File: semigrp.gi

package info (click to toggle)
gap 4r7p5-2
  • links: PTS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 29,272 kB
  • ctags: 7,129
  • sloc: ansic: 107,802; xml: 46,868; sh: 3,548; perl: 2,329; makefile: 740; python: 94; asm: 62; awk: 6
file content (1073 lines) | stat: -rw-r--r-- 33,045 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
#############################################################################
##
#W  semigrp.gi                  GAP library                     Thomas Breuer
##
##
#Y  Copyright (C)  1996,  Lehrstuhl D für Mathematik,  RWTH Aachen,  Germany
#Y  (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y  Copyright (C) 2002 The GAP Group
##
##  This file contains generic methods for semigroups.
##

# Everything from here...

#

InstallMethod(InversesOfSemigroupElement, "for a semigroup and an element",
[IsSemigroup, IsAssociativeElement],
function(s, x)
  if not x in s then 
    Error("usage: the 2nd argument must be an element of the 1st,");
    return;
  fi;
  return Filtered(Elements(s), y-> x*y*x=x and y*x*y=y);
end);

#

InstallMethod(\.,"for a semigroup with generators and pos int",
[IsSemigroup and HasGeneratorsOfSemigroup, IsPosInt],
function(s, n)
  s:=GeneratorsOfSemigroup(s);
  n:=NameRNam(n);
  n:=Int(n);
  if n=fail or Length(s)<n then
    Error("usage: the second argument should be a pos int not greater than",
     " the number of generators of the semigroup in the first argument,");
    return;
  fi;
  return s[n];
end);

#

InstallMethod(\., "for a monoid with generators and pos int",
[IsMonoid and HasGeneratorsOfMonoid, IsPosInt],
function(s, n)
  s:=GeneratorsOfMonoid(s);
  n:=NameRNam(n);
  n:=Int(n);
  if n=fail or Length(s)<n then
    Error("usage: the second argument should be a pos int not greater than",
     " the number of generators of the semigroup in the first argument,");
    return;
  fi;
  return s[n];
end);

#

InstallMethod(IsSubsemigroup,
"for semigroup and semigroup with generators",
[IsSemigroup, IsSemigroup and HasGeneratorsOfSemigroup],
function(s, t)
  return ForAll(GeneratorsOfSemigroup(t), x-> x in s);
end);

#

InstallMethod(IsSubsemigroup, "for a semigroup and semigroup",
[IsSemigroup, IsSemigroup], IsSubset);

#

InstallMethod(\=,
"for semigroup with generators and semigroup with generators",
[IsSemigroup and HasGeneratorsOfSemigroup,
 IsSemigroup and HasGeneratorsOfSemigroup],
function(s, t)
  return ForAll(GeneratorsOfSemigroup(s), x-> x in t) and
   ForAll(GeneratorsOfSemigroup(t), x-> x in s);
end);

#

InstallTrueMethod(IsRegularSemigroup, IsInverseSemigroup);

#

InstallMethod(IsInverseSemigroup, "for a semigroup", 
[IsSemigroup],
function(s)
local F, e, f;

  if not IsRegularSemigroup(s) then 
    return false;
  fi;

  F:=Idempotents(s);

  for e in F do 
    for f in F do 
      if e*f<>f*e then 
        return false;
      fi;
    od;
  od;

  return true;
end); 

# to here was added by JDM.

#############################################################################
##
##  Compute a data structure that can be used to compute the
##  CayleyGraph of a semigroup. This data structure is essentially
##  a list of lists of points each list recording the action of the
##  generators of the semigroup on every element in the semigroup.
##  The points represent the elements of the semigroup in sorted order.
##  This representation is so a more condensed list of elements can be
##  used rather than the elements of the semigroup.
##
##  Similarly for the dual of the semigroup.
##
##  Clearly, these graphs can be computed only for finite semigroups
##  which can be enumerated. Other methods will be needed for very large
##  semigroups or the infinite cases.
##
#A  CayleyGraphSemigroup(<semigroup>)
#A  CayleyGraphDualSemigroup(<semigroup>)
##
InstallMethod(CayleyGraphSemigroup, "for generic finite semigroups",
        [IsSemigroup and IsFinite],
    function(s)
    
    FroidurePinExtendedAlg(s); 
    return CayleyGraphSemigroup(s);

    end);

