File: ctblmono.gi

package info (click to toggle)
gap 4r8p6-2
  • links: PTS
  • area: main
  • in suites: stretch
  • size: 33,476 kB
  • ctags: 7,663
  • sloc: ansic: 108,841; xml: 47,807; sh: 3,628; perl: 2,342; makefile: 796; asm: 62; awk: 6
file content (2589 lines) | stat: -rw-r--r-- 83,148 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
#############################################################################
##
#W  ctblmono.gi                 GAP library                     Thomas Breuer
#W                                                         & Erzsébet Horváth
##
##
#Y  Copyright (C)  1997,  Lehrstuhl D für Mathematik,  RWTH Aachen,  Germany
#Y  (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y  Copyright (C) 2002 The GAP Group
##
##  This file contains the functions dealing with monomiality questions for
##  solvable groups.
##
##  1. Character Degrees and Derived Length
##  2. Primitivity of Characters
##  3. Testing Monomiality
##  4. Minimal Nonmonomial Groups
##


#############################################################################
##
##  1. Character Degrees and Derived Length
##


#############################################################################
##
#M  Alpha( <G> )  . . . . . . . . . . . . . . . . . . . . . . . . for a group
##
InstallMethod( Alpha,
    "for a group",
    [ IsGroup ],
    function( G )

    local irr,        # irreducible characters of `G'
          degrees,    # set of degrees of `irr'
          chars,      # at position <i> all in `irr' of degree `degrees[<i>]'
          chi,        # one character
          alpha,      # result list
          max,        # maximal derived length found up to now
          kernels,    # at position <i> the kernels of all in `chars[<i>]'
          minimal,    # list of minimal kernels
          relevant,   # minimal kernels of one degree
          k,          # one kernel
          ker,
          dl;         # list of derived lengths

    Info( InfoMonomial, 1, "Alpha called for group ", G );

    # Compute the irreducible characters and the set of their degrees;
    # we need all irreducibles so it is reasonable to compute the table.
    irr:= List( Irr( G ), ValuesOfClassFunction );
    degrees:= Set( List( irr, x -> x[1] ) );
    RemoveSet( degrees, 1 );

    # Distribute characters to degrees.
    chars:= List( degrees, x -> [] );
    for chi in irr do
      if chi[1] > 1 then
        Add( chars[ Position( degrees, chi[1], 0 ) ], chi );
      fi;
    od;

    # Initialize
    alpha:= [ 1 ];
    max:= 1;

    # Compute kernels (as position lists)
    kernels:= List( chars, x -> Set( List( x, ClassPositionsOfKernel ) ) );

    # list of all minimal elements found up to now
    minimal:= [];

    Info( InfoMonomial, 1,
          "Alpha: There are ", Length( degrees )+1, " different degrees." );

    for ker in kernels do

      # We may remove kernels that contain a (minimal) kernel
      # of a character of smaller or equal degree.

      # Make sure to consider minimal elements of the actual degree first.
      Sort( ker, function(x,y) return Length(x) < Length(y); end );

      relevant:= [];

      for k in ker do
        if ForAll( minimal, x -> not IsSubsetSet( k, x ) ) then

          # new minimal element found
          Add( relevant, k );
          Add( minimal,  k );

        fi;
      od;

      # Give the trivial kernel a chance to be found first when we
      # consider the next larger degree.
      Sort( minimal, function(x,y) return Length(x) < Length(y); end );

      # Compute the derived lengths
      for k in relevant do

        dl:= DerivedLength( FactorGroupNormalSubgroupClasses(
                         OrdinaryCharacterTable( G ), k ) );
        if dl > max then
          max:= dl;
        fi;

      od;

      Add( alpha, max );

    od;

    Info( InfoMonomial, 1, "Alpha returns ", alpha );
    return alpha;
    end );


#############################################################################
##
#M  Delta( <G> )  . . . . . . . . . . . . . . . . . . . . . . . . for a group
##
InstallMethod( Delta,
    "for a group",
    [ IsGroup ],
    function( G )

    local delta,  # result list
          alpha,  # `Alpha( <G> )'
          r;      # loop variable

    delta:= [ 1 ];
    alpha:= Alpha( G );
    for r in [ 2 .. Length( alpha ) ] do
      delta[r]:= alpha[r] - alpha[r-1];
    od;

    return delta;
    end );


#############################################################################
##
#M  IsBergerCondition( <chi> )  . . . . . . . . . . . . . . . for a character
##
InstallOtherMethod( IsBergerCondition,
    "for a class function",
    [ IsClassFunction ],
    function( chi )

    local tbl,         # character table of <chi>
          values,      # values of `chi'
          ker,         # intersection of kernels of smaller degree
          deg,         # degree of <chi>
          psi,         # one irreducible character of $G$
          kerchi,      # kernel of <chi> (as group)
          isberger;    # result

