File: grppclat.gi

package info (click to toggle)
gap 4r7p5-2
  • links: PTS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 29,272 kB
  • ctags: 7,129
  • sloc: ansic: 107,802; xml: 46,868; sh: 3,548; perl: 2,329; makefile: 740; python: 94; asm: 62; awk: 6
file content (1264 lines) | stat: -rw-r--r-- 35,265 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
#############################################################################
##
#W  grppclat.gi                GAP library                   Alexander Hulpke
##
##
#Y  Copyright (C)  1997  
#Y  (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y  Copyright (C) 2002 The GAP Group
##
##  This  file contains declarations for the subgroup lattice functions for
##  pc groups.
##

#############################################################################
##
#F  InvariantElementaryAbelianSeries( <G>, <morph>, [ <N> ] )
##           find <morph> invariant EAS of G (through N)
##
InstallGlobalFunction(InvariantElementaryAbelianSeries,function(arg)
local G,morph,N,s,p,e,i,j,k,ise,fine,cor;
  G:=arg[1];
  morph:=arg[2];
  fine:=false;
  if Length(arg)>2 then
    N:=arg[3];
    e:=[G,N];
    if Length(arg)>3 then
      fine:=arg[4];
    fi;
    if fine then
      e:=ElementaryAbelianSeries(e);
    else
      e:=ElementaryAbelianSeriesLargeSteps(e);
    fi;
  else
    N:=TrivialSubgroup(G);
    e:=DerivedSeriesOfGroup(G);
    e:=ElementaryAbelianSeriesLargeSteps(e);
  fi;
  s:=[G];
  i:=2;
  while i<=Length(e) do
    # intersect all images of normal subgroup to obtain invariant one
    # as G is invariant, we dont have to deal with special cases
    ise:=[e[i]];
    cor:=e[i];
    for j in ise do
      for k in morph do
	p:=Image(k,j);
	if not IsSubset(p,cor) then
	  Add(ise,p);
	  cor:=Intersection(cor,p);
        fi;
      od;
    od;
    Assert(1,HasElementaryAbelianFactorGroup(s[Length(s)],cor));
    ise:=cor;
    Add(s,ise);
    p:=Position(e,ise);
    if p<>fail then
      i:=p+1;
    elif fine then
      e:=ElementaryAbelianSeries([G,ise,TrivialSubgroup(G)]);
      i:=Position(e,ise)+1;
    else
      e:=ElementaryAbelianSeriesLargeSteps([G,ise,TrivialSubgroup(G)]);
      i:=Position(e,ise)+1;
    fi;
    Assert(1,ise in e);
  od;
  return s;
end);

#############################################################################
##
#F  InducedAutomorphism(<epi>,<aut>)
##
InstallGlobalFunction(InducedAutomorphism,function(epi,aut)
local f;
  f:=Range(epi);
  if HasIsConjugatorAutomorphism( aut ) and IsConjugatorAutomorphism( aut ) 
     and ConjugatorOfConjugatorIsomorphism( aut ) in Source( epi ) then
    aut:= ConjugatorAutomorphismNC( f,
              Image( epi, ConjugatorOfConjugatorIsomorphism( aut ) ) );
  else
    aut:= GroupHomomorphismByImagesNC(f,f,GeneratorsOfGroup(f),
				   List(GeneratorsOfGroup(f),
	       i->Image(epi,Image(aut,PreImagesRepresentative(epi,i)))));
    SetIsInjective(aut,true);
    SetIsSurjective(aut,true);
  fi;
  return aut;
end);

#############################################################################
##
#F  InvariantSubgroupsElementaryAbelianGroup(<G>,<homs>[,<dims])  submodules
#F    find all subgroups of el. ab. <G>, which are invariant under all <homs>
#F    which have dimension in dims
##
InstallGlobalFunction(InvariantSubgroupsElementaryAbelianGroup,function(arg)
local g,op,a,pcgs,ma,mat,d,f,i,j,new,newmat,id,p,dodim,compldim,compl,dims,nm;
  g:=arg[1];
  op:=arg[2];
  if not IsElementaryAbelian(g) then
    Error("<g> must be a vector space");
  fi;
  if IsTrivial(g) then
    return [g];
  fi;
  pcgs:=Pcgs(g);
  d:=Length(pcgs);
  p:=RelativeOrderOfPcElement(pcgs,pcgs[1]);
  f:=GF(p);
  if Length(arg)=2 then
    dims:=[0..d];
  else
    dims:=arg[3];
  fi;

  if Length(dims)=0 then
    return [];
  fi;

  if Length(op)=0 then

    # trivial operation: enumerate subspaces
    # check which dimensions we'll need
    ma:=QuoInt(d,2);
    dodim:=[];
    compldim:=[];
    for i in dims do
      if i<=ma then
        AddSet(dodim,i);
      else
        AddSet(dodim,d-i);
	AddSet(compldim,d-i);
      fi;
    od;
    if d<3 then compldim:=[]; fi;
    dodim:=Maximum(dodim);

