1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361
|
#############################################################################
##
#W tom.gd GAP library Goetz Pfeiffer
#W & Thomas Merkwitz
##
#H @(#)$Id: tom.gd,v 4.46 2003/07/21 15:24:14 gap Exp $
##
#Y Copyright (C) 1997, Lehrstuhl D fuer Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St. Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## This file contains the declarations of the category and family of tables
## of marks, and their properties, attributes, operations and functions.
##
## 1. Tables of Marks
## 2. More about Tables of Marks
## 3. Table of Marks Objects in {\GAP}
## 4. Constructing Tables of Marks
## 5. Printing Tables of Marks
## 6. Sorting Tables of Marks
## 7. Technical Details about Tables of Marks
## 8. Attributes of Tables of Marks
## 9. Properties of Tables of Marks
## 10. Other Operations for Tables of Marks
## 11. Accessing Subgroups via Tables of Marks
## 12. The Interface between Tables of Marks and Character Tables
## 13. Generic Construction of Tables of Marks
##
Revision.tom_gd :=
"@(#)$Id: tom.gd,v 4.46 2003/07/21 15:24:14 gap Exp $";
#############################################################################
##
## 1. Tables of Marks
#1
## The concept of a *table of marks* was introduced by W.~Burnside in his
## book ``Theory of Groups of Finite Order'', see~\cite{Bur55}.
## Therefore a table of marks is sometimes called a *Burnside matrix*.
##
## The table of marks of a finite group $G$ is a matrix whose rows and
## columns are labelled by the conjugacy classes of subgroups of $G$
## and where for two subgroups $A$ and $B$ the $(A, B)$--entry is
## the number of fixed points of $B$ in the transitive action of $G$
## on the cosets of $A$ in $G$.
## So the table of marks characterizes the set of all permutation
## representations of $G$.
##
## Moreover, the table of marks gives a compact description of the subgroup
## lattice of $G$, since from the numbers of fixed points the numbers of
## conjugates of a subgroup $B$ contained in a subgroup $A$ can be derived.
##
## A table of marks of a given group $G$ can be constructed from the
## subgroup lattice of $G$ (see~"Constructing Tables of Marks").
## For several groups, the table of marks can be restored from the {\GAP}
## library of tables of marks (see~"The Library of Tables of Marks").
##
## Given the table of marks of $G$, one can display it
## (see~"Printing Tables of Marks")
## and derive information about $G$ and its Burnside ring from it
## (see~"Attributes of Tables of Marks", "Properties of Tables of Marks",
## "Other Operations for Tables of Marks").
## Moreover, tables of marks in {\GAP} provide an easy access to the classes
## of subgroups of their underlying groups
## (see~"Accessing Subgroups via Tables of Marks").
##
#############################################################################
##
## 2. More about Tables of Marks
#2
## Let $G$ be a finite group with $n$ conjugacy classes of subgroups
## $C_1, C_2, \ldots, C_n$ and representatives $H_i \in C_i$,
## $1 \leq i \leq n$.
## The *table of marks* of $G$ is defined to be the $n \times n$ matrix
## $M = (m_{ij})$ where the *mark* $m_{ij}$ is the number of fixed points
## of the subgroup $H_j$ in the action of $G$ on the right cosets of $H_i$
## in $G$.
##
## Since $H_j$ can only have fixed points if it is contained in a point
## stablizer the matrix $M$ is lower triangular if the classes $C_i$ are
## sorted according to the condition that if $H_i$ is contained in a
## conjugate of $H_j$ then $i \leq j$.
##
## Moreover, the diagonal entries $m_{ii}$ are nonzero since $m_{ii}$ equals
## the index of $H_i$ in its normalizer in $G$. Hence $M$ is invertible.
## Since any transitive action of $G$ is equivalent to an action on the
## cosets of a subgroup of $G$, one sees that the table of marks completely
## characterizes the set of all permutation representations of $G$.
##
## The marks $m_{ij}$ have further meanings.
## If $H_1$ is the trivial subgroup of $G$ then each mark $m_{i1}$ in the
## first column of $M$ is equal to the index of $H_i$ in $G$
## since the trivial subgroup fixes all cosets of $H_i$.
## If $H_n = G$ then each $m_{nj}$ in the last row of $M$ is equal to $1$
## since there is only one coset of $G$ in $G$.
## In general, $m_{ij}$ equals the number of conjugates of $H_i$ containing
## $H_j$, multiplied by the index of $H_i$ in its normalizer in $G$.
## Moreover, the number $c_{ij}$ of conjugates of $H_j$ which are contained
## in $H_i$ can be derived from the marks $m_{ij}$ via the formula
## $$
## c_{ij} = \frac{m_{ij} m_{j1}}{m_{i1} m_{jj}}\.
## $$
##
## Both the marks $m_{ij}$ and the numbers of subgroups $c_{ij}$ are needed
## for the functions described in this chapter.
##
## A brief survey of properties of tables of marks and a description of
## algorithms for the interactive construction of tables of marks using
## {\GAP} can be found in~\cite{Pfe97}.
##
#############################################################################
##
## 3. Table of Marks Objects in {\GAP}
#3
## A table of marks of a group $G$ in {\GAP} is represented by an immutable
## (see~"Mutability and Copyability") object <tom> in the category
## `IsTableOfMarks' (see~"IsTableOfMarks"), with defining attributes
## `SubsTom' (see~"SubsTom") and `MarksTom' (see~"MarksTom").
## These two attributes encode the matrix of marks in a compressed form.
## The `SubsTom' value of <tom> is a list where for each conjugacy class of
## subgroups the class numbers of its subgroups are stored.
## These are exactly the positions in the corresponding row of the matrix of
## marks which have nonzero entries.
## The marks themselves are stored via the `MarksTom' value of <tom>,
## which is a list that contains for each entry in `SubsTom( <tom> )' the
## corresponding nonzero value of the table of marks.
##
## It is possible to create table of marks objects that do not store a
## group, moreover one can create a table of marks object from a matrix of
## marks (see~"TableOfMarks").
## So it may happen that a table of marks object in {\GAP} is in fact *not*
## the table of marks of a group.
## To some extent, the consistency of a table of marks object can be checked
## (see~"Other Operations for Tables of Marks"),
## but {\GAP} knows no general way to prove or disprove that a given matrix
## of nonnegative integers is the matrix of marks for a group.
## Many functions for tables of marks work well without access to the group
## --this is one of the arguments why tables of marks are so useful--,
## but for example normalizers (see~"NormalizerTom")
## and derived subgroups (see~"DerivedSubgroupTom") of subgroups
## are in general not uniquely determined by the matrix of marks.
