File: cyclotom.g

package info (click to toggle)
gap 4r7p5-2
  • links: PTS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 29,272 kB
  • ctags: 7,129
  • sloc: ansic: 107,802; xml: 46,868; sh: 3,548; perl: 2,329; makefile: 740; python: 94; asm: 62; awk: 6
file content (1110 lines) | stat: -rw-r--r-- 33,216 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
#############################################################################
##
#W  cyclotom.g                   GAP library                    Thomas Breuer
#W                                                             & Frank Celler
##
##
#Y  Copyright (C)  1997,  Lehrstuhl D für Mathematik,  RWTH Aachen,  Germany
#Y  (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y  Copyright (C) 2002 The GAP Group
##
##  This file deals with cyclotomics.
##


#############################################################################
##
#C  IsCyclotomic( <obj> ) . . . . . . . . . . . . category of all cyclotomics
#C  IsCyc( <obj> )
##
##  <#GAPDoc Label="IsCyclotomic">
##  <ManSection>
##  <Filt Name="IsCyclotomic" Arg='obj' Type='Category'/>
##  <Filt Name="IsCyc" Arg='obj' Type='Category'/>
##
##  <Description>
##  <Index Key="CyclotomicsFamily"><C>CyclotomicsFamily</C></Index>
##  Every object in the family <C>CyclotomicsFamily</C> lies in the category
##  <Ref Func="IsCyclotomic"/>.
##  This covers integers, rationals, proper cyclotomics, the object
##  <Ref Var="infinity"/>,
##  and unknowns (see Chapter&nbsp;<Ref Chap="Unknowns"/>).
##  All these objects except <Ref Var="infinity"/> and unknowns
##  lie also in the category <Ref Func="IsCyc"/>,
##  <Ref Var="infinity"/> lies in (and can be detected from) the category
##  <Ref Func="IsInfinity"/>,
##  and unknowns lie in <Ref Func="IsUnknown"/>.
##  <P/>
##  <Example><![CDATA[
##  gap> IsCyclotomic(0); IsCyclotomic(1/2*E(3)); IsCyclotomic( infinity );
##  true
##  true
##  true
##  gap> IsCyc(0); IsCyc(1/2*E(3)); IsCyc( infinity );
##  true
##  true
##  false
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareCategory( "IsCyclotomic",
    IsScalar and IsAssociativeElement and IsCommutativeElement
    and IsAdditivelyCommutativeElement and IsZDFRE);

DeclareCategoryKernel( "IsCyc", IsCyclotomic, IS_CYC );


#############################################################################
##
#C  IsCyclotomicCollection  . . . . . . category of collection of cyclotomics
#C  IsCyclotomicCollColl  . . . . . . .  category of collection of collection
#C  IsCyclotomicCollCollColl  . . . .  category of collection of coll of coll
##
##  <ManSection>
##  <Filt Name="IsCyclotomicCollection" Arg='obj' Type='Category'/>
##  <Filt Name="IsCyclotomicCollColl" Arg='obj' Type='Category'/>
##  <Filt Name="IsCyclotomicCollCollColl" Arg='obj' Type='Category'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareCategoryCollections( "IsCyclotomic" );
DeclareCategoryCollections( "IsCyclotomicCollection" );
DeclareCategoryCollections( "IsCyclotomicCollColl" );


#############################################################################
##
#C  IsRat( <obj> )
##
##  <#GAPDoc Label="IsRat">
##  <ManSection>
##  <Filt Name="IsRat" Arg='obj' Type='Category'/>
##
##  <Description>
##  <Index Subkey="for a rational">test</Index>
##  Every rational number lies in the category <Ref Func="IsRat"/>,
##  which is a subcategory of <Ref Func="IsCyc"/>.
##  <P/>
##  <Example><![CDATA[
##  gap> IsRat( 2/3 );
##  true
##  gap> IsRat( 17/-13 );
##  true
##  gap> IsRat( 11 );
##  true
##  gap> IsRat( IsRat );  # `IsRat' is a function, not a rational
##  false
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareCategoryKernel( "IsRat", IsCyc, IS_RAT );


#############################################################################
##
#C  IsInt( <obj> )
##
##  <#GAPDoc Label="IsInt">
##  <ManSection>
##  <Filt Name="IsInt" Arg='obj' Type='Category'/>
##
##  <Description>
##  Every rational integer lies in the category <Ref Func="IsInt"/>,
##  which is a subcategory of <Ref Func="IsRat"/>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareCategoryKernel( "IsInt", IsRat, IS_INT );


