File: grppcint.gi

package info (click to toggle)
gap 4r7p5-2
  • links: PTS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 29,272 kB
  • ctags: 7,129
  • sloc: ansic: 107,802; xml: 46,868; sh: 3,548; perl: 2,329; makefile: 740; python: 94; asm: 62; awk: 6
file content (350 lines) | stat: -rw-r--r-- 11,285 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
#############################################################################
##
#W  grppcint.gi                 GAP Library                      Frank Celler
#W                                                             & Bettina Eick
##
##
#Y  Copyright (C)  1996,  Lehrstuhl D für Mathematik,  RWTH Aachen,  Germany
#Y  (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y  Copyright (C) 2002 The GAP Group
##
##  This file contains the methods for the intersection of polycylic groups.
##


#############################################################################
##
#V  GS_SIZE . . . . . . . . . . . . . . . .  size from which on we use glasby
##
GS_SIZE := 20;


#############################################################################
##
#F  GlasbyCover( <S>, <A>, <B>, <pcgsK> )
##
##  Glasby's  generalized  covering  algorithmus.  <S> := <H>/\<N> * <K>/\<N>
##  and <A> < <H>, <B> < <K>. <A> ( and also <B> ) generate the  intersection
##  modulo <S>.
##
GlasbyCover := function( S, A, B, pcgsK )
    local   Am, Bm, z, i;

    # Decompose the intersection <H> /\ <K> /\ <N>.
    Am :=  AsList( S.intersection );
    Bm := List( Am, x -> x / SiftedPcElement( pcgsK, x ) );

    # Now cover the other generators.
    for i  in [ 1 .. Length( A ) ]  do
        z := S.factorization(LeftQuotient( A[i], B[i]) );
        A[ i ] := A[ i ] * z.u;

	# what is the aim of this arithmetic? We can save one inversion
        #B[ i ] := B[ i ] * ( z.n / SiftedPcElement( pcgsK, z.n ) ) ^ -1;
        B[ i ] := B[ i ] * (SiftedPcElement( pcgsK, z.n )/z.n);
    od;

    # Concatenate them and return. The are not normalized.
    Append( A, Am );
    Append( B, Bm );
end;


#############################################################################
##
#F  GlasbyShift( <C>, <B> )
##
GlasbyShift := function( C, B )
    return List( C, x -> x / SiftedPcElement( B, x ) );
end;


#############################################################################
##
#F  GlasbyStabilizer( <pcgs>, <A>, <B>, <pcgsL>)
##
GlasbyStabilizer := function( pcgs, A, B, pcgsL )
    local   f,  transl,  matA,  pt;

    f     := GF( Order( pcgsL[1] ) );
    
    transl := function( a ) 
        return ExponentsOfPcElement(pcgsL,SiftedPcElement(B,a)) * One(f);
    end;

    A := InducedPcgsByPcSequenceNC( pcgs, A );
    #U := SubgroupByPcgs( GroupOfPcgs(pcgs), A );
    matA  := AffineActionLayer( A, pcgsL, transl );

    pt := List( pcgsL, x -> Zero( f ) );
    Add( pt, One( f ) );
    ConvertToVectorRep(pt,f);

    # was: return Pcgs( Stabilizer( U, pt, A, matA, OnRight ) );
    # we cannot simply return this pcgs here, as we cannot guarantee that
    # the pcgs of this group will be compatible with the pcgs wrt. which we
    # are computing.
    #return InducedPcgs(pcgs, Stabilizer( U, pt, A, matA, OnRight ) );
    return StabilizerPcgs(A, pt, matA, OnRight );
end;


#############################################################################
##
#F  AvoidedLayers
##
AvoidedLayers := function( pcgs, pcgsH, pcgsK )

    local occur, h, k, first, next, avoided, primes, p, sylow, res, i, 
          firsts, weights;

    # get the gens, which do not occur in H or K
    occur := List( [ 1..Length( pcgs ) ], x -> 0 );
    for h in pcgsH do
        occur := occur + ExponentsOfPcElement( pcgs, h );
    od;
    for k in pcgsK do
        occur := occur + ExponentsOfPcElement( pcgs, k );
    od;

    # make a list of the avoided layers
    avoided := [ ];
    firsts  := LGFirst( pcgs );
    weights := LGWeights( pcgs );
    for i  in [ 1..Length( firsts )-1 ]  do
        first := firsts[i];
        next  := firsts[i+1];
        if Maximum( occur{[first..next-1]} ) = 0  then
            Add( avoided, first );
        fi;
    od;