InstallMethod(CayleyGraphDualSemigroup, "for generic finite semigroups",
        [IsSemigroup and IsFinite],
    function(s)

    FroidurePinExtendedAlg(s); 
    return CayleyGraphDualSemigroup(s);

    end);

#############################################################################
##
#M  PrintObj( <S> ) . . . . . . . . . . . . . . . . . . . . print a semigroup
##

#InstallMethod( PrintObj, #JDM required?? Shouldn't the default call PrintString?
#    "for a semigroup",
#    [ IsSemigroup ],
#    function( S )
#    Print( "Semigroup( ... )" );
#    end );

InstallMethod( String,
    "for a semigroup",
    [ IsSemigroup ],
    function( S )
    return "Semigroup( ... )";
    end );

InstallMethod( PrintObj,
    "for a semigroup with known generators",
    [ IsSemigroup and HasGeneratorsOfMagma ],
    function( S )
    Print( "Semigroup( ", GeneratorsOfMagma( S ), " )" );
    end );


InstallMethod( String,
    "for a semigroup with known generators",
    [ IsSemigroup and HasGeneratorsOfMagma ],
    function( S )
    return STRINGIFY( "Semigroup( ", GeneratorsOfMagma( S ), " )" );
    end );

InstallMethod( PrintString,
    "for a semigroup with known generators",
    [ IsSemigroup and HasGeneratorsOfMagma ],
    function( S )
    return PRINT_STRINGIFY( "Semigroup( ", GeneratorsOfMagma( S ), " )" );
    end );

#############################################################################
##
#M  ViewString( <S> )  . . . . . . . . . . . . . . . . . . . .  view a semigroup
##
InstallMethod( ViewString,
    "for a semigroup",
    [ IsSemigroup ],
    function( S )
    return "<semigroup>";
    end );

InstallMethod( ViewString,
    "for a semigroup with generators",
    [ IsSemigroup and HasGeneratorsOfMagma ],
    function( S )
    if Length(GeneratorsOfMagma(S)) = 1 then
      return "<semigroup with 1 generator>";
    else
      return STRINGIFY("<semigroup with ", Length( GeneratorsOfMagma( S ) ),
           " generators>" );
    fi;
    end );

#############################################################################
##
#M  DisplaySemigroup( <S> )
##
InstallMethod(DisplaySemigroup, "for finite semigroups",
    [IsTransformationSemigroup],
function(S)

    local dc, i, len, sh, D, layer, displayDClass;

    displayDClass:= function(D)
        local h, sh;
        h:= GreensHClassOfElement(AssociatedSemigroup(D),Representative(D));
        if IsRegularDClass(D) then
            Print("*");
        fi;
        Print("[H size = ", Size(h),", ",
        Size(GreensRClassOfElement(AssociatedSemigroup(D),
            Representative(h)))/Size(h), " L classes, ",
        Size(GreensLClassOfElement(AssociatedSemigroup(D),
            Representative(h)))/Size(h)," R classes]");
        Print("\n");
    end;

    #########################################################################
    ##
    ##  Function Proper
    ##
    #########################################################################

    # check finiteness
    if not IsFinite(S) then
      TryNextMethod();
    fi;

    # determine D classes and sort according to rank.
    layer:= List([1..DegreeOfTransformationSemigroup(S)], x->[]);
    for D in GreensDClasses(S) do
        Add(layer[RankOfTransformation(Representative(D))], D);
    od;

    # loop over the layers.
    len:= Length(layer);
    for i in [len, len-1..1] do
        if layer[i] <> [] then

            # loop over D classes.
            for D in layer[i] do
                Print("Rank ", i, ": \c");
                displayDClass(D);
            od;
        fi;
    od;

end);



#############################################################################
##
#M  SemigroupByGenerators( <gens> ) . . . . . . semigroup generated by <gens>
##
InstallMethod( SemigroupByGenerators,
    "for a collection",
    [ IsCollection ],
    function( gens )
      local S, pos;