    # enumerate spaces
    id:= Immutable( IdentityMat(d, One(f)) );
    ma:=[[],[ShallowCopy(id[1])]];
    ConvertToMatrixRep(ma[2],f);
    # the complements to ma
    if d>1 then
      compl:=[ShallowCopy(id)];
    else
      compl:=[];
    fi;
    if d>2 then
      nm:=TriangulizedNullspaceMat(TransposedMat(id{[1]}));
      ConvertToMatrixRep(nm,f);
      Add(compl,nm);
    fi;
    for i in [2..d] do
      new:=[];
      for mat in ma do
	# subspaces of equal dimension
	for j in [0..p^Length(mat)-1] do
	  if j=0 then
	    # special case for subspace of higher dimension
	    if Length(mat)<dodim then
	      newmat:=Concatenation(mat,[id[i]]);
	      ConvertToMatrixRep(newmat,f);
	    else
	      newmat:=false;
	    fi;
	  else
	    # possible extension number d
	    a:=CoefficientsQadic(j,p)*One(f);
	    newmat:=List(mat,ShallowCopy);
	    for j in [1..Length(a)] do
		newmat[j][i]:=a[j];
	    od;
	    ConvertToMatrixRep(newmat,f);
	  fi;
	  if newmat<>false then
	    # we will need the space for the next level
	    Add(new,newmat);

	    # note complements if necc.
	    if Length(newmat) in compldim then
	      nm:=NullspaceMat(TransposedMat(newmat));
	      ConvertToMatrixRep(nm,f);
	      Add(compl,nm);
	      #Add(compl,List(NullspaceMat(TransposedMat(newmat*One(f))),
	      #               i->List(i,IntFFE)));
	    fi;
	  fi;
        od;
      od;
      ma:=Concatenation(ma,new);
    od;
    
    ma:=Concatenation(ma,compl);

    # take only those of right dim
    ma:=Filtered(ma,i->Length(i) in dims);

    # convert to grps (noting also the triv. one)
    new:=ma;
    for i in [1..Length(new)] do
      #a:=SubgroupNC(Parent(g),List(i,j->Product([1..d],k->pcgs[k]^j[k])));
      ma:=new[i];
      a:=SubgroupNC(Parent(g),List(ma,
	                  j->PcElementByExponentsNC(pcgs,List(j,IntFFE))));
#      a:=MySubgroupNC(Parent(g),List(i,j->PcElementByExponentsNC(pcgs,j)),
#                      IsFinite and IsSubsetLocallyFiniteGroup and
#		      IsSupersolvableGroup and IsNilpotentGroup and
#		      IsCommutative and IsElementaryAbelian);

      SetSize(a,p^Length(ma));
      new[i]:=a;
    od;
    ma:=new;

  else

    # compute representation
    ma:=[];
    for i in op do
      mat:=[];
      for j in pcgs do
	Add(mat,ExponentsOfPcElement(pcgs,Image(i,j))*One(f));
      od;
      mat:=ImmutableMatrix(f,mat);
      Add(ma,mat);
    od;

    ma:=GModuleByMats(ma,f);
    mat:=MTX.BasesSubmodules(ma);

    ma:=[];
    for i in mat do
      Add(ma,SubgroupNC(Parent(g),
		      List(i,j->PcElementByExponentsNC(pcgs,j))));
		      #List(i,j->Product([1..d],k->pcgs[k]^IntFFE(j[k])))));
    od;
  fi;
  return ma;
end);

#############################################################################
##
#F  ActionSubspacesElementaryAbelianGroup(<P>,<G>[,<dims>])
##
##  compute the permutation action of <P> on the subspaces of the
##  elementary abelian subgroup <G> of <P>. Returns
##  a list [<subspaces>,<action>], where <subspaces> is a list of all the
##  subspaces and <action> a homomorphism from <P> in a permutation group,
##  which is equal to the action homomrophism for the action of <P> on
##  <subspaces>. If <dims> is given, only subspaces of dimension <dims> are
##  considered.
##  Instead of <G> also a (modulo) pcgs may be given.
##
InstallGlobalFunction(ActionSubspacesElementaryAbelianGroup,function(arg)
local P,g,op,act,a,pcgs,ma,mat,d,f,i,j,new,newmat,id,p,dodim,compldim,compl,
      dims,Pgens,Pcgens,Pu,Pc,perms,one,par,ker,kersz;

  P:=arg[1];
  if IsModuloPcgs(arg[2]) then
    pcgs:=arg[2];
    g:=Group(NumeratorOfModuloPcgs(pcgs));
    if not IsSubset(Parent(P),g) then # for matrix groups we need a parent here.
      par:=ClosureGroup(Parent(P),g);
    else
      par:=P;
    fi;
    Pu:=AsSubgroup(par,g);
    ker:=SubgroupNC(par,DenominatorOfModuloPcgs(pcgs));
    kersz:=Size(ker);
  else
    kersz:=1;
    g:=arg[2];
    par:=Parent(g);
    Pu:=Centralizer(P,g);
    if not IsElementaryAbelian(g) then
      Error("<g> must be a vector space");
    fi;
    if IsTrivial(g) then
      return [g];
    fi;

    pcgs:=Pcgs(g);
  fi;

  d:=Length(pcgs);
  p:=RelativeOrderOfPcElement(pcgs,pcgs[1]);
  f:=GF(p);
  one:=One(f);
  if Length(arg)=2 then
    dims:=[0..d];
  else
    dims:=arg[3];
  fi;

  if Length(dims)=0 then
    return [];
  fi;

  # find representatives generating the acting factor
  Pgens:=[];
  Pc:=Pu;
  Pcgens:=GeneratorsOfGroup(Pu);
  while Size(Pu)<Size(P) do
    repeat
      i:=Random(P);
    until not i in Pu;
    Add(Pgens,i);
    Pu:=ClosureGroup(Pu,i);
  od;
  if Length(Pgens)>2 and Length(Pgens)>Length(SmallGeneratingSet(P)) then
    Pgens:=SmallGeneratingSet(P);
  fi;

  # compute representation
  op:=[];
  for i in Pgens do
    mat:=[];
    for j in pcgs do
      Add(mat,ExponentsConjugateLayer(pcgs,j,i)*One(f));
    od;
    mat:=ImmutableMatrix(f,mat);
    Add(op,mat);
  od;