##
## {\GAP} tables of marks are assumed to be in lower triangular form,
## that is, if a subgroup from the conjugacy class corresponding to the
## $i$-th row is contained in a subgroup from the class corresponding to the
## $j$-th row j then $i \leq j$.
##
## The `MarksTom' information can be computed from the values of the
## attributes `NrSubsTom', `LengthsTom', `OrdersTom', and `SubsTom'
## (see~"NrSubsTom", "LengthsTom", "OrdersTom").
## `NrSubsTom' stores a list containing for each entry in the `SubsTom'
## value the corresponding number of conjugates that are contained
## in a subgroup, `LengthsTom' a list containing for each conjugacy class
## of subgroups its length, and `OrdersTom' a list containing for each
## class of subgroups their order.
## So the `MarksTom' value of <tom> may be missing provided that the values
## of `NrSubsTom', `LengthsTom', and `OrdersTom' are stored in <tom>.
##
## Additional information about a table of marks is needed by some
## functions.
## The class numbers of normalizers in $G$ and the number of the derived
## subgroup of $G$ can be stored via appropriate attributes
## (see~"NormalizersTom", "DerivedSubgroupTom").
##
## If <tom> stores its group $G$ and a bijection from the rows and columns
## of the matrix of marks of <tom> to the classes of subgroups of $G$ then
## clearly normalizers, derived subgroup etc.~can be computed from this
## information.
## But in general a table of marks need not have access to $G$,
## for example <tom> might have been constructed from a generic table of
## marks (see~"Generic Construction of Tables of Marks"),
## or as table of marks of a factor group from a given table of marks
## (see~"FactorGroupTom").
## Access to the group $G$ is provided by the attribute `UnderlyingGroup'
## (see~"UnderlyingGroup!for tables of marks") if this value is set.
## Access to the relevant information about conjugacy classes of subgroups
## of $G$ --compatible with the ordering of rows and columns of the marks in
## <tom>-- is signalled by the filter `IsTableOfMarksWithGens'
## (see~"Accessing Subgroups via Tables of Marks").
##
#############################################################################
##
## 4. Constructing Tables of Marks
##
#############################################################################
##
#A TableOfMarks( <G> )
#A TableOfMarks( <string> )
#A TableOfMarks( <matrix> )
##
## In the first form, <G> must be a finite group, and `TableOfMarks'
## constructs the table of marks of <G>.
## This computation requires the knowledge of the complete subgroup lattice
## of <G> (see~"LatticeSubgroups").
## If the lattice is not yet stored then it will be constructed.
## This may take a while if <G> is large.
## The result has the `IsTableOfMarksWithGens' value `true'
## (see~"Accessing Subgroups via Tables of Marks").
##
## In the second form, <string> must be a string, and `TableOfMarks' gets
## the table of marks with name <string> from the {\GAP} library
## (see "The Library of Tables of Marks").
## If no table of marks with this name is contained in the library then
## `fail' is returned.
##
## In the third form, <matrix> must be a matrix or a list of rows describing
## a lower triangular matrix where the part above the diagonal is omitted.
## For such an argument <matrix>, `TableOfMarks' returns
## a table of marks object (see~"Table of Marks Objects in GAP")
## for which <matrix> is the matrix of marks.
## Note that not every matrix
## (containing only nonnegative integers and having lower triangular shape)
## describes a table of marks of a group.
## Necessary conditions are checked with `IsInternallyConsistent'
## (see~"Other Operations for Tables of Marks"), and `fail' is returned if
## <matrix> is proved not to describe a matrix of marks;
## but if `TableOfMarks' returns a table of marks object created from a
## matrix then it may still happen that this object does not describe the
## table of marks of a group.
##
## For an overview of operations for table of marks objects,
## see the introduction to the Chapter~"Tables of Marks".
##
DeclareAttribute( "TableOfMarks", IsGroup );
DeclareAttribute( "TableOfMarks", IsString );
DeclareAttribute( "TableOfMarks", IsTable );
#############################################################################
##
#4
## The following `TableOfMarks' methods for a group are installed.
## \beginlist%unordered
## \item{--}
## If the group is known to be cyclic then `TableOfMarks' constructs the
## table of marks essentially without the group, instead the knowledge
## about the structure of cyclic groups is used.
## \item{--}
## If the lattice of subgroups is already stored in the group then
## `TableOfMarks' computes the table of marks from the lattice
## (see~"TableOfMarksByLattice").
## \item{--}
## If the group is known to be solvable then `TableOfMarks' takes the
## lattice of subgroups (see~"LatticeSubgroups") of the group
## --which means that the lattice is computed if it is not yet stored--
## and then computes the table of marks from it.
## This method is also accessible via the global function
## `TableOfMarksByLattice' (see~"TableOfMarksByLattice").
## \item{--}
## If the group doesn't know its lattice of subgroups or its conjugacy
## classes of subgroups then the table of marks and the conjugacy
## classes of subgroups are computed at the same time by the cyclic
## extension method.
## Only the table of marks is stored because the conjugacy classes of
## subgroups or the lattice of subgroups can be easily read off
## (see~"LatticeSubgroupsByTom").
## \endlist
##
## Conversely, the lattice of subgroups of a group with known table of marks
## can be computed using the table of marks, via the function
## `LatticeSubgroupsByTom'.
## This is also installed as a method for `LatticeSubgroups'.
##
#############################################################################
##
#F TableOfMarksByLattice( <G> )
##
## `TableOfMarksByLattice' computes the table of marks of the group <G> from
## the lattice of subgroups of <G>.
## This lattice is computed via `LatticeSubgroups' (see~"LatticeSubgroups")
## if it is not yet stored in <G>.
## The function `TableOfMarksByLattice' is installed as a method for
## `TableOfMarks' for solvable groups and groups with stored subgroup
## lattice, and is available as a global variable only in order to provide
## explicit access to this method.
##
DeclareGlobalFunction( "TableOfMarksByLattice" );
#############################################################################
##
#F LatticeSubgroupsByTom( <G> )
##
## `LatticeSubgroupsByTom' computes the lattice of subgroups of <G> from the
## table of marks of <G>, using `RepresentativeTom'
## (see~"RepresentativeTom").
##
DeclareGlobalFunction( "LatticeSubgroupsByTom" );
