File: vspchom.gi

package info (click to toggle)
gap 4r7p5-2
  • links: PTS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 29,272 kB
  • ctags: 7,129
  • sloc: ansic: 107,802; xml: 46,868; sh: 3,548; perl: 2,329; makefile: 740; python: 94; asm: 62; awk: 6
file content (2235 lines) | stat: -rw-r--r-- 73,880 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
#############################################################################
##
#W  vspchom.gi                  GAP library                     Thomas Breuer
##
##
#Y  Copyright (C)  1997,  Lehrstuhl D für Mathematik,  RWTH Aachen,  Germany
#Y  (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y  Copyright (C) 2002 The GAP Group
##
##  This file contains methods for general linear mappings of finite
##  dimensional free left modules.
##
##  There are two default representations of such general mappings,
##  one by generators and images, the other by two bases and a matrix.
##
##  Note that a matrix is not the appropriate object to represent a general
##  linear mapping if it is not total or not single-valued;
##  moreover, if one does not prescribe images of a basis but of an
##  arbitrary generating system, one does not want to compute a basis at the
##  time the general mapping is formed;
##  finally, the matrix is not appropriate to compute preimages, whereas
##  the general mapping by images behaves symmetrically in this respect.
##
##  (The matrix is best for linear mappings used as arithmetic elements,
##  for mapping elements of the source to the range and back; storing
##  images and preimages avoids the matrix multiplication.)
##
##  1. methods for linear general mappings given by images
##  2. methods for linear mappings given by matrices
##  3. methods for vector spaces of linear mappings
##  4. methods for algebras of linear mappings
##  5. methods for full hom spaces
##

#T TODO:
#T
#T specific representation for nat. hom.
#T     (choice of coefficients instead of silly matrix)
#T AsLeftModuleGeneralMappingByImages, to allow id + id, c * id, -id,
#T     Zero( id ), id + zero, - zero, c * zero, ...
#T \= methods for m.b.m. and g.m.b.i. (if bases coincide, compare data)
#T parent dependencies for nat. hom.

#T put bases into mappings;
#T check that they are really bases of source/range!


#############################################################################
##
##  1. methods for linear general mappings given by images
##

#############################################################################
##
#R  IsLinearGeneralMappingByImagesDefaultRep
##
##  is a default representation of $F$-linear general mappings between two
##  free left modules $V$ and $W$ where $F$ is equal to the left acting
##  domain of $V$ and of $W$.
##
#T  (It would be possible to allow situations where $F$ is only contained
#T  in the left acting domain of $W$;
#T  this would lead to asymmetry w.r.t. taking the inverse general mapping.)
##
##  Defining components are
##
##  `generators' \: \\
##      list of vectors in $V$,
##
##  `genimages' \: \\
##      list of vectors in $W$.
##
##  The general mapping is defined as the linear closure of the relation
##  that joins the $i$-th entry in `generators' and the $i$-th entry in
##  `genimages'.
##
##  If one wants to compute images, one needs the components
##  `basispreimage' \: \\
##      a basis of the $F$-module generated by `generators',
##
##  `imagesbasispreimage' \: \\
##      images of the basis vectors of `basispreimage',
##
##  `corelations' \: \\
##      linearly independent generators for the corelation space,
##      i.e., of the space of all row vectors <r> such that
##      `LinearCombination( <r>, generators )' is zero in $V$.
##      (The corresponding linear combinations of `genimages'
##      generate the cokernel.)
##
##  If these components are not yet bound, they are computed by
##  `MakeImagesInfoLinearGeneralMappingByImages' when they are needed.
##  If `generators' is a *basis* of a free left module then these
##  components can be entered without extra work.
##
##  If one wants to compute preimages, one needs the components
##  `basisimage' \: \\
##      a basis of the $F$-module generated by `genimages',
##
##  `preimagesbasisimage' \: \\
##      preimages of the basis vectors of `basisimage',
##
##  `relations' \: \\
##      linearly independent generators for the relation space,
##      i.e., of the space of all row vectors <r> such that
##      `LinearCombination( <r>, genimages )' is zero in $W$.
##      (The corresponding linear combinations of `generators'
##      generate the kernel.)
##
##  If these components are not yet bound, they are computed by
##  `MakePreImagesInfoLinearGeneralMappingByImages' when they are needed.
##  If `genimages' is a *basis* of a free left module then these
##  components can be entered without extra work.
##
##  Computed images and preimages of free left modules under linear mappings
##  are always free left modules.
##  If one needs more structure (e.g., that of an algebra) for an image or
##  preimage then the linear mapping must have a special representation.
##
##  Note that the inverse general mapping of a linear mapping defined by
##  images is best handled if it uses the default method,
##  since such an inverse general mapping delegates the tasks of computing
##  (pre)images to the original general mapping.
##  So the (pre)images info is computed only once.
#T  but what about sums of such mappings?
#T  better try to share info also in this case?
#T  (share a list that is filled with the info later?)
##
DeclareRepresentation( "IsLinearGeneralMappingByImagesDefaultRep",
    IsAttributeStoringRep,
    [ "basisimage", "preimagesbasisimage", "corelations",
      "basispreimage", "imagesbasispreimage", "relations",
      "generators", "genimages" ] );

InstallTrueMethod( IsAdditiveElementWithInverse,
    IsGeneralMapping and IsLinearGeneralMappingByImagesDefaultRep );
InstallTrueMethod( IsLeftModuleGeneralMapping,
    IsGeneralMapping and IsLinearGeneralMappingByImagesDefaultRep );


#############################################################################
##
#M  LeftModuleGeneralMappingByImages( <S>, <R>, <gens>, <imgs> )
##
InstallMethod( LeftModuleGeneralMappingByImages,
    "for two free left modules and two homogeneous lists",
    [ IsFreeLeftModule, IsFreeLeftModule,
      IsHomogeneousList, IsHomogeneousList ],
    function( S, R, gens, imgs )

    local map;        # general mapping from <S> to <R>, result

    # Check the arguments.
    if   Length( gens ) <> Length( imgs )  then
      Error( "<gens> and <imgs> must have the same length" );
    elif not IsSubset( S, gens ) then
      Error( "<gens> must lie in <S>" );
    elif not IsSubset( R, imgs ) then
      Error( "<imgs> must lie in <R>" );
    elif LeftActingDomain( S ) <> LeftActingDomain( R ) then
      Error( "<S> and <R> must have same left acting domain" );
    fi;

    # Make the general mapping.
    map:= Objectify( TypeOfDefaultGeneralMapping( S, R,
                             IsSPGeneralMapping
                         and IsLeftModuleGeneralMapping
                         and IsLinearGeneralMappingByImagesDefaultRep ),
                     rec() );

    SetMappingGeneratorsImages(map,[gens,imgs]);
    # Handle the case that `gens' is a basis.
    if IsBasis( gens ) then
      map!.basispreimage       := gens;
      map!.imagesbasispreimage := imgs;
      map!.corelations         := Immutable( [] );
    fi;

    # Handle the case that `imgs' is a basis.
    if IsBasis( imgs ) then
      map!.basisimage          := imgs;
      map!.preimagesbasisimage := gens;
      map!.relations           := Immutable( [] );
    fi;

    # return the general mapping
    return map;
    end );


#############################################################################
##
#M  LeftModuleHomomorphismByImagesNC( <S>, <R>, <gens>, <imgs> )
##
InstallMethod( LeftModuleHomomorphismByImagesNC,
    "for two left modules and two lists",
    [ IsFreeLeftModule, IsFreeLeftModule, IsList, IsList ],
    function( S, R, gens, imgs )
    local map;        # homomorphism from <source> to <range>, result
    map:= LeftModuleGeneralMappingByImages( S, R, gens, imgs );
    SetIsSingleValued( map, true );
    SetIsTotal( map, true );
    return map;
    end );


#############################################################################
##
#F  LeftModuleHomomorphismByImages( <S>, <R>, <gens>, <imgs> )
##
InstallGlobalFunction( LeftModuleHomomorphismByImages,
    function( S, R, gens, imgs )
    local hom;
    hom:= LeftModuleGeneralMappingByImages( S, R, gens, imgs );
    if IsMapping( hom ) then
      return LeftModuleHomomorphismByImagesNC( S, R, gens, imgs );
    else
      return fail;
    fi;
end );


#############################################################################
##
#M  AsLeftModuleGeneralMappingByImages( <linmap> )  . for a lin. gen. mapping
##
InstallMethod( AsLeftModuleGeneralMappingByImages,
    "for a linear g.m.b.i.",
    [     IsLeftModuleGeneralMapping
      and IsLinearGeneralMappingByImagesDefaultRep ],
    IdFunc );


#############################################################################
##
#M  ImagesSource( <map> ) . . . . . . . . . . . . . . . . for linear g.m.b.i.
##
InstallMethod( ImagesSource,
    "for a linear g.m.b.i.",
    [ IsGeneralMapping and IsLinearGeneralMappingByImagesDefaultRep ],
    function( map )
    if IsBound( map!.basisimage ) then
      return UnderlyingLeftModule( map!.basisimage );
    else
      return SubmoduleNC( Range( map ), MappingGeneratorsImages(map)[2] );
#T is it used that the second argument may be a basis object?
    fi;
    end );