#############################################################################
##
#C  IsPosRat( <obj> )
##
##  <#GAPDoc Label="IsPosRat">
##  <ManSection>
##  <Filt Name="IsPosRat" Arg='obj' Type='Category'/>
##
##  <Description>
##  Every positive rational number lies in the category
##  <Ref Func="IsPosRat"/>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareCategory( "IsPosRat", IsRat );


#############################################################################
##
#C  IsPosInt( <obj> )
##
##  <#GAPDoc Label="IsPosInt">
##  <ManSection>
##  <Filt Name="IsPosInt" Arg='obj' Type='Category'/>
##
##  <Description>
##  Every positive integer lies in the category <Ref Func="IsPosInt"/>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareSynonym( "IsPosInt", IsInt and IsPosRat );


#############################################################################
##
#C  IsNegRat( <obj> )
##
##  <#GAPDoc Label="IsNegRat">
##  <ManSection>
##  <Filt Name="IsNegRat" Arg='obj' Type='Category'/>
##
##  <Description>
##  Every negative rational number lies in the category
##  <Ref Func="IsNegRat"/>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareCategory( "IsNegRat", IsRat );


#############################################################################
##
#C  IsNegInt( <obj> )
##
##  <ManSection>
##  <Filt Name="IsNegInt" Arg='obj' Type='Category'/>
##
##  <Description>
##  Every negative integer lies in the category <Ref Func="IsNegInt"/>.
##  </Description>
##  </ManSection>
##
DeclareSynonym( "IsNegInt", IsInt and IsNegRat );


#############################################################################
##
#C  IsZeroCyc( <obj> )
##
##  <ManSection>
##  <Filt Name="IsZeroCyc" Arg='obj' Type='Category'/>
##
##  <Description>
##  Only the zero <C>0</C> of the cyclotomics lies in the category
##  <Ref Func="IsZeroCyc"/>.
##  </Description>
##  </ManSection>
##
DeclareCategory( "IsZeroCyc", IsInt and IsZero );


#############################################################################
##
#V  CyclotomicsFamily . . . . . . . . . . . . . . . . . family of cyclotomics
##
##  <ManSection>
##  <Var Name="CyclotomicsFamily"/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
BIND_GLOBAL( "CyclotomicsFamily",
    NewFamily( "CyclotomicsFamily",
    IsCyclotomic,CanEasilySortElements,
    CanEasilySortElements ) );

#############################################################################
##
#R  IsSmallIntRep . . . . . . . . . . . . . . . . . .  small internal integer
##
##  <ManSection>
##  <Filt Name="IsSmallIntRep" Arg='obj' Type='Representation'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareRepresentation( "IsSmallIntRep", IsInternalRep, [] );


#############################################################################
##
#V  TYPE_INT_SMALL_ZERO . . . . . . . . . . . . . . type of the internal zero
##
##  <ManSection>
##  <Var Name="TYPE_INT_SMALL_ZERO"/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
BIND_GLOBAL( "TYPE_INT_SMALL_ZERO", NewType( CyclotomicsFamily,
                            IsInt and IsZeroCyc and IsSmallIntRep ) );


#############################################################################
##
#V  TYPE_INT_SMALL_NEG  . . . . . . type of a small negative internal integer
##
##  <ManSection>
##  <Var Name="TYPE_INT_SMALL_NEG"/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
BIND_GLOBAL( "TYPE_INT_SMALL_NEG", NewType( CyclotomicsFamily,
                            IsInt and IsNegRat and IsSmallIntRep ) );


#############################################################################
##
#V  TYPE_INT_SMALL_POS  . . . . . . type of a small positive internal integer
##
##  <ManSection>
##  <Var Name="TYPE_INT_SMALL_POS"/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
BIND_GLOBAL( "TYPE_INT_SMALL_POS", NewType( CyclotomicsFamily,
                            IsPosInt and IsSmallIntRep ) );


#############################################################################
##
#V  TYPE_INT_LARGE_NEG  . . . . . . type of a large negative internal integer
##
##  <ManSection>
##  <Var Name="TYPE_INT_LARGE_NEG"/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
BIND_GLOBAL( "TYPE_INT_LARGE_NEG", NewType( CyclotomicsFamily,
                            IsInt and IsNegRat and IsInternalRep ) );


#############################################################################
##
#V  TYPE_INT_LARGE_POS  . . . . . . type of a large positive internal integer
##
##  <ManSection>
##  <Var Name="TYPE_INT_LARGE_POS"/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
BIND_GLOBAL( "TYPE_INT_LARGE_POS", NewType( CyclotomicsFamily,
                            IsPosInt and IsInternalRep ) );


#############################################################################
##
#V  TYPE_RAT_NEG  . . . . . . . . . . .  type of a negative internal rational
##
##  <ManSection>
##  <Var Name="TYPE_RAT_NEG"/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
BIND_GLOBAL( "TYPE_RAT_NEG", NewType( CyclotomicsFamily,
                            IsRat and IsNegRat and IsInternalRep ) );