#############################################################################
##
## 5. Printing Tables of Marks
#5
## \indextt{ViewObj!for tables of marks}
## The default `ViewObj' (see~"ViewObj") method for tables of marks prints
## the string `\"TableOfMarks\"', followed by --if known-- the identifier
## (see~"Identifier!for tables of marks") or the group of the table of marks
## enclosed in brackets; if neither group nor identifier are known then just
## the number of conjugacy classes of subgroups is printed instead.
##
## \indextt{PrintObj!for tables of marks}
## The default `PrintObj' (see~"PrintObj") method for tables of marks
## does the same as `ViewObj',
## except that the group is is `Print'-ed instead of `View'-ed.
##
## \indextt{Display!for tables of marks}
## The default `Display' (see~"Display") method for a table of marks <tom>
## produces a formatted output of the marks in <tom>.
## Each line of output begins with the number of the corresponding class of
## subgroups.
## This number is repeated if the output spreads over several pages.
## The number of columns printed at one time depends on the actual
## line length, which can be accessed and changed by the function
## `SizeScreen' (see~"SizeScreen").
##
## The optional second argument <arec> of `Display' can be used to change
## the default style for displaying a character as shown above.
## <arec> must be a record, its relevant components are the following.
##
## \beginitems
## `classes' &
## a list of class numbers to select only the rows and columns of the
## matrix that correspond to this list for printing,
##
## `form' &
## one of the strings `\"subgroups\"', `\"supergroups\"';
## in the former case, at position $(i,j)$ of the matrix the number of
## conjugates of $H_j$ contained in $H_i$ is printed,
## and in the latter case, at position $(i,j)$ the number of conjugates
## of $H_i$ which contain $H_j$ is printed.
## \enditems
##
#############################################################################
##
## 6. Sorting Tables of Marks
##
#############################################################################
##
#C IsTableOfMarks( <obj> )
##
## Each table of marks belongs to this category.
##
DeclareCategory( "IsTableOfMarks", IsObject );
#############################################################################
##
#O SortedTom( <tom>, <perm> )
##
## `SortedTom' returns a table of marks where the rows and columns of the
## table of marks <tom> are reordered according to the permutation <perm>.
##
## *Note* that in each table of marks in {\GAP},
## the matrix of marks is assumed to have lower triangular shape
## (see~"Table of Marks Objects in GAP").
## If the permutation <perm> does *not* have this property then the
## functions for tables of marks might return wrong results when applied to
## the output of `SortedTom'.
##
## The returned table of marks has only those attribute values stored that
## are known for <tom> and listed in `TableOfMarksComponents'
## (see~"TableOfMarksComponents").
##
DeclareOperation( "SortedTom", [ IsTableOfMarks, IsPerm ] );
#############################################################################
##
#A PermutationTom( <tom> )
##
## For the table of marks <tom> of the group $G$ stored as `UnderlyingGroup'
## value of <tom> (see~"UnderlyingGroup!for tables of marks"),
## `PermutationTom' is a permutation $\pi$ such that the $i$-th conjugacy
## class of subgroups of $G$ belongs to the $i^\pi$-th column and row of
## marks in <tom>.
##
## This attribute value is bound only if <tom> was obtained from another
## table of marks by permuting with `SortedTom' (see~"SortedTom"),
## and there is no default method to compute its value.
##
## The attribute is necessary because the original and the sorted table of
## marks have the same identifier and the same group,
## and information computed from the group may depend on the ordering of
## marks, for example the fusion from the ordinary character table of $G$
## into <tom>.
##
DeclareAttribute( "PermutationTom", IsTableOfMarks );
#############################################################################
##
## 7. Technical Details about Tables of Marks
##
#############################################################################
##
#V InfoTom
##
## is the info class for computations concerning tables of marks.
##
DeclareInfoClass( "InfoTom" );
#############################################################################
##
#V TableOfMarksFamily
##
## Each table of marks belongs to this family.
##
BindGlobal( "TableOfMarksFamily",
NewFamily( "TableOfMarksFamily", IsTableOfMarks ) );
#############################################################################
##
#F ConvertToTableOfMarks( <record> )
##
## `ConvertToTableOfMarks' converts a record with components from
## `TableOfMarksComponents' into a table of marks object with the
## corresponding attributes.
##
DeclareGlobalFunction( "ConvertToTableOfMarks" );
#############################################################################
##
## 8. Attributes of Tables of Marks
##
#############################################################################
##
#A MarksTom( <tom> ) . . . . . . . . . . . . . . . . . . defining attribute
#A SubsTom( <tom> ) . . . . . . . . . . . . . . . . . . defining attribute
##
## The matrix of marks (see~"More about Tables of Marks") of the table of
## marks <tom> is stored in a compressed form where zeros are omitted,
## using the attributes `MarksTom' and `SubsTom'.
## If $M$ is the square matrix of marks of <tom> (see~"MatTom") then the
## `SubsTom' value of <tom> is a list that contains at position $i$ the list
## of all positions of nonzero entries of the $i$-th row of $M$, and the
## `MarksTom' value of <tom> is a list that contains at position $i$ the
## list of the corresponding marks.
##
## `MarksTom' and `SubsTom' are defining attributes of tables of marks
## (see~"Table of Marks Objects in GAP").
## There is no default method for computing the `SubsTom' value,
## and the default `MarksTom' method needs the values of `NrSubsTom' and
## `OrdersTom' (see~"NrSubsTom", "OrdersTom").
##
DeclareAttribute( "MarksTom", IsTableOfMarks );
DeclareAttribute( "SubsTom", IsTableOfMarks );
#############################################################################
##
#A NrSubsTom( <tom> )
#A OrdersTom( <tom> )
##
## Instead of storing the marks (see~"MarksTom") of the table of marks <tom>
## one can use a matrix which contains at position $(i,j)$ the number of
## subgroups of conjugacy class $j$ that are contained in one member of the
## conjugacy class $i$.
## These values are stored in the `NrSubsTom' value in the same way as
## the marks in the `MarksTom' value.
##
## `OrdersTom' returns a list that contains at position $i$ the order of a
## representative of the $i$-th conjugacy class of subgroups of <tom>.
##
## One can compute the `NrSubsTom' and `OrdersTom' values from the
## `MarksTom' value of <tom> and vice versa.
##
DeclareAttribute( "NrSubsTom", IsTableOfMarks );
DeclareAttribute( "OrdersTom", IsTableOfMarks );
#############################################################################
##
#A LengthsTom( <tom> )
##
## For a table of marks <tom>, `LengthsTom' returns a list of the lengths of
## the conjugacy classes of subgroups.
##
DeclareAttribute( "LengthsTom", IsTableOfMarks );
#############################################################################
##
#A ClassTypesTom( <tom> )