#############################################################################
##
#M  PreImagesRange( <map> ) . . . . . . . . . . . . . . . for linear g.m.b.i.
##
InstallMethod( PreImagesRange,
    "for a linear g.m.b.i.",
    [ IsGeneralMapping and IsLinearGeneralMappingByImagesDefaultRep ],
    function( map )
    if IsBound( map!.basispreimage ) then
      return UnderlyingLeftModule( map!.basispreimage );
    else
      return SubmoduleNC( Source( map ), MappingGeneratorsImages(map)[1] );
#T is it used that the second argument may be a basis object?
    fi;
    end );


#############################################################################
##
#F  MakeImagesInfoLinearGeneralMappingByImages( <map> )
##
##  Provide the information for computing images, that is, set up
##  the components `basispreimage', `imagesbasispreimage', `corelations'.
##
BindGlobal( "MakeImagesInfoLinearGeneralMappingByImages", function( map )
    local preimage,
          ech,
	  mapi,
          B;

    preimage:= PreImagesRange( map );
    mapi:= MappingGeneratorsImages( map );

    if   Dimension( preimage ) = 0 then

      # Set the entries explicitly.
      map!.basispreimage       := Basis( preimage );
      map!.corelations         := IdentityMat( Length( mapi[2] ),
                                      LeftActingDomain( preimage ) );
      map!.imagesbasispreimage := Immutable( [] );

    elif IsGaussianRowSpace( Source( map ) ) then
#T operation MakeImagesInfo( map, source )
#T to leave this to the method selection ?
#T or flag `IsFromGaussianSpace' ?

      # The images of the basis vectors are obtained on
      # forming the linear combinations of images of generators
      # given by `ech.coeffs'.

      ech:= SemiEchelonMatTransformation( mapi[1] );
      map!.basispreimage       := SemiEchelonBasisNC(
                                      preimage, ech.vectors );
      map!.corelations         := Immutable( ech.relations );
      map!.imagesbasispreimage := Immutable( ech.coeffs * mapi[2] );
#T problem if mapi[2] is a basis and if this does not store that it is a small list!

    else

      # Delegate the work to the associated row space.
      B:= Basis( preimage );
      ech:= SemiEchelonMatTransformation( List( mapi[1],
                     x -> Coefficients( B, x ) ) );
      map!.basispreimage       := BasisNC( preimage,
                                      List( ech.vectors,
                                        x -> LinearCombination( B, x ) ) );
      map!.corelations         := Immutable( ech.relations );
      map!.imagesbasispreimage := Immutable( List( ech.coeffs,
                                        x -> LinearCombination( x,
                                                 mapi[2] ) ) );

    fi;
end );


#############################################################################
##
#F  MakePreImagesInfoLinearGeneralMappingByImages( <map> )
##
##  Provide the information for computing preimages, that is, set up
##  the components `basisimage', `preimagesbasisimage', `relations'.
##
BindGlobal( "MakePreImagesInfoLinearGeneralMappingByImages", function( map )
    local image,
          ech,
	  mapi,
          B;

    mapi:= MappingGeneratorsImages( map );
    image:= ImagesSource( map );

    if   Dimension( image ) = 0 then

      # Set the entries explicitly.
      map!.basisimage          := Basis( image );
      map!.relations           := IdentityMat( Length( mapi[1] ),
                                      LeftActingDomain( image ) );
      map!.preimagesbasisimage := Immutable( [] );

    elif IsGaussianRowSpace( Range( map ) ) then

      # The preimages of the basis vectors are obtained on
      # forming the linear combinations of preimages of genimages
      # given by `ech.coeffs'.
      ech:= SemiEchelonMatTransformation( mapi[2] );
      map!.basisimage          := SemiEchelonBasisNC( image, ech.vectors );
      map!.relations           := Immutable( ech.relations );
      map!.preimagesbasisimage := Immutable( ech.coeffs * mapi[1]);
#T problem if mapi[1] is a basis and if this does not store that it is a small list!

    else

      # Delegate the work to the associated row space.
      B:= Basis( image );
      ech:= SemiEchelonMatTransformation( List( mapi[2],
                     x -> Coefficients( B, x ) ) );
      map!.basisimage          := BasisNC( image,
                                      List( ech.vectors,
                                        x -> LinearCombination( B, x ) ) );
      map!.relations           := Immutable( ech.relations );
      map!.preimagesbasisimage := Immutable( List( ech.coeffs,
                                      row -> LinearCombination(
                                                 row, mapi[1] ) ) );

    fi;
end );


#############################################################################
##
#M  CoKernelOfAdditiveGeneralMapping( <map> ) . . .  for left module g.m.b.i.
##
InstallMethod( CoKernelOfAdditiveGeneralMapping,
    "for left module g.m.b.i.",
    [ IsGeneralMapping and IsLinearGeneralMappingByImagesDefaultRep ],
    function( map )
    local genimages;

    # Form the linear combinations of the basis vectors for the
    # corelation space with the `genimages' of `map'.

    if not IsBound( map!.corelations ) then
      MakeImagesInfoLinearGeneralMappingByImages( map );
    fi;
    genimages:= MappingGeneratorsImages(map)[2];
    return SubmoduleNC( Range( map ),
               List( map!.corelations,
                     r -> LinearCombination( genimages, r ) ) );
    end );


#############################################################################
##
#M  IsSingleValued( <map> ) . . . . . . . . . . . .  for left module g.m.b.i.
##
InstallMethod( IsSingleValued,
    "for left module g.m.b.i.",
    [ IsGeneralMapping and IsLinearGeneralMappingByImagesDefaultRep ],
    function( map )
    local genimages;

    if not IsBound( map!.corelations ) then
      MakeImagesInfoLinearGeneralMappingByImages( map );
    fi;
    genimages:= MappingGeneratorsImages(map)[2];
    return ForAll( map!.corelations,
                   r -> IsZero( LinearCombination( genimages, r ) ) );
    end );


#############################################################################
##
#M  KernelOfAdditiveGeneralMapping( <map> ) . . . .  for left module g.m.b.i.
##
InstallMethod( KernelOfAdditiveGeneralMapping,
    "for left module g.m.b.i.",
    [ IsGeneralMapping and IsLinearGeneralMappingByImagesDefaultRep ],
    function( map )
    local generators;

    # Form the linear combinations of the basis vectors for the
    # relation space with the `generators' of `map'.

    if not IsBound( map!.relations ) then
      MakePreImagesInfoLinearGeneralMappingByImages( map );
    fi;
    generators:= MappingGeneratorsImages(map)[1];
    return SubmoduleNC( Source( map ),
               List( map!.relations,
                     r -> LinearCombination( generators, r ) ) );
    end );


#############################################################################
##
#M  IsInjective( <map> )  . . . . . . . . . . . . .  for left module g.m.b.i.
##
InstallMethod( IsInjective,
    "for left module g.m.b.i.",
    [ IsGeneralMapping and IsLinearGeneralMappingByImagesDefaultRep ],
    function( map )
    local generators;

    if not IsBound( map!.relations ) then
      MakePreImagesInfoLinearGeneralMappingByImages( map );
    fi;
    generators:= MappingGeneratorsImages(map)[1];
    return ForAll( map!.relations,
                   r -> IsZero( LinearCombination( generators, r ) ) );
    end );


#############################################################################
##
#M  ImagesRepresentative( <map>, <elm> )  . . . . .  for left module g.m.b.i.
##
InstallMethod( ImagesRepresentative,
    "for left module g.m.b.i., and element",
    FamSourceEqFamElm,
    [ IsGeneralMapping and IsLinearGeneralMappingByImagesDefaultRep,
      IsObject ],
    function( map, elm )
    if not IsBound( map!.basispreimage ) then
      MakeImagesInfoLinearGeneralMappingByImages( map );
    fi;
    elm:= Coefficients( map!.basispreimage, elm );
    if elm = fail then
      return fail;
    elif IsEmpty( elm ) then
      return Zero( Range( map ) );
    fi;
    return LinearCombination( map!.imagesbasispreimage, elm );
    end );


#############################################################################
##
#M  PreImagesRepresentative( <map>, <elm> ) . . . .  for left module g.m.b.i.
##
InstallMethod( PreImagesRepresentative,
    "for left module g.m.b.i., and element",
    FamRangeEqFamElm,
    [ IsGeneralMapping and IsLinearGeneralMappingByImagesDefaultRep,
      IsObject ],
    function( map, elm )
    if not IsBound( map!.basisimage ) then
      MakePreImagesInfoLinearGeneralMappingByImages( map );
    fi;
    elm:= Coefficients( map!.basisimage, elm );
    if elm = fail then
      return fail;
    fi;
    return LinearCombination( map!.preimagesbasisimage, elm );
    end );


#############################################################################
##
#M  ViewObj( <map> )  . . . . . . . . . . . . . . .  for left module g.m.b.i.
##
InstallMethod( ViewObj,
    "for a left module g.m.b.i",
    [ IsGeneralMapping and IsLinearGeneralMappingByImagesDefaultRep ],
    function( map )
    local mapi;

    mapi:= MappingGeneratorsImages( map );
    View( mapi[1] );
    Print( " -> " );
    View( mapi[2] );
    end );