    Info( InfoMonomial, 1,
          "IsBergerCondition called for character ",
          CharacterString( chi, "chi" ) );

    values:= ValuesOfClassFunction( chi );
    deg:= values[1];
    tbl:= UnderlyingCharacterTable( chi );

    if 1 < deg then

      # We need all characters of smaller degree,
      # so it is reasonable to compute the character table of the group
      ker:= [ 1 .. Length( values ) ];
      for psi in Irr( UnderlyingCharacterTable( chi ) ) do
        if DegreeOfCharacter( psi ) < deg then
          IntersectSet( ker, ClassPositionsOfKernel( psi ) );
        fi;
      od;

      # Check whether the derived group of this normal subgroup
      # lies in the kernel of `chi'.
      kerchi:= ClassPositionsOfKernel( values );
      if IsSubsetSet( kerchi, ker ) then

        # no need to compute subgroups
        isberger:= true;
      else
        isberger:= IsSubset( KernelOfCharacter( chi ),
                     DerivedSubgroup( NormalSubgroupClasses( tbl, ker ) ) );
      fi;

    else
      isberger:= true;
    fi;

    Info( InfoMonomial, 1, "IsBergerCondition returns ", isberger );
    return isberger;
    end );


#############################################################################
##
#M  IsBergerCondition( <G> )  . . . . . . . . . . . . . . . . . . for a group
##
InstallMethod( IsBergerCondition,
    "for a group",
    [ IsGroup ],
    function( G )

    local tbl,         # character table of `G'
          psi,         # one irreducible character of `G'
          isberger,    # result
          degrees,     # different character degrees of `G'
          kernels,     #
          pos,         #
          i,           # loop variable
          leftinters,  #
          left,        #
          right;       #

    Info( InfoMonomial, 1, "IsBergerCondition called for group ", G );

    tbl:= OrdinaryCharacterTable( G );

    if Size( G ) mod 2 = 1 then

      isberger:= true;

    else

      # Compute the intersections of kernels of characters of same degree
      degrees:= [];
      kernels:= [];
      for psi in List( Irr( G ), ValuesOfClassFunction ) do
        pos:= Position( degrees, psi[1], 0 );
        if pos = fail then
          Add( degrees, psi[1] );
          Add( kernels, ShallowCopy( ClassPositionsOfKernel( psi ) ) );
        else
          IntersectSet( kernels[ pos ], ClassPositionsOfKernel( psi ) );
        fi;
      od;
      SortParallel( degrees, kernels );

      # Let $1 = f_1 \leq f_2 \leq\ldots \leq f_n$ the distinct
      # irreducible degrees of `G'.
      # We must have for all $1 \leq i \leq n-1$ that
      # $$
      #    ( \bigcap_{\psi(1) \leq f_i}  \ker(\psi) )^{\prime} \leq
      #      \bigcap_{\chi(1) = f_{i+1}} \ker(\chi)
      # $$

      i:= 1;
      isberger:= true;
      leftinters:= kernels[1];

      while i < Length( degrees ) and isberger do

        # `leftinters' becomes $\bigcap_{\psi(1) \leq f_i} \ker(\psi)$.
        IntersectSet( leftinters, kernels[i] );
        if not IsSubsetSet( kernels[i+1], leftinters ) then

          # we have to compute the groups
          left:= DerivedSubgroup( NormalSubgroupClasses( tbl, leftinters ) );
          right:= NormalSubgroupClasses( tbl, kernels[i+1] );
          if not IsSubset( right, left ) then
            isberger:= false;
            Info( InfoMonomial, 1,
                  "IsBergerCondition:  violated for character of degree ",
                  degrees[i+1] );
          fi;

        fi;
        i:= i+1;
      od;

    fi;

    Info( InfoMonomial, 1, "IsBergerCondition returns ", isberger );
    return isberger;
    end );


#############################################################################
##
##  2. Primitivity of Characters
##