##
## `ClassTypesTom' distinguishes isomorphism types of the classes of
## subgroups of the table of marks <tom> as far as this is possible
## from the `SubsTom' and `MarksTom' values of <tom>.
##
## Two subgroups are clearly not isomorphic if they have different orders.
## Moreover, isomorphic subgroups must contain the same number of subgroups
## of each type.
##
## Each type is represented by a positive integer.
## `ClassTypesTom' returns the list which contains for each class of
## subgroups its corresponding type.
##
DeclareAttribute( "ClassTypesTom", IsTableOfMarks );
#############################################################################
##
#A ClassNamesTom( <tom> )
##
## `ClassNamesTom' constructs generic names for the conjugacy classes of
## subgroups of the table of marks <tom>.
## In general, the generic name of a class of non--cyclic subgroups consists
## of three parts and has the form `\"(<o>)_{<t>}<l>\"',
## where <o> indicates the order of the subgroup,
## <t> is a number that distinguishes different types of subgroups of the
## same order, and <l> is a letter that distinguishes classes of subgroups
## of the same type and order.
## The type of a subgroup is determined by the numbers of its subgroups of
## other types (see~"ClassTypesTom").
## This is slightly weaker than isomorphism.
##
## The letter is omitted if there is only one class of subgroups of that
## order and type,
## and the type is omitted if there is only one class of that order.
## Moreover, the braces `{}' around the type are omitted if the type number
## has only one digit.
##
## For classes of cyclic subgroups, the parentheses round the order and the
## type are omitted.
## Hence the most general form of their generic names is `\"<o>,<l>\"'.
## Again, the letter is omitted if there is only one class of cyclic
## subgroups of that order.
##
DeclareAttribute( "ClassNamesTom", IsTableOfMarks );
#############################################################################
##
#A FusionsTom( <tom> )
##
## For a table of marks <tom>, `FusionsTom' is a list of fusions into other
## tables of marks. Each fusion is a list of length two, the first entry
## being the `Identifier' (see~"Identifier!for tables of marks") value of
## the image table, the second entry being the list of images of the class
## positions of <tom> in the image table.
##
## This attribute is mainly used for tables of marks in the {\GAP} library
## (see~"The Library of Tables of Marks").
##
DeclareAttribute( "FusionsTom", IsTableOfMarks, "mutable" );
#############################################################################
##
#A UnderlyingGroup( <tom> )
##
## `UnderlyingGroup' is used to access an underlying group that is stored on
## the table of marks <tom>.
## There is no default method to compute an underlying group if it is not
## stored.
##
DeclareAttribute( "UnderlyingGroup", IsTableOfMarks );
#############################################################################
##
#A IdempotentsTom( <tom> )
#A IdempotentsTomInfo( <tom> )
##
## `IdempotentsTom' encodes the idempotents of the integral Burnside ring
## described by the table of marks <tom>.
## The return value is a list $l$ of positive integers such that each row
## vector describing a primitive idempotent has value $1$ at all positions
## with the same entry in $l$, and $0$ at all other positions.
##
## According to A.~Dress~\cite{Dre69} (see also~\cite{Pfe97}),
## these idempotents correspond to the classes of perfect subgroups,
## and each such idempotent is the characteristic function of all those
## subgroups that arise by cyclic extension from the corresponding perfect
## subgroup (see~"CyclicExtensionsTom").
##
## `IdempotentsTomInfo' returns a record with components `fixpointvectors'
## and `primidems', both bound to lists.
## The $i$-th entry of the `fixpointvectors' list is the $0-1$-vector
## describing the $i$-th primitive idempotent,
## and the $i$-th entry of `primidems' is the decomposition of this
## idempotent in the rows of <tom>.
##
DeclareAttribute( "IdempotentsTom", IsTableOfMarks );
DeclareAttribute( "IdempotentsTomInfo", IsTableOfMarks );
#############################################################################
##
#A Identifier( <tom> )
##
## The identifier of a table of marks <tom> is a string.
## It is used for printing the table of marks
## (see~"Printing Tables of Marks")
## and in fusions between tables of marks (see~"FusionsTom").
##
## If <tom> is a table of marks from the {\GAP} library of tables of marks
## (see~"The Library of Tables of Marks") then it has an identifier,
## and if <tom> was constructed from a group with `Name' value (see~"Name")
## then this name is chosen as `Identifier' value.
## There is no default method to compute an identifier in all other cases.
##
DeclareAttribute( "Identifier", IsTableOfMarks );
#############################################################################
##
#A MatTom( <tom> )
##
## `MatTom' returns the square matrix of marks
## (see~"More about Tables of Marks") of the table of marks <tom> which is
## stored in a compressed form using the attributes `MarksTom' and `SubsTom'
## (see~"MarksTom").
## This may need substantially more space than the values of `MarksTom' and
## `SubsTom'.
##
DeclareAttribute( "MatTom", IsTableOfMarks );
#############################################################################
##
#A MoebiusTom( <tom> )
##
## `MoebiusTom' computes the M{\accent127 o}bius values both of the subgroup
## lattice of the group $G$ with table of marks <tom> and of the poset of
## conjugacy classes of subgroups of $G$.
## It returns a record where the component
## `mu' contains the M{\accent127 o}bius values of the subgroup lattice,
## and the component `nu' contains the M{\accent127 o}bius values of the
## poset.
##
## Moreover, according to an observation of Isaacs et al.~(see~\cite{HIO89},
## \cite{Pah93}), the values on the subgroup lattice often can be derived
## from those of the poset of conjugacy classes.
## These ``expected values'' are returned in the component `ex',
## and the list of numbers of those subgroups where the expected value does
## not coincide with the actual value are returned in the component `hyp'.
## For the computation of these values, the position of the derived subgroup
## of $G$ is needed (see~"DerivedSubgroupTom").
## If it is not uniquely determined then the result does not have the
## components `ex' and `hyp'.
##
DeclareAttribute( "MoebiusTom", IsTableOfMarks );
#############################################################################
##
#A WeightsTom( <tom> )
##
## `WeightsTom' extracts the *weights* from the table of marks <tom>,
## i.e., the diagonal entries of the matrix of marks (see~"MarksTom"),
## indicating the index of a subgroup in its normalizer.
##
DeclareAttribute( "WeightsTom", IsTableOfMarks );
#############################################################################
##
## 9. Properties of Tables of Marks
#6
## For a table of marks <tom> of a group $G$, the following properties
## have the same meaning as the corresponding properties for $G$.
## Additionally, if a positive integer <sub> is given as the second argument
## then the value of the corresponding property for the <sub>-th class of
## subgroups of <tom> is returned.
##
## \>IsAbelianTom( <tom>[, <sub>] )
## \>IsCyclicTom( <tom>[, <sub>] )
## \>IsNilpotentTom( <tom>[, <sub>] )
## \>IsPerfectTom( <tom>[, <sub>] )
## \>IsSolvableTom( <tom>[, <sub>] )
##
#############################################################################
##
#A IsAbelianTom( <tom> )
#O IsAbelianTom( <tom>, <sub> )