#############################################################################
##
#M  PrintObj( <map> ) . . . . . . . . . . . . . . .  for left module g.m.b.i.
##
InstallMethod( PrintObj,
    "for a left module g.m.b.i",
    [ IsGeneralMapping and IsLinearGeneralMappingByImagesDefaultRep ],
    function( map )
    local mapi;

    mapi:= MappingGeneratorsImages( map );
    Print( "LeftModuleGeneralMappingByImages( ",
	   Source( map ), ", ", Range( map ), ", ",
	   mapi[1], ", ", mapi[2], " )" );
    end );

InstallMethod( PrintObj,
    "for a left module hom. b.i",
    [ IsMapping and IsLinearGeneralMappingByImagesDefaultRep ],
    function( map )
    local mapi;

    mapi:= MappingGeneratorsImages( map );
    Print( "LeftModuleHomomorphismByImages( ",
	   Source( map ), ", ", Range( map ), ", ",
	   mapi[1], ", ", mapi[2], " )" );
    end );


#############################################################################
##
#M  \*( <c>, <map> )  . . . . . . . . . . . .  for scalar and linear g.m.b.i.
##
InstallMethod( \*,
    "for scalar and linear g.m.b.i.",
    [ IsMultiplicativeElement,
      IsGeneralMapping and IsLinearGeneralMappingByImagesDefaultRep ],
    function( scalar, map )
    local mult,   # the multiple of `map', result
	  mapi,	  # generators and images
          F;      # left acting domain

    # Check the scalar.
    # (Maybe it is in fact another mapping, and we want to compose.)
    if     not IsInt( scalar )
       and not IsElmsColls( FamilyObj( scalar ),
                   FamilyObj( LeftActingDomain( Range( map ) ) ) ) then
      TryNextMethod();
    fi;

    mapi:=MappingGeneratorsImages(map);
    # Construct the linear general mapping (if possible).
    mult:= LeftModuleGeneralMappingByImages(
               Source( map ), Range( map ), mapi[1],
               List( mapi[2], v -> scalar * v ) );

    # Maintain info on the preimage side of the general mapping.
    if IsBound( map!.basispreimage ) then
      mult!.basispreimage       := map!.basispreimage;
      mult!.imagesbasispreimage := Immutable(
          List( map!.imagesbasispreimage, v -> scalar * v ) );
      mult!.corelations         := map!.corelations;
    fi;

    # Being a mapping is preserved by scalar multiplication.
    if HasIsSingleValued( map ) then
      SetIsSingleValued( mult, IsSingleValued( map ) );
    fi;
    if HasIsTotal( map ) then
      SetIsTotal( mult, IsTotal( map ) );
    fi;

    # If the scalar is invertible in the left acting domain of the source
    # then surjectivity and injectivity are maintained as well as the image.
    F:= LeftActingDomain( Source( map ) );
    if scalar in F and IsUnit( F, scalar ) then

      if HasIsInjective( map ) then
        SetIsInjective( mult, IsInjective( map ) );
      fi;
      if HasIsSurjective( map ) then
        SetIsSurjective( mult, IsSurjective( map ) );
      fi;

      if IsBound( map!.basisimage ) then
        scalar:= Inverse( scalar );
        mult!.basisimage          := map!.basisimage;
        mult!.preimagesbasisimage := Immutable(
            List( map!.preimagesbasisimage, v -> scalar * v ) );
        mult!.relations           := map!.relations;
      fi;

    fi;

    return mult;
    end );


#############################################################################
##
#M  AdditiveInverseOp( <map> )  . . . . . . . . . . . . . for linear g.m.b.i.
##
InstallMethod( AdditiveInverseOp,
    "for linear g.m.b.i.",
    [ IsGeneralMapping and IsLinearGeneralMappingByImagesDefaultRep ],
    function( map )
    local ainv,   # the additive inverse of `map', result
          mapi;

    mapi:=MappingGeneratorsImages(map);
    # Construct the linear general mapping (if possible).
    ainv:= LeftModuleGeneralMappingByImages(
               Source( map ), Range( map ), mapi[1],
               List( mapi[2], AdditiveInverse ) );

    # Maintain images and preimages info.
    if IsBound( map!.basispreimage ) then
      ainv!.basispreimage       := map!.basispreimage;
      ainv!.imagesbasispreimage := Immutable(
          List( map!.imagesbasispreimage, AdditiveInverse ) );
      ainv!.corelations         := map!.corelations;
    fi;
    if IsBound( map!.basisimage ) then
      ainv!.basisimage          := map!.basisimage;
      ainv!.preimagesbasisimage := Immutable(
          List( map!.preimagesbasisimage, AdditiveInverse ) );
      ainv!.relations           := map!.relations;
    fi;

    # Being a mapping is preserved by scalar multiplication.
    if HasIsSingleValued( map ) then
      SetIsSingleValued( ainv, IsSingleValued( map ) );
    fi;
    if HasIsTotal( map ) then
      SetIsTotal( ainv, IsTotal( map ) );
    fi;

    # Surjectivity and injectivity are maintained.
    if HasIsInjective( map ) then
      SetIsInjective( ainv, IsInjective( map ) );
    fi;
    if HasIsSurjective( map ) then
      SetIsSurjective( ainv, IsSurjective( map ) );
    fi;

    return ainv;
    end );


#############################################################################
##
#T  \<( <map1>, <map2> )
##
##  method for two linear mappings from Gaussian spaces, use canonical bases?
##


#############################################################################
##
#M  CompositionMapping2( <map2>, map1> )   for left mod. hom. & lin. g.m.b.i.
##
InstallMethod( CompositionMapping2,
    "for left module hom. and linear g.m.b.i.",
    FamSource1EqFamRange2,
    [ IsLeftModuleHomomorphism,
      IsLeftModuleGeneralMapping
      and IsLinearGeneralMappingByImagesDefaultRep ],
    function( map2, map1 )
    local comp,        # composition of <map2> and <map1>, result
	  mapi1,
          gens,
          genimages;

    # Check that the linear mappings can be composed.

    mapi1:=MappingGeneratorsImages(map1);
    # Compute images for the generators of `map1'.
    if     IsLinearGeneralMappingByImagesDefaultRep( map2 )
       and mapi1[2] = MappingGeneratorsImages(map2)[1] then

      gens      := mapi1[1];
      genimages := MappingGeneratorsImages(map2)[2];

    else

      gens:= mapi1[1];
      genimages:= List( mapi1[2],
                        v -> ImagesRepresentative( map2, v ) );

    fi;

    # Construct the linear general mapping.
    comp:= LeftModuleGeneralMappingByImages(
               Source( map1 ), Range( map2 ), gens, genimages );

    # Maintain images info (only if `gens' is not a basis).
    if     IsLinearGeneralMappingByImagesDefaultRep( comp )
       and not IsBound( comp!.basispreimage  )
       and IsBound( map1!.basispreimage ) then
      comp!.basispreimage       := map1!.basispreimage;
      comp!.corelations         := map1!.corelations;
      comp!.imagesbasispreimage := Immutable(
          List( map1!.imagesbasispreimage,
                v -> ImagesRepresentative( map2, v ) ) );
    fi;

    # Return the composition.
    return comp;
    end );


#############################################################################
##
#M  \+( <map1>, map2> ) . . . . . . . . . . . . . . . for two linear g.m.b.i.
##
##  If both general mappings respect zero, additive inverses, scalar
##  multiplication then the sum also does.
##
InstallOtherMethod( \+,
    "for linear g.m.b.i. and general mapping",
    IsIdenticalObj,
    [ IsGeneralMapping and IsLinearGeneralMappingByImagesDefaultRep,
      IsGeneralMapping ],
    function( map1, map2 )
    local gens,
          genimages,
	  mapi1,
          sum;

    # Check that the linear mappings can be added.
    if    Source( map1 ) <> Source( map2 )
       or Range( map1 ) <> Range( map2 ) then
      Error( "<map1> and <map2> must have same source and range" );
    elif  PreImagesRange( map1 ) <> PreImagesRange( map2 ) then
      Error( "<map1> and <map2> must have same preimage" );
    fi;

    mapi1:=MappingGeneratorsImages(map1);

    if     IsLinearGeneralMappingByImagesDefaultRep( map2 )
       and mapi1[1] = MappingGeneratorsImages(map2)[1] then

      # If the generators in both general mappings are the same,
      # it suffices to add the images.
      gens      := mapi1[1];
      genimages := mapi1[2] + MappingGeneratorsImages(map2)[2];

    else

      # Compute images of the generators of `map1' under `map2'.
      # (Note that both general mappings must be described in terms of
      # `generators' in order to keep the meaning of `corelations'.)
      gens:= mapi1[1];
      genimages:=   mapi1[2]
                  + List( mapi1[1],
                          v -> ImagesRepresentative( map2, v ) );

    fi;

    # Construct the linear general mapping.
    sum:= LeftModuleGeneralMappingByImages(
              Source( map1 ), Range( map1 ), gens, genimages );

    # Maintain images info (only if `gens' is not a basis).
    if     IsLinearGeneralMappingByImagesDefaultRep( sum )
       and IsLinearGeneralMappingByImagesDefaultRep( map2 )
       and not IsBound( sum!.basispreimage  )
       and IsBound( map1!.basispreimage )
       and IsBound( map2!.basispreimage )
       and map1!.basispreimage = map2!.basispreimage then
      sum!.basispreimage       := map1!.basispreimage;
      sum!.corelations         := map1!.corelations;
      sum!.imagesbasispreimage :=
          map1!.imagesbasispreimage + map2!.imagesbasispreimage;
    fi;