  # and action on canonical bases
  #act:=function(bas,m)
  #  bas:=bas*m;
  #  bas:=List(bas,ShallowCopy);
  #  TriangulizeMat(bas);
  #  bas:=List(bas,IntVecFFE);
  #  return bas;
  #end;
  if p=2 then
    act:=OnSubspacesByCanonicalBasisGF2;
  else
    act:=OnSubspacesByCanonicalBasis;
  fi;

  # enumerate subspaces
  # check which dimensions we'll need
  ma:=QuoInt(d,2);
  dodim:=[];
  compldim:=[];
  for i in dims do
    if i<=ma then
      AddSet(dodim,i);
    else
      AddSet(dodim,d-i);
      AddSet(compldim,d-i);
    fi;
  od;
  if d<3 then compldim:=[]; fi;
  dodim:=Maximum(dodim);

  # enumerate spaces
  id:= Immutable( IdentityMat(d, one) );
  ma:=[[],[id[1]]];
  # the complements to ma
  if d>1 then
    compl:=[ShallowCopy(id)];
  else
    compl:=[];
  fi;
  if d>2 then
    Add(compl,List(TriangulizedNullspaceMat(TransposedMat(id{[1]})),
                   ShallowCopy));
  fi;
  for i in [2..d] do
    new:=[];
    for mat in ma do
      # subspaces of equal dimension
      for j in [0..p^Length(mat)-1] do
	if j=0 then
	  # special case for subspace of higher dimension
	  if Length(mat)<dodim then
	    newmat:=Concatenation(mat,[id[i]]);
	  else
	    newmat:=false;
	  fi;
	else
	  # possible extension number d
	  a:=CoefficientsQadic(j,p)*one;
	  newmat:=List(mat,ShallowCopy);
	  for j in [1..Length(a)] do
	      newmat[j][i]:=a[j];
	  od;
	fi;
	if newmat<>false then
	  # we will need the space for the next level
	  Add(new,Immutable(newmat));

	  # note complements if necc.
	  if Length(newmat) in compldim then
	    a:=List(TriangulizedNullspaceMat(MutableTransposedMat(newmat)),
	            ShallowCopy);
	    Add(compl,Immutable(a));
	  fi;
	fi;
      od;
    od;

    ma:=Concatenation(ma,new);
  od;
  
  ma:=Concatenation(ma,compl);

  # take only those of right dim
  ma:=Filtered(ma,i->Length(i) in dims);

  perms:=List(Pgens,i->());
  new:=[];
  for i in dims do
    mat:=Immutable(Set(Filtered(ma,j->Length(j)=i)));
    # compute action on mat
    if i>0 and i<d then
      for j in [1..Length(Pgens)] do
	#a:=Permutation(op[j],mat,act);
	a:=List([1..Length(mat)],k->PositionSorted(mat,act(mat[k],op[j])));
	a:=PermList(a);
	perms[j]:=perms[j]*a^MappingPermListList([1..Length(mat)],
				[Length(new)+1..Length(new)+Length(mat)]);
      od;
    fi;
    Append(new,mat);
  od;
  ma:=new;

  # convert to grps
  new:=[];
  for i in ma do
    #a:=SubgroupNC(Parent(g),List(i,j->Product([1..d],k->pcgs[k]^j[k])));
    if kersz=1 then
      a:=SubgroupNC(par,List(i,j->PcElementByExponentsNC(pcgs,j)));
    else
      a:=ClosureGroup(ker,List(i,j->PcElementByExponentsNC(pcgs,j)));
    fi;
    SetSize(a,kersz*p^Length(i));
    Add(new,a);
  od;

  ma:= GroupByGenerators( perms, () );
  #Assert(1,Group(perms)=Action(P,new));

  op:=GroupHomomorphismByImagesNC(P,ma,Concatenation(Pcgens,Pgens),
    Concatenation(List(Pcgens,i->()),perms));
#  Assert(1,Size(P)=Size(KernelOfMultiplicativeGeneralMapping(op))
#                   *Size(Image(op)));
  return [new,op];

end);

# test whether the c-conjugate of g is h-invariant, internal
HasInvariantConjugateSubgroup:=function(g,c,h)
  # This should be done better!
  g:=ConjugateSubgroup(g,c);
  return ForAll(h,i->Image(i,g)=g);
end;