#############################################################################
##
#V  TYPE_RAT_POS  . . . . . . . . . . .  type of a positive internal rational
##
##  <ManSection>
##  <Var Name="TYPE_RAT_POS"/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
BIND_GLOBAL( "TYPE_RAT_POS", NewType( CyclotomicsFamily,
                            IsRat and IsPosRat and IsInternalRep ) );

#############################################################################
##
#V  TYPE_CYC  . . . . . . . . . . . . . . . . type of an internal cyclotomics
##
##  <ManSection>
##  <Var Name="TYPE_CYC"/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
BIND_GLOBAL( "TYPE_CYC",
    NewType( CyclotomicsFamily, IsCyc and IsInternalRep ) );


#############################################################################
##
#v  One( CyclotomicsFamily )
#v  Zero( CyclotomicsFamily )
#v  Characteristic( CyclotomicsFamily )
##
SetOne( CyclotomicsFamily, 1 );
SetZero( CyclotomicsFamily, 0 );
SetCharacteristic( CyclotomicsFamily, 0 );


#############################################################################
##
#v  IsUFDFamily( CyclotomicsFamily )
##
SetIsUFDFamily( CyclotomicsFamily, true );


#############################################################################
##
#F  E( <n> )
##
##  <#GAPDoc Label="E">
##  <ManSection>
##  <Func Name="E" Arg='n'/>
##
##  <Description>
##  <Index>roots of unity</Index>
##  <Ref Func="E"/> returns the primitive <A>n</A>-th root of unity
##  <M>e_n = \exp(2\pi i/n)</M>.
##  Cyclotomics are usually entered as sums of roots of unity,
##  with rational coefficients,
##  and irrational cyclotomics are displayed in such a way.
##  (For special cyclotomics, see&nbsp;<Ref Sect="ATLAS Irrationalities"/>.)
##  <P/>
##  <Example><![CDATA[
##  gap> E(9); E(9)^3; E(6); E(12) / 3;
##  -E(9)^4-E(9)^7
##  E(3)
##  -E(3)^2
##  -1/3*E(12)^7
##  ]]></Example>
##  <P/>
##  A particular basis is used to express cyclotomics,
##  see&nbsp;<Ref Sect="Integral Bases of Abelian Number Fields"/>;
##  note that <C>E(9)</C> is <E>not</E> a basis element,
##  as the above example shows.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##


#############################################################################
##
#C  IsInfinity( <obj> ) . . . . . . . . . . . . . . . .  category of infinity
#V  infinity  . . . . . . . . . . . . . . . . . . . . . .  the value infinity
##
##  <#GAPDoc Label="IsInfinity">
##  <ManSection>
##  <Filt Name="IsInfinity" Arg='obj' Type='Category'/>
##  <Var Name="infinity"/>
##
##  <Description>
##  <Ref Var="infinity"/> is a special &GAP; object that lies in
##  <C>CyclotomicsFamily</C>.
##  It is larger than all other objects in this family.
##  <Ref Var="infinity"/> is mainly used as return value of operations such
##  as <Ref Func="Size"/>
##  and <Ref Func="Dimension"/> for infinite and infinite dimensional domains,
##  respectively.
##  <P/>
##  Note that <E>no</E> arithmetic operations are provided for
##  <Ref Var="infinity"/>,
##  in particular there is no problem to define what <C>0 * infinity</C> or
##  <C>infinity - infinity</C> means.
##  <P/>
##  Often it is useful to distinguish <Ref Var="infinity"/>
##  from <Q>proper</Q> cyclotomics.
##  For that, <Ref Var="infinity"/> lies in the category
##  <Ref Func="IsInfinity"/> but not in <Ref Func="IsCyc"/>,
##  and the other cyclotomics lie in the category <Ref Func="IsCyc"/> but not
##  in <Ref Func="IsInfinity"/>.
##  <P/>
##  <Example><![CDATA[
##  gap> s:= Size( Rationals );
##  infinity
##  gap> s = infinity; IsCyclotomic( s ); IsCyc( s ); IsInfinity( s );
##  true
##  true
##  false
##  true
##  gap> s in Rationals; s > 17;
##  false
##  true
##  gap> Set( [ s, 2, s, E(17), s, 19 ] );
##  [ 2, 19, E(17), infinity ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareCategory( "IsInfinity", IsCyclotomic );

UNBIND_GLOBAL( "infinity" );
BIND_GLOBAL( "infinity",
    Objectify( NewType( CyclotomicsFamily, IsInfinity
                        and IsPositionalObjectRep ), [] ) );