    # Return the sum.
    return sum;
end );

InstallOtherMethod( \+,
    "for general mapping and linear g.m.b.i.",
    IsIdenticalObj,
    [ IsGeneralMapping,
      IsGeneralMapping and IsLinearGeneralMappingByImagesDefaultRep ],
    function( map1, map2 )
    local gens,
          genimages,
	  mapi2,
          sum;

    # Check that the linear mappings can be added.
    if    Source( map1 ) <> Source( map2 )
       or Range( map1 ) <> Range( map2 ) then
      Error( "<map1> and <map2> must have same source and range" );
    elif  PreImagesRange( map1 ) <> PreImagesRange( map2 ) then
      Error( "<map1> and <map2> must have same preimage" );
    fi;

    mapi2:=MappingGeneratorsImages(map2);

    if     IsLinearGeneralMappingByImagesDefaultRep( map1 )
       and MappingGeneratorsImages(map1)[1]= mapi2[1] then

      # If the generators in both general mappings are the same,
      # it suffices to add the images.
      gens      := mapi2[1];
      genimages := MappingGeneratorsImages(map1)[2] + mapi2[2];

    else

      # Compute images of the generators of `map1' under `map2'.
      # (Note that both general mappings must be described in terms of
      # `generators' in order to keep the meaning of `corelations'.)
      gens:= mapi2[1];
      genimages:=   List( mapi2[1],
                          v -> ImagesRepresentative( map1, v ) )
                  + mapi2[2];

    fi;

    # Construct the linear general mapping.
    sum:= LeftModuleGeneralMappingByImages(
              Source( map1 ), Range( map1 ), gens, genimages );

    # Maintain images info (only if `gens' is not a basis).
    if     IsLinearGeneralMappingByImagesDefaultRep( sum )
       and IsLinearGeneralMappingByImagesDefaultRep( map1 )
       and not IsBound( sum!.basispreimage  )
       and IsBound( map1!.basispreimage )
       and IsBound( map2!.basispreimage )
       and map1!.basispreimage = map2!.basispreimage then
      sum!.basispreimage       := map1!.basispreimage;
      sum!.corelations         := map1!.corelations;
      sum!.imagesbasispreimage :=
          map1!.imagesbasispreimage + map2!.imagesbasispreimage;
    fi;

    # Return the sum.
    return sum;
end );


#############################################################################
##
#M  \+( <map1>, <map2> )  . . . . . . . . . for two linear mappings by images
##
##  The method for (total and single-valued general) mappings takes
##  advantage from the fact that `generators' and `basispreimage' components
##  need not be distinguished since the `corelations' component is empty.
##
InstallOtherMethod( \+,
    "for linear m.b.i. and mapping",
    IsIdenticalObj,
    [ IsMapping and IsLinearGeneralMappingByImagesDefaultRep,
      IsMapping ],
    function( map1, map2 )
    local gens,
          genimages,
	  mapi1,
          sum;

    # Check that the linear mappings can be added.
    if    Source( map1 ) <> Source( map2 )
       or Range( map1 ) <> Range( map2 ) then
      Error( "<map1> and <map2> must have same source and range" );
    elif  PreImagesRange( map1 ) <> PreImagesRange( map2 ) then
      Error( "<map1> and <map2> must have same preimage" );
    fi;

    if     IsBound( map1!.basispreimage ) then

      # Use the basis in the construction.
      gens:= map1!.basispreimage;

      if     IsLinearGeneralMappingByImagesDefaultRep( map2 )
         and IsBound( map2!.basispreimage )
         and map1!.basispreimage = map2!.basispreimage then

        genimages := map1!.imagesbasispreimage + map2!.imagesbasispreimage;

      else

        genimages:=   map1!.imagesbasispreimage
                    + List( gens,
                            v -> ImagesRepresentative( map2, v ) );

      fi;

    else

      mapi1:=MappingGeneratorsImages(map1);

      if     IsLinearGeneralMappingByImagesDefaultRep( map2 )
	  and mapi1[1] = MappingGeneratorsImages(map2)[1] then

	# If the generators in both general mappings are the same,
	# it suffices to add the images.
	gens      := mapi1[1];
	genimages := mapi1[2] + MappingGeneratorsImages(map2)[2];

      else

	# Compute images of the generators of `map1' under `map2'.
	# (Note that both general mappings must be described in terms of
	# `generators' in order to keep the meaning of `corelations'.)
	gens:= mapi1[1];
	genimages:=   mapi1[2]
		    + List( mapi1[1],
			    v -> ImagesRepresentative( map2, v ) );

      fi;
    fi;

    # Construct the linear mapping.
    sum:= LeftModuleHomomorphismByImagesNC(
              Source( map1 ), Range( map1 ), gens, genimages );

    # Return the sum.
    return sum;
    end );

InstallOtherMethod( \+,
    "for mapping and linear m.b.i.",
    IsIdenticalObj,
    [ IsMapping,
      IsMapping and IsLinearGeneralMappingByImagesDefaultRep ],
    function( map1, map2 )
    local gens,
          genimages,
	  mapi1,mapi2,
          sum;

    # Check that the linear mappings can be added.
    if    Source( map1 ) <> Source( map2 )
       or Range( map1 ) <> Range( map2 ) then
      Error( "<map1> and <map2> must have same source and range" );
    elif  PreImagesRange( map1 ) <> PreImagesRange( map2 ) then
      Error( "<map1> and <map2> must have same preimage" );
    fi;

    if     IsBound( map2!.basispreimage ) then

      # Use the basis in the construction.
      gens:= map2!.basispreimage;

      if     IsLinearGeneralMappingByImagesDefaultRep( map1 )
         and IsBound( map1!.basispreimage )
         and map1!.basispreimage = map2!.basispreimage then

        genimages := map1!.imagesbasispreimage + map2!.imagesbasispreimage;

      else

        genimages:=   List( gens, v -> ImagesRepresentative( map1, v ) )
                    + map2!.imagesbasispreimage;

      fi;

    else

      mapi2:=MappingGeneratorsImages(map2);

      if     IsLinearGeneralMappingByImagesDefaultRep( map1 )
	  and MappingGeneratorsImages(map1)[1] = mapi2[1] then

	# If the generators in both general mappings are the same,
	# it suffices to add the images.
	gens      := mapi2[1];
	genimages := MappingGeneratorsImages(map1)[2] + mapi2[2];

      else

	# Compute images of the generators of `map2' under `map1'.
	# (Note that both general mappings must be described in terms of
	# `generators' in order to keep the meaning of `corelations'.)
	gens:= mapi2[1];
	genimages:=   List( mapi2[1],
			    v -> ImagesRepresentative( map1, v ) )
		    + mapi2[2];

      fi;

    fi;

    # Construct the linear mapping.
    sum:= LeftModuleHomomorphismByImagesNC(
              Source( map1 ), Range( map1 ), gens, genimages );

    # Return the sum.
    return sum;
    end );


#############################################################################
##
##  2. methods for linear mappings given by matrices
##


#############################################################################
##
#R  IsLinearMappingByMatrixDefaultRep
##
##  is another default representation of $F$-linear mappings between
##  two free left modules $V$ and $W$ where $F$ is equal to the left acting
##  domain of $V$ and of $W$.
##
##  Defining components are
##
##  `basissource' \: \\
##      basis of $V$,
##
##  `basisrange' \: \\
##      basis of $W$,
##
##  `matrix' \: \\
##      matrix over $F$, of dimensions $\dim(V)$ times $\dim(W)$.
##
##  The mapping is defined as follows.
##  The image of a vector in $V$ has coefficients
##  `Coefficients( <map>!.basissource <v> ) * <map>!.matrix'
##  w.r.t. `<map>!.basisrange'.
##
##  If one wants to compute preimages, one needs the components
##  `basisimage' \: \\
##      basis of the image of <map>,
##
##  `preimagesbasisimage' \: \\
##      preimages of the basis vectors of `basisimage',
##
##  `relations' \: \\
##      linearly independent generators for the relation space,
##      i.e., of the left null space of `<map>!.matrix'.
##      (The corresponding linear combinations of `basissource'
##      generate the kernel.)
##
##  If these components are not yet bound, they are computed by
##  `MakePreImagesInfoLinearMappingByMatrix'.
##
##  Computed images and preimages of free left modules under linear mappings
##  are always free left modules.
##  If one needs more structure (e.g., that of an algebra) for an image or
##  preimage then the linear mapping must have a special representation.
##
##  Note that the inverse general mapping of a linear mapping defined by
##  a matrix is best handled if it uses the default method,
##  since such an inverse general mapping delegates the tasks of computing
##  (pre)images to the original general mapping.
##  So the (pre)images info is computed only once.
#T  but what about sums of such mappings?
#T  better try to share info also in this case?
#T  (share a list that is filled with the info later?)
##
DeclareRepresentation(
    "IsLinearMappingByMatrixDefaultRep",
    IsAttributeStoringRep,
    [ "basissource", "basisrange", "matrix",
      "basisimage", "preimagesbasisimage", "relations" ] );

InstallTrueMethod( IsAdditiveElementWithInverse,
    IsGeneralMapping and IsLinearMappingByMatrixDefaultRep );
InstallTrueMethod( IsLeftModuleGeneralMapping,
    IsGeneralMapping and IsLinearMappingByMatrixDefaultRep );


#############################################################################
##
#M  LeftModuleHomomorphismByMatrix( <BS>, <matrix>, <BR> )
##
##  is the total and single-valued linear general mapping with <BS> a basis
##  of the source and <BR> a basis of the range, and the rows of the matrix
##  <matrix> being the coefficients vectors of the images of <BS> w.r.t.
##  <BR>.
##
InstallMethod( LeftModuleHomomorphismByMatrix,
    "for two bases of free left modules and a matrix",
    [ IsBasis, IsMatrix, IsBasis ],
    function( BS, matrix, BR )
    local S, R, map;

    S:= UnderlyingLeftModule( BS );
    R:= UnderlyingLeftModule( BR );

    # Check the arguments.
    if   Length( BS ) <> Length( matrix )  then
      Error( "<BS> and <matrix> must have the same length" );
    elif Length( BR ) <> Length( matrix[1] )  then
      Error( "<BR> and <matrix>[1] must have the same length" );
    elif LeftActingDomain( S ) <> LeftActingDomain( R ) then
      Error( "<S> and <R> must have same left acting domain" );
    fi;
#T check entries of the matrix?