#############################################################################
##
#F  SubgroupsSolvableGroup(<G>[,<opt>]) . classreps of subgrps of <G>,
##   				             <homs>-inv. with options.
##    Options are:  
##                  actions:  list of automorphisms: search for invariants
##		    funcnorm: N_G(actions) (speeds up calculation)
##                  normal:   just search for normal subgroups
##                  consider: function(A,N,B,M) indicator function, whether 
##			      complements of this type would be needed
##                  retnorm:  return normalizers
##
InstallGlobalFunction(SubgroupsSolvableGroup,function(arg)
local g,	# group
      isom,	# isomorphism onto AgSeries group
      func,	# automorphisms to be invariant under
      funcs,    # <func>
      funcnorm, # N_G(funcs)
      efunc,	# induced automs on factor
      efnorm,	# funcnorm^epi
      e,	# EAS
      len,	# Length(e)
      start,	# last index with EA factor
      i,j,k,l,
      m,kp,	# loop
      kgens,	# generators of k
      kconh,	# complemnt conjugacy storage
      opt,	# options record
      normal,	# flag for 'normal' option
      consider,	# optional 'consider' function
      retnorm,	# option: return all normalizers
      f,	# g/e[i]
      home,	# HomePcgs(f)
      epi,	# g -> f
      lastepi,  # epi of last step
      n,	# e[i-1]^epi
      fa,	# f/n = g/e[i-1]
      hom,	# f -> fa
      B,	# subgroups of n	
      ophom,	# perm action of f on B (or false if not computed)
      a,	# preimg. of group over n
      no,	# N_f(a)
#      aop,	# a^ophom
#      nohom,	# ophom\rest no
      oppcgs,	# acting pcgs
      oppcgsimg,# images under ophom
      ex,	# external set/orbits
      bs,	# b\in B normal under a, reps
      bsp,	# bs index
      bsnorms,	# respective normalizers
      b,	# in bs
      bpos,	# position in bs
      hom2,	# N_f(b) -> N_f(b)/b
      nag,	# AgGroup(n^hom2)
      fghom,	# assoc. epi
      t,s,	# dnk-transversals
      z,	# Cocycles
      coboundbas,# Basis(OneCobounds)
      field,	# GF(Exponent(n))
      com,	# complements
      comnorms,	# normalizers supergroups
      isTrueComnorm, # is comnorms the true normalizer or a supergroup
      comproj,	# projection onto complement
      kgn,
      kgim,	# stored decompositions, translated to matrix language
      kgnr,	# assoc index
      ncom,	# dito, tested
      idmat,	# 1-matrix
      mat,	# matrix action
      mats,	# list of mats
      conj,	# matrix action	
      chom,	# homom onto <conj>
      shom,	# by s induced autom
      shoms,	# list of these
      smats,	# dito, matrices 
      conjnr,	# assoc. index
      glsyl,
      glsyr,	# left and right side of eqn system
      found,	# indicator for success
      grps,	# list of subgroups
      ngrps,	# dito, new level
      gj,	# grps[j]
      grpsnorms,# normalizers of grps
      ngrpsnorms,# dito, new level
      bgids,    # generators of b many 1's (used for copro)
      opr,	# operation on complements
      xo;	# xternal orbits

  g:=arg[1];
  if Size(g)=1 then
    return [g];
  fi;
  if Length(arg)>1 and IsRecord(arg[Length(arg)]) then
    opt:=arg[Length(arg)];
  else
    opt:=rec();
  fi;

  # parse options
  normal:=IsBound(opt.normal) and opt.normal=true;
  if IsBound(opt.consider) then 
    consider:=opt.consider;
  else
    consider:=false;
  fi;

  retnorm:=IsBound(opt.retnorm) and opt.retnorm;

  isom:=fail;

  # get automorphisms and compute their normalizer, if applicable
  if IsBound(opt.actions) then
    func:=opt.actions;
    hom2:= Filtered( func,     HasIsConjugatorAutomorphism
			   and IsConjugatorAutomorphism );
    hom2:= List( hom2, ConjugatorOfConjugatorIsomorphism );

    if IsBound(opt.funcnorm) then
      # get the func. normalizer
      funcnorm:=opt.funcnorm;
      b:=g;
    else
      funcs:= GroupByGenerators( Filtered( func,
                  i -> not ( HasIsConjugatorAutomorphism( i ) and
                             IsConjugatorAutomorphism( i ) ) ),
		   IdentityMapping(g));
      IsGroupOfAutomorphismsFiniteGroup(funcs); # set filter
      if IsTrivial( funcs ) then
	b:=ClosureGroup(Parent(g),List(func,x->ConjugatorOfConjugatorIsomorphism(x)));
	func:=hom2;
      else
        if IsSolvableGroup(funcs) then
	  a:=IsomorphismPcGroup(funcs);
	else
	  a:=IsomorphismPermGroup(funcs);
	fi;
	hom:=InverseGeneralMapping(a);
	IsTotal(hom); IsSingleValued(hom); # to be sure (should be set anyway)
	b:=SemidirectProduct(Image(a),hom,g);
	hom:=Embedding(b,1);
	funcs:=List(GeneratorsOfGroup(funcs),i->Image(hom,Image(a,i)));
	isom:=Embedding(b,2);
	hom2:=List(hom2,i->Image(isom,i));
	func:=Concatenation(funcs,hom2);
	g:=Image(isom,g);
      fi;

      # get the normalizer of <func>
      funcnorm:=Normalizer(g,SubgroupNC(b,func));
      func:=List(func,i->ConjugatorAutomorphism(b,i));
    fi;

    Assert(1,IsSubgroup(g,funcnorm));

    # compute <func> characteristic series
    e:=InvariantElementaryAbelianSeries(g,func);
  else
    func:=[];
    funcnorm:=g;
    e:=ElementaryAbelianSeriesLargeSteps(g);
  fi;

  if IsBound(opt.series) then
    e:=opt.series;
  else
    f:=DerivedSeriesOfGroup(g);
    if Length(e)>Length(f) and
      ForAll([1..Length(f)-1],i->IsElementaryAbelian(f[i]/f[i+1])) then
      Info(InfoPcSubgroup,1,"  Preferring Derived Series");
      e:=f;
    fi;
  fi;