InstallMethod( PrintObj,
    "for infinity",
    [ IsInfinity ], function( obj ) Print( "infinity" ); end );

InstallMethod( \=,
    "for cyclotomic and `infinity'",
    IsIdenticalObj, [ IsCyc, IsInfinity ], ReturnFalse );

InstallMethod( \=,
    "for `infinity' and cyclotomic",
    IsIdenticalObj, [ IsInfinity, IsCyc ], ReturnFalse );

InstallMethod( \=,
    "for `infinity' and `infinity'",
    IsIdenticalObj, [ IsInfinity, IsInfinity ], ReturnTrue );

InstallMethod( \<,
    "for cyclotomic and `infinity'",
    IsIdenticalObj, [ IsCyc, IsInfinity ], ReturnTrue );

InstallMethod( \<,
    "for `infinity' and cyclotomic",
    IsIdenticalObj, [ IsInfinity, IsCyc ], ReturnFalse );

InstallMethod( \<,
    "for `infinity' and `infinity'",
    IsIdenticalObj, [ IsInfinity, IsInfinity ], ReturnFalse );


DeclareCategory( "IsNegInfinity", IsCyclotomic );

BIND_GLOBAL( "Ninfinity",
    Objectify( NewType( CyclotomicsFamily, IsNegInfinity
                        and IsPositionalObjectRep ), [] ) );

InstallMethod( PrintObj,
    "for -infinity",
    [ IsNegInfinity ], function( obj ) Print( "-infinity" ); end );

InstallMethod( \=,
    "for cyclotomic and `-infinity'",
    IsIdenticalObj, [ IsCyc, IsNegInfinity ], ReturnFalse );

InstallMethod( \=,
    "for `-infinity' and cyclotomic",
    IsIdenticalObj, [ IsNegInfinity, IsCyc ], ReturnFalse );

InstallMethod( \=,
    "for `infinity' and `-infinity'",
    IsIdenticalObj, [ IsInfinity, IsNegInfinity ], ReturnFalse );

InstallMethod( \=,
    "for `-infinity' and `infinity'",
    IsIdenticalObj, [ IsNegInfinity, IsInfinity ], ReturnFalse );

InstallMethod( \=,
    "for `-infinity' and `-infinity'",
    IsIdenticalObj, [ IsNegInfinity, IsNegInfinity ], ReturnTrue );

InstallMethod( \<,
    "for cyclotomic and `-infinity'",
    IsIdenticalObj, [ IsCyc, IsNegInfinity ], ReturnFalse );

InstallMethod( \<,
    "for `-infinity' and cyclotomic",
    IsIdenticalObj, [ IsNegInfinity, IsCyc ], ReturnTrue );

InstallMethod( \<,
    "for `infinity' and `-infinity'",
    IsIdenticalObj, [ IsInfinity, IsNegInfinity ], ReturnFalse );

InstallMethod( \<,
    "for `-infinity' and `infinity'",
    IsIdenticalObj, [ IsNegInfinity, IsInfinity ], ReturnTrue );

InstallMethod( \<,
    "for `infinity' and `infinity'",
    IsIdenticalObj, [ IsInfinity, IsInfinity ], ReturnFalse );

InstallMethod( AdditiveInverseOp,
    "for `infinity'",
    [ IsInfinity ], x -> Ninfinity  );

InstallMethod( AdditiveInverseOp,
    "for `-infinity'",
    [ IsNegInfinity ], x -> infinity  );


#############################################################################
##
#P  IsIntegralCyclotomic( <obj> ) . . . . . . . . . . .  integral cyclotomics
##
##  <#GAPDoc Label="IsIntegralCyclotomic">
##  <ManSection>
##  <Prop Name="IsIntegralCyclotomic" Arg='obj'/>
##
##  <Description>
##  A cyclotomic is called <E>integral</E> or a <E>cyclotomic integer</E>
##  if all coefficients of its minimal polynomial over the rationals are
##  integers.
##  Since the underlying basis of the external representation of cyclotomics
##  is an integral basis
##  (see&nbsp;<Ref Sect="Integral Bases of Abelian Number Fields"/>),
##  the subring of cyclotomic integers in a cyclotomic field is formed
##  by those cyclotomics for which the external representation is a list of
##  integers.
##  For example, square roots of integers are cyclotomic integers
##  (see&nbsp;<Ref Sect="ATLAS Irrationalities"/>),
##  any root of unity is a cyclotomic integer,
##  character values are always cyclotomic integers,
##  but all rationals which are not integers are not cyclotomic integers.
##  <P/>
##  <Example><![CDATA[
##  gap> r:= ER( 5 );               # The square root of 5 ...
##  E(5)-E(5)^2-E(5)^3+E(5)^4
##  gap> IsIntegralCyclotomic( r ); # ... is a cyclotomic integer.
##  true
##  gap> r2:= 1/2 * r;              # This is not a cyclotomic integer, ...
##  1/2*E(5)-1/2*E(5)^2-1/2*E(5)^3+1/2*E(5)^4
##  gap> IsIntegralCyclotomic( r2 );
##  false
##  gap> r3:= 1/2 * r - 1/2;        # ... but this is one.
##  E(5)+E(5)^4
##  gap> IsIntegralCyclotomic( r3 );
##  true
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareProperty( "IsIntegralCyclotomic", IsObject );