    # Make the mapping.
    map:= Objectify( TypeOfDefaultGeneralMapping( S, R,
                             IsSPGeneralMapping
                         and IsSingleValued
                         and IsTotal
                         and IsLeftModuleGeneralMapping
                         and IsLinearMappingByMatrixDefaultRep ),
                     rec(
                          basissource := BS,
                          matrix      := Immutable( matrix ),
                          basisrange  := BR
                         ) );

    # return the mapping
    return map;
    end );


#############################################################################
##
#F  MakePreImagesInfoLinearMappingByMatrix( <map> )
##
##  Provide the information for computing preimages, that is, set up
##  the components `basisimage', `preimagesbasisimage', `relations'.
##
BindGlobal( "MakePreImagesInfoLinearMappingByMatrix", function( map )
    local ech,
          B;

    ech:= SemiEchelonMatTransformation( map!.matrix );
    B:= Basis( Range( map ) );
    map!.basisimage          := BasisNC( ImagesSource( map ),
                                    List( ech.vectors,
                                      x -> LinearCombination( B, x ) ) );
    map!.relations           := Immutable( ech.relations );

    map!.preimagesbasisimage := Immutable( List( ech.coeffs,
                                    row -> LinearCombination(
                                               map!.basissource, row ) ) );
end );


#############################################################################
##
#M  KernelOfAdditiveGeneralMapping( <map> ) . . . . .  for left module m.b.m.
##
InstallMethod( KernelOfAdditiveGeneralMapping,
    "for left module m.b.m.",
    [ IsGeneralMapping and IsLinearMappingByMatrixDefaultRep ],
    function( map )
    local generators, S;

    # Form the linear combinations of the basis vectors for the
    # relation space with the `basissource' of `map'.

    if not IsBound( map!.relations ) then
      MakePreImagesInfoLinearMappingByMatrix( map );
    fi;
    generators:= BasisVectors( map!.basissource );
    S:= Source( map );
    return LeftModuleByGenerators( LeftActingDomain( S ),
               List( map!.relations,
                     r -> LinearCombination( generators, r ) ),
               Zero( S ) );
    end );


#############################################################################
##
#M  IsInjective( <map> )  . . . . . . . . . . . . . .  for left module m.b.m.
##
InstallMethod( IsInjective,
    "for left module m.b.m.",
    [ IsGeneralMapping and IsLinearMappingByMatrixDefaultRep ],
    function( map )
    local generators;

    if not IsBound( map!.relations ) then
      MakePreImagesInfoLinearMappingByMatrix( map );
    fi;
    generators:= BasisVectors( map!.basissource );
    return ForAll( map!.relations,
                   r -> IsZero( LinearCombination( generators, r ) ) );
    end );


#############################################################################
##
#M  ImagesRepresentative( <map>, <elm> )  . . . . . .  for left module m.b.m.
##
InstallMethod( ImagesRepresentative,
    "for left module m.b.m., and element",
    FamSourceEqFamElm,
    [ IsGeneralMapping and IsLinearMappingByMatrixDefaultRep,
      IsObject ],
    function( map, elm )
    elm:= Coefficients( map!.basissource, elm );
    if elm <> fail then
      elm:= LinearCombination( map!.basisrange, elm * map!.matrix );
    fi;
    return elm;
    end );


#############################################################################
##
#M  PreImagesRepresentative( <map>, <elm> ) . . . . .  for left module m.b.m.
##
InstallMethod( PreImagesRepresentative,
    "for left module m.b.m., and element",
    FamRangeEqFamElm,
    [ IsGeneralMapping and IsLinearMappingByMatrixDefaultRep,
      IsObject ],
    function( map, elm )
    if not IsBound( map!.basisimage ) then
      MakePreImagesInfoLinearMappingByMatrix( map );
    fi;
    elm:= Coefficients( map!.basisimage, elm );
    if elm = fail then
      return fail;
    fi;
    return LinearCombination( map!.preimagesbasisimage, elm );
    end );


#############################################################################
##
#M  ViewObj( <map> )  . . . . . . . . . . . . . . . .  for left module m.b.m.
##
InstallMethod( ViewObj,
    "for a left module m.b.m.",
    [ IsGeneralMapping and IsLinearMappingByMatrixDefaultRep ],
    function( map )
    Print( "<linear mapping by matrix, " );
    View( UnderlyingLeftModule( map!.basissource ) );
    Print( " -> " );
    View( UnderlyingLeftModule( map!.basisrange ) );
    Print( ">" );
    end );


#############################################################################
##
#M  PrintObj( <map> ) . . . . . . . . . . . . . . . .  for left module m.b.m.
##
InstallMethod( PrintObj,
    "for a left module m.b.m.",
    [ IsGeneralMapping and IsLinearMappingByMatrixDefaultRep ],
    function( map )
    Print( "LeftModuleHomomorphismByMatrix( ",
           map!.basissource, ", ", map!.matrix, ", ",
           map!.basisrange, " )" );
    end );


#############################################################################
##
#M  NaturalHomomorphismBySubspace( <V>, <triv> )  . . . for free left modules
##
##  Return the identity mapping.
##
InstallMethod( NaturalHomomorphismBySubspace,
    "for left module and trivial left module",
    IsIdenticalObj,
    [ IsFreeLeftModule, IsFreeLeftModule and IsTrivial ],
    SUM_FLAGS, # better than everything else
    function( V, W )
    return IdentityMapping( V );
    end );


#############################################################################
##
#F  NaturalHomomorphismBySubspaceOntoFullRowSpace( <V>, <W> )
##
InstallGlobalFunction( NaturalHomomorphismBySubspaceOntoFullRowSpace,
    function( V, W )
    local F,
          Wvectors,
          mb,
          compl,
          gen,
          B,
          img,
          canbas,
          zero,
          Bimgs,
          nathom;

    # Check that the modules are finite dimensional.
    if not IsFiniteDimensional( V ) or not IsFiniteDimensional( W ) then
      TryNextMethod();
    elif not IsSubset( V, W ) then
      Error( "<W> must be contained in <V>" );
    fi;

    # If the left acting domains are different, adjust them.
    F:= LeftActingDomain( V );
    if F <> LeftActingDomain( W ) then
      F:= Intersection2( F, LeftActingDomain( W ) );
      V:= AsLeftModule( F, V );
      W:= AsLeftModule( F, W );
    fi;

    # If `V' is equal to `W', return a zero mapping.
    if Dimension( V ) = Dimension( W ) then
      return ZeroMapping( V, FullRowModule( F, 0 ) );
    fi;

    # Compute a basis of `V' through a basis of `W'.
    Wvectors:= BasisVectors( Basis( W ) );
    if IsEmpty( Wvectors ) then
      mb:= MutableBasis( F, Wvectors, Zero( W ) );
    else
      mb:= MutableBasis( F, Wvectors );
    fi;
    compl:= [];
    for gen in BasisVectors( Basis( V ) ) do
      if not IsContainedInSpan( mb, gen ) then
        Add( compl, gen );
        CloseMutableBasis( mb, gen );
      fi;
    od;
    B:= BasisNC( V, Concatenation( Wvectors, compl ) );

    # Compute the linear mapping by images.
    img:= FullRowModule( F, Length( compl ) );
    canbas:= CanonicalBasis( img );
    zero:= Zero( img );
    Bimgs:= Concatenation( List( Wvectors, v -> zero ),
                           BasisVectors( canbas ) );
    nathom:= LeftModuleHomomorphismByMatrix( B, Bimgs, canbas );
#T take a special representation for nat. hom.s,
#T (just compute coefficients, and then choose a subset ...)
    SetIsSurjective( nathom, true );

    # Enter the preimages info.
    nathom!.basisimage:= canbas;
    nathom!.preimagesbasisimage:= Immutable( compl );
#T relations are not needed if the kernel is known ?