#  # check, if the series is compatible with the AgSeries and if g is a
#  # parent group. If not, enforce this
#  if not(IsParent(g) and ForAll(e,i->IsElementAgSeries(i))) then
#    Info(InfoPcSubgroup,1,"  computing better series");
#    isom:=IsomorphismAgGroup(e);
#    g:=Image(isom,g);
#    e:=List(e,i->Image(isom,i));
#    funcnorm:=Image(isom,funcnorm);
#
#    #func:=List(func,i->isom^-1*i*isom); 
#    hom:=[];
#    for i in func do
#      hom2:=GroupHomomorphismByImagesNC(g,g,g.generators,List(g.generators,
#                 j->Image(isom,Image(i,PreImagesRepresentative(isom,j)))));
#      hom2.isMapping:=true;
#      Add(hom,hom2);
#    od;
#    func:=hom;
#  else
#    isom:=false;
#  fi;

  len:=Length(e);

  if IsBound(opt.groups) then
    start:=0;
    while start+1<=Length(e) and ForAll(opt.groups,i->IsSubgroup(e[start+1],i)) do
      start:=start+1;
    od;
    Info(InfoPcSubgroup,1,"starting index ",start);
    epi:=NaturalHomomorphismByNormalSubgroup(g,e[start]);
    lastepi:=epi;
    f:=Image(epi,g);
    grps:=List(opt.groups,i->Image(epi,i));
    if not IsBound(opt.grpsnorms) then
      opt:=ShallowCopy(opt);
      opt.grpsnorms:=List(opt.groups,i->Normalizer(e[1],i));
    fi;
    grpsnorms:=List(opt.grpsnorms,i->Image(epi,i));
  else
    # search the largest elementary abelian quotient
    start:=2;
    while start<len and IsElementaryAbelian(g/e[start+1]) do
      start:=start+1;
    od;

    # compute all subgroups there
    if start<len then
      # form only factor groups if necessary
      epi:=NaturalHomomorphismByNormalSubgroup(g,e[start]);
      LockNaturalHomomorphismsPool(g,e[start]);
      f:=Image(epi,g);
    else
      f:=g;
      epi:=IdentityMapping(f);
    fi;
    lastepi:=epi;
    efunc:=List(func,i->InducedAutomorphism(epi,i));
    grps:=InvariantSubgroupsElementaryAbelianGroup(f,efunc);
    Assert(1,ForAll(grps,i->ForAll(efunc,j->Image(j,i)=i)));
    grpsnorms:=List(grps,i->f);
    Info(InfoPcSubgroup,5,List(grps,Size),List(grpsnorms,Size));

  fi;

  for i in [start+1..len] do
    Info(InfoPcSubgroup,1," step ",i,": ",Index(e[i-1],e[i]),", ",
                    Length(grps)," groups"); 
    # compute modulo e[i]
    if i<len then
      # form only factor groups if necessary
      epi:=NaturalHomomorphismByNormalSubgroup(g,e[i]);
      f:=Image(epi,g);
    else
      f:=g;
      epi:=IdentityMapping(g);
    fi;
    home:=HomePcgs(f); # we want to compute wrt. this pcgs
    n:=Image(epi,e[i-1]);

    # the induced factor automs
    efunc:=List(func,i->InducedAutomorphism(epi,i));
    # filter the non-trivial ones
    efunc:=Filtered(efunc,i->ForAny(GeneratorsOfGroup(f),j->Image(i,j)<>j));

    if Length(efunc)>0 then
      efnorm:=Image(epi,funcnorm);
    fi;

    if Length(efunc)=0 then
      ophom:=ActionSubspacesElementaryAbelianGroup(f,n);
      B:=ophom[1];
      Info(InfoPcSubgroup,2,"  ",Length(B)," normal subgroups"); 
      ophom:=ophom[2];

      ngrps:=[];
      ngrpsnorms:=[];
      oppcgs:=Pcgs(Source(ophom));
      oppcgsimg:=List(oppcgs,i->Image(ophom,i));
      ex:=[1..Length(B)];
      IsSSortedList(ex);
      ex:=ExternalSet(Source(ophom),ex,oppcgs,oppcgsimg,OnPoints);
      ex:=ExternalOrbitsStabilizers(ex);

      for j in ex do
        Add(ngrps,B[Representative(j)]);
	Add(ngrpsnorms,StabilizerOfExternalSet(j));
#	Assert(1,Normalizer(f,B[j[1]])=ngrpsnorms[Length(ngrps)]);
      od;

    else
      B:=InvariantSubgroupsElementaryAbelianGroup(n,efunc);
      ophom:=false;
      Info(InfoPcSubgroup,2,"  ",Length(B)," normal subgroups"); 

      # note the groups in B
      ngrps:=SubgroupsOrbitsAndNormalizers(f,B,false);
      ngrpsnorms:=List(ngrps,i->i.normalizer);
      ngrps:=List(ngrps,i->i.representative);
    fi;

    # Get epi to the old factor group
    # as hom:=NaturalHomomorphism(f,fa); does not work, we have to play tricks
    hom:=lastepi;
    lastepi:=epi;
    fa:=Image(hom,g);

    hom:= GroupHomomorphismByImagesNC(f,fa,GeneratorsOfGroup(f),
           List(GeneratorsOfGroup(f),i->
	     Image(hom,PreImagesRepresentative(epi,i))));
    Assert(2,KernelOfMultiplicativeGeneralMapping(hom)=n);

    # lift the known groups
    for j in [1..Length(grps)] do

      gj:=grps[j];
      if Size(gj)>1 then
	a:=PreImage(hom,gj);
	Assert(1,Size(a)=Size(gj)*Size(n));
	Add(ngrps,a);
	no:=PreImage(hom,grpsnorms[j]);

	Add(ngrpsnorms,no);

	if Length(efunc)>0 then
	  # get the double cosets
	  t:=List(DoubleCosets(f,no,efnorm),Representative);
	  Info(InfoPcSubgroup,2,"  |t|=",Length(t));
	  t:=Filtered(t,i->HasInvariantConjugateSubgroup(a,i,efunc));
	  Info(InfoPcSubgroup,2,"invar:",Length(t));
        fi;