DeclareSynonymAttr( "IsCycInt", IsIntegralCyclotomic );

InstallMethod( IsIntegralCyclotomic,
    "for an internally represented cyclotomic",
    [ IsInternalRep ],
    IS_CYC_INT );


#############################################################################
##
#A  Conductor( <cyc> )  . . . . . . . . . . . . . . . . . .  for a cyclotomic
#A  Conductor( <C> )  . . . . . . . . . . . . for a collection of cyclotomics
##
##  <#GAPDoc Label="Conductor">
##  <ManSection>
##  <Attr Name="Conductor" Arg='cyc' Label="for a cyclotomic"/>
##  <Attr Name="Conductor" Arg='C' Label="for a collection of cyclotomics"/>
##
##  <Description>
##  For an element <A>cyc</A> of a cyclotomic field,
##  <Ref Attr="Conductor" Label="for a cyclotomic"/>
##  returns the smallest integer <M>n</M> such that <A>cyc</A> is contained
##  in the <M>n</M>-th cyclotomic field.
##  For a collection <A>C</A> of cyclotomics (for example a dense list of
##  cyclotomics or a field of cyclotomics),
##  <Ref Attr="Conductor" Label="for a collection of cyclotomics"/> returns
##  the smallest integer <M>n</M> such that all elements of <A>C</A>
##  are contained in the <M>n</M>-th cyclotomic field.
##  <P/>
##  <Example><![CDATA[
##  gap> Conductor( 0 ); Conductor( E(10) ); Conductor( E(12) );
##  1
##  5
##  12
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttributeKernel( "Conductor", IsCyc, CONDUCTOR );
DeclareAttribute( "Conductor", IsCyclotomicCollection );

#T also for matrices, matrix groups etc. of cyclotomics?


#############################################################################
##
#O  GaloisCyc( <cyc>, <k> ) . . . . . . . . . . . . . . . .  Galois conjugate
#O  GaloisCyc( <list>, <k> )  . . . . . . . . . . . list of Galois conjugates
##
##  <#GAPDoc Label="GaloisCyc">
##  <ManSection>
##  <Oper Name="GaloisCyc" Arg='cyc, k' Label="for a cyclotomic"/>
##  <Oper Name="GaloisCyc" Arg='list, k' Label="for a list of cyclotomics"/>
##
##  <Description>
##  For a cyclotomic <A>cyc</A> and an integer <A>k</A>,
##  <Ref Oper="GaloisCyc" Label="for a cyclotomic"/> returns the cyclotomic
##  obtained by raising the roots of unity in the Zumbroich basis
##  representation of <A>cyc</A> to the <A>k</A>-th power.
##  If <A>k</A> is coprime to the integer <M>n</M>,
##  <C>GaloisCyc( ., <A>k</A> )</C> acts as a Galois automorphism
##  of the <M>n</M>-th cyclotomic field
##  (see&nbsp;<Ref Sect="Galois Groups of Abelian Number Fields"/>);
##  to get the Galois automorphisms themselves,
##  use <Ref Oper="GaloisGroup" Label="of field"/>.
##  <P/>
##  The <E>complex conjugate</E> of <A>cyc</A> is
##  <C>GaloisCyc( <A>cyc</A>, -1 )</C>,
##  which can also be computed using <Ref Func="ComplexConjugate"/>.
##  <P/>
##  For a list or matrix <A>list</A> of cyclotomics,
##  <Ref Oper="GaloisCyc" Label="for a list of cyclotomics"/> returns
##  the list obtained by applying
##  <Ref Oper="GaloisCyc" Label="for a cyclotomic"/> to the entries of
##  <A>list</A>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperationKernel( "GaloisCyc", [ IsCyc, IsInt ], GALOIS_CYC );
DeclareOperation( "GaloisCyc", [ IsCyclotomicCollection, IsInt ] );
DeclareOperation( "GaloisCyc", [ IsCyclotomicCollColl, IsInt ] );