    S:= Objectify( NewType( FamilyObj( gens ),
                            IsSemigroup and IsAttributeStoringRep ),
                   rec() );
    SetGeneratorsOfMagma( S, AsList( gens ) );
    
    if IsMultiplicativeElementWithOneCollection(gens) 
      and CanEasilyCompareElements(gens) then 
      pos:=Position(gens, One(gens));
      if pos<>fail then 
        SetFilterObj(S, IsMonoid);
        gens:=ShallowCopy(gens);
        Remove(gens, pos);
        SetGeneratorsOfMonoid(S, gens);
      fi;
    fi;

    return S;
    end );


#############################################################################
##
#M  AsSemigroup( <D> ) . . . . . . . . . . .  domain <D>, viewed as semigroup
##
InstallMethod( AsSemigroup,
    "for a semigroup",
    [ IsSemigroup ], 100,
    IdFunc );

InstallMethod( AsSemigroup,
    "generic method for collections",
    [ IsCollection ],
    function ( D )
    local   S,  L;

    D := AsSSortedList( D );
    L := ShallowCopy( D );
    S := Submagma( SemigroupByGenerators( D ), [] );
    SubtractSet( L, AsSSortedList( S ) );
    while not IsEmpty(L)  do
        S := ClosureMagmaDefault( S, L[1] );
        SubtractSet( L, AsSSortedList( S ) );
    od;
    if Length( AsSSortedList( S ) ) <> Length( D )  then
        return fail;
    fi;
    S := SemigroupByGenerators( GeneratorsOfSemigroup( S ) );
    SetAsSSortedList( S, D );
    SetIsFinite( S, true );
    SetSize( S, Length( D ) );

    # return the semigroup
    return S;
    end );


#############################################################################
##
#F  Semigroup( <gen>, ... ) . . . . . . . . semigroup generated by collection
#F  Semigroup( <gens> ) . . . . . . . . . . semigroup generated by collection
##

InstallGlobalFunction( Semigroup, function( arg )
  local out, i;

  if Length(arg)=0 or (Length(arg)=1 and HasIsEmpty(arg[1]) and IsEmpty(arg[1])) then 
    Error("usage: cannot create a semigroup with no generators,");
    return;

  # special case for matrices, because they may look like lists
  elif Length( arg ) = 1 and IsMatrix( arg[1] )  then
    return SemigroupByGenerators( [ arg[1] ] );

  # list of generators
  elif Length( arg ) = 1 and IsList( arg[1] ) and 0 < Length( arg[1] )  then
    return SemigroupByGenerators( arg[1] );

  # generators and collections of generators
  elif IsAssociativeElement(arg[1]) or IsAssociativeElementCollection(arg[1]) 
   or (HasIsEmpty(arg[1]) and IsEmpty(arg[1])) then
    out:=[];
    for i in [1..Length(arg)] do
      if IsAssociativeElement(arg[i]) then
        Add(out, arg[i]);
      elif IsAssociativeElementCollection(arg[i]) then
        if HasGeneratorsOfSemigroup(arg[i]) then
          Append(out, GeneratorsOfSemigroup(arg[i]));
        elif IsList(arg[i]) then 
          Append(out, arg[i]);
        else
          Append(out, AsList(arg[i]));
        fi;
      #so that we can pass the options record in the Semigroups package 
      elif i=Length(arg) and IsRecord(arg[i]) then
        return SemigroupByGenerators(out, arg[i]);
      else
        if not IsEmpty(arg[i]) then 
          Error( "Usage: Semigroup(<gen>,...), Semigroup(<gens>), ",
            "Semigroup(<D>), " );
          return;
        fi;
      fi;
    od;
    return SemigroupByGenerators(out);
  
  # no argument given, error
  else
    Error( "Usage: Semigroup(<gen>,...),Semigroup(<gens>),Semigroup(<D>),");
    return;
  fi;
end);

#############################################################################
##
#M  AsSubsemigroup( <G>, <U> )
##
InstallMethod( AsSubsemigroup,
    "generic method for a domain and a collection",
    IsIdenticalObj,
    [ IsDomain, IsCollection ],
    function( G, U )
    local S;
    if not IsSubset( G, U ) then
      return fail;
    fi;
    if IsMagma( U ) then
      if not IsAssociative( U ) then
        return fail;
      fi;
      S:= SubsemigroupNC( G, GeneratorsOfMagma( U ) );
    else
      S:= SubmagmaNC( G, AsList( U ) );
      if not IsAssociative( S ) then
        return fail;
      fi;
    fi;
    UseIsomorphismRelation( U, S );
    UseSubsetRelation( U, S );
    return S;
    end );