##
## `IsAbelianTom' tests if the underlying group of the table of marks
## <tom> is abelian.
## If a second argument <sub> is given then `IsAbelianTom' returns whether
## the groups in the <sub>-th class of subgroups in <tom> are abelian.
##
DeclareAttribute( "IsAbelianTom", IsTableOfMarks );
DeclareOperation( "IsAbelianTom", [ IsTableOfMarks, IsPosInt ] );
#############################################################################
##
#A IsCyclicTom( <tom> )
#O IsCyclicTom( <tom>, <sub> )
##
## `IsCyclicTom' tests if the underlying group of the table of marks
## <tom> is cyclic.
## If a second argument <sub> is given then `IsCyclicTom' returns whether
## the groups in the <sub>-th class of subgroups in <tom> are cyclic.
## A subgroup is cyclic if and only if the sum over the corresponding row of
## the inverse table of marks is nonzero (see~\cite{Ker91}, page 125).
## Thus we only have to decompose the corresponding idempotent.
##
DeclareAttribute( "IsCyclicTom", IsTableOfMarks );
DeclareOperation( "IsCyclicTom", [ IsTableOfMarks, IsPosInt ] );
#############################################################################
##
#A IsNilpotentTom( <tom )
#O IsNilpotentTom( <tom>, <sub> )
##
## `IsNilpotentTom' tests if the underlying group of the table of marks
## <tom> is nilpotent.
## If a second argument <sub> is given then `IsNilpotentTom' returns whether
## the groups in the <sub>-th class of subgroups in <tom> are nilpotent.
##
DeclareAttribute( "IsNilpotentTom", IsTableOfMarks );
DeclareOperation( "IsNilpotentTom", [ IsTableOfMarks, IsPosInt ] );
#############################################################################
##
#A IsPerfectTom( <tom> )
#O IsPerfectTom( <tom>, <sub> )
##
## `IsPerfectTom' tests if the underlying group of the table of marks
## <tom> is perfect.
## If a second argument <sub> is given then `IsPerfectTom' returns whether
## the groups in the <sub>-th class of subgroups in <tom> are perfect.
##
DeclareAttribute( "IsPerfectTom", IsTableOfMarks );
DeclareOperation( "IsPerfectTom", [ IsTableOfMarks, IsPosInt ] );
#############################################################################
##
#A IsSolvableTom( <tom> )
#O IsSolvableTom( <tom>, <sub> )
##
## `IsSolvableTom' tests if the underlying group of the table of marks
## <tom> is solvable.
## If a second argument <sub> is given then `IsSolvableTom' returns whether
## the groups in the <sub>-th class of subgroups in <tom> are solvable.
##
DeclareAttribute( "IsSolvableTom", IsTableOfMarks );
DeclareOperation( "IsSolvableTom", [ IsTableOfMarks, IsPosInt ] );
#############################################################################
##
## 10. Other Operations for Tables of Marks
#7
## \>IsInternallyConsistent( <tom> )!{for tables of marks} O
##
## For a table of marks <tom>, `IsInternallyConsistent'
## decomposes all tensor products of rows of <tom>.
## It returns `true' if all decomposition numbers are nonnegative integers,
## and `false' otherwise.
## This provides a strong consistency check for a table of marks.
##
#############################################################################
##
#O DerivedSubgroupTom( <tom>, <sub> )
#F DerivedSubgroupsTom( <tom> )
##
## For a table of marks <tom> and a positive integer <sub>,
## `DerivedSubgroupTom' returns either a positive integer $i$ or a list $l$
## of positive integers.
## In the former case, the result means that the derived subgroups of the
## subgroups in the <sub>-th class of <tom> lie in the $i$-th class.
## In the latter case, the class of the derived subgroups could not be
## uniquely determined, and the position of the class of derived subgroups
## is an entry of $l$.
##
## Values computed with `DerivedSubgroupTom' are stored using the attribute
## `DerivedSubgroupsTomPossible' (see~"DerivedSubgroupsTomPossible").
##
## `DerivedSubgroupsTom' is just the list of `DerivedSubgroupTom' values for
## all values of <sub>.
##
DeclareOperation( "DerivedSubgroupTom", [ IsTableOfMarks, IsPosInt ] );
DeclareGlobalFunction( "DerivedSubgroupsTom");
#############################################################################
##
#A DerivedSubgroupsTomPossible( <tom> )
#A DerivedSubgroupsTomUnique( <tom> )
##
## Let <tom> be a table of marks.
## The value of the attribute `DerivedSubgroupsTomPossible' is a list
## in which the value at position $i$ --if bound-- is a positive integer or
## a list; the meaning of the entry is the same as in `DerivedSubgroupTom'
## (see~"DerivedSubgroupTom").
##
## If the value of the attribute `DerivedSubgroupsTomUnique' is known for
## <tom> then it is a list of positive integers, the value at position $i$
## being the position of the class of derived subgroups of the $i$-th class
## of subgroups in <tom>.
## The derived subgroups are in general not uniquely determined by the table
## of marks if no `UnderlyingGroup' value is stored,
## so there is no default method for `DerivedSubgroupsTomUnique'.
## But in some cases the derived subgroups are explicitly set when the table
## of marks is constructed.
## The `DerivedSubgroupsTomUnique' value is automatically set when the last
## missing unique value is entered in the `DerivedSubgroupsTomPossible' list
## by `DerivedSubgroupTom'.
##
DeclareAttribute( "DerivedSubgroupsTomPossible", IsTableOfMarks, "mutable" );
DeclareAttribute( "DerivedSubgroupsTomUnique", IsTableOfMarks );
#############################################################################
##
#O NormalizerTom( <tom>, <sub> )
#A NormalizersTom( <tom> )