InstallMethod( GaloisCyc,
    "for a list of cyclotomics, and an integer",
    [ IsList and IsCyclotomicCollection, IsInt ],
    function( list, k )
    return List( list, entry -> GaloisCyc( entry, k ) );
    end );

InstallMethod( GaloisCyc,
    "for a list of lists of cyclotomics, and an integer",
    [ IsList and IsCyclotomicCollColl, IsInt ],
    function( list, k )
    return List( list, entry -> GaloisCyc( entry, k ) );
    end );


#############################################################################
##
#F  NumeratorRat( <rat> ) . . . . . . . . . .  numerator of internal rational
##
##  <#GAPDoc Label="NumeratorRat">
##  <ManSection>
##  <Func Name="NumeratorRat" Arg='rat'/>
##
##  <Description>
##  <Index Subkey="of a rational">numerator</Index>
##  <Ref Func="NumeratorRat"/> returns the numerator of the rational
##  <A>rat</A>.
##  Because the numerator holds the sign of the rational it may be any
##  integer.
##  Integers are rationals with denominator <M>1</M>,
##  thus <Ref Func="NumeratorRat"/> is the identity function for integers.
##  <P/>
##  <Example><![CDATA[
##  gap> NumeratorRat( 2/3 );
##  2
##  gap> # numerator and denominator are made relatively prime:
##  gap> NumeratorRat( 66/123 );
##  22
##  gap> NumeratorRat( 17/-13 );  # numerator holds the sign of the rational
##  -17
##  gap> NumeratorRat( 11 );      # integers are rationals with denominator 1
##  11
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
BIND_GLOBAL( "NumeratorRat", NUMERATOR_RAT );


#############################################################################
##
#F  DenominatorRat( <rat> ) . . . . . . . .  denominator of internal rational
##
##  <#GAPDoc Label="DenominatorRat">
##  <ManSection>
##  <Func Name="DenominatorRat" Arg='rat'/>
##
##  <Description>
##  <Index Subkey="of a rational">denominator</Index>
##  <Ref Func="DenominatorRat"/> returns the denominator of the rational
##  <A>rat</A>.
##  Because the numerator holds the  sign of the rational the denominator is
##  always a positive integer.
##  Integers are rationals with the denominator 1,
##  thus <Ref Func="DenominatorRat"/> returns 1 for integers.
##  <P/>
##  <Example><![CDATA[
##  gap> DenominatorRat( 2/3 );
##  3
##  gap> # numerator and denominator are made relatively prime:
##  gap> DenominatorRat( 66/123 );
##  41
##  gap> # the denominator holds the sign of the rational:
##  gap> DenominatorRat( 17/-13 );
##  13
##  gap> DenominatorRat( 11 ); # integers are rationals with denominator 1
##  1
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
BIND_GLOBAL( "DenominatorRat", DENOMINATOR_RAT );


#############################################################################
##
#F  QuoInt( <n>, <m> )  . . . . . . . . . . . . quotient of internal integers
##
##  <#GAPDoc Label="QuoInt">
##  <ManSection>
##  <Func Name="QuoInt" Arg='n, m'/>
##
##  <Description>
##  <Index>integer part of a quotient</Index>
##  <Ref Func="QuoInt"/> returns the integer part of the quotient of its
##  integer operands.
##  <P/>
##  If <A>n</A> and <A>m</A> are positive, <Ref Func="QuoInt"/> returns
##  the largest positive integer <M>q</M> such that
##  <M>q * <A>m</A> \leq <A>n</A></M>.
##  If <A>n</A> or <A>m</A> or both are negative the absolute value of the
##  integer part of the quotient is the quotient of the absolute values of
##  <A>n</A> and <A>m</A>,
##  and the sign of it is the product of the signs of <A>n</A> and <A>m</A>.
##  <P/>
##  <Ref Func="QuoInt"/> is used in a method for the general operation
##  <Ref Func="EuclideanQuotient"/>.
##  <Example><![CDATA[
##  gap> QuoInt(5,3);  QuoInt(-5,3);  QuoInt(5,-3);  QuoInt(-5,-3);
##  1
##  -1
##  -1
##  1
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
BIND_GLOBAL( "QuoInt", QUO_INT );