	# we have to extend with those b in B, that are normal in a
	if ophom<>false then
	  #aop:=Image(ophom,a);
	  #SetIsSolvableGroup(aop,true);

	  if Length(GeneratorsOfGroup(a))>2 then
	    bs:=SmallGeneratingSet(a);
	  else
	    bs:=GeneratorsOfGroup(a);
	  fi;
	  bs:=List(bs,i->Image(ophom,i));

	  bsp:=Filtered([1..Length(B)],i->ForAll(bs,j->i^j=i)
	                                 and Size(B[i])<Size(n));
	  bs:=B{bsp};
	else
	  bsp:=false;
	  bs:=Filtered(B,i->IsNormal(a,i) and Size(i)<Size(n));
	fi;

        if Length(efunc)>0 and Length(t)>1 then
	  # compute also the invariant ones under the conjugates:
	  # equivalently: Take all equivalent ones and take those, whose
	  # conjugates lie in a and are normal under a
	  for k in Filtered(t,i->not i in no) do
	    bs:=Union(bs,Filtered(List(B,i->ConjugateSubgroup(i,k^(-1))),
		  i->IsSubset(a,i) and IsNormal(a,i) and Size(i)<Size(n) ));
	  od;
	fi;

	# take only those bs which are valid
	if consider<>false then
	  Info(InfoPcSubgroup,2,"  ",Length(bs)," subgroups lead to ");
	  if bsp<>false then
	    bsp:=Filtered(bsp,j->consider(no,a,n,B[j],e[i])<>false);
	    IsSSortedList(bsp);
	    bs:=bsp; # to get the 'Info' right
	  else
	    bs:=Filtered(bs,j->consider(no,a,n,j,e[i])<>false);
	  fi;
	  Info(InfoPcSubgroup,2,Length(bs)," valid ones");
	fi;

	if ophom<>false then
	  #nohom:=List(GeneratorsOfGroup(no),i->Image(ophom,i));
	  #aop:=SubgroupNC(Image(ophom),nohom);
	  #nohom:=GroupHomomorphismByImagesNC(no,aop,
	  #                                   GeneratorsOfGroup(no),nohom);

	  if Length(bsp)>0 then
	    oppcgs:=Pcgs(no);
	    oppcgsimg:=List(oppcgs,i->Image(ophom,i));
	    ex:=ExternalSet(no,bsp,oppcgs,oppcgsimg,OnPoints);
	    ex:=ExternalOrbitsStabilizers(ex);

	    bs:=[];
	    bsnorms:=[];
	    for bpos in ex do
	      Add(bs,B[Representative(bpos)]);
	      Add(bsnorms,StabilizerOfExternalSet(bpos));
#	    Assert(1,Normalizer(no,B[bpos[1]])=bsnorms[Length(bsnorms)]);
	    od;
          fi;

	else
	  # fuse under the action of no and compute the local normalizers
	  bs:=SubgroupsOrbitsAndNormalizers(no,bs,true);
	  bsnorms:=List(bs,i->i.normalizer);
	  bs:=List(bs,i->i.representative);
        fi;

Assert(1,ForAll(bs,i->ForAll(efunc,j->Image(j,i)=i)));

	# now run through the b in bs
	for bpos in [1..Length(bs)] do
	  b:=bs[bpos];
	  Assert(2,IsNormal(a,b));
	  # test, whether we'll have to consider this case

# this test has basically be done before the orbit calculation already
#	  if consider<>false and consider(a,n,b,e[i])=false then
#	    Info(InfoPcSubgroup,2,"  Ignoring case");
#	    s:=[];

	  # test, whether b is invariant
	  if Length(efunc)>0 then
	    # extend to dcs of bnormalizer
	    s:=RightTransversal(no,bsnorms[bpos]);
	    nag:=Length(s);
	    s:=Concatenation(List(s,i->List(t,j->i*j)));
	    z:=Length(s);
	    #NOCH: Fusion
	    # test, which ones are usable at all
	    s:=Filtered(s,i->HasInvariantConjugateSubgroup(b,i,efunc));
	    Info(InfoPcSubgroup,2,"  |s|=",nag,"-(m)>",z,"-(i)>",Length(s));
	  else
	    s:=[()];
	  fi;

          if Length(s)>0 then
	    nag:=InducedPcgs(home,n);
	    nag:=nag mod InducedPcgs(nag,b);
#	    if Index(Parent(a),a.normalizer)>1 then
#	      Info(InfoPcSubgroup,2,"  normalizer index ",
#	                      Index(Parent(a),a.normalizer));
#	    fi;

	    z:=rec(group:=a,
	        generators:=InducedPcgs(home,a) mod NumeratorOfModuloPcgs(nag),
	        modulePcgs:=nag);
	    OCOneCocycles(z,true);
	    if IsBound(z.complement) and 
	      # normal complements exist, iff the coboundaries are trivial
	      (normal=false or Dimension(z.oneCoboundaries)=0)
	      then
	      # now fetch the complements

	      z.factorGens:=z.generators;
	      coboundbas:=Basis(z.oneCoboundaries);
	      com:=BaseSteinitzVectors(BasisVectors(Basis(z.oneCocycles)),
	                               BasisVectors(coboundbas));
	      field:=LeftActingDomain(z.oneCocycles);
	      if Size(field)^Length(com.factorspace)>100000 then
		Info(InfoWarning,1, "Many (",
		  Size(field)^Length(com.factorspace),") complements!");
	      fi;
	      com:=Enumerator(VectorSpace(field,com.factorspace,
	                                       Zero(z.oneCocycles)));
	      Info(InfoPcSubgroup,3,"  ",Length(com),
	           " local complement classes");