#############################################################################
##
#M  Enumerator( <S> )
#M  Enumerator( <S> : Side:= "left" )
#M  Enumerator( <S> : Side:= "right")
##
##  Creates a naive semigroup enumerator.   By default this enumerates the
##  right semigroup ideal of the set of generators.   This is the same as
##  the third form.
##
##  In the second form it enumerates the left semigroup ideal generated by
##  the semigroup generators.
##
InstallMethod( Enumerator, "for a generic semigroup",
    [ IsSemigroup and HasGeneratorsOfSemigroup ],
    function( s )
     
    if ValueOption( "Side" ) = "left" then
      return EnumeratorOfSemigroupIdeal( s, s,
                 IsBound_LeftSemigroupIdealEnumerator,
                 GeneratorsOfSemigroup( s ) );
    else
      return EnumeratorOfSemigroupIdeal( s, s,
                 IsBound_RightSemigroupIdealEnumerator,
                 GeneratorsOfSemigroup( s ) );
    fi;
    end );


#############################################################################
##
#M  IsSimpleSemigroup( <S> ) . . . . . . . . . . . . . . . . . .  for a group
#M  IsSimpleSemigroup( <S> ) . . . . . . . . . . . .  for a trivial semigroup
##
##  All groups are simple semigroups.
##  A trivial semigroup is a simple semigroup.
##
InstallTrueMethod( IsSimpleSemigroup, IsGroup );
InstallTrueMethod( IsSimpleSemigroup, IsSemigroup and IsTrivial );


#############################################################################
##
#M  IsSimpleSemigroup( <S> ) . . . . . . . for semigroup which has generators
##
##  In such a case the semigroup is simple iff all generators are
##  Greens J less than or equal to any element of the semigroup.
##
##  Proof:
##  (->) Suppose <S> is simple; equivalently this means than
##  for all element <t> of <S>, <StS=S>. So let <t> be an
##  arbitrary element of <S> and let <x> be any generator of <S>.
##  Then $S^1xS^1 \subseteq S = StS \subseteq S^1tS^1$ and this
##  means that <x> is J less than or equal to t.
##
##  (<-) Conversely.
##  Recall that <S> simple is equivalent to J being
##  the universal relation in <S>. So that is what we have to proof.
##  All elements of the semigroup are J less than or equal to the generators
##  since they are products of generators. But since by the condition
##  given all generators are less than or equal to all other elements
##  it follows that all elements of the semigroup are J related, and
##  hence J is universal.
##  QED
##
##  In order to apply the above result we are going to check that
##  one of the generators is J-minimal and that all other generators are
##  J-less than or equal to  that first generator.
##
##  It returns true if the semigroup is finite and is simple.
##  It returns false if the semigroup is not simple and is finite.
##  It might return false if the semigroup is not simple and infinite.
##  It does not terminate if the semigroup although simple, is infinite
##
InstallMethod(IsSimpleSemigroup,
        "for semigroup with generators",
        [ IsSemigroup and HasGeneratorsOfSemigroup],
    function(s)
         local it,          # the iterator of the semigroup s
               t,           # an element of the semigroup
               J,           # Greens J relation of the semigroup
               gens,        # a set of generators of the semigroup
               a,           # a generator
               i,           # loop variable
               jt,ja,jx;    # J classes

         # the iterator, the J-relation and a generating set for the semigroup
         it:=Iterator(s);
         J:=GreensJRelation(s);
         gens:=GeneratorsOfSemigroup(s);

         # pick a generator, gens[1], and build its J class
         jx:=EquivalenceClassOfElementNC(J,gens[1]);

         # check whether gens[1] is J less than or equal to all other els of the smg
         while not(IsDoneIterator(it)) do
             # pick the next element of the semigroup
             t:=NextIterator(it);
             # if gens[1] is not J-less than or equal to t then S is not simple
             jt:=EquivalenceClassOfElementNC(J,t);
             if not(IsGreensLessThanOrEqual(jx,jt)) then
                 return false;
             fi;
         od;