#############################################################################
##
#F  RemInt( <n>, <m> )  . . . . . . . . . . .  remainder of internal integers
##
##  <#GAPDoc Label="RemInt">
##  <ManSection>
##  <Func Name="RemInt" Arg='n, m'/>
##
##  <Description>
##  <Index>remainder of a quotient</Index>
##  <Ref Func="RemInt"/> returns the remainder of its two integer operands.
##  <P/>
##  If <A>m</A> is not equal to zero, <Ref Func="RemInt"/> returns
##  <C><A>n</A> - <A>m</A> * QuoInt( <A>n</A>, <A>m</A> )</C>.
##  Note that the rules given for <Ref Func="QuoInt"/> imply that the return
##  value of <Ref Func="RemInt"/> has the same sign as <A>n</A>
##  and its absolute value is strictly less than the absolute value
##  of <A>m</A>.
##  Note also that the return value equals <C><A>n</A> mod <A>m</A></C>
##  when both <A>n</A> and <A>m</A> are nonnegative.
##  Dividing by <C>0</C> signals an error.
##  <P/>
##  <Ref Func="RemInt"/> is used in a method for the general operation
##  <Ref Func="EuclideanRemainder"/>.
##  <Example><![CDATA[
##  gap> RemInt(5,3);  RemInt(-5,3);  RemInt(5,-3);  RemInt(-5,-3);
##  2
##  -2
##  2
##  -2
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
BIND_GLOBAL( "RemInt", REM_INT );


#############################################################################
##
#F  GcdInt( <m>, <n> )  . . . . . . . . . . . . . .  gcd of internal integers
##
##  <#GAPDoc Label="GcdInt">
##  <ManSection>
##  <Func Name="GcdInt" Arg='m, n'/>
##
##  <Description>
##  <Ref Func="GcdInt"/> returns the greatest common divisor
##  of its two integer operands <A>m</A> and <A>n</A>, i.e.,
##  the greatest integer that divides both <A>m</A> and <A>n</A>.
##  The greatest common divisor is never negative, even if the arguments are.
##  We define
##  <C>GcdInt( <A>m</A>, 0 ) = GcdInt( 0, <A>m</A> ) = AbsInt( <A>m</A> )</C>
##  and <C>GcdInt( 0, 0 ) = 0</C>.
##  <P/>
##  <Ref Func="GcdInt"/> is a method used by the general function
##  <Ref Func="Gcd" Label="for (a ring and) several elements"/>.
##  <P/>
##  <Example><![CDATA[
##  gap> GcdInt( 123, 66 );
##  3
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
BIND_GLOBAL( "GcdInt", GCD_INT );


#############################################################################
##
#m  Order( <cyc> ) . . . . . . . . . . . . . . . . .  order of an alg. number
##
##  If <cyc> is not a cyclotomic integer then its order is infinity.
##  Otherwise, <cyc> is a root of unity iff its absolute value is $1$.
##  (This follows from the more general theorem that an algebraic integer is
##  a root of unity iff all its algebraic conjugates have absolute value $1$;
##  note that we assume that <cyc> lies in a cyclotomic field,
##  so the Galois group of the field extension is abelian.)
##
##  This method is thought for cyclotomics for which it is cheap to decide
##  whether they are algebraic integers, and to compute the conductor;
##  both conditions hold for internally represented cyclotomics,
##  since they are represented w.r.t. an integral basis of the smallest
##  possible cyclotomic field.
##
InstallMethod( Order,
    "for a cyclotomic",
    [ IsCyc ],
    function ( cyc )
    local n;

    # Check that the argument is a root of unity.
    if cyc = 0 then
      Error( "argument must be nonzero" );
    elif not IsIntegralCyclotomic( cyc )
         or cyc * GaloisCyc( cyc, -1 ) <> 1 then
      return infinity;
    fi;

    # Let $n$ be the conductor of `cyc'.
    # The roots of unity in the $n$-th cyclotomic field are exactly the
    # $n$-th roots if $n$ is even, and the $2 n$-th roots if $n$ is odd.
    n:= Conductor( cyc );
    if n mod 2 = 0 or cyc^n = 1 then
      return n;
    else
      Assert( 1, cyc^n = -1 );
      return 2*n;
    fi;
    end );


#############################################################################
##
#M  Int( <int> )  . . . . . . . . . . . . . . . . . . . . . .  for an integer
#M  Int( <rat> ) . . . . . . . . . . . .   convert a rational into an integer
#M  Int( <cyc> )  . . . . . . . . . . . . .  cyclotomic integer near to <cyc>
##
##  <#GAPDoc Label="Int:cyclotomics">
##  <ManSection>
##  <Func Name="Int" Arg='cyc' Label="for a cyclotomic"/>
##  
##  <Description>
##  The operation <Ref Func="Int" Label="for a cyclotomic"/>
##  can be used to find a cyclotomic integer near to an arbitrary cyclotomic,
##  by applying <Ref Attr="Int"/> to the coefficients.
##  <P/>
##  <Example><![CDATA[
##  gap> Int( E(5)+1/2*E(5)^2 ); Int( 2/3*E(7)-3/2*E(4) );
##  E(5)
##  -E(4)
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
InstallMethod( Int,
    "for an integer",
    [ IsInt ],
    IdFunc );