	      # compute fusion
	      kconh:=List([1..Length(com)],i->[i]);
	      if i<len or retnorm then
		# we need to compute normalizers
		comnorms:=[];
	      else
		comnorms:=fail;
	      fi;

	      if Length(com)>1 and Size(a)<Size(bsnorms[bpos]) then

	        opr:=function(cyc,elm)
		      local l,i;
			l:=z.cocycleToList(cyc);
			for i in [1..Length(l)] do
			  l[i]:=(z.complementGens[i]*l[i])^elm;
			od;
			l:=CorrespondingGeneratorsByModuloPcgs(z.origgens,l);
			for i in [1..Length(l)] do
			  l[i]:=LeftQuotient(z.complementGens[i],l[i]);
			od;
			l:=z.listToCocycle(l);
			return SiftedVector(coboundbas,l);
		      end;

		xo:=ExternalOrbitsStabilizers(
		     ExternalSet(bsnorms[bpos],com,opr));

                for k in xo do
		  l:=List(k,i->Position(com,i));
		  if comnorms<>fail then
		    comnorms[l[1]]:=StabilizerOfExternalSet(k);
		    isTrueComnorm:=false;
		  fi;
		  l:=Set(l);
		  for kp in l do
		    kconh[kp]:=l;
		  od;
		od;

	      elif comnorms<>fail then
		if Size(a)=Size(bsnorms[bpos]) then
		  comnorms:=List(com,i->z.cocycleToComplement(i));
		  isTrueComnorm:=true;
		  comnorms:=List(comnorms,
			      i->ClosureSubgroup(CentralizerModulo(n,b,i),i));
	        else
		  isTrueComnorm:=false;
		  comnorms:=List(com,i->bsnorms[bpos]);
		fi;
	      fi;


              if Length(efunc)>0 then
		ncom:=[];

	        #search for invariant ones

		# force exponents corresponding to vector space

                # get matrices for the inner automorphisms
#		conj:=[];
#		for k in GeneratorsOfGroup(a) do
#		  mat:=[];
#		  for l in nag do
#		    Add(mat,One(field)*ExponentsOfPcElement(nag,l^k));
#		  od;
#		  Add(conj,mat);
#		od;
                conj:=LinearOperationLayer(a,GeneratorsOfGroup(a),nag);

                idmat:=conj[1]^0;
		mat:= GroupByGenerators( conj, idmat );
		chom:= GroupHomomorphismByImagesNC(a,mat,
		        GeneratorsOfGroup(a),conj);

		smats:=[];
		shoms:=[];

                fghom:=Concatenation(z.factorGens,GeneratorsOfGroup(n));
		bgids:=List(GeneratorsOfGroup(n),i->One(b));

		# now run through the complements
		for kp in [1..Length(com)] do

		  if kconh[kp]=fail then
		    Info(InfoPcSubgroup,3,"already conjugate");
		  else

		    k:=z.cocycleToComplement(com[kp]);
		    # the projection on the complement
		    comproj:= GroupHomomorphismByImagesNC(a,a,fghom,
			       Concatenation(GeneratorsOfGroup(k),bgids));
		    k:=ClosureSubgroup(b,k);
		    
		    # now run through the conjugating elements
		    conjnr:=1;
		    found:=false;
		    while conjnr<=Length(s) and found=false do
		      if not IsBound(smats[conjnr]) then
			# compute the matrix action for the induced, jugated
			# morphisms
			m:=s[conjnr];
			smats[conjnr]:=[];
			shoms[conjnr]:=[];
			for l in efunc do
			  # the induced, jugated morphism
			  shom:= GroupHomomorphismByImagesNC(a,a,
				  GeneratorsOfGroup(a),
				  List(GeneratorsOfGroup(a),
				   i->Image(l,i^m)^Inverse(m)));

			  mat:=List(nag,
				i->One(field)*ExponentsOfPcElement(nag,
				 Image(shom,i)));
			  Add(smats[conjnr],mat);
			  Add(shoms[conjnr],shom);
			od;
		      fi;

		      mats:=smats[conjnr];
		      # now test whether the complement k can be conjugated to
		      # be invariant under the morphisms to mats
		      glsyl:=List(nag,i->[]);
		      glsyr:=[];
		      for l in [1..Length(efunc)] do
			kgens:=GeneratorsOfGroup(k);
			for kgnr in [1..Length(kgens)] do

			  kgn:=Image(shoms[conjnr][l],kgens[kgnr]);
			  kgim:=Image(comproj,kgn);
			  Assert(2,kgim^-1*kgn in n);
			  # nt part
			  kgn:=kgim^-1*kgn;

			  # translate into matrix terms
			  kgim:=Image(chom,kgim);
			  kgn:=One(field)*ExponentsOfPcElement(nag,kgn);

			  # the matrix action
			  mat:=idmat+(mats[l]-idmat)*kgim-mats[l];
			  
			  # store action and vector
			  for m in [1..Length(glsyl)] do
			    glsyl[m]:=Concatenation(glsyl[m],mat[m]);
			  od;
			  glsyr:=Concatenation(glsyr,kgn);

			od;
		      od;

		      # a possible conjugating element is a solution of the
		      # large LGS
		      l:= SolutionMat(glsyl,glsyr);
		      if l <> fail then
			m:=Product([1..Length(l)],
				   i->nag[i]^IntFFE(l[i]));
			# note that we found one!
			found:=[s[conjnr],m];
		      fi;

		      conjnr:=conjnr+1;
		    od;