    # get the avoided heads
    res := [ ];
    for i in avoided do
        if weights[i][2] = 1 then
            Add( res, i );
        fi;
    od;

    # get the avoided Sylow subgroups
    primes := Set( List( avoided, x -> weights[x][3] ) );
    for p in primes do
        sylow := Filtered( firsts{[1..Length(firsts)-1]},
                           x -> weights[x][3] = p );
        if IsSubset( avoided, sylow ) then
            Append( res, sylow );
        fi;
    od;

    return Set(res);
end;


#############################################################################
##
#F  GlasbyIntersection
##
GlasbyIntersection := function( pcgs, pcgsH, pcgsK )
    local m, G, first, weights, avoid, A, B, i, start, next, HmN, KmN, 
          sum, pcgsS, pcgsR, C, D,
          new, U, deptH, deptK,pcgsL,depthS,depthN; 

    # compute a cgs for <H> and <K>
    G := GroupOfPcgs( pcgs );
    m := Length( pcgs );

    # use the special pcgs
    first   := LGFirst( pcgs );
    weights := LGWeights( pcgs );
    avoid   := AvoidedLayers( pcgs, pcgsH, pcgsK );

    deptH := List( pcgsH, x -> DepthOfPcElement( pcgs, x ) );
    deptK := List( pcgsK, x -> DepthOfPcElement( pcgs, x ) );

    # go down the elementary abelian series. <A> < <H>, <B> < <K>.
    A := [ ];
    B := [ ];
    depthN:=[1..m];
    for i in [ 1..Length(first)-1 ] do
        start := first[i];
        next  := first[i+1];
	depthS := depthN;
        depthN := [next..m];
        if not start in avoid then
	    #pcgsN := InducedPcgsByPcSequenceNC( pcgs, pcgs{depthN} );
            HmN := pcgsH{Filtered( [1..Length(deptH)], 
                         x -> start <= deptH[x] and next > deptH[x] )};
            KmN := pcgsK{Filtered( [1..Length(deptK)], 
                         x -> start <= deptK[x] and next > deptK[x] )};

            #pcgsHmN := Concatenation( HmN, pcgsN );
            #pcgsHmN := InducedPcgsByPcSequenceNC( pcgs, pcgsHmN );
            #pcgsHF  := pcgsHmN mod pcgsN;
            #pcgsKmN := Concatenation( KmN, pcgsN );
            #pcgsKmN := InducedPcgsByPcSequenceNC( pcgs, pcgsKmN );
            #pcgsKF  := pcgsKmN mod pcgsN;


	    # SumFactorizationFunction takes *LISTS* as arguments 2,3, so we
	    # don't need to make pcgs at all.
            #pcgsHF := ModuloTailPcgsByList(pcgs,HmN,[next..m]);
            #pcgsKF := ModuloTailPcgsByList(pcgs,KmN,[next..m]);
            #sum := SumFactorizationFunctionPcgs( pcgs, pcgsHF, pcgsKF, pcgsN );

	    # and `SFF' now takes a tail depth, so the expensive sifting to
	    # find the identity can be ignored.
            sum := SumFactorizationFunctionPcgs( pcgs, HmN, KmN, next );

            # Maybe there is nothing left to stabilize.
            if Length( sum.sum ) = next - start then
                C := ShallowCopy( AsList( A ) );
                D := ShallowCopy( AsList( B ) );
            else
		# GlasbyStabilizer would make a pcgs out of it first anyhow
	        B     := InducedPcgsByPcSequenceNC( pcgs, B );
                if Length(sum.sum)>0 then
		  pcgsS := InducedPcgsByPcSequenceNC( pcgs, pcgs{depthS} );
		  pcgsR := Concatenation( sum.sum, pcgs{depthN} );
		  pcgsR := InducedPcgsByPcSequenceNC( pcgs, pcgsR );
		  pcgsL:=pcgsS mod pcgsR;
                else
		  pcgsL:=ModuloTailPcgsByList(pcgs,
					      pcgs{Difference(depthS,depthN)},
					      depthN);
		  
		fi;

                C := GlasbyStabilizer( pcgs, A, B, pcgsL );
                C := ShallowCopy( AsList( C ) );
                #D := GlasbyShift( C, InducedPcgsByPcSequenceNC(pcgs, B) );
                D := GlasbyShift( C, B );
                D := ShallowCopy( AsList( D ) );
            fi;