#############################################################################
##
#F  TestHomogeneous( <chi>, <N> )
##
InstallGlobalFunction( TestHomogeneous, function( chi, N )

    local t,        # character table of `G'
          classes,  # class lengths of `t'
          values,   # values of <chi>
          cl,       # classes of `G' that form <N>
          norm,     # norm of the restriction of <chi> to <N>
          tn,       # table of <N>
          fus,      # fusion of conjugacy classes <N> in $G$
          rest,     # restriction of <chi> to <N>
          i,        # loop over characters of <N>
          scpr;     # one scalar product in <N>

    values:= ValuesOfClassFunction( chi );

    if IsList( N ) then
      cl:= N;
    else
      cl:= ClassPositionsOfNormalSubgroup( UnderlyingCharacterTable( chi ),
                                           N );
    fi;

    t:= UnderlyingCharacterTable( chi );
    classes:= SizesConjugacyClasses( t );
    norm:= Sum( cl, c -> classes[c] * values[c]
                                    * GaloisCyc( values[c], -1 ), 0 );

    if norm = Sum( classes{ cl }, 0 ) then

      # The restriction is irreducible.
      return rec( isHomogeneous := true,
                  comment       := "restricts irreducibly" );

    else

      # `chi' restricts reducibly.
      # Compute the table of `N' if necessary,
      # and check the constituents of the restriction
      N:= NormalSubgroupClasses( t, cl );
      tn:= CharacterTable( N );
      fus:= FusionConjugacyClasses( tn, t );
      rest:= values{ fus };

      for i in Irr( tn ) do
        scpr:= ScalarProduct( tn, ValuesOfClassFunction( i ), rest );
        if scpr <> 0 then

          # Return info about the constituent.
          return rec( isHomogeneous := ( scpr * DegreeOfCharacter( i )
                                         = values[1] ),
                      comment       := "restriction checked",
                      character     := i,
                      multiplicity  := scpr  );

        fi;
      od;

    fi;
end );


#############################################################################
##
#M  TestQuasiPrimitive( <chi> ) . . . . . . . . . . . . . . . for a character
##
InstallMethod( TestQuasiPrimitive,
    "for a character",
    [ IsCharacter ],
    function( chi )

    local values,   # list of character values
          t,        # character table of `chi'
          nsg,      # list of normal subgroups of `t'
          cen,      # centre of `chi'
          allhomog, # are all restrictions up to now homogeneous?
          j,        # loop over normal subgroups
          testhom,  # test of homogeneous restriction
          test;     # result record

    Info( InfoMonomial, 1,
          "TestQuasiPrimitive called for character ",
          CharacterString( chi, "chi" ) );

    values:= ValuesOfClassFunction( chi );

    # Linear characters are primitive.
    if values[1] = 1 then

      test:= rec( isQuasiPrimitive := true,
                  comment          := "linear character" );

    else

      t:= UnderlyingCharacterTable( chi );

      # Compute the normal subgroups of `G' containing the centre of `chi'.

      # Note that `chi' restricts homogeneously to all normal subgroups
      # of `G' if (and only if) it restricts homogeneously to all those
      # normal subgroups containing the centre of `chi'.

      # {\em Proof:}
      # Let $N \unlhd G$ such that $Z(\chi) \not\leq N$.
      # We have to show that $\chi$ restricts homogeneously to $N$.
      # By our assumption $\chi_{N Z(\chi)}$ is homogeneous,
      # take $\vartheta$ the irreducible constituent.
      # Let $D$ a representation affording $\vartheta$ such that
      # the restriction to $N$ consists of block diagonal matrices
      # corresponding to the irreducible constituents.
      # $D( Z(\chi) )$ consists of scalar matrices,
      # thus $D( n^x ) = D( n )$ for $n\in N$, $x\in Z(\chi)$,
      # i.e., $Z(\chi)$ acts trivially on the irreducible constituents
      # of $\vartheta_N$,
      # i.e., every constituent of $\vartheta_N$ is invariant in $N Z(\chi)$,
      # i.e., $\vartheta$ (and thus $\chi$) restricts homogeneously to $N$.

      cen:= ClassPositionsOfCentre( values );
      nsg:= ClassPositionsOfNormalSubgroups( t );
      nsg:= Filtered( nsg, x -> IsSubsetSet( x, cen ) );

      allhomog:= true;
      j:= 1;

      while allhomog and j <= Length( nsg ) do

        testhom:= TestHomogeneous( chi, nsg[j] );
        if not testhom.isHomogeneous then

          # nonhomogeneous restriction found
          allhomog:= false;
          test:= rec( isQuasiPrimitive := false,
                      comment          := testhom.comment,
                      character        := testhom.character );

        fi;

        j:= j+1;

      od;

      if allhomog then
        test:= rec( isQuasiPrimitive := true,
                    comment          := "all restrictions checked" );
      fi;

    fi;

    Info( InfoMonomial, 1,
          "TestQuasiPrimitive returns `", test.isQuasiPrimitive, "'" );

    return test;
    end );


#############################################################################
##
#M  IsQuasiPrimitive( <chi> ) . . . . . . . . . . . . . . . . for a character
##
InstallMethod( IsQuasiPrimitive,
    "for a character",
    [ IsCharacter ],
    chi -> TestQuasiPrimitive( chi ).isQuasiPrimitive );