##
## Let <tom> be the table of marks of a group $G$, say.
## `NormalizerTom' tries to find the conjugacy class of the normalizer $N$
## in $G$ of a subgroup $U$ in the <sub>-th class of <tom>.
## The return value is either the list of class numbers of those subgroups
## that have the right size and contain the subgroup and all subgroups that
## clearly contain it as a normal subgroup, or the class number of the
## normalizer if it is uniquely determined by these conditions.
## If <tom> knows the subgroup lattice of $G$ (see~"IsTableOfMarksWithGens")
## then all normalizers are uniquely determined.
## `NormalizerTom' should never return an empty list.
##
## `NormalizersTom' returns the list of positions of the classes of
## normalizers of subgroups in <tom>.
## In addition to the criteria for a single class of subgroup used by
## `NormalizerTom', the approximations of normalizers for several classes
## are used and thus `NormalizersTom' may return better approximations
## than `NormalizerTom'.
##
DeclareOperation( "NormalizerTom", [ IsTableOfMarks, IsPosInt ] );
DeclareAttribute( "NormalizersTom", IsTableOfMarks );
#############################################################################
##
#O ContainedTom( <tom>, <sub1>, <sub2> )
##
## `ContainedTom' returns the number of subgroups in class <sub1> of the
## table of marks <tom> that are contained in one fixed member of the class
## <sub2>.
##
DeclareOperation( "ContainedTom", [IsTableOfMarks, IsPosInt, IsPosInt ] );
#############################################################################
##
#O ContainingTom( <tom>, <sub1>, <sub2> )
##
## `ContainingTom' returns the number of subgroups in class <sub2> of the
## table of marks <tom> that contain one fixed member of the class <sub1>.
##
DeclareOperation( "ContainingTom", [ IsTableOfMarks, IsPosInt, IsPosInt ] );
#############################################################################
##
#A CyclicExtensionsTom( <tom> )
#O CyclicExtensionsTom( <tom>, <p> )
#O CyclicExtensionsTom( <tom>, <list> )
##
## According to A.~Dress~\cite{Dre69}, two columns of the table of marks
## <tom> are equal modulo the prime <p> if and only if the corresponding
## subgroups are connected by a chain of normal extensions of order <p>.
##
## In the second form, `CyclicExtensionsTom' returns the classes of this
## equivalence relation.
## In the third form, <list> must be a list of primes, and the return value
## is the list of classes of the relation obtained by considering chains of
## normal extensions of prime order where all primes are in <list>.
## In the first form, the result is the same as in the third form,
## with second argument the set of prime divisors of the size of the group
## of <tom>.
##
## (This information is not used by `NormalizerTom' (see~"NormalizerTom")
## although it might give additional restrictions in the search of
## normalizers.)
##
DeclareAttribute( "CyclicExtensionsTom", IsTableOfMarks );
DeclareOperation( "CyclicExtensionsTom", [ IsTableOfMarks, IsPosInt ] );
DeclareOperation( "CyclicExtensionsTom", [ IsTableOfMarks, IsList ] );
#############################################################################
##
#A ComputedCyclicExtensionsTom( <tom> )
#O CyclicExtensionsTomOp( <tom>, <p> )
#O CyclicExtensionsTomOp( <tom>, <list> )
##
## The attribute `ComputedCyclicExtensionsTom' is used by the default
## `CyclicExtensionsTom' method to store the computed equivalence classes
## for the table of marks <tom> and access them in subsequent calls.
##
## The operation `CyclicExtensionsTomOp' does the real work for
## `CyclicExtensionsTom'.
##
DeclareAttribute( "ComputedCyclicExtensionsTom", IsTableOfMarks, "mutable" );
DeclareOperation( "CyclicExtensionsTomOp", [ IsTableOfMarks, IsPosInt ] );
DeclareOperation( "CyclicExtensionsTomOp", [ IsTableOfMarks, IsList ] );
#############################################################################
##
#O DecomposedFixedPointVector( <tom>, <fix> )
##
## Let <tom> be the table of marks of the group $G$, say,
## and let <fix> be a vector of fixed point numbers w.r.t.~an action of $G$,
## i.e., a vector which contains for each class of subgroups the number of
## fixed points under the given action.
## `DecomposedFixedPointVector' returns the decomposition of <fix> into rows
## of the table of marks.
## This decomposition corresponds to a decomposition of the action into
## transitive constituents.
## Trailing zeros in <fix> may be omitted.
##
DeclareOperation( "DecomposedFixedPointVector",
[ IsTableOfMarks, IsList ] );
#############################################################################
##
#O EulerianFunctionByTom( <tom>, <n>[, <sub>] )
##
## In the first form `EulerianFunctionByTom' computes the Eulerian
## function (see~"EulerianFunction") of the underlying group $G$ of the
## table of marks <tom>,
## that is, the number of <n>-tuples of elements in $G$ that generate $G$.
## In the second form `EulerianFunctionByTom' computes the Eulerian function
## of each subgroup in the <sub>-th class of subgroups of <tom>.
##
## For a group $G$ whose table of marks is known, `EulerianFunctionByTom'
## is installed as a method for `EulerianFunction' (see~"EulerianFunction").
##
DeclareOperation( "EulerianFunctionByTom", [ IsTableOfMarks, IsPosInt ] );
DeclareOperation( "EulerianFunctionByTom",
[ IsTableOfMarks, IsPosInt, IsPosInt ] );
#############################################################################
##
#O IntersectionsTom( <tom>, <sub1>, <sub2> )
##
## The intersections of the groups in the <sub1>-th conjugacy class of
## subgroups of the table of marks <tom> with the groups in the <sub2>-th
## conjugacy classes of subgroups of <tom> are determined up to conjugacy by
## the decomposition of the tensor product of their rows of marks.
## `IntersectionsTom' returns a list $l$ that describes this decomposition.
## The $i$-th entry in $l$ is the multiplicity of groups in the
## $i$-th conjugacy class as an intersection.
##
DeclareOperation( "IntersectionsTom",
[ IsTableOfMarks, IsPosInt, IsPosInt ] );
#############################################################################
##
#O FactorGroupTom( <tom>, <n> )
##
## For a table of marks <tom> of the group $G$, say,
## and the normal subgroup $N$ of $G$ corresponding to the <n>-th class of
## subgroups of <tom>,
## `FactorGroupTom' returns the table of marks of the factor
## group $G / N$.
##
DeclareOperation( "FactorGroupTom", [ IsTableOfMarks, IsPosInt ] );
#############################################################################
##
#A MaximalSubgroupsTom( <tom> )
#O MaximalSubgroupsTom( <tom>, <sub> )
##
## In the first form `MaximalSubgroupsTom' returns a list of length two,
## the first entry being the list of positions of the classes of maximal
## subgroups of the whole group of the table of marks <tom>,
## the second entry being the list of class lengths of these groups.
## In the second form the same information for the <sub>-th class of
## subgroups is returned.
##
DeclareAttribute( "MaximalSubgroupsTom", IsTableOfMarks );
DeclareOperation( "MaximalSubgroupsTom", [ IsTableOfMarks, IsPosInt ] );
#############################################################################
##
#O MinimalSupergroupsTom( <tom>, <sub> )
