1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708
|
#############################################################################
##
#W listcoef.gd GAP Library Frank Celler
##
#Y Copyright (C) 1997, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
#############################################################################
##
## <#GAPDoc Label="[1]{listcoef}">
## The following operations all perform arithmetic on row vectors.
## given as homogeneous lists of the same length, containing
## elements of a commutative ring.
## <P/>
## There are two reasons for using <Ref Func="AddRowVector"/>
## in preference to arithmetic operators.
## Firstly, the three argument form has no single-step equivalent.
## Secondly <Ref Func="AddRowVector"/> changes its first argument in-place,
## rather than allocating a new vector to hold the result,
## and may thus produce less garbage.
## <#/GAPDoc>
##
#############################################################################
##
#O AddRowVector( <dst>, <src>[, <mul>[, <from>, <to>]] )
##
## <#GAPDoc Label="AddRowVector">
## <ManSection>
## <Oper Name="AddRowVector" Arg='dst, src[, mul[, from, to]]'/>
##
## <Description>
## Adds the product of <A>src</A> and <A>mul</A> to <A>dst</A>,
## changing <A>dst</A>.
## If <A>from</A> and <A>to</A> are given then only the index range
## <C>[ <A>from</A> .. <A>to</A> ]</C> is guaranteed to be affected.
## Other indices <E>may</E> be affected, if it is more convenient to do so.
## Even when <A>from</A> and <A>to</A> are given,
## <A>dst</A> and <A>src</A> must be row vectors of the <E>same</E> length.
## <P/>
## If <A>mul</A> is not given either then this operation simply adds
## <A>src</A> to <A>dst</A>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation(
"AddRowVector",
[ IsMutable and IsList, IsList, IsMultiplicativeElement, IsPosInt,
IsPosInt ] );
#############################################################################
##
#O AddCoeffs( <list1>, <poss1>, <list2>, <poss2>, <mul> )
#O AddCoeffs( <list1>, <list2>, <mul> )
#O AddCoeffs( <list1>, <list2> )
##
## <#GAPDoc Label="AddCoeffs">
## <ManSection>
## <Oper Name="AddCoeffs" Arg='list1[, poss1], list2[, poss2[, mul]]'/>
##
## <Description>
## <Ref Func="AddCoeffs"/> adds the entries of
## <A>list2</A><C>{</C><A>poss2</A><C>}</C>, multiplied by the scalar
## <A>mul</A>, to <A>list1</A><C>{</C><A>poss1</A><C>}</C>.
## Unbound entries in <A>list1</A> are assumed to be zero.
## The position of the right-most non-zero element is returned.
## <P/>
## If the ranges <A>poss1</A> and <A>poss2</A> are not given,
## they are assumed to span the whole vectors.
## If the scalar <A>mul</A> is omitted, one is used as a default.
## <P/>
## Note that it is the responsibility of the caller to ensure that
## <A>list2</A> has elements at position <A>poss2</A> and that the result
## (in <A>list1</A>) will be a dense list.
## <P/>
## The function is free to remove trailing (right-most) zeros.
## <Example><![CDATA[
## gap> l:=[1,2,3,4];;m:=[5,6,7];;AddCoeffs(l,m);
## 4
## gap> l;
## [ 6, 8, 10, 4 ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation(
"AddCoeffs",
[ IsMutable and IsList,
IsList, IsList, IsList, IsMultiplicativeElement ] );
#############################################################################
##
#O MultRowVector( <list1>, <poss1>, <list2>, <poss2>, <mul> )
#O MultRowVector( <list>, <mul> )
