced stabilizer chain corresponding to the base
## $[1,2,3,4,\ldots]$.
##
DeclareAttribute( "MinimalStabChain", IsPermGroup );
#############################################################################
##
#F ChangeStabChain( <S>, <base>[, <reduced>] )
##
## changes or reduces a stabilizer chain <S> to be adapted to the base
## <base>.
## The optional argument <reduced> is interpreted as follows.
## \beginitems
## `reduced = false' : &
## change the stabilizer chain, do not reduce it,
##
## `reduced = true' : &
## change the stabilizer chain, reduce it.
## \enditems
##
DeclareGlobalFunction( "ChangeStabChain" );
#############################################################################
##
#F ExtendStabChain( <S>, <base> )
##
## extends the stabilizer chain <S> so that it corresponds to base <base>.
## The original base of <S> must be a subset of <base>.
##
DeclareGlobalFunction( "ExtendStabChain" );
#############################################################################
##
#F ReduceStabChain( <S> )
##
## changes the stabilizer chain <S> to a reduced stabilizer chain by
## eliminating trivial steps.
##
DeclareGlobalFunction( "ReduceStabChain" );
#############################################################################
##
#F EmptyStabChain( <labels>, <id>[, <pnt>] )
##
## constructs a stabilizer chain for the trivial group with
## `identity=<id>' and `labels=$\{id\}\cup labels$' (but of course with
## `genlabels=[ ]' and `generators=[ ]'). If the optional third argument
## <pnt> is present, the only stabilizer of the chain is initialized
## with the one-point basic orbit `[ <pnt> ]' and with `translabels' and
## `transversal' components.
##
DeclareGlobalFunction( "EmptyStabChain" );
#############################################################################
##
#F ConjugateStabChain( <S>, <T>, <hom>, <map>[, <cond>] )
##
## conjugates the stabilizer chain <S>.
## If given, <cond> is a function that determines for a stabilizer record
## whether the recursion should continue for this record.
##
DeclareGlobalFunction( "ConjugateStabChain" );
#############################################################################
##
#F RemoveStabChain( <S> )
##
## <S> must be a stabilizer record in a stabilizer chain. This chain then
## is cut off at <S> by changing the entries in <S>. This can be used to
## remove trailing trivial steps.
##
DeclareGlobalFunction( "RemoveStabChain" );
DeclareOperation( "MembershipTestKnownBase", [ IsRecord, IsList, IsList ] );
#############################################################################
##
#F SiftedPermutation( <S>, <g> )
##
## sifts the permutation <g> through the stabilizer chain <S> and returns
## the result after the last step.
##
## The element <g> is sifted as follows: <g> is replaced by
## `<g> \* InverseRepresentative( <S>, <S>.orbit[1]^<g> )',
## then <S> is replaced by `<S>.stabilizer' and this process is repeated
## until <S> is trivial or `<S>.orbit[1]^<g>' is not in the basic orbit
## `<S>.orbit'.
## The remainder <g> is returned, it is the identity permutation if and
## only if the original <g> is in the group $G$ described by
## the original~<S>.
##
DeclareGlobalFunction( "SiftedPermutation" );
#############################################################################
##
#F MinimalElementCosetStabChain( <S>, <g> )
##
## Let $G$ be the group described by the stabilizer chain <S>.
## This function returns a permutation $h$ such that $G <g> = G h$
## (that is, $<g> / h \in G$) and with the additional property that
## the list of images under $h$ of the base belonging to <S> is minimal
## w.r.t.~lexicographical ordering.
##
DeclareGlobalFunction( "MinimalElementCosetStabChain" );
#############################################################################
##
#F SCMinSmaGens(<G>,<S>,<emptyset>,<identity element>,<flag>)