    SetKernelOfAdditiveGeneralMapping( nathom, W );

    # Run the implications for the factor.
    UseFactorRelation( V, W, img );

    return nathom;
    end );


#############################################################################
##
#M  NaturalHomomorphismBySubspace( <V>, <W> ) . . . for two free left modules
##
##  return a left module m.b.m.
##
InstallMethod( NaturalHomomorphismBySubspace,
    "for two finite dimensional free left modules",
    IsIdenticalObj,
    [ IsFreeLeftModule, IsFreeLeftModule ],
    NaturalHomomorphismBySubspaceOntoFullRowSpace );


#############################################################################
##
#M  \*( <c>, <map> )  . . . . . . . . . . . . .  for scalar and linear m.b.m.
##
InstallMethod( \*,
    "for scalar and linear m.b.m.",
    [ IsMultiplicativeElement,
      IsGeneralMapping and IsLinearMappingByMatrixDefaultRep ],
    function( scalar, map )
    local mult,   # the multiple of `map', result
          F;      # left acting domain

    # Check the scalar.
    # (Maybe it is in fact another mapping, and we want to compose.)
    if     not IsInt( scalar )
       and not IsElmsColls( FamilyObj( scalar ),
                   FamilyObj( LeftActingDomain( Range( map ) ) ) ) then
      TryNextMethod();
    fi;

    # Construct the linear mapping (if possible).
    mult:= LeftModuleHomomorphismByMatrix(
               map!.basissource,
               scalar * map!.matrix,
               map!.basisrange );

    # If the scalar is invertible in the left acting domain of the source
    # then surjectivity and injectivity are maintained as well as the image.
    F:= LeftActingDomain( Source( map ) );
    if scalar in F and IsUnit( F, scalar ) then

      if HasIsInjective( map ) then
        SetIsInjective( mult, IsInjective( map ) );
      fi;
      if HasIsSurjective( map ) then
        SetIsSurjective( mult, IsSurjective( map ) );
      fi;

      if IsBound( map!.basisimage ) then
        scalar:= Inverse( scalar );
        mult!.basisimage          := map!.basisimage;
        mult!.preimagesbasisimage := Immutable(
            List( map!.preimagesbasisimage, v -> scalar * v ) );
        mult!.relations           := map!.relations;
      fi;

    fi;

    return mult;
    end );


#############################################################################
##
#M  AdditiveInverseOp( <map> )  . . . . . . . . . . . . . . for linear m.b.m.
##
InstallMethod( AdditiveInverseOp,
    "for linear m.b.m.",
    [ IsGeneralMapping and IsLinearMappingByMatrixDefaultRep ],
    function( map )
    local ainv;   # the additive inverse of `map', result

    # Construct the linear general mapping (if possible).
    ainv:= LeftModuleHomomorphismByMatrix(
               map!.basissource,
               AdditiveInverse( map!.matrix ),
               map!.basisrange );

    # Maintain preimages info.
    if IsBound( map!.basisimage ) then
      ainv!.basisimage          := map!.basisimage;
      ainv!.preimagesbasisimage := Immutable(
          List( map!.preimagesbasisimage, AdditiveInverse ) );
      ainv!.relations           := map!.relations;
    fi;

    # Surjectivity and injectivity are maintained.
    if HasIsInjective( map ) then
      SetIsInjective( ainv, IsInjective( map ) );
    fi;
    if HasIsSurjective( map ) then
      SetIsSurjective( ainv, IsSurjective( map ) );
    fi;

    return ainv;
    end );


#############################################################################
##
#M  CompositionMapping2( <map2>, map1> )  .  for left mod. hom. & lin. m.b.m.
##
InstallMethod( CompositionMapping2,
    "for left module hom. and linear m.b.m.",
    FamSource1EqFamRange2,
    [ IsLeftModuleHomomorphism,
      IsLeftModuleHomomorphism and IsLinearMappingByMatrixDefaultRep ],
    function( map2, map1 )
    local comp,        # composition of <map1> and <map2>, result
          BR,          # basis of the range of `map2'
          mat2;        # matrix corresponding to `map2'

    # Compute images for the generators of `map1'.
    if     IsLinearMappingByMatrixDefaultRep( map2 )
       and map1!.basisrange = map2!.basissource then

      BR   := map2!.basisrange;
      mat2 := map2!.matrix;

    else

      BR:= Range( map2 );
      if not IsFiniteDimensional( BR ) then
        TryNextMethod();
      fi;
      BR:= Basis( BR );
      mat2:= List( BasisVectors( map1!.basisrange ),
                 v -> Coefficients( BR, ImagesRepresentative( map2, v ) ) );

    fi;

    # Construct the linear mapping.
    comp:= LeftModuleHomomorphismByMatrix( map1!.basissource,
               map1!.matrix * mat2, BR );

    # Return the composition.
    return comp;
    end );


#############################################################################
##
#M  \+( <map1>, map2> ) . . . . . . . . . . . . . . . . for two linear m.b.m.
##
##  Two general mappings that respect addition can be added pointwise
##  if their images are equal and their preimages are equal.
##  The sum does also respect addition.
##
##  If both general mappings respect zero, additive inverses, scalar
##  multiplication then the sum also does.
##
BindGlobal( "SumOfMBMAndMapping", function( map1, map2 )
    local sum;

    # Check that the linear mappings can be added.
    if    Source( map1 ) <> Source( map2 )
       or Range( map1 ) <> Range( map2 ) then
      Error( "<map1> and <map2> must have same source and range" );
    fi;

    if    IsLinearMappingByMatrixDefaultRep( map2 )
       and map1!.basissource = map2!.basissource
       and map1!.basisrange  = map2!.basisrange then

      # If the bases in both mappings are the same,
      # it suffices to add the matrices.
      sum:= LeftModuleHomomorphismByMatrix(
                map1!.basissource,
                map1!.matrix + map2!.matrix,
                map1!.basisrange );

    else

      # Compute images of the generators of `map1' under `map2'.
      sum:= LeftModuleHomomorphismByMatrix(
                map1!.basissource,
                map1!.matrix
                + List( BasisVectors( map1!.basissource ),
                        v -> Coefficients( map1!.basisrange,
                                 ImagesRepresentative( map2, v ) ) ),
                map1!.basisrange );

    fi;

    # Return the sum.
    return sum;
end );

BindGlobal( "SumOfMappingAndMBM", function( map1, map2 )
    local sum;

    # Check that the linear mappings can be added.
    if    Source( map1 ) <> Source( map2 )
       or Range( map1 ) <> Range( map2 ) then
      Error( "<map1> and <map2> must have same source and range" );
    fi;

    if    IsLinearMappingByMatrixDefaultRep( map1 )
       and map1!.basissource = map2!.basissource
       and map1!.basisrange  = map2!.basisrange then

      # If the bases in both mappings are the same,
      # it suffices to add the matrices.
      sum:= LeftModuleHomomorphismByMatrix(
                map1!.basissource,
                map1!.matrix + map2!.matrix,
                map1!.basisrange );

    else

      # Compute images of the generators of `map2' under `map1'.
      sum:= LeftModuleHomomorphismByMatrix(
                map2!.basissource,
                List( BasisVectors( map2!.basissource ),
                      v -> Coefficients( map2!.basisrange,
                               ImagesRepresentative( map1, v ) ) )
                + map2!.matrix,
                map2!.basisrange );

    fi;

    # Return the sum.
    return sum;
end );

InstallOtherMethod( \+,
    "for linear m.b.m. and mapping",
    IsIdenticalObj,
    [ IsMapping and IsLinearMappingByMatrixDefaultRep,
      IsMapping ],
    SumOfMBMAndMapping );

InstallOtherMethod( \+,
    "for mapping and linear m.b.m.",
    IsIdenticalObj,
    [ IsMapping,
      IsMapping and IsLinearMappingByMatrixDefaultRep ],
    SumOfMappingAndMBM );


#############################################################################
##
#M  \+( <map1>, <map2> )  . . . . for mapping by matrix and mapping by images
##
InstallMethod( \+,
    "for linear m.b.m. and linear m.b.i.",
    IsIdenticalObj,
    [ IsMapping and IsLinearMappingByMatrixDefaultRep,
      IsMapping and IsLinearGeneralMappingByImagesDefaultRep ],
    SumOfMBMAndMapping );

InstallMethod( \+,
    "for linear m.b.i. and linear m.b.m.",
    IsIdenticalObj,
    [ IsMapping and IsLinearGeneralMappingByImagesDefaultRep,
      IsMapping and IsLinearMappingByMatrixDefaultRep ],
    SumOfMappingAndMBM );


#############################################################################
##
##  3. methods for vector spaces of linear mappings
##


#############################################################################
##
#M  NiceFreeLeftModuleInfo( <V> ) . . . . . .  for a space of linear mappings
#M  NiceVector( <V>, <v> )  . .  for space of lin. mappings, and lin. mapping
#M  UglyVector( <V>, <mat> )  . . .  for space of linear mappings, and matrix
##
InstallHandlingByNiceBasis( "IsLinearMappingsModule", rec(
    detect := function( F, gens, V, zero )
      local S, R;
      if not IsGeneralMappingCollection( V ) then
        return false;
      fi;
      gens:= AsList( gens );
      if IsEmpty( gens ) then
        S:= Source( zero );
        R:= Range(  zero );
      else
        S:= Source( gens[1] );
        R:= Range(  gens[1] );
      fi;

      # Check that the mappings have left modules as source and range.
      if    not IsLeftModule( S )
         or not IsLeftModule( R )
         or not ForAll( gens, IsMapping ) then
        return false;
      fi;