InstallMethod( Int,
    "for a rational",
    [ IsRat ],
    obj -> QuoInt( NumeratorRat( obj ), DenominatorRat( obj ) ) );

InstallMethod( Int,
    "for a cyclotomic",
    [ IsCyc ],
    cyc -> CycList( List( COEFFS_CYC( cyc ), Int ) ) );


#############################################################################
##
#M  String( <int> ) . . . . . . . . . . . . . . . . . . . . .  for an integer
#M  String( <rat> ) . . . . . . . . . . . .  convert a rational into a string
#M  String( <cyc> ) . . . . . . . . . . . .  convert cyclotomic into a string
#M  String( <infinity> )  . . . . . . . . . . . . . . . . . .  for `infinity'
##
##  <#GAPDoc Label="String:cyclotomics">
##  <ManSection>
##  <Meth Name="String" Arg='cyc' Label="for a cyclotomic"/>
##  
##  <Description>
##  The operation <Ref Func="String" Label="for a cyclotomic"/>
##  returns for a cyclotomic <A>cyc</A> a string corresponding to the way
##  the cyclotomic is printed by <Ref Func="ViewObj"/> and
##  <Ref Func="PrintObj"/>.
##  <P/>
##  <Example><![CDATA[
##  gap> String( E(5)+1/2*E(5)^2 ); String( 17/3 );
##  "E(5)+1/2*E(5)^2"
##  "17/3"
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
InstallMethod( String,
    "for an integer",
    [ IsInt ],
function(a)
  local sign, halflen, b, q, qr, s1, s2, pad;

  # "small" numbers
  if Log2Int(a) < 5000 then
    # kernel method
    return STRING_INT(a);
  fi;

  # sign
  if a < 0 then
    sign := "-";
    a := -a;
  else
    sign := "";
  fi;

  # recursion
  halflen := QuoInt(Log2Int(a)*100, 664);
  b := 10^halflen;
  q := QUO_INT(a, b);
  qr := [q, a-q*b]; #QuotientRemainder(a, 10^halflen);
  if qr[1] = 0 then
    s1 := "";
  else
    s1 := String(qr[1]);
  fi;
  s2 := String(qr[2]);
  pad := ListWithIdenticalEntries(halflen-Length(s2), '0');

  return Concatenation(sign,s1,pad,s2);
end);

InstallMethod( String,
    "for a rational",
    [ IsRat ],
    function ( rat )
    local   str;

    str := String( NumeratorRat( rat ) );
    if DenominatorRat( rat ) <> 1  then
        str := Concatenation( str, "/", String( DenominatorRat( rat ) ) );
    fi;
    ConvertToStringRep( str );
    return str;
    end );

InstallMethod( String,
    "for a cyclotomic",
    [ IsCyc ],
    function( cyc )
    local i, j, En, coeffs, str;

    # get the coefficients
    coeffs := COEFFS_CYC( cyc );

    # get the root as a string
    En := Concatenation( "E(", String( Length( coeffs ) ), ")" );

    # print the first non zero coefficient
    i := 1;
    while coeffs[i] = 0 do i:= i+1; od;
    if i = 1  then
        str := ShallowCopy( String( coeffs[1] ) );
    elif coeffs[i] = -1 then
        str := Concatenation( "-", En );
    elif coeffs[i] = 1 then
        str := ShallowCopy( En );
    else
        str := Concatenation( String( coeffs[i] ), "*", En );
    fi;
    if 2 < i  then
        Add( str, '^' );
        Append( str, String(i-1) );
    fi;

    # print the other coefficients
    for j  in [i+1..Length(coeffs)]  do
        if   coeffs[j] = 1 then
            Add( str, '+' );
            Append( str, En );
        elif coeffs[j] = -1 then
            Add( str, '-' );
            Append( str, En );
        elif 0 < coeffs[j] then
            Add( str, '+' );
            Append( str, String( coeffs[j] ) );
            Add( str, '*' );
            Append( str, En );
        elif coeffs[j] < 0 then
            Append( str, String( coeffs[j] ) );
            Add( str, '*' );
            Append( str, En );
        fi;
        if 2 < j  and coeffs[j] <> 0  then
            Add( str, '^' );
            Append( str, String( j-1 ) );
        fi;
    od;

    # Convert to string representation.
    ConvertToStringRep( str );

    # Return the string.
    return str;
    end );

InstallMethod( String,
    "for infinity",
    [ IsInfinity ],
    x -> "infinity" );

InstallMethod( String,
    "for -infinity",
    [ IsNegInfinity ],
    x -> "-infinity" );

#############################################################################
##
#E