#############################################################################
##
#M  IsPrimitiveCharacter( <chi> ) . . . . . . . . . . . . . . for a character
##
InstallMethod( IsPrimitiveCharacter,
    "for a class function",
    [ IsClassFunction ],
    function( chi )
    if not IsSolvableGroup( UnderlyingGroup( chi ) ) then
      TryNextMethod();
    fi;
    return IsCharacter( chi ) and TestQuasiPrimitive( chi ).isQuasiPrimitive;
    end );


#############################################################################
##
#M  IsPrimitive( <chi> )  . . . . . . . . . . . . . . . . . . for a character
##
InstallOtherMethod( IsPrimitive,
    "for a character",
    [ IsClassFunction ],
    IsPrimitiveCharacter );
#T really install this?


#############################################################################
##
#F  TestInducedFromNormalSubgroup( <chi>[, <N>] )
##
InstallGlobalFunction( TestInducedFromNormalSubgroup, function( arg )

    local sizeN,      # size of <N>
          sizefactor, # size of $G / <N>$
          values,     # values list of `chi'
          m,          # list of all maximal normal subgroups of $G$
          test,       # intermediate result
          tn,         # character table of <N>
          irr,        # irreducibles of `tn'
          i,          # loop variable
          scpr,       # one scalar product in <N>
          N,          # optional second argument
          cl,         # classes corresponding to `N'
          chi;        # first argument

    # check the arguments
    if Length( arg ) < 1 or Length( arg ) > 2
       or not IsCharacter( arg[1] ) then
      Error( "usage: TestInducedFromNormalSubgroup( <chi>[, <N>] )" );
    fi;

    chi:= arg[1];

    Info( InfoMonomial, 1,
          "TestInducedFromNormalSubgroup called with character ",
          CharacterString( chi, "chi" ) );

    if Length( arg ) = 1 then

      # `TestInducedFromNormalSubgroup( <chi> )'
      if DegreeOfCharacter( chi ) = 1 then

        return rec( isInduced:= false,
                    comment  := "linear character" );

      else

        # Get all maximal normal subgroups.
        m:= ClassPositionsOfMaximalNormalSubgroups(
                UnderlyingCharacterTable( chi ) );

        for N in m do

          test:= TestInducedFromNormalSubgroup( chi, N );
          if test.isInduced then
            return test;
          fi;

        od;

        return rec( isInduced := false,
                    comment   := "all maximal normal subgroups checked" );
      fi;

    else

      # `TestInducedFromNormalSubgroup( <chi>, <N> )'

      N:= arg[2];

      # 1. If the degree of <chi> is not divisible by the index of <N> in $G$
      #    then <chi> cannot be induced from <N>.
      # 2. If <chi> does not vanish outside <N> it cannot be induced from
      #    <N>.
      # 3. Provided that <chi> vanishes outside <N>,
      #    <chi> is induced from <N> if and only if the restriction of <chi>
      #    to <N> has an irreducible constituent with multiplicity 1.
      #
      #    Since the scalar product of the restriction with itself has value
      #    $G \: N$, multiplicity 1 means that there are $G \: N$ conjugates
      #    of this constituent, so <chi> is induced from each of them.
      #
      #    This gives another necessary condition that is easy to check.
      #    Namely, <N> must have more than $G \: <N>$ conjugacy classes if
      #    <chi> is induced from <N>.

      if IsList( N ) then
        sizeN:= Sum( SizesConjugacyClasses(
                         UnderlyingCharacterTable( chi ) ){ N }, 0 );
      elif IsGroup( N ) then
        sizeN:= Size( N );
      else
        Error( "<N> must be a group or a list" );
      fi;

      sizefactor:= Size( UnderlyingCharacterTable( chi ) ) / sizeN;

      if   DegreeOfCharacter( chi ) mod sizefactor <> 0 then

        return rec( isInduced := false,
                    comment   := "degree not divisible by index" );

      elif sizeN <= sizefactor then

        return rec( isInduced := false,
                    comment   := "<N> has too few conjugacy classes" );

      fi;

      values:= ValuesOfClassFunction( chi );

      if IsList( N ) then

        # Check whether the character vanishes outside <N>.
        for i in [ 2 .. Length( values ) ] do
          if not i in N and values[i] <> 0 then
            return rec( isInduced := false,
                        comment   := "<chi> does not vanish outside <N>" );
          fi;
        od;

        cl:= N;
        N:= NormalSubgroupClasses( UnderlyingCharacterTable( chi ), N );

      else

        # Check whether <N> has less conjugacy classes than its index is.
        if Length( ConjugacyClasses( N ) ) <= sizefactor then

          return rec( isInduced := false,
                      comment   := "<N> has too few conjugacy classes" );

        fi;

        cl:= ClassPositionsOfNormalSubgroup( UnderlyingCharacterTable( chi ),
                                             N );