##
## <#GAPDoc Label="MultRowVector">
## <ManSection>
## <Oper Name="MultRowVector" Arg='list1, [poss1, list2, poss2, ]mul'/>
##
## <Description>
## The five argument version of this operation replaces
## <A>list1</A><C>[</C><A>poss1</A><C>[</C><M>i</M><C>]]</C> by
## <C><A>mul</A>*<A>list2</A>[<A>poss2</A>[</C><M>i</M><C>]]</C> for <M>i</M>
## between <M>1</M> and <C>Length( <A>poss1</A> )</C>.
## <P/>
## The two-argument version simply multiplies each element of <A>list1</A>,
## in-place, by <A>mul</A>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation(
"MultRowVector",
[ IsMutable and IsList,
IsList, IsList, IsList, IsMultiplicativeElement ] );
#############################################################################
##
#O CoeffsMod( <list1>, [<len1>, ]<modulus> )
##
## <#GAPDoc Label="CoeffsMod">
## <ManSection>
## <Oper Name="CoeffsMod" Arg='list1, [len1, ]modulus'/>
##
## <Description>
## returns the coefficient list obtained by reducing the entries in
## <A>list1</A> modulo <A>modulus</A>.
## After reducing it shrinks the list to remove trailing zeroes.
## If the optional argument <A>len1</A> is used, it reduces
## only first <A>len1</A> elements of the list.
## <Example><![CDATA[
## gap> l:=[1,2,3,4];;CoeffsMod(l,2);
## [ 1, 0, 1 ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation(
"CoeffsMod",
[ IsList, IsInt, IsInt ] );
#############################################################################
##
## <#GAPDoc Label="[2]{listcoef}">
## The following operations all perform arithmetic on univariate
## polynomials given by their coefficient lists. These lists can have
## different lengths but must be dense homogeneous lists containing
## elements of a commutative ring.
## Not all input lists may be empty.
## <P/>
## In the following descriptions we will always assume that <A>list1</A> is
## the coefficient list of the polynomial <A>pol1</A> and so forth.
## If length parameter <A>leni</A> is not given, it is set to the length of
## <A>listi</A> by default.
## <#/GAPDoc>
##
#############################################################################
##
#O MultCoeffs( <list1>, <list2>[, <len2>], <list3>[, <len3>] )
##
## <ManSection>
## <Oper Name="MultCoeffs" Arg='list1, list2[, len2], list3[, len3]'/>
##
## <Description>
## <E> Only used internally</E>
## Let <A>pol2</A> (and <A>pol3</A>) be polynomials given by the first
## <A>len2</A> (<A>len3</A>) entries of the coefficient list <A>list2</A>
## (<A>list3</A>).
## If <A>len2</A> and <A>len3</A> are omitted, they default to the lengths
## of <A>list2</A> and <A>list3</A>.
## This operation changes <A>list1</A> to the coefficient list of the product
## of <A>pol2</A> with <A>pol3</A>.
## This operation changes <A>list1</A> which therefore must be a mutable list.
## The operations returns the position of the last non-zero entry of the
## result but is not guaranteed to remove trailing zeroes.
## </Description>
## </ManSection>
##
DeclareOperation(
"MultCoeffs",
[ IsMutable and IsList, IsList, IsInt, IsList, IsInt ] );
#############################################################################
##
#O PowerModCoeffs( <list1>[, <len1>], <exp>, <list2>[, <len2>] )