      # Check that all generators have the same source and range,
      # and that source and range are in fact left modules.
      if    ForAny( gens, map -> Source( map ) <> S )
         or ForAny( gens, map -> Range( map ) <> R ) then
        return false;
      fi;
      return true;
      end,

    NiceFreeLeftModuleInfo := function( V )
      local F, z, S, R;
      F:= LeftActingDomain( V );
      z:= Zero( V );
      S:= Source( z );
      R:= Range( z );

      # Write `S' and `R' over `F' (necessary for the nice left module).
      if LeftActingDomain( S ) <> F then
        S:= AsLeftModule( F, S );
        R:= AsLeftModule( F, R );
      fi;

      return rec( basissource := Basis( S ),
                  basisrange  := Basis( R ) );
      end,

    NiceVector := function( V, v )
      local info, M, i, c;
      info:= NiceFreeLeftModuleInfo( V );
      if     IsLinearMappingByMatrixDefaultRep( v )
         and info.basissource = v!.basissource
         and info.basisrange = v!.basisrange then
        M:= v!.matrix;
      else
        M:= [];
        for i in BasisVectors( info.basissource ) do
          c:= Coefficients( info.basisrange, ImagesRepresentative( v, i ) );
          if c = fail then
            return fail;
          fi;
          Add( M, c );
        od;
      fi;
      return M;
      end,

    UglyVector := function( V, mat )
      local info;
      info:= NiceFreeLeftModuleInfo( V );
      return LeftModuleHomomorphismByMatrix( info.basissource,
                                             mat, info.basisrange );
      end ) );


#############################################################################
##
##  4. methods for algebras of linear mappings
##


#############################################################################
##
#M  RingByGenerators( <homs> )  . . ring generated by a list of lin. mappings
##
##  If <homs> is a list of linear mappings of finite vector spaces then
##  we construct a hom algebra over the prime field.
##
InstallOtherMethod( RingByGenerators,
    "for a list of linear mappings of finite vector spaces",
    [ IsGeneralMappingCollection ],
    function( maps )
    local S;

    maps:= AsList( maps );
    if IsEmpty( maps ) then
      Error( "need at least one element" );
    fi;
    if not ForAll( maps, IsLeftModuleHomomorphism ) then
      TryNextMethod();
    fi;
    S:= Source( maps[1] );
    if     IsVectorSpace( S )
       and IsFFECollection( LeftActingDomain( S ) ) then
      return FLMLORByGenerators( GF( Characteristic( S ) ), maps );
    elif   IsVectorSpace( S )
       and IsCyclotomicCollection( LeftActingDomain( S ) ) then
      return FLMLORByGenerators( Integers, maps );
    else
      TryNextMethod();
    fi;
    end );


#############################################################################
##
#M  DefaultRingByGenerators( <maps> )  . . ring cont. a list of lin. mappings
##
##  If <maps> is a list of mappings of vector spaces then
##  we construct an algebra over the prime field.
##  (So this may differ from the result of `RingByGenerators' if the
##  characteristic is zero.)
##
InstallOtherMethod( DefaultRingByGenerators,
    "for a list of linear mappings of vector spaces",
    [ IsGeneralMappingCollection ],
    function( maps )
    local S;
    maps:= AsList( maps );
    if IsEmpty( maps ) then
      Error( "need at least one element" );
    fi;
    if not ForAll( maps, IsLeftModuleHomomorphism ) then
      TryNextMethod();
    fi;
    S:= Source( maps[1] );
    if     IsVectorSpace( S )
       and IsFFECollection( LeftActingDomain( S ) ) then
      return FLMLORByGenerators( GF( Characteristic( S ) ), maps );
    elif   IsVectorSpace( S )
       and IsCyclotomicCollection( LeftActingDomain( S ) ) then
      return FLMLORByGenerators( Rationals, maps );
    else
      TryNextMethod();
    fi;
    end );


#############################################################################
##
#M  RingWithOneByGenerators( <homs> ) . . . . . for a list of linear mappings
##
##  If <homs> is a list of linear mappings of a finite vector space then
##  we construct a hom algebra-with-one over the prime field.
##
InstallOtherMethod( RingWithOneByGenerators,
    "for a list of linear mappings of finite vector spaces",
    [ IsGeneralMappingCollection ],
    function( maps )
    local S;

    maps:= AsList( maps );
    if IsEmpty( maps ) then
      Error( "need at least one element" );
    fi;
    if not ForAll( maps, IsLeftModuleHomomorphism ) then
      TryNextMethod();
    fi;
    S:= Source( maps[1] );
    if     IsVectorSpace( S )
       and IsFFECollection( LeftActingDomain( S ) )
       and S = Range( maps[1] ) then
      return FLMLORWithOneByGenerators( GF( Characteristic( S ) ), maps );
    elif   IsVectorSpace( S )
       and IsCyclotomicCollection( LeftActingDomain( S ) ) then
      return FLMLORWithOneByGenerators( Integers, maps );
    else
      TryNextMethod();
    fi;
    end );


#############################################################################
##
#M  IsGeneratorsOfFLMLOR( <F>, <maps> )
#M  IsGeneratorsOfFLMLORWithOne( <F>, <maps> )
##
#T  check that sources and ranges coincide:
#T  if   ForAny( maps, map -> Source( map ) <> S or Range( map ) <> S ) then

#T  add implication that a FLMLOR of mappings is associative!

#T  for ideals construction, inherit the info?
#T    SetNiceFreeLeftModuleInfo( I, NiceFreeLeftModuleInfo( A ) );


#############################################################################
##
##  5. methods for full hom spaces
##


#############################################################################
##
#M  IsFullHomModule( V )  . . . . . . . . . . .  for space of linear mappings
##
InstallMethod( IsFullHomModule,
    "for space of linear mappings",
    [ IsFreeLeftModule and IsGeneralMappingCollection ],
    V -> Dimension( V ) = Dimension( UnderlyingLeftModule( NiceFreeLeftModuleInfo( V ).basissource ) )
             * Dimension( UnderlyingLeftModule( NiceFreeLeftModuleInfo( V ).basisrange ) ) );


#############################################################################
##
#M  Dimension( <M> )  . . . . . . . . . for full hom space of linear mappings
##
InstallMethod( Dimension,
    "for full hom space of linear mappings",
    [ IsFreeLeftModule and IsGeneralMappingCollection
      and IsFullHomModule ],
    V ->   Dimension( UnderlyingLeftModule( NiceFreeLeftModuleInfo( V ).basissource ) )
         * Dimension( UnderlyingLeftModule( NiceFreeLeftModuleInfo( V ).basisrange  ) ) );


#############################################################################
##
#M  Random( <M> ) . . . . . . . . . . . for full hom space of linear mappings
##
InstallMethod( Random,
    "for full hom space of linear mappings",
    [ IsFreeLeftModule and IsGeneralMappingCollection
      and IsFullHomModule ],
    function( M )
    local BS, BR;

    BR:= NiceFreeLeftModuleInfo( M );
    BS:= BR.basissource;
    BR:= BR.basisrange;

    return LeftModuleHomomorphismByMatrix( BS,
               RandomMat( Dimension( UnderlyingLeftModule( BS ) ),
                          Dimension( UnderlyingLeftModule( BR ) ),
                          LeftActingDomain( M ) ),
               BR );
    end );


#############################################################################
##
#M  Representative( <M> ) . . . . . . . for full hom space of linear mappings
##
##  This method is necessary for example for computing the `Zero' value of
##  <M>.  Note that <M> does in general *not* store any generators!
##
InstallMethod( Representative,
    "for full hom space of linear mappings",
    [ IsFreeLeftModule and IsGeneralMappingCollection
      and IsFullHomModule ],
    function( M )
    local BS, BR;

    BR:= NiceFreeLeftModuleInfo( M );
    BS:= BR.basissource;
    BR:= BR.basisrange;

    return LeftModuleHomomorphismByMatrix( BS,
               NullMat( Dimension( UnderlyingLeftModule( BS ) ),
                        Dimension( UnderlyingLeftModule( BR ) ),
                        LeftActingDomain( M ) ),
               BR );
    end );


#############################################################################
##
#M  GeneratorsOfLeftModule( <V> ) . . . for full hom space of linear mappings
##
BindGlobal( "StandardGeneratorsOfFullHomModule", function( M )
    local BS, BR, R, one, m, n, zeromat, gens, i, j, gen;

    BR:= NiceFreeLeftModuleInfo( M );
    BS:= BR.basissource;
    BR:= BR.basisrange;
    R:= LeftActingDomain( M );
    one:= One( R );
    m:= Dimension( UnderlyingLeftModule( BS ) );
    n:= Dimension( UnderlyingLeftModule( BR ) );
    zeromat:= NullMat( m, n, R );
    gens:= [];
    for i in [ 1 .. m ] do
      for j in [ 1 .. n ] do
        gen:= List( zeromat, ShallowCopy );
        gen[i][j]:= one;
        Add( gens, LeftModuleHomomorphismByMatrix( BS, gen, BR ) );
      od;
    od;

    return gens;
end );

InstallMethod( GeneratorsOfLeftModule,
    "for full hom space of linear mappings",
    [ IsFreeLeftModule and IsGeneralMappingCollection
      and IsFullHomModule ],
    StandardGeneratorsOfFullHomModule );