        # Check whether the character vanishes outside <N>.
        for i in [ 2 .. Length( values ) ] do
          if not i in cl and values[i] <> 0 then
            return rec( isInduced := false,
                        comment   := "<chi> does not vanish outside <N>" );
          fi;
        od;

      fi;

      # Compute the restriction to <N>.
      chi:= values{ FusionConjugacyClasses( OrdinaryCharacterTable( N ),
                        UnderlyingCharacterTable( chi ) ) };

      # Check possible constituents.
      tn:= CharacterTable( N );
      irr:= Irr( N );
      for i in [ 1 .. NrConjugacyClasses( tn ) - sizefactor + 1 ] do

        scpr:= ScalarProduct( tn, ValuesOfClassFunction( irr[i] ), chi );

        if   1 < scpr then

          return rec( isInduced := false,
                      comment   := Concatenation(
                                     "constituent with multiplicity ",
                                     String( scpr ) ) );

        elif scpr = 1 then

          return rec( isInduced := true,
                      comment   := "induced from component \'.character\'",
                      character := irr[i] );

        fi;

      od;

      return rec( isInduced := false,
                  comment   := "all irreducibles of <N> checked" );

    fi;
end );


#############################################################################
##
#M  IsInducedFromNormalSubgroup( <chi> )  . . . . . . . . . . for a character
##
InstallMethod( IsInducedFromNormalSubgroup,
    "for a character",
    [ IsCharacter ],
    chi -> TestInducedFromNormalSubgroup( chi ).isInduced );


#############################################################################
##
##  3. Testing Monomiality
##


#############################################################################
##
#M  TestSubnormallyMonomial( <G> )  . . . . . . . . . . . . . . . for a group
##
InstallMethod( TestSubnormallyMonomial,
    "for a group",
    [ IsGroup ],
    function( G )

    local test,       # result record
          orbits,     # orbits of characters
          chi,        # loop over `orbits'
          found,      # decision is found
          i;          # loop variable

    Info( InfoMonomial, 1,
          "TestSubnormallyMonomial called for group ",
          GroupString( G, "G" ) );

    if IsNilpotentGroup( G ) then

      # Nilpotent groups are subnormally monomial.
      test:= rec( isSubnormallyMonomial:= true,
                  comment := "nilpotent group" );

    else

      # Check SM character by character,
      # one representative of each orbit under Galois conjugacy
      # and multiplication with linear characters only.

      orbits:= OrbitRepresentativesCharacters( Irr( G ) );

      # For each representative check whether it is SM.
      # (omit linear characters, i.e., first position)
      found:= false;
      i:= 2;
      while ( not found ) and i <= Length( orbits ) do

        chi:= orbits[i];
        if not TestSubnormallyMonomial( chi ).isSubnormallyMonomial then

          found:= true;
          test:= rec( isSubnormallyMonomial := false,
                      character             := chi,
                      comment               := "found non-SM character" );

        fi;
        i:= i+1;

      od;

      if not found then

        test:= rec( isSubnormallyMonomial := true,
                    comment               := "all irreducibles checked" );

      fi;

    fi;

    # Return the result.
    Info( InfoMonomial, 1,
          "TestSubnormallyMonomial returns with `",
          test.isSubnormallyMonomial, "'" );
    return test;
    end );


#############################################################################
##
#M  TestSubnormallyMonomial( <chi> )  . . . . . . . . . . . . for a character
##
InstallOtherMethod( TestSubnormallyMonomial,
    "for a character",
    [ IsClassFunction ],
    function( chi )

    local test,       # result record
          testsm;     # local function for recursive check

    Info( InfoMonomial, 1,
          "TestSubnormallyMonomial called for character ",
          CharacterString( chi, "chi" ) );

    if   DegreeOfCharacter( chi ) = 1 then

      # Linear characters are subnormally monomial.
      test:= rec( isSubnormallyMonomial := true,
                  comment               := "linear character",
                  character             := chi );

    elif     HasIsSubnormallyMonomial( UnderlyingGroup( chi ) )
         and IsSubnormallyMonomial( UnderlyingGroup( chi ) ) then

      # If the group knows that it is subnormally monomial return this.
      test:= rec( isSubnormallyMonomial := true,
                  comment               := "subnormally monomial group",
                  character             := chi );

    elif IsNilpotentGroup( UnderlyingGroup( chi ) ) then

      # Nilpotent groups are subnormally monomial.
      test:= rec( isSubnormallyMonomial := true,
                  comment               := "nilpotent group",
                  character             := chi );

    else

      # We have to check recursively.

      # Given a character `chi' of the group $N$, and two classes lists
      # `forbidden' and `allowed' that describe all maximal normal
      # subgroups of $N$, where `forbidden' denotes all those normal
      # subgroups through that `chi' cannot be subnormally induced,
      # return either a linear character of a subnormal subgroup of $N$
      # from that `chi' is induced, or `false' if no such character exists.
      # If we reach a nilpotent group then we return a character of this
      # group, so the character is not necessarily linear.