##
## This function computes a stabilizer chain for a minimal base image and
## a smallest generating set wrt. this base for a permutation
## group.
##
## <G> must be a permutation group and <S> a mutable stabilizer chain for
## <G> that defines a base <bas>. Let <mbas> the smallest image (OnTuples)
## of <G>. Then this operation changes <S> to a stabilizer chain wrt.
## <mbas>.
## The arguments <emptyset> and <identity element> are needed
## only for the recursion.
##
## The function returns a record whose component `gens' is a list whose
## first element is the smallest element wrt. <bas>. (i.e. an element which
## maps <bas> to <mbas>. If <flag> is `true', `gens' is the smallest
## generating set wrt. <bas>. (If <flag> is `false' this will not be
## computed.)
##
DeclareGlobalFunction("SCMinSmaGens");
#############################################################################
##
#F LargestElementStabChain( <S>, <id> )
##
## Let $G$ be the group described by the stabilizer chain <S>.
## This function returns the element $h \in G$ with the property that
## the list of images under $h$ of the base belonging to <S> is maximal
## w.r.t.~lexicographical ordering.
## The second argument must be an identity element (used to start the
## recursion)
##
DeclareGlobalFunction( "LargestElementStabChain" );
DeclareCategory( "IsPermOnEnumerator",
IsMultiplicativeElementWithInverse and IsPerm );
DeclareOperation( "PermOnEnumerator", [ IsList, IsObject ] );
DeclareGlobalFunction( "DepthSchreierTrees" );
#############################################################################
##
#F AddGeneratorsExtendSchreierTree( <S>, <new> )
##
## adds the elements in <new> to the list of generators of <S> and at the
## same time extends the orbit and transversal. This is the only legal way
## to extend a Schreier tree (because this involves careful handling of
## the tree components).
##
DeclareGlobalFunction( "AddGeneratorsExtendSchreierTree" );
DeclareGlobalFunction( "ChooseNextBasePoint" );
DeclareGlobalFunction( "StabChainStrong" );
DeclareGlobalFunction( "StabChainForcePoint" );
DeclareGlobalFunction( "StabChainSwap" );
DeclareGlobalFunction( "InsertElmList" );
DeclareGlobalFunction( "RemoveElmList" );
DeclareGlobalFunction( "LabsLims" );
#############################################################################
##
#F InsertTrivialStabilizer( <S>, <pnt> )
##
## `InsertTrivialStabilizer' initializes the current stabilizer with <pnt>
## as `EmptyStabChain' did, but assigns the original <S> to the new
## `<S>.stabilizer' component, such that a new level with trivial basic
## orbit (but identical `labels' and `ShallowCopy'ed `genlabels' and
## `generators') is inserted.
## This function should be used only if <pnt> really is fixed by the generators
## of <S>, because then new generators can be added and the orbit and
## transversal at the same time extended with
## `AddGeneratorsExtendSchreierTree'.
##
DeclareGlobalFunction( "InsertTrivialStabilizer" );
DeclareGlobalFunction( "InitializeSchreierTree" );
DeclareGlobalFunction( "BasePoint" );
DeclareGlobalFunction( "IsInBasicOrbit" );
#############################################################################
##
#F IsFixedStabilizer( <S>, <pnt> )
##
## returns `true' if <pnt> is fixed by all generators of <S> and `false'
## otherwise.
##
DeclareGlobalFunction( "IsFixedStabilizer" );
#############################################################################
##
#F InverseRepresentative( <S>, <pnt> )
##
## calculates the transversal element which maps <pnt> back to the base
## point of <S>. It just runs back through the Schreier tree from <pnt>
## to the root and multiplies the labels along the way.
##
DeclareGlobalFunction( "InverseRepresentative" );
DeclareGlobalFunction( "QuickInverseRepresentative" );
DeclareGlobalFunction( "InverseRepresentativeWord" );
DeclareGlobalFunction( "StabChainRandomPermGroup" );
DeclareGlobalFunction( "SCRMakeStabStrong" );
DeclareGlobalFunction( "SCRStrongGenTest" );
DeclareGlobalFunction( "SCRSift" );
DeclareGlobalFunction( "SCRStrongGenTest2" );
DeclareGlobalFunction( "SCRNotice" );
DeclareGlobalFunction( "SCRExtend" );
DeclareGlobalFunction( "SCRSchTree" );
DeclareGlobalFunction( "SCRRandomPerm" );
DeclareGlobalFunction( "SCRRandomString" );
DeclareGlobalFunction( "SCRRandomSubproduct" );
DeclareGlobalFunction( "SCRExtendRecord" );
DeclareGlobalFunction( "SCRRestoredRecord" );
DeclareGlobalFunction( "VerifyStabilizer" );
DeclareGlobalFunction( "VerifySGS" );
DeclareGlobalFunction( "ExtensionOnBlocks" );
DeclareGlobalFunction( "ClosureRandomPermGroup" );
#############################################################################
##
#E
|