##
## <#GAPDoc Label="PowerModCoeffs">
## <ManSection>
## <Oper Name="PowerModCoeffs" Arg='list1[, len1], exp, list2[, len2]'/>
##
## <Description>
## Let <M>p1</M> and <M>p2</M> be polynomials whose coefficients are given
## by the first <A>len1</A> resp. <A>len2</A> entries of the lists
## <A>list1</A> and <A>list2</A>, respectively.
## If <A>len1</A> and <A>len2</A> are omitted, they default to the lengths
## of <A>list1</A> and <A>list2</A>.
## Let <A>exp</A> be a positive integer.
## <Ref Func="PowerModCoeffs"/> returns the coefficient list of the
## remainder when dividing the <A>exp</A>-th power of <M>p1</M> by
## <M>p2</M>.
## The coefficients are reduced already while powers are computed,
## therefore avoiding an explosion in list length.
## <Example><![CDATA[
## gap> l:=[1,2,3,4];;m:=[5,6,7];;PowerModCoeffs(l,5,m);
## [ -839462813696/678223072849, -7807439437824/678223072849 ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation(
"PowerModCoeffs",
[ IsList, IsInt, IsInt, IsList, IsInt ] );
#############################################################################
##
#O ProductCoeffs( <list1>[, <len1>], <list2>[, <len2>] )
##
## <#GAPDoc Label="ProductCoeffs">
## <ManSection>
## <Oper Name="ProductCoeffs" Arg='list1[, len1], list2[, len2]'/>
##
## <Description>
## Let <M>p1</M> (and <M>p2</M>) be polynomials given by the first
## <A>len1</A> (<A>len2</A>) entries of the coefficient list <A>list2</A>
## (<A>list2</A>).
## If <A>len1</A> and <A>len2</A> are omitted,
## they default to the lengths of <A>list1</A> and <A>list2</A>.
## This operation returns the coefficient list of the product of <M>p1</M>
## and <M>p2</M>.
## <Example><![CDATA[
## gap> l:=[1,2,3,4];;m:=[5,6,7];;ProductCoeffs(l,m);
## [ 5, 16, 34, 52, 45, 28 ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation(
"ProductCoeffs",
[ IsList, IsInt, IsList, IsInt ] );
#############################################################################
##
#O ReduceCoeffs( <list1>[, <len1>], <list2>[, <len2>] )
##
## <#GAPDoc Label="ReduceCoeffs">
## <ManSection>
## <Oper Name="ReduceCoeffs" Arg='list1[, len1], list2[, len2]'/>
##
## <Description>
## Let <M>p1</M> (and <M>p2</M>) be polynomials given by the first
## <A>len1</A> (<A>len2</A>) entries of the coefficient list <A>list1</A>
## (<A>list2</A>).
## If <A>len1</A> and <A>len2</A> are omitted,
## they default to the lengths of <A>list1</A> and <A>list2</A>.
## <Ref Func="ReduceCoeffs"/> changes <A>list1</A> to the coefficient list
## of the remainder when dividing <A>p1</A> by <A>p2</A>.
## This operation changes <A>list1</A> which therefore must be a mutable
## list.
## The operation returns the position of the last non-zero entry of the
## result but is not guaranteed to remove trailing zeroes.
## <Example><![CDATA[
## gap> l:=[1,2,3,4];;m:=[5,6,7];;ReduceCoeffs(l,m);
## 2
## gap> l;
## [ 64/49, -24/49, 0, 0 ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation(
"ReduceCoeffs",
[ IsMutable and IsList, IsInt, IsList, IsInt ] );
#############################################################################
##
#O ReduceCoeffsMod( <list1>[, <len1>], <list2>[, <len2>], <modulus> )