      testsm:= function( chi, forbidden, allowed )

      local N,       # group of `chi'
            mns,     # max. normal subgroups
            forbid,  #
            n,       # one maximal normal subgroup
            cl,
            len,
            nt,
            fus,
            rest,
            deg,
            const,
            nallowed,
            nforbid,
            gp,
            fusgp,
            test;

      forbid:= ShallowCopy( forbidden );
      N:= UnderlyingGroup( chi );
      chi:= ValuesOfClassFunction( chi );
      len:= Length( chi );

      # Loop over `allowed'.
      for cl in allowed do

        if ForAll( [ 1 .. len ], x -> chi[x] = 0 or x in cl ) then

          # `chi' vanishes outside `n', so is induced from `n'.

          n:= NormalSubgroupClasses( OrdinaryCharacterTable( N ), cl );
          nt:= CharacterTable( n );

          # Compute a constituent of the restriction of `chi' to `n'.
          fus:= FusionConjugacyClasses( nt, OrdinaryCharacterTable( N ) );
          rest:= chi{ fus };
          deg:= chi[1] * Size( n ) / Size( N );
          const:= First( Irr( n ),
                     x ->     DegreeOfCharacter( x ) = deg
                          and ScalarProduct( nt, ValuesOfClassFunction( x ),
                                                 rest ) <> 0 );

          # Check termination.
          if   deg = 1 or IsNilpotentGroup( n ) then
            return const;
          elif Length( allowed ) = 0 then
            return false;
          fi;

          # Compute allowed and forbidden maximal normal subgroups of `n'.
          mns:= ClassPositionsOfMaximalNormalSubgroups( nt );
          nallowed:= [];
          nforbid:= [];
          for gp in mns do

            # A group is forbidden if it is the intersection of a group
            # in `forbid' with `n'.
            fusgp:= Set( fus{ gp } );
            if ForAny( forbid, x -> IsSubsetSet( x, fusgp ) ) then
              Add( nforbid, gp );
            else
              Add( nallowed, gp );
            fi;

          od;

          # Check whether `const' is subnormally induced from `n'.
          test:= testsm( const, nforbid, nallowed );
          if test <> false then
            return test;
          fi;

        fi;

        # Add `n' to the forbidden subgroups.
        Add( forbid, cl );

      od;

      # All allowed normal subgroups have been checked.
      return false;
      end;


      # Run the recursive search.
      # Here all maximal normal subgroups are allowed.
      test:= testsm( chi, [], ClassPositionsOfMaximalNormalSubgroups(
                                  UnderlyingCharacterTable( chi ) ) );

      # Prepare the output.
      if test = false then
        test:= rec( isSubnormallyMonomial := false,
                    comment   := "all subnormal subgroups checked" );
      elif DegreeOfCharacter( test ) = 1 then
        test:= rec( isSubnormallyMonomial := true,
                    comment   := "reduced to linear character",
                    character := test );
      else
        test:= rec( isSubnormallyMonomial := true,
                    comment   := "reduced to nilpotent subgroup",
                    character := test );
      fi;

    fi;

    Info( InfoMonomial, 1,
          "TestSubnormallyMonomial returns with `",
          test.isSubnormallyMonomial, "'" );
    return test;
    end );


#############################################################################
##
#M  IsSubnormallyMonomial( <G> )  . . . . . . . . . . . . . . . . for a group
#M  IsSubnormallyMonomial( <chi> )  . . . . . . . . . . . . . for a character
##
InstallMethod( IsSubnormallyMonomial,
    "for a group",
    [ IsGroup ],
    G -> TestSubnormallyMonomial( G ).isSubnormallyMonomial );

InstallOtherMethod( IsSubnormallyMonomial,
    "for a character",
    [ IsClassFunction ],
    chi -> TestSubnormallyMonomial( chi ).isSubnormallyMonomial );


#############################################################################
##
#M  IsMonomialNumber( <n> ) . . . . . . . . . . . . .  for a positive integer
##
InstallMethod( IsMonomialNumber,
    "for a positive integer",
    [ IsPosInt ],
    function( n )

    local factors,   # list of prime factors of `n'
          collect,   # list of (prime divisor, exponent) pairs
          nu2,       # $\nu_2(n)$
          pair,      # loop over `collect'
          pair2,     # loop over `collect'
          ord;       # multiplicative order

    factors := FactorsInt( n );
    collect := Collected( factors );