         # notice that the above cycle only terminates without returning false
         # when the semigroup is finite

         # now check whether all other generators are J less than or equal
         # the first one. No need to compare with first one (itself), so start in the
         # second one. Also, no need to compare with any other generator equal
         # to first one
         i:=2;
         while i in [1..Length(gens)] do
             a:=gens[i];
             ja:=EquivalenceClassOfElementNC(J,a);
             if not(IsGreensLessThanOrEqual(ja,jx)) then
                 return false;
             fi;
             i:=i+1;
         od;

         # hence the semigroup is simple
         return true;

    end);

#############################################################################
##
#M  IsSimpleSemigroup( <S> )
##
##  for a semigroup which has a MultiplicativeNeutralElement.
##
##  In this case is enough to show that the MultiplicativeNeutralElement
##  is J-less than or equal to all other elements.
##  This is because a MultiplicativeNeutralElement is J greater than or
##  equal to any other element and hence by showing that is less than
##  or equal any other element it follows that J is universal, and
##  therefore the semigroup <S> is simple.
##
##  If the semigroup is finite it returns true if the semigroup is
##  simple and false otherwise.
##  If the semigroup is infinite and simple it does not terminate. It
##  might terminate and return false if the semigroup is not simple.
##
InstallMethod( IsSimpleSemigroup,
  "for a semigroup with a MultiplicativeNeutralElement",
  [ IsSemigroup and HasMultiplicativeNeutralElement ],
function(s)
    local it,# the iterator of the semigroup S
          J,# Green's J relation on the semigroup
          jn,jt,# J-classes
          t,# an element of the semigroup
          neutral;# the MultiplicativeNeutralElement of s

    # the iterator and the J-relation on S
    it:=Iterator(s);
    J:=GreensJRelation(s);

    # the multiplicative neutral element and its J class
    neutral:=MultiplicativeNeutralElement(s);
  jn:=EquivalenceClassOfElementNC(J,neutral);

    while not(IsDoneIterator(it)) do
      t:=NextIterator(it);
    jt:=EquivalenceClassOfElementNC(J,t);
      # if neutral is not J less than or equal to t then S is not simple
    if not(IsGreensLessThanOrEqual(jn,jt)) then
      return false;
    fi;
  od;

    # notice that the above cycle only terminates without returning
    # false if the semigroup is finite

    # hence s is simple
    return true;

end);

#############################################################################
##
#M  IsSimpleSemigroup( <S> ) . . . . . . . . . . . . . . . .  for a semigroup
##
##  This is the general case for a semigroup.
##
##  A semigroup is simple iff J is the universal relation in S.
##  So we are going to fix a J class and look throught the semigroup
##  to check whether there are other J-classes.
##
##  It returns false if it finds a new J-class.
##  It returns true if is finite and only finds one J-class.
##  It does not terminate if simple but infinite.
##
InstallMethod(IsSimpleSemigroup,
  "for a semigroup",
  [ IsSemigroup ],
function(s)
    local it,# the iterator of the semigroup s
          J,# J relation on s
          a,b,# elements of the semigroup
          ja,jb;# J-classes

    # the J-relation on s and the iterator of s
    J:=GreensJRelation(s);
    it:=Iterator(s);

    # pick an element of the semigroup
    a:=NextIterator(it);
    # and build its J class
    ja:=EquivalenceClassOfElementNC(J,a);

    # if IsDoneIterator(it) it means that the semigroup is trivial, and hence simple
    if IsDoneIterator(it) then
      return true;
    fi;

    # look through all elements of s
    # to find out if there are more J classes
    while not(IsDoneIterator(it)) do
      b:=NextIterator(it);
      jb:=EquivalenceClassOfElementNC(J,b);
      # if a and b are not in the same J class then the smg is not simple
      if not(IsGreensLessThanOrEqual(ja,jb)) then
        return false;
      elif not (IsGreensLessThanOrEqual(jb,ja)) then
        return false;
      fi;
    od;

    # notice that the above cycle only terminates without returning
    # false if the semigroup is finite

    # hence the semigroup is simple
    return true;

end);

#############################################################################
##
#M  IsZeroSimpleSemigroup( <S> ) . . . . . . . . . . . . . . for a zero group
##
##  All groups are simple semigroups. Hence all zero groups are 0-simple.
##
InstallTrueMethod( IsZeroSimpleSemigroup, IsZeroGroup );