##
## <#GAPDoc Label="ReduceCoeffsMod">
## <ManSection>
## <Oper Name="ReduceCoeffsMod"
## Arg='list1[, len1], list2[, len2], modulus'/>
##
## <Description>
## Let <M>p1</M> (and <M>p2</M>) be polynomials given by the first
## <A>len1</A> (<A>len2</A>) entries of the coefficient list <A>list1</A>
## (<A>list2</A>).
## If <A>len1</A> and <A>len2</A> are omitted,
## they default to the lengths of <A>list1</A> and <A>list2</A>.
## <Ref Func="ReduceCoeffsMod"/> changes <A>list1</A> to the
## coefficient list of the remainder when dividing
## <A>p1</A> by <A>p2</A> modulo <A>modulus</A>,
## which must be a positive integer.
## This operation changes <A>list1</A> which therefore must be a mutable
## list.
## The operations returns the position of the last non-zero entry of the
## result but is not guaranteed to remove trailing zeroes.
## <Example><![CDATA[
## gap> l:=[1,2,3,4];;m:=[5,6,7];;ReduceCoeffsMod(l,m,3);
## 1
## gap> l;
## [ 1, 0, 0, 0 ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation(
"ReduceCoeffsMod",
[ IsMutable and IsList, IsInt, IsList, IsInt, IsInt ] );
#############################################################################
##
#O QuotRemCoeffs( <list1>[, <len1>], <list2>[, <len2>])
##
## <ManSection>
## <Oper Name="QuotRemCoeffs" Arg='list1[, len1], list2[, len2]'/>
##
## <Description>
## returns a length 2 list containing the quotient and remainder from the
## division of the polynomial represented by
## (the first <A>len1</A> entries of) <A>list1</A> by that represented by
## (the first <A>len2</A> entries of) <A>list2</A>
## </Description>
## </ManSection>
##
DeclareOperation( "QuotRemCoeffs", [IsList, IsInt, IsList, IsInt]);
#############################################################################
##
#F ValuePol( <coeff>, <x> ) . . . . evaluate a polynomial at a point
##
## <#GAPDoc Label="ValuePol">
## <ManSection>
## <Func Name="ValuePol" Arg='coeff, x'/>
##
## <Description>
## Let <A>coeff</A> be the coefficients list of a univariate polynomial
## <M>f</M>, and <A>x</A> a ring element.
## Then <Ref Func="ValuePol"/> returns the value <M>f(<A>x</A>)</M>.
## <P/>
## The coefficient of <M><A>x</A>^i</M> is assumed to be stored
## at position <M>i+1</M> in the coefficients list.
## <Example><![CDATA[
## gap> ValuePol([1,2,3],4);
## 57
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "ValuePol",[IsList,IsRingElement] );
#############################################################################
##
## <#GAPDoc Label="[3]{listcoef}">
## The following functions change coefficient lists by shifting or
## trimming.
## <#/GAPDoc>
##
#############################################################################
##
#O RemoveOuterCoeffs( <list>, <coef> )
##
## <#GAPDoc Label="RemoveOuterCoeffs">
## <ManSection>
## <Oper Name="RemoveOuterCoeffs" Arg='list, coef'/>
##
## <Description>
## removes <A>coef</A> at the beginning and at the end of <A>list</A>
## and returns the number of elements removed at the beginning.
## <Example><![CDATA[
## gap> l:=[1,1,2,1,2,1,1,2,1];; RemoveOuterCoeffs(l,1);
## 2
## gap> l;
## [ 2, 1, 2, 1, 1, 2 ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation(
"RemoveOuterCoeffs",
[ IsMutable and IsList, IsObject ] );
#############################################################################
##
#O ShiftedCoeffs( <list>, <shift> )
##
## <#GAPDoc Label="ShiftedCoeffs">
## <ManSection>
## <Oper Name="ShiftedCoeffs" Arg='list, shift'/>
##
## <Description>
## produces a new coefficient list <C>new</C> obtained by the rule
## <C>new[i+<A>shift</A>]:= <A>list</A>[i]</C>
## and filling initial holes by the appropriate zero.
## <Example><![CDATA[
## gap> l:=[1,2,3];;ShiftedCoeffs(l,2);ShiftedCoeffs(l,-2);
## [ 0, 0, 1, 2, 3 ]
## [ 3 ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation(
"ShiftedCoeffs",
[ IsList, IsInt ] );
#############################################################################
##
#O LeftShiftRowVector( <list>, <shift> )
##
## <#GAPDoc Label="LeftShiftRowVector">
## <ManSection>
## <Oper Name="LeftShiftRowVector" Arg='list, shift'/>
##
## <Description>
## changes <A>list</A> by assigning
## <A>list</A><M>[i]</M><C>:= </C><A>list</A><M>[i+<A>shift</A>]</M>
## and removing the last <A>shift</A> entries of the result.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation(
"LeftShiftRowVector",
[ IsMutable and IsList, IsPosInt ] );
#############################################################################
##
#O RightShiftRowVector( <list>, <shift>, <fill> )
##
## <#GAPDoc Label="RightShiftRowVector">
## <ManSection>
## <Oper Name="RightShiftRowVector" Arg='list, shift, fill'/>
##
## <Description>
## changes <A>list</A> by assigning
## <A>list</A><M>[i+<A>shift</A>]</M><C>:= </C><A>list</A><M>[i]</M>
## and filling each of the <A>shift</A> first entries with <A>fill</A>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation(
"RightShiftRowVector",
[ IsMutable and IsList, IsPosInt, IsObject ] );
#############################################################################
##
#O ShrinkRowVector( <list> )