    # Get $\nu_2(n)$.
    if 2 in factors then
      nu2:= collect[1][2];
    else
      nu2:= 0;
    fi;

    # Check for minimal nonmonomial groups of type 1.
    if nu2 >= 2 then
      for pair in collect do
        if pair[1] mod 4 = 3 and pair[2] >= 3 then
          return false;
        fi;
      od;
    fi;

    # Check for minimal nonmonomial groups of type 2.
    if nu2 >= 3 then
      for pair in collect do
        if pair[1] mod 4 = 1 and pair[2] >= 3 then
          return false;
        fi;
      od;
    fi;

    # Check for minimal nonmonomial groups of type 3.
    for pair in collect do
      for pair2 in collect do
        if pair[1] <> pair2[1] and pair2[1] <> 2 then
          ord:= OrderMod( pair[1], pair2[1] );
          if ord mod 2 = 0 and ord < pair[2] then
            return false;
          fi;
        fi;
      od;
    od;

    # Check for minimal nonmonomial groups of type 4.
    if nu2 >= 4 then
      for pair in collect do
        if pair[1] <> 2 and nu2 >= 2* OrderMod( 2, pair[1] ) + 2 then
          return false;
        fi;
      od;
    fi;

    # Check for minimal nonmonomial groups of type 5.
    if nu2 >= 2 then
      for pair in collect do
        if pair[1] mod 4 = 1 and pair[2] >= 3 then
          for pair2 in collect do
            if pair2[1] <> 2 then
              ord:= OrderMod( pair[1], pair2[1] );
              if ord mod 2 = 1 and 2 * ord < pair[2] then
                return false;
              fi;
            fi;
          od;
        fi;
      od;
    fi;

    # None of the five cases can occur.
    return true;
    end );


#############################################################################
##
#M  TestMonomialQuick( <chi> )  . . . . . . . . . . . . . . . for a character
##
InstallMethod( TestMonomialQuick,
    "for a character",
    [ IsClassFunction ],
    function( chi )

    local G,          # group of `chi'
          factsize,   # size of the kernel factor of `chi'
          codegree,   # codegree of `chi'
          pi,         # prime divisors of a Hall subgroup
          hall,       # size of `pi' Hall subgroup of kernel factor
          ker,        # kernel of `chi'
          t,          # character table of `G'
          grouptest;  # result of the call to `G / ker'

    Info( InfoMonomial, 1,
          "TestMonomialQuick called for character ",
          CharacterString( chi, "chi" ) );

    if   HasIsMonomialCharacter( chi ) then

      # The character knows about being monomial.
      Info( InfoMonomial, 1,
            "TestMonomialQuick returns with `",
            IsMonomialCharacter( chi ), "'" );
      return rec( isMonomial := IsMonomialCharacter( chi ),
                  comment    := "was already stored" );

    elif DegreeOfCharacter( chi ) = 1 then

      # Linear characters are monomial.
      Info( InfoMonomial, 1,
            "TestMonomialQuick returns with `true'" );
      return rec( isMonomial := true,
                  comment    := "linear character" );

    elif TestMonomialQuick( UnderlyingGroup( chi ) ).isMonomial = true then
#T ?

      # The whole group is known to be monomial.
      Info( InfoMonomial, 1,
            "TestMonomialQuick returns with `true'" );
      return rec( isMonomial := true,
                  comment    := "whole group is monomial" );

    fi;

    G   := UnderlyingGroup( chi );
    chi := ValuesOfClassFunction( chi );

    # Replace `G' by the factor group modulo the kernel.
    ker:= ClassPositionsOfKernel( chi );
    if 1 < Length( ker ) then
      t:= CharacterTable( G );
      factsize:= Size( G ) / Sum( SizesConjugacyClasses( t ){ ker }, 0 );
    else
      factsize:= Size( G );
    fi;

    # Inspect the codegree.
    codegree := factsize / chi[1];

    if IsPrimePowerInt( codegree ) then

      # If the codegree is a prime power then the character is monomial,
      # by a result of Chillag, Mann, and Manz.
      # Here is a short proof due to M. I. Isaacs
      # (communicated by E. Horváth).
      #
      # Let $G$ be a finite group, $\chi\in Irr(G)$ with codegree $p^a$
      # for a prime $p$, and $P\in Syl_p(G)$.
      # Then there exists an irreducible character $\psi$ of $P$
      # with $\psi^G = \chi$.
      #
      # {\it Proof:}
      # Let $b$ be an integer such that $\chi(1) = [G : P] p^b$,
      # and consider $\chi_P = \sum_{\psi\in Irr(P)} a_{\psi} \psi$.
      # There exists $\psi$ with $a_{\psi} \not= 0$ and $\psi(1) \leq p^b$,
      # as otherwise $\chi(1)$ would be divisible by a larger power of $p$.
      # On the other hand, $\chi$ must be a constituent of $\psi^G$ and thus
      # $p^b \leq \psi(1)$.
      # So there is equality, and thus $\psi^G = \chi$.
      Info( InfoMonomial, 1,
            "TestMonomialQuick returns with `true'" );
      return rec( isMonomial := true,
                  comment    := "codegree is prime power" );
    fi;