##
## For a table of marks <tom>, `MinimalSupergroupsTom' returns a list of
## length two, the first entry being the list of positions of the classes
## containing the minimal supergroups of the groups in the <sub>-th class
## of subgroups of <tom>,
## the second entry being the list of class lengths of these groups.
##
DeclareOperation( "MinimalSupergroupsTom", [ IsTableOfMarks, IsPosInt ] );
#############################################################################
##
## 11. Accessing Subgroups via Tables of Marks
#8
## Let <tom> be the table of marks of the group $G$,
## and assume that <tom> has access to $G$ via the `UnderlyingGroup' value
## (see~"UnderlyingGroup!for tables of marks").
## Then it makes sense to use <tom> and its ordering of conjugacy classes of
## subgroups of $G$ for storing information for constructing representatives
## of these classes.
## The group $G$ is in general not sufficient for this,
## <tom> needs more information;
## this is available if and only if the `IsTableOfMarksWithGens' value of
## <tom> is `true' (see~"IsTableOfMarksWithGens").
## In this case, `RepresentativeTom' (see~"RepresentativeTom") can be used
## to get a subgroup of the $i$-th class, for all $i$.
##
## {\GAP} provides two different possibilities to store generators of the
## representatives of classes of subgroups.
## The first is implemented by the attribute `GeneratorsSubgroupsTom'
## (see~"GeneratorsSubgroupsTom"), which uses explicit generators.
## The second, more general, possibility is implemented by the attributes
## `StraightLineProgramsTom' (see~"StraightLineProgramsTom") and
## `StandardGeneratorsInfo' (see~"StandardGeneratorsInfo!for tables of marks").
## The `StraightLineProgramsTom' value encodes the generators as
## straight line programs (see~"Straight Line Programs") that evaluate to
## the generators in question when applied to standard generators of $G$.
## This means that on the one hand, standard generators of $G$ must be known
## in order to use `StraightLineProgramsTom'.
## On the other hand, the straight line programs allow one to compute easily
## generators not only of a subgroup $U$ of $G$ but also generators of the
## image of $U$ in any representation of $G$, provided that one knows
## standard generators of the image of $G$ under this representation
## (see~"RepresentativeTomByGenerators" for details and an example).
##
#############################################################################
##
#A GeneratorsSubgroupsTom( <tom> )
##
## Let <tom> be a table of marks with `IsTableOfMarksWithGens' value `true'.
## Then `GeneratorsSubgroupsTom' returns a list of length two,
## the first entry being a list $l$ of elements of the group stored as
## `UnderlyingGroup' value of <tom>,
## the second entry being a list that contains at position $i$ a list of
## positions in $l$ of generators of a representative of a subgroup in class
## $i$.
##
## The `GeneratorsSubgroupsTom' value is known for all tables of marks that
## have been computed with `TableOfMarks' (see~"TableOfMarks") from a group,
## and there is a method to compute the value for a table of marks that
## admits `RepresentativeTom' (see~"RepresentativeTom").
##
DeclareAttribute( "GeneratorsSubgroupsTom", IsTableOfMarks );
#############################################################################
##
#A StraightLineProgramsTom( <tom> )
##
## For a table of marks <tom> with `IsTableOfMarksWithGens' value `true',
## `StraightLineProgramsTom' returns a list that contains at position $i$
## either a list of straight line programs or a straight line program
## (see~"Straight Line Programs"), encoding the generators of
## a representative of the $i$-th conjugacy class of subgroups of
## `UnderlyingGroup( <tom> )';
## in the former case, each straight line program returns a generator,
## in the latter case, the program returns the list of generators.
##
## There is no default method to compute the `StraightLineProgramsTom' value
## of a table of marks if they are not yet stored.
## The value is known for all tables of marks that belong to the
## {\GAP} library of tables of marks (see~"The Library of Tables of Marks").
##
DeclareAttribute( "StraightLineProgramsTom", IsTableOfMarks );
#############################################################################
##
#A StandardGeneratorsInfo( <tom> )
##
## For a table of marks <tom>, a stored value of `StandardGeneratorsInfo'
## equals the value of this attribute for the underlying group
## (see~"UnderlyingGroup!for tables of marks") of <tom>,
## cf.~Section~"Standard Generators of Groups".
##
## In this case, the `GeneratorsOfGroup' value of the underlying group $G$
## of <tom> is assumed to be in fact a list of standard generators for $G$;
## So one should be careful when setting the `StandardGeneratorsInfo' value
## by hand.
##
## There is no default method to compute the `StandardGeneratorsInfo' value
## of a table of marks if it is not yet stored.
##
DeclareAttribute( "StandardGeneratorsInfo", IsTableOfMarks );
#############################################################################
##
#F IsTableOfMarksWithGens( <tom> )
##
## This filter shall express the union of the filters
## `IsTableOfMarks and HasStraightLineProgramsTom' and
## `IsTableOfMarks and HasGeneratorsSubgroupsTom'.
## If a table of marks <tom> has this filter set then <tom> can be asked to
## compute information that is in general not uniquely determined by a table
## of marks,
## for example the positions of derived subgroups or normalizers of
## subgroups (see~"DerivedSubgroupTom", "NormalizerTom").
##
DeclareFilter( "IsTableOfMarksWithGens" );
InstallTrueMethod( IsTableOfMarksWithGens,
IsTableOfMarks and HasStraightLineProgramsTom );
InstallTrueMethod( IsTableOfMarksWithGens,
IsTableOfMarks and HasGeneratorsSubgroupsTom);
#############################################################################
##
#O RepresentativeTom( <tom>, <sub> )
#O RepresentativeTomByGenerators( <tom>, <sub>, <gens> )
#O RepresentativeTomByGeneratorsNC( <tom>, <sub>, <gens> )