##
## <#GAPDoc Label="ShrinkRowVector">
## <ManSection>
## <Oper Name="ShrinkRowVector" Arg='list'/>
##
## <Description>
## removes trailing zeroes from the list <A>list</A>.
## <Example><![CDATA[
## gap> l:=[1,0,0];;ShrinkRowVector(l);l;
## [ 1 ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation(
"ShrinkRowVector",
[ IsMutable and IsList ] );
#############################################################################
##
#O PadCoeffs( <list>, <len>[, <value>] )
##
## <ManSection>
## <Oper Name="PadCoeffs" Arg='list, len[, value]'/>
##
## <Description>
## extends <A>list</A> until its length is at least <A>len</A> by adding
## identical entries <A>value</A> at the end.
## <P/>
## If <A>value</A> is omitted, <C>Zero(<A>list</A>[1])</C> is used.
## In this case <A>list</A> must not be empty.
## </Description>
## </ManSection>
##
DeclareOperation("PadCoeffs",[IsList and IsMutable, IsPosInt, IsObject]);
DeclareOperation( "PadCoeffs",
[ IsList and IsMutable and IsAdditiveElementWithZeroCollection,
IsPosInt ] );
#############################################################################
##
## <#GAPDoc Label="[4]{listcoef}">
## The following functions perform operations on finite fields vectors
## considered as code words in a linear code.
## <#/GAPDoc>
##
#############################################################################
##
#O WeightVecFFE( <vec> )
##
## <#GAPDoc Label="WeightVecFFE">
## <ManSection>
## <Oper Name="WeightVecFFE" Arg='vec'/>
##
## <Description>
## returns the weight of the finite field vector <A>vec</A>, i.e. the number of
## nonzero entries.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation("WeightVecFFE",[IsList]);
#############################################################################
##
#O DistanceVecFFE( <vec1>,<vec2> )
##
## <#GAPDoc Label="DistanceVecFFE">
## <ManSection>
## <Oper Name="DistanceVecFFE" Arg='vec1,vec2'/>
##
## <Description>
## returns the distance between the two vectors <A>vec1</A> and <A>vec2</A>,
## which must have the same length and whose elements must lie in a common
## field.
## The distance is the number of places where <A>vec1</A> and <A>vec2</A>
## differ.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation("DistanceVecFFE",[IsList,IsList]);
#############################################################################
##
#O DistancesDistributionVecFFEsVecFFE( <vecs>, <vec> )
##
## <#GAPDoc Label="DistancesDistributionVecFFEsVecFFE">
## <ManSection>
## <Oper Name="DistancesDistributionVecFFEsVecFFE" Arg='vecs, vec'/>
##
## <Description>
## returns the distances distribution of the vector <A>vec</A> to the
## vectors in the list <A>vecs</A>.
## All vectors must have the same length,
## and all elements must lie in a common field.
## The distances distribution is a list <M>d</M> of
## length <C>Length(<A>vec</A>)+1</C>, such that the value <M>d[i]</M> is
## the number of vectors in <A>vecs</A> that have distance <M>i+1</M> to
## <A>vec</A>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation("DistancesDistributionVecFFEsVecFFE",[IsList,IsList]);
#############################################################################
##
#O DistancesDistributionMatFFEVecFFE( <mat>, <F>, <vec> )