    # If $G$ is solvable and $\pi$ is the set of primes dividing the codegree
    # then the character is induced from a $\pi$ Hall subgroup.
    # This follows from Theorem~(2D) in~\cite{Fon62}.
    if IsSolvableGroup( G ) then

      pi   := Set( FactorsInt( codegree ) );
      hall := Product( Filtered( FactorsInt( factsize ), x -> x in pi ), 1 );

      if factsize / hall = chi[1] then

        # The character is induced from a {\em linear} character
        # of the $\pi$ Hall group.
        Info( InfoMonomial, 1,
              "TestMonomialQuick returns with `true'" );
        return rec( isMonomial := true,
                    comment    := "degree is index of Hall subgroup" );

      elif IsMonomialNumber( hall ) then

        # The {\em order} of this Hall subgroup is monomial.
        Info( InfoMonomial, 1,
              "TestMonomialQuick returns with `true'" );
        return rec( isMonomial := true,
                    comment    := "induced from monomial Hall subgroup" );

      fi;

    fi;

    # Inspect the factor group modulo the kernel.
    if 1 < Length( ker ) then

      if   IsSolvableGroup( G ) and IsMonomialNumber( factsize ) then

        # The order of the kernel factor group is monomial.
        # (For faithful characters this check has been done already.)
        Info( InfoMonomial, 1,
              "TestMonomialQuick returns with `true'" );
        return rec( isMonomial := true,
                    comment    := "size of kernel factor is monomial" );

      elif IsSubsetSet( ker, ClassPositionsOfSupersolvableResiduum(t) ) then

        # The factor group modulo the kernel is supersolvable.
        Info( InfoMonomial, 1,
              "TestMonomialQuick returns with `true'" );
        return rec( isMonomial:= true,
                    comment:= "kernel factor group is supersolvable" );
#T Is there more one can do without computing the factor group?

      fi;

      grouptest:= TestMonomialQuick( FactorGroupNormalSubgroupClasses(
                      OrdinaryCharacterTable( G ), ker ) );
#T This can help ??
      if grouptest.isMonomial = true then

        Info( InfoMonomial, 1,
              "#I  TestMonomialQuick returns with `true'" );
        return rec( isMonomial := true,
                    comment    := "kernel factor group is monomial" );

      fi;

    fi;

    # No more cheap tests are available.
    Info( InfoMonomial, 1,
          "TestMonomialQuick returns with `?'" );
    return rec( isMonomial := "?",
                comment    := "no decision by cheap tests" );
    end );


##############################################################################
##
#M  TestMonomialQuick( <G> )  . . . . . . . . . . . . . . . . . .  for a group
##
##  The following criteria are used for a group <G>.
##
##  o Nonsolvable groups are not monomial.
##  o If the group order is monomial then <G> is monomial.
##    (Note that monomiality of group orders is defined for solvable
##     groups only, so solvability has to be checked first.)
##  o Nilpotent groups are monomial.
##  o Abelian by supersolvable groups are monomial.
##  o Sylow abelian by supersolvable groups are monomial.
##    (Compute the Sylow subgroups of the supersolvable residuum,
##     and check whether they are abelian.)
##
InstallOtherMethod( TestMonomialQuick,
    "for a group",
    [ IsGroup ],
    function( G )

#T if the table is known then call TestMonomialQuick( G.charTable ) !
#T (and implement this function ...)

    local test,       # the result record
          ssr;        # supersolvable residuum of `G'

    Info( InfoMonomial, 1,
          "TestMonomialQuick called for group ",
          GroupString( G, "G" ) );

    # If the group knows about being monomial return this.
    if   HasIsMonomialGroup( G ) then

      test:= rec( isMonomial := IsMonomialGroup( G ),
                  comment    := "was already stored" );

    elif not IsSolvableGroup( G ) then

      # Monomial groups are solvable.
      test:= rec( isMonomial := false,
                  comment    := "non-solvable group" );

    elif IsMonomialNumber( Size( G ) ) then

      # Every solvable group of this order is monomial.
      test:= rec( isMonomial := true,
                  comment    := "group order is monomial" );

    elif IsNilpotentGroup( G ) then