            # Now we can cover <C> and <D>.
            GlasbyCover( sum, C, D, pcgsK );
            A := ShallowCopy( C );
            B := ShallowCopy( D ) ;
        fi;
    od;

    # <A> is the unnormalized intersection.
    new := InducedPcgsByPcSequenceNC( pcgs, A );
    U   := SubgroupByPcgs( G, new );
    return U;
end;


#############################################################################
##
#F  ZassenhausIntersection( pcgs, pcgsN, pcgsU )
##
ZassenhausIntersection := function( pcgs, pcgsN, pcgsU )
    local sw, m, ins, g, new;

    if Length(pcgsN)=0 then
      return SubgroupByPcgs( GroupOfPcgs( pcgs ), pcgsN );
    fi;
    # If  <N>  is  composition subgroup, no calculation is needed. We can use
    # weights instead. Otherwise 'IntersectionSumAgGroup' will do the work.
    sw := DepthOfPcElement( pcgs, pcgsN[1] );
    m  := Length( pcgs );
    if pcgs{[sw..m]} = pcgsN then
        ins := [];
        for g in pcgsU do
            if DepthOfPcElement( pcgs, g ) >= sw  then
                Add( ins, g );
            fi;
        od;
        new := InducedPcgsByPcSequenceNC( pcgs, ins );
        ins := SubgroupByPcgs( GroupOfPcgs( pcgs ), new );
        return ins;
    else
        new := ExtendedIntersectionSumPcgs( pcgs, pcgsN, pcgsU, true );
        new := InducedPcgsByPcSequenceNC( pcgs, new.intersection );
        ins := SubgroupByPcgs( GroupOfPcgs( pcgs ), new );
        return ins;
    fi;
end;


#############################################################################
##
#M  Intersection2( <U>, <V> )
##
InstallMethod( Intersection2,
    "groups with pcgs",
    true, 
    [ IsGroup and HasHomePcgs,
      IsGroup and HasHomePcgs ],
    0,

function( U, V )
    local G, home, pcgs, pcgsU, pcgsV;

    # Check the parent and catch a trivial case
    home  := HomePcgs(U);
    if home <> HomePcgs(V) then
        TryNextMethod();
    fi;

    # check for trivial cases
    if IsInt(Size(V)/Size(U)) 
       and ForAll( GeneratorsOfGroup(U), x -> x in V ) then
        return U;
    # here we can test Size(V)<Size(U): if they are the same the test before
    # would have found out.
    elif Size(V)<Size(U) and IsInt(Size(U)/Size(V)) 
      and ForAll( GeneratorsOfGroup(V), x -> x in U ) then
        return V;
    fi;
    
    G := GroupOfPcgs(home);
    if Size(U) < GS_SIZE  then
        return SubgroupNC( G, Filtered( AsList(U), x -> x in V and
                                                   x <> Identity(V) ) );
    elif Size(V) < GS_SIZE  then
        return SubgroupNC( G, Filtered( AsList(V), x -> x in U  and
                                                   x <> Identity(U) ) );
    fi;

    # compute nice pcgs's
    pcgs  := SpecialPcgs(home);
    pcgsU := InducedPcgs(pcgs, U );
    pcgsV := InducedPcgs(pcgs, V );

  # disabled calls to `ZassenhausIntersection' that seems to be not
  # applicable. AH, 4/12/05
  #  # test if one the groups is known to be normal
  #  if IsNormal( G, U ) then
  #      return ZassenhausIntersection( pcgs, pcgsU, pcgsV );
  #  elif IsNormal( G, V ) then
  #      return ZassenhausIntersection( pcgs, pcgsV, pcgsU );
  #  fi;

    return GlasbyIntersection( pcgs, pcgsU, pcgsV );

end );

#############################################################################
##
#M  NormalIntersection( <G>, <U> )  . . . . . intersection with normal subgrp
##
InstallMethod( NormalIntersection,
    "method for two groups with home pcgs",
    IsIdenticalObj, [ IsGroup and HasHomePcgs, IsGroup and HasHomePcgs],
function( G, H ) 
local home;
  home:=HomePcgs(G);
  if home<>HomePcgs(H) then
    TryNextMethod();
  fi;
  return ZassenhausIntersection(home,InducedPcgs(home,G),InducedPcgs(home,H));
end );


#############################################################################
##
#E  grppcpint.gi  . . . . . . . . . . . . . . . . . . . . . . . . . ends here
##