		    # there is an invariant complement?
		    if found<>false then
		      found:=found[2]*found[1];
		      l:=ConjugateSubgroup(ClosureSubgroup(b,k),found);
		      Assert(1,ForAll(efunc,i->Image(i,l)=l));
		      l:=rec(representative:=l);
		      if comnorms<>fail then
			if IsBound(comnorms[kp]) then
			  l.normalizer:=ConjugateSubgroup(comnorms[kp],found);
			else
			  l.normalizer:=ConjugateSubgroup(
			                  Normalizer(bsnorms[bpos],
				  ClosureSubgroup(b,k)), found);
			fi;
		      fi;
		      Add(ncom,l);

		      # tag all conjugates
		      for l in kconh[kp] do
		        kconh[l]:=fail;
		      od;

		    fi;

                  fi; # if not already a conjugate

		od;

		# if invariance test needed
	      else
		# get representatives of the fused complement classes
		l:=Filtered([1..Length(com)],i->kconh[i][1]=i);

		ncom:=[];
		for kp in l do
		  m:=rec(representative:=
			  ClosureSubgroup(b,z.cocycleToComplement(com[kp])));
		  if comnorms<>fail then
		    m.normalizer:=comnorms[kp];
		  fi;
		  Add(ncom,m);
		od;
	      fi; 
	      com:=ncom;

	      # take the preimages
	      for k in com do

		Assert(1,ForAll(efunc,i->Image(i,k.representative)
		                         =k.representative));
		Add(ngrps,k.representative);
		if IsBound(k.normalizer) then
		  if isTrueComnorm then
		    Add(ngrpsnorms,k.normalizer);
		  else
		    Add(ngrpsnorms,Normalizer(k.normalizer,k.representative));
		  fi;
		fi;
	      od;
	    fi;
	  fi;
	od;

      fi;
    od;

    grps:=ngrps;
    grpsnorms:=ngrpsnorms;
    Info(InfoPcSubgroup,5,List(grps,Size),List(grpsnorms,Size));
  od;

  if isom<>fail then
    grps:=List(grps,j->PreImage(isom,j));
    if retnorm then
      grpsnorms:=List(grpsnorms,j->PreImage(isom,j));
    fi;
  fi;
  
  if retnorm then
    return [grps,grpsnorms];
  else
    return grps;
  fi;
end);


#############################################################################
##
#M  LatticeSubgroups(<G>)  . . . . . . . . . .  lattice of subgroups
##
InstallMethod(LatticeSubgroups,"elementary abelian extension",true,
  [IsGroup],
  # want to be better than cyclic extension.
  1,
function(G)
local s,i,c,classes, lattice,map,GI;

  if not IsSolvableGroup(G) then #or not CanEasilyComputePcgs(G) then
    TryNextMethod();
  fi;
  if not IsPcGroup(G) or IsPermGroup(G) then
    map:=IsomorphismPcGroup(G);
    GI:=Image(map,G);
  else
    map:=fail;
    GI:=G;
  fi;
  s:=SubgroupsSolvableGroup(GI,rec(retnorm:=true));
  classes:=[];
  for i in [1..Length(s[1])] do
    if map=fail then
      c:=ConjugacyClassSubgroups(G,s[1][i]);
      SetStabilizerOfExternalSet(c,s[2][i]);
    else
      c:=ConjugacyClassSubgroups(G,PreImage(map,s[1][i]));
      SetStabilizerOfExternalSet(c,PreImage(map,s[2][i]));
    fi;
    Add(classes,c);
  od;
  Sort(classes,function(a,b) 
                 return Size(Representative(a))<Size(Representative(b));
	       end);

  # create the lattice
  lattice:=Objectify(NewType(FamilyObj(classes),IsLatticeSubgroupsRep),
		     rec());
  lattice!.conjugacyClassesSubgroups:=classes;
  lattice!.group     :=G;

  # return the lattice
  return lattice;

end);

# #############################################################################
# ##
# #M  NormalSubgroups(<G>)  . . . . . . . . . .  list of normal subgroups
# ##
# InstallMethod(NormalSubgroups,"elementary abelian extension",true,
#   [CanEasilyComputePcgs],0,
# function(G)
# local n;
#   n:=SubgroupsSolvableGroup(G,rec(
#        actions:=List(GeneratorsOfGroup(G),i->InnerAutomorphism(G,i)),
#        normal:=true));
# 
#   # sort the normal subgroups according to their size
#   Sort(n,function(a,b) return Size(a) < Size(b); end);
# 
#   return n;
# end);

#############################################################################
##
#F  SizeConsiderFunction(<size>)  returns auxiliary function for
##  'SubgroupsSolvableGroup' that allows one to discard all subgroups whose
##  size is not divisible by <size>
##
InstallGlobalFunction(SizeConsiderFunction,function(size)
  return function(c,a,n,b,m)
	   return IsInt(Size(a)/Size(n)*Size(b)*Size(m)/size);
         end;
end);

#############################################################################
##
#F  ExactSizeConsiderFunction(<size>)  returns auxiliary function for
##  'SubgroupsSolvableGroup' that allows one to discard all subgroups whose
##  size is not <size>
##
InstallGlobalFunction(ExactSizeConsiderFunction,function(size)
  return function(c,a,n,b,m)
	   return IsInt(Size(a)/Size(n)*Size(b)*Size(m)/size)
	      and not (Size(a)/Size(n)*Size(b))>size;
         end;
end);

#############################################################################
##
#E  grppclat.gi . . . . . . . . . . . . . . . . . . . . . . . . . . ends here
##