##
## <#GAPDoc Label="DistancesDistributionMatFFEVecFFE">
## <ManSection>
## <Oper Name="DistancesDistributionMatFFEVecFFE" Arg='mat, F, vec'/>
##
## <Description>
## returns the distances distribution of the vector <A>vec</A> to the
## vectors in the vector space generated by the rows of the matrix
## <A>mat</A> over the finite field <A>F</A>.
## The length of the rows of <A>mat</A> and the length of <A>vec</A> must be
## equal, and all entries must lie in <A>F</A>.
## The rows of <A>mat</A> must be linearly independent.
## The distances distribution is a list <M>d</M> of length
## <C>Length(<A>vec</A>)+1</C>, such that the value <M>d[i]</M> is the
## number of vectors in the vector space generated by the rows of <A>mat</A>
## that have distance <M>i+1</M> to <A>vec</A>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation("DistancesDistributionMatFFEVecFFE",
[IsMatrix,IsFFECollection, IsList]);
#############################################################################
##
#O AClosestVectorCombinationsMatFFEVecFFE(<mat>,<f>,<vec>,<l>,<stop>)
#O AClosestVectorCombinationsMatFFEVecFFECoords(<mat>,<f>,<vec>,<l>,<stop>)
##
## <#GAPDoc Label="AClosestVectorCombinationsMatFFEVecFFE">
## <ManSection>
## <Oper Name="AClosestVectorCombinationsMatFFEVecFFE"
## Arg='mat, f, vec, l, stop'/>
## <Oper Name="AClosestVectorCombinationsMatFFEVecFFECoords"
## Arg='mat, f, vec, l, stop'/>
##
## <Description>
## These functions run through the <A>f</A>-linear combinations of the
## vectors in the rows of the matrix <A>mat</A> that can be written as
## linear combinations of exactly <A>l</A> rows (that is without using
## zero as a coefficient). The length of the rows of <A>mat</A> and the
## length of <A>vec</A> must be equal, and all elements must lie in the
## field <A>f</A>.
## The rows of <A>mat</A> must be linearly independent.
## <Ref Func="AClosestVectorCombinationsMatFFEVecFFE"/> returns a vector
## from these that is closest to the vector <A>vec</A>.
## If it finds a vector of distance at most <A>stop</A>,
## which must be a nonnegative integer, then it stops immediately
## and returns this vector.
## <P/>
## <Ref Func="AClosestVectorCombinationsMatFFEVecFFECoords"/> returns a
## length 2 list containing the same closest vector and also a vector
## <A>v</A> with exactly <A>l</A> non-zero entries,
## such that <A>v</A> times <A>mat</A> is the closest vector.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation("AClosestVectorCombinationsMatFFEVecFFE",
[IsMatrix,IsFFECollection, IsList, IsInt,IsInt]);
DeclareOperation("AClosestVectorCombinationsMatFFEVecFFECoords",
[IsMatrix,IsFFECollection, IsList, IsInt,IsInt]);
#############################################################################
##
#O CosetLeadersMatFFE( <mat>, <f> )
##
## <#GAPDoc Label="CosetLeadersMatFFE">
## <ManSection>
## <Oper Name="CosetLeadersMatFFE" Arg='mat, f'/>
##
## <Description>
## returns a list of representatives of minimal weight for the cosets of a
## code.
## <A>mat</A> must be a <E>check matrix</E> for the code,
## the code is defined over the finite field <A>f</A>.
## All rows of <A>mat</A> must have the same length, and all elements must
## lie in the field <A>f</A>.
## The rows of <A>mat</A> must be linearly independent.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation("CosetLeadersMatFFE",[IsMatrix,IsFFECollection]);
#############################################################################
##
#O AddToListEntries( <list>, <poss>, <x> )
##
## <ManSection>
## <Oper Name="AddToListEntries" Arg='list, poss, x'/>
##
## <Description>
## modifies <A>list</A> in place by adding <A>x</A> to each of the entries
## indexed by <A>poss</A>.
## </Description>
## </ManSection>
##
DeclareOperation("AddToListEntries", [ IsList and
IsExtAElementCollection and IsMutable, IsList
and IsCyclotomicCollection, IsExtAElement ] );
# data types for low index memory blocks. Created here to avoid having to
# read the fp group stuff early
DeclareGlobalVariable("TYPE_LOWINDEX_DATA");
#############################################################################
##
#E
|