#############################################################################
##
#M  IsZeroSimpleSemigroup( <S> ) . . . . . . . . . . . . . . . .  for a group
##
##  A group is not a zero simple semigroup because does not have a zero.
##
InstallMethod( IsZeroSimpleSemigroup,
    "for a ZeroGroup",
    [ IsGroup],
    ReturnFalse );

#############################################################################
##
#M  IsZeroSimpleSemigroup( <S> ) . . . . . . . . . .  for a trivial semigroup
##
##  a trivial semigroup is not 0 simple, since S^2=0
##  Moreover is not representable by a Rees Matrix semigroup
##  over a zero group (which has at least two elements)
##
InstallMethod(IsZeroSimpleSemigroup, "for a trivial semigroup",
    [ IsSemigroup and IsTrivial], ReturnFalse );

#############################################################################
##
#M  IsZeroSimpleSemigroup( <S> ) . . . . for a semigroup which has generators
##

## A semigroup <S> is 0-simple if and only if it is non-trivial, contains a
## multiplicative zero, and has exactly two J-classes, and S^2<>{0}.

InstallMethod(IsZeroSimpleSemigroup, "for a semigroup with generators",
[IsSemigroup and HasGeneratorsOfSemigroup],
function(s)

  if IsTrivial(s) or MultiplicativeZero(s)=fail then
    return false;
  fi;

  return Length(GreensJClasses(s))=2 and IsRegularSemigroup(s);
end);

#############################################################################
##
#M  IsZeroSimpleSemigroup( <S> )
##
##  for a semigroup with zero which has a MultiplicativeNeutralElement.
##
##  In this case is enough to show that the MultiplicativeNeutralElement
##  is J-less than or equal to all other non-zero elements of S and
##  that if S has only two elements, s^2 is non zero.
##  This is because a MultiplicativeNeutralElement is J greater than or
##  equal to any other element and hence by showing that is less than
##  or equal any other element it follows that J is universal, and
##  therefore the semigroup <S> is simple.
##
##  This time if the semigroup only has two elements than it
##  is simple since for sure the square of the Neutral Element
##  is itself, and hence is non-zero
##
InstallMethod( IsZeroSimpleSemigroup,
  "for a semigroup with a MultiplicativeNeutralElement",
  [ IsSemigroup and HasMultiplicativeNeutralElement ],
function(s)

  local e,        # the enumerator of the semigroup s
        J,          # Green's J relation on the semigroup
        jn,ji,      # J-classes
        zero,# the zero element of s
        i,# loop variable
        neutral;    # the MultiplicativeNeutralElement of s

  e:=Enumerator(s);

   # the trivial semigroup is not 0-simple
  if not(IsBound(e[2])) then
    return false;
  fi;

    # as remarked above, if the semigroup has a neutral element then
    # if it has two elements it is simple
    if not(IsBound(e[3])) then
      return true;
    fi;

  neutral:=MultiplicativeNeutralElement(s);
    zero:=MultiplicativeZero(s);
  J:=GreensJRelation(s);
  jn:=EquivalenceClassOfElementNC(J,neutral);
    i:=1;
    while IsBound(e[i]) do
      if e[i]<>zero then
        ji:=EquivalenceClassOfElementNC(J,e[i]);
        if not(IsGreensLessThanOrEqual(jn,ji)) then
          return false;
        fi;
      fi;
      i:=i+1;
  od;

  return true;
end);

#############################################################################
##
#M  IsZeroSimpleSemigroup( <S> ) . . . . . . . .  for a semigroup with a zero
##
##  This is the general case for a semigroup with a zero.
##
##  A semigroup is 0-simple iff
##  (i) S has two elements and S^2<>0
##  (ii) S has more than two elements and its only J classes are
##       S-0 and 0
##
##  So, in the case when we have at least three elements we are going
##  to fix a non-zero J class and look throught the semigroup
##  to check whether there are other non-zero J-classes.
##
##  It returns false if it finds a new non-zero J-class, ie, smg is
##  not 0-simple.
##  It returns true if is finite and only finds one nonzero J-class,
##  that is, the semigroup is 0-simple.
##  It does not terminate if 0-simple but infinite.
##
InstallMethod( IsZeroSimpleSemigroup,
  "for a semigroup",
  [ IsSemigroup ],
    function(s)
    local e,       # the enumerator of the semigroup s
          zero,# the multiplicative zero of the semigroup
          nonzero,# the nonzero el of a semigroup with two elements
          J,        # J relation on s
          b,      # elements of the semigroup
          i,# loop variable
          ja,jb;    # J-classes