#############################################################################
##
#M  NiceFreeLeftModule( <M> ) . . . . . for full hom space of linear mappings
##
##  We need a special method since we decided not to store vector space
##  generators in full hom spaces;
##  note that the default methods for `NiceFreeLeftModule' are installed with
##  requirement `HasGeneratorsOfLeftModule'.
##
InstallMethod( NiceFreeLeftModule,
    "for full hom space of linear mappings",
    [ IsFreeLeftModule and IsGeneralMappingCollection
      and IsFullHomModule ],
    function( M )
    if HasGeneratorsOfLeftModule( M ) then
      TryNextMethod();
    fi;
    GeneratorsOfLeftModule( M );
    if not HasGeneratorsOfLeftModule( M ) then
      TryNextMethod();
    fi;
    return NiceFreeLeftModule( M );
    end );


#############################################################################
##
#M  ViewObj( <M> )  . . . . . . . . . . for full hom space of linear mappings
#M  PrintObj( <M> ) . . . . . . . . . . for full hom space of linear mappings
##
BindGlobal( "ViewFullHomModule", function( M )
    local info;

    info:= NiceFreeLeftModuleInfo( M );
    if IsIdenticalObj( info.basissource, info.basisrange ) then
      Print( "End( " );
      View( LeftActingDomain( M ) );
      Print( ", " );
      View( UnderlyingLeftModule( info.basissource  ) );
      Print( " )" );
    else
      Print( "Hom( " );
      View( LeftActingDomain( M ) );
      Print( ", " );
      View( UnderlyingLeftModule( info.basissource ) );
      Print( ", " );
      View( UnderlyingLeftModule( info.basisrange  ) );
      Print( " )" );
    fi;
end );

InstallMethod( ViewObj,
    "for full hom space of linear mappings",
    [ IsFreeLeftModule and IsGeneralMappingCollection
      and IsFullHomModule ], SUM_FLAGS,
    ViewFullHomModule );

InstallMethod( PrintObj,
    "for full hom space of linear mappings",
    [ IsFreeLeftModule and IsGeneralMappingCollection
      and IsFullHomModule ], SUM_FLAGS,
    ViewFullHomModule );


#############################################################################
##
#M  \in( <v>, <V> ) . . . . . . . . . . for full hom space of linear mappings
##
InstallMethod( \in,
    "for full hom space of linear mappings",
    IsElmsColls,
    [ IsGeneralMapping,
      IsFreeLeftModule and IsGeneralMappingCollection
      and IsFullHomModule ],
    function( map, M )
    local info;
    info:= NiceFreeLeftModuleInfo( M );
    return     Source( map ) = UnderlyingLeftModule( info.basissource )
           and Range(  map ) = UnderlyingLeftModule( info.basisrange  )
           and IsLeftModuleHomomorphism( map );
    end );


#############################################################################
##
#M  IsPseudoCanonicalBasisFullHomModule( <B> )  . . . . for a full hom module
##
InstallMethod( IsPseudoCanonicalBasisFullHomModule,
    "for a basis of a full hom module",
    [ IsBasis ],
    function( B )
    local V;

    V:= UnderlyingLeftModule( B );
    if IsGeneralMappingCollection( V ) then
      if not IsFullHomModule( V ) then
        return false;
      fi;
      return BasisVectors( B ) = StandardGeneratorsOfFullHomModule( V );
    else
      Error( "do not know what a pseudo canon. basis for <V> is" );
    fi;
    end );


#############################################################################
##
#M  BasisVectors( <B> ) . . . for pseudo canonical basis of a full hom module
##
InstallMethod( BasisVectors,
    "for pseudo canonical basis of a full hom module",
    [ IsBasis and IsPseudoCanonicalBasisFullHomModule ],
    B -> StandardGeneratorsOfFullHomModule( UnderlyingLeftModule( B ) ) );


#############################################################################
##
#M  Coefficients( <B>, <m> )   for a pseudo canon. basis of a full hom module
##
InstallOtherMethod( Coefficients,
    "for pseudo canon. basis of a full hom module, and lin. mapping",
    IsCollsElms,
    [ IsBasis and IsPseudoCanonicalBasisFullHomModule, IsGeneralMapping ],
    function( B, map )
    local V, R, info;
    V:= UnderlyingLeftModule( B );
    if not IsGeneralMappingCollection( V ) then
      TryNextMethod();
    fi;
    R:= LeftActingDomain( V );
    info:= NiceFreeLeftModuleInfo( V );
    if     Source( map ) = UnderlyingLeftModule( info.basissource )
       and Range(  map ) = UnderlyingLeftModule( info.basisrange  )
       and IsLeftModuleHomomorphism( map ) then
      return Concatenation(
                  List( BasisVectors( info.basissource ),
                        v -> Coefficients( info.basisrange,
                                 ImagesRepresentative( map, v ) ) ) );
    else
      return fail;
    fi;
    end );

InstallMethod( Coefficients,
    "for pseudo can. basis of full hom module, and lin. m.b.m.",
    IsCollsElms,
    [ IsBasis and IsPseudoCanonicalBasisFullHomModule,
      IsMapping and IsLinearMappingByMatrixDefaultRep ],
    function( B, map )
    local V, R, info;
    V:= UnderlyingLeftModule( B );
    if not IsGeneralMappingCollection( V ) then
      TryNextMethod();
    fi;
    R:= LeftActingDomain( V );
    info:= NiceFreeLeftModuleInfo( V );
    if     map!.basissource = info.basissource
       and map!.basisrange  = info.basisrange then
      return Concatenation( map!.matrix );
    elif   Source( map ) = UnderlyingLeftModule( info.basissource )
       and Range(  map ) = UnderlyingLeftModule( info.basisrange  ) then
      return Concatenation(
                  List( BasisVectors( info.basissource ),
                        v -> Coefficients( info.basisrange,
                                 ImagesRepresentative( map, v ) ) ) );
    else
      return fail;
    fi;
    end );


#############################################################################
##
#M  Basis( <M> )  . . . . . . . . . . . . . . . . . . . . for full hom module
##
InstallMethod( Basis,
    "for full hom space of linear mappings",
    [ IsFreeLeftModule and IsFullHomModule ], 100,
    function( V )
    local B;
    B:= Objectify( NewType( FamilyObj( V ),
                                IsFiniteBasisDefault
                            and IsPseudoCanonicalBasisFullHomModule
                            and IsAttributeStoringRep ),
                   rec() );
    SetUnderlyingLeftModule( B, V );
    if IsFiniteDimensional( V ) then
      SetIsFinite( B, true );
    fi;
    return B;
    end );


#############################################################################
##
#M  Hom( <F>, <V>, <W> )
##
InstallMethod( Hom,
    "for division ring and two free left modules",
    [ IsDivisionRing, IsFreeLeftModule, IsFreeLeftModule ],
    function( F, V, W )
    local M;   # the free module record, result

    if V = W then
      return End( F, V );
    fi;
    if LeftActingDomain( V ) <> F then
      V:= AsLeftModule( F, V );
    fi;
    if LeftActingDomain( W ) <> F then
      W:= AsLeftModule( F, W );
    fi;

    M:= Objectify( NewType( CollectionsFamily( GeneralMappingsFamily(
                                ElementsFamily( FamilyObj( V ) ),
                                ElementsFamily( FamilyObj( W ) ) ) ),
                                IsFreeLeftModule
                            and IsFullHomModule
                            and IsLinearMappingsModule
                            and IsGeneralMappingCollection ),
                   rec() );

    SetLeftActingDomain( M, F );
    SetNiceFreeLeftModuleInfo( M, rec(
                                       basissource := Basis( V ),
                                       basisrange  := Basis( W ) ) );

    return M;
    end );


#############################################################################
##
#M  End( <F>, <V> ) . . . . . . . . .  for division ring and free left module
##
##  We use the generators that are also taken for full matrix FLMLORs.
##
InstallMethod( End,
    "for division ring and space of linear mappings",
    [ IsDivisionRing, IsFreeLeftModule ],
    function( F, V )
    local n,      # dimension of `V'
          i,      # loop over the rows
          gens,   # list of generators
          one,    # the identity of the field
          B,      # basis of `V'
          A;      # algebra, result

    if LeftActingDomain( V ) <> F then
      V:= AsLeftModule( F, V );
    fi;

    n:= Dimension( V );
    gens:= NullMat( n, n, F );
    gens:= [ gens, List( gens, ShallowCopy ) ];
    one:= One( F );

    # Construct the generators.
    gens[1][1][1]:= one;
    gens[2][1][n]:= one;
    for i in [ 2 .. n ] do
      gens[2][i][i-1]:= one;
    od;
    B:= Basis( V );
    gens:= List( gens, mat -> LeftModuleHomomorphismByMatrix( B, mat, B ) );

    # Construct the FLMLOR.
    A:= AlgebraWithOneByGenerators( F, gens );
    SetIsFullHomModule( A, true );
    SetNiceFreeLeftModuleInfo( A, rec(
                                       basissource := B,
                                       basisrange  := B ) );

    # Return the FLMLOR.
    return A;
    end );


#T InstallMethod( Field, true, [ IsGeneralMappingCollection ], 0, ... );
#T InstallMethod( DefaultField, true, [ IsGeneralMappingCollection ], 0, ... );

#############################################################################
##
#E