##
## Let <tom> be a table of marks with `IsTableOfMarksWithGens' value `true'
## (see~"IsTableOfMarksWithGens"), and <sub> a positive integer.
## `RepresentativeTom' returns a representative of the <sub>-th conjugacy
## class of subgroups of <tom>.
##
## `RepresentativeTomByGenerators' and `RepresentativeTomByGeneratorsNC'
## return a representative of the <sub>-th conjugacy class of subgroups of
## <tom>, as a subgroup of the group generated by <gens>.
## This means that the standard generators of <tom> are replaced by <gens>.
##
## `RepresentativeTomByGenerators' checks whether mapping the standard
## generators of <tom> to <gens> extends to a group isomorphism,
## and returns `fail' if not.
## `RepresentativeTomByGeneratorsNC' omits all checks.
## So `RepresentativeTomByGenerators' is thought mainly for debugging
## purposes;
## note that when several representatives are constructed, it is cheaper to
## construct (and check) the isomorphism once, and to map the groups
## returned by `RepresentativeTom' under this isomorphism.
## The idea behind `RepresentativeTomByGeneratorsNC', however, is to avoid
## the overhead of using isomorphisms when <gens> are known to be standard
## generators.
##
DeclareOperation( "RepresentativeTom", [ IsTableOfMarks, IsPosInt ] );
DeclareOperation( "RepresentativeTomByGenerators",
[ IsTableOfMarks and HasStraightLineProgramsTom, IsPosInt,
IsHomogeneousList ] );
DeclareOperation( "RepresentativeTomByGeneratorsNC",
[ IsTableOfMarks and HasStraightLineProgramsTom, IsPosInt,
IsHomogeneousList ] );
#############################################################################
##
## 12. The Interface between Tables of Marks and Character Tables
##
#############################################################################
##
#O FusionCharTableTom( <tbl>, <tom> ) . . . . . . . . . . . element fusion
#O PossibleFusionsCharTableTom( <tbl>, <tom>[, <options>] ) . element fusion
##
## Let <tbl> be the ordinary character table of the group $G$, say,
## and <tom> the table of marks of $G$.
## `FusionCharTableTom' determines the fusion of the classes of elements
## from <tbl> to the classes of cyclic subgroups on <tom>, that is,
## a list that contains at position $i$ the position of the class of cyclic
## subgroups in <tom> that are generated by elements in the $i$-th conjugacy
## class of elements in <tbl>.
##
## Three cases are handled differently.
## \beginlist%ordered
## \item{1.}
## The fusion is explicitly stored on <tbl>.
## Then nothing has to be done.
## This happens only if both <tbl> and <tom> are tables from the {\GAP}
## library (see~"The Library of Tables of Marks" and the manual of
## the {\GAP} Character Table Library).
## \item{2.}
## The `UnderlyingGroup' values of <tbl> and <tom> are known and
## equal.
## Then the group is used to compute the fusion.
## \item{3.}
## There is neither fusion nor group information available.
## In this case only necessary conditions can be checked,
## and if they are not sufficient to detemine the fusion uniquely then
## `fail' is returned by `FusionCharTableTom'.
## \endlist
##
## `PossibleFusionsCharTableTom' computes the list of possible fusions from
## <tbl> to <tom>, according to the criteria that have been checked.
## So if `FusionCharTableTom' returns a unique fusion then the list returned
## by `PossibleFusionsCharTableTom' for the same arguments contains exactly
## this fusion,
## and if `FusionCharTableTom' returns `fail' then the length of this list
## is different from $1$.
#T this is fishy!
##
## The optional argument <options> must be a record that may have the
## following components.
## \beginitems
## `fusionmap' &
## a parametrized map which is an approximation of the desired map,
##
## `quick' &
## a Boolean;
## if `true' then as soon as only one possibility remains
## this possibility is returned immediately;
## the default value is `false'.
## \enditems
##
DeclareOperation( "FusionCharTableTom",
[ IsOrdinaryTable, IsTableOfMarks ] );
DeclareOperation( "PossibleFusionsCharTableTom",
[ IsOrdinaryTable, IsTableOfMarks ] );
DeclareOperation( "PossibleFusionsCharTableTom",
[ IsOrdinaryTable, IsTableOfMarks, IsRecord ] );
#############################################################################
##
#O PermCharsTom( <fus>, <tom> )
#O PermCharsTom( <tbl>, <tom> )
##
## `PermCharsTom' returns the list of transitive permutation characters
## from the table of marks <tom>.
## In the first form, <fus> must be the fusion map from the ordinary
## character table of the group of <tom> to <tom>
## (see~"FusionCharTableTom").
## In the second form, <tbl> must be the character table of the group of
## which <tom> is the table of marks.
## If the fusion map is not uniquely determined (see~"FusionCharTableTom")
## then `fail' is returned.
##
## If the fusion map <fus> is given as first argument then each transitive
## permutation character is represented by its values list.
## If the character table <tbl> is given then the permutation characters are
## class function objects (see Chapter~"Class Functions").
##
DeclareOperation( "PermCharsTom", [ IsList, IsTableOfMarks ] );
DeclareOperation( "PermCharsTom", [ IsOrdinaryTable, IsTableOfMarks ] );
#############################################################################
##
## 13. Generic Construction of Tables of Marks
#9
## The following three operations construct a table of marks only from the
## data given, i.e., without underlying group.
##
#############################################################################
##
#O TableOfMarksCyclic( <n> )
##
## `TableOfMarksCyclic' returns the table of marks of the cyclic group
## of order <n>.
##
## A cyclic group of order <n> has as its subgroups for each divisor $d$
## of <n> a cyclic subgroup of order $d$.
##
DeclareOperation( "TableOfMarksCyclic", [ IsPosInt ] );
#############################################################################
##
#O TableOfMarksDihedral( <n> )
##
## `TableOfMarksDihedral' returns the table of marks of the dihedral group
## of order <m>.
##
## For each divisor $d$ of <m>, a dihedral group of order $m = 2n$ contains
## subgroups of order $d$ according to the following rule.
## If $d$ is odd and divides $n$ then there is only one cyclic subgroup of
## order $d$.
## If $d$ is even and divides $n$ then there are a cyclic subgroup of order
## $d$ and two classes of dihedral subgroups of order $d$
## (which are cyclic, too, in the case $d = 2$, see the example below).
## Otherwise (i.e., if $d$ does not divide $n$) there is just one class of
## dihedral subgroups of order $d$.
##
DeclareOperation( "TableOfMarksDihedral", [ IsPosInt ] );
#############################################################################
##
#O TableOfMarksFrobenius( <p>, <q> )
##
## `TableOfMarksFrobenius' computes the table of marks of a Frobenius group
## of order $p q$, where $p$ is a prime and $q$ divides $p-1$.
##
DeclareOperation( "TableOfMarksFrobenius", [ IsPosInt, IsPosInt ] );
#############################################################################
##
#V TableOfMarksComponents
##
## The list `TableOfMarksComponents' is used when a table of marks object is
## created from a record via `ConvertToTableOfMarks'
## (see~"ConvertToTableOfMarks").
## `TableOfMarksComponents' contains at position $2i-1$ a name of an
## attribute and at position $2i$ the corresponding attribute getter
## function.
##
BindGlobal( "TableOfMarksComponents", [
"Identifier", Identifier,
"SubsTom", SubsTom,
"MarksTom", MarksTom,
"NrSubsTom", NrSubsTom,
"OrdersTom", OrdersTom,
"NormalizersTom", NormalizersTom,
"DerivedSubgroupsTomUnique", DerivedSubgroupsTomUnique,
"UnderlyingGroup", UnderlyingGroup,
"StraightLineProgramsTom", StraightLineProgramsTom,
"GeneratorsSubgroupsTom", GeneratorsSubgroupsTom,
"StandardGeneratorsInfo", StandardGeneratorsInfo,
"PermutationTom", PermutationTom,
"ClassNamesTom", ClassNamesTom,
] );
#############################################################################
##
#E
|