  # the enumerator and the multiplicative zero of s
  e:=Enumerator(s);
    zero:=MultiplicativeZero(s);

  # the trivial semigroup is not 0-simple
  if not(IsBound(e[2])) then
    return false;
  fi;

  # next check that if S has two elements, whether the square of the
  # nonzero one is nonzero
  if not(IsBound(e[3])) then
    if e[1]<>zero then
      nonzero:=e[1];
    else
      nonzero:=e[2];
    fi;
    if nonzero^2=zero then
      # then this means that S^2 is the zero set, and hence
      # S is not 0-simple
      return false;
    else
      # S is 0-simple
      return true;
    fi;
  fi;

    # so by now we know that s has at least three elements

    # the J relation on s
  J:=GreensJRelation(s);

    # look for the first non zero element and build its J class
    if e[1]<>zero then
      ja:=EquivalenceClassOfElementNC(J,e[1]);
    else
      ja:=EquivalenceClassOfElementNC(J,e[2]);
    fi;

  # look through all nonzero elements of s
  # to find out if there are more nonzero J classes
    # We do not have to start looking from the fisrt one, since the first
    # one is either zero or else is the element we started with.
    # In the case the first one is zero we can start looking by the 3rd one.
    if e[1]=zero then
      i:=3;
    else
      i:=2;
    fi;

  while IsBound(e[i]) do
    b:=e[i];
      if b<>zero then
        jb:=EquivalenceClassOfElementNC(J,b);
        # if ja and jb are not the same J class then the smg is not simple
        if not(IsGreensLessThanOrEqual(ja,jb)) then
          return false;
        elif not (IsGreensLessThanOrEqual(jb,ja)) then
          return false;
        fi;
      fi;
      i:=i+1;
  od;

  # notice that the above cycle only terminates without returning
  # false if the semigroup is finite

  # hence the semigroup is 0-simple
  return true;

end);


############################################################################
##
#A  ANonReesCongruenceOfSemigroup( <S> ) . . . .  for a finite semigroup <S>
##
##  In this case the following holds:
##  Proposition (A.Solomon): S is Rees Congruence <->
##                           Every congruence generated by a pair is Rees.
##  Proof: -> is immediate.
##        <- Let \rho be some non-Rees congruence in S.
##  Let [a] and [b] be distinct nontrivial congruence classes of \rho.
##  Let a, a' \in [a]. By assumption, the congruence generated
##  by the pair (a, a') is a Rees congruence.
##  Thus, since the kernel K is contained
##  in the nontrivial congruence class of <(a,a')>, and similarly K is contained
##  in the nontrivial congruence class of <(b,b')> for any b, b' \in [b]. Thus
##  we must have that (a,b) \in \rho, contradicting the assumption. \QED
##
##  So, to find a non rees congruence we only have to look within the
##  congruences generated by a pair of elements of <S>. If all
##  of these are Rees it menas that there are no Non-rees congruences.
##
##  This method returns a non rees congruence if it exists and
##  fail otherwise
##
##  So we look through all possible pairs of elements of s.
##  We do this by using an iterator for N times N.
##  Notice that for this iterator IsDoneIterator is always false,
##  since there are always a next element in N times N.
##
InstallMethod( ANonReesCongruenceOfSemigroup,
    "for a semigroup",
    [IsSemigroup and IsFinite],
function( s )
    local e,x,y,i,j;

  e := EnumeratorSorted(s);
  for i in [1 .. Length(e)] do
    for j in [i+1 .. Length(e)] do
      x := e[i];
      y := e[j];
      if not IsReesCongruence( SemigroupCongruenceByGeneratingPairs(s, [[x,y]])) then
        return SemigroupCongruenceByGeneratingPairs(s, [[x,y]]);
      fi;
    od;
  od;
  return fail;
end);

RedispatchOnCondition( ANonReesCongruenceOfSemigroup,
    true, [IsSemigroup], [IsFinite], 0);

############################################################################
##
#P  IsReesCongruenceSemigroup( <S> )
##
InstallMethod( IsReesCongruenceSemigroup,
    "for a (possibly infinite) semigroup",
    [ IsSemigroup],
    s -> ANonReesCongruenceOfSemigroup(s) = fail );


#############################################################################
##
#O  HomomorphismFactorSemigroup( <S>, <C> )
#O  HomomorphismFactorSemigroupByClosure( <S>, <L> )
#O  FactorSemigroup( <S>, <C> )
#O  FactorSemigroupByClosure( <S>, <L> )
##
##  In the first form <C> is a congruence and HomomorphismFactorSemigroup,
##  returns a homomorphism $<S> \rightarrow <S>/<C>
##
##  This is the only one which should do any work and is installed
##  in all the appropriate places.
##
##  All implementations of \/ should be done in terms of the above
##  four operations.
##
InstallMethod( HomomorphismFactorSemigroupByClosure,
    "for a semigroup and generating pairs of a congruence",
    IsElmsColls,
  [ IsSemigroup, IsList ],
function(s, l)
    return HomomorphismFactorSemigroup(s,
               SemigroupCongruenceByGeneratingPairs(s,l) );
end);

InstallMethod( HomomorphismFactorSemigroupByClosure,
    "for a semigroup and empty list",
  [ IsSemigroup, IsList and IsEmpty ],
function(s, l)
    return HomomorphismFactorSemigroup(s,
               SemigroupCongruenceByGeneratingPairs(s,l) );
end);

InstallMethod( FactorSemigroup,
    "for a semigroup and a congruence",
  [ IsSemigroup, IsSemigroupCongruence ],
function(s, c)
    if not s = Source(c) then
    TryNextMethod();
  fi;

  return Range(HomomorphismFactorSemigroup(s, c));
end);

InstallMethod( FactorSemigroupByClosure,
  "for a semigroup and generating pairs of a congruence",
  IsElmsColls,
  [ IsSemigroup, IsList ],
function(s, l)
  return Range(HomomorphismFactorSemigroup(s,
    SemigroupCongruenceByGeneratingPairs(s,l) ));
end);


InstallMethod( FactorSemigroupByClosure,
  "for a semigroup and empty list",
  [ IsSemigroup, IsEmpty  and IsList],
function(s, l)
  return Range(HomomorphismFactorSemigroup(s,
    SemigroupCongruenceByGeneratingPairs(s,l) ));
end);

#############################################################################
##
#M  \/( <s>, <rels> ) . . . .  for semigroup and empty list
##
InstallOtherMethod( \/,
    "for a semigroup and an empty list",
    [ IsSemigroup, IsEmpty ],
    FactorSemigroupByClosure );

#############################################################################
##
#M  \/( <s>, <rels> ) . . . .  for semigroup and list of pairs of elements
##
InstallOtherMethod( \/,
    "for semigroup and list of pairs",
    IsElmsColls,
    [ IsSemigroup, IsList ],
    FactorSemigroupByClosure );

#############################################################################
##
#M  \/( <s>, <cong> ) . . . .  for semigroup and congruence
##
InstallOtherMethod( \/,
    "for a semigroup and a congruence",
    [ IsSemigroup, IsSemigroupCongruence ],
    FactorSemigroup );

#############################################################################
##
#M  IsRegularSemigroupElement( <S>, <x> )
##
##  A semigroup element is regular if and only if its DClass is regular,
##  which in turn is regular if and only if every R and L class contains
##  an idempotent.   In the generic case, therefore, we iterate over an
##  elements R class, and look for idempotents.
##
InstallMethod(IsRegularSemigroupElement, "for generic semigroup",
    IsCollsElms, [IsSemigroup, IsAssociativeElement],
function(S, x)
    local r, i;

    if not x in S then
        return false;
    fi;

    r:= EquivalenceClassOfElementNC(GreensRRelation(S), x);
    for i in Iterator(r) do
        if i*i=i then
            # we have found an idempotent.
            return true;
        fi;
    od;

    # no idempotents in R class implies not regular.
    return false;
end);

#############################################################################
##
#M  IsRegularSemigroup( <S> )
##
InstallMethod(IsRegularSemigroup, "for generic semigroup",
    [ IsSemigroup ],
    S -> ForAll( GreensDClasses(S), IsRegularDClass ) );



#############################################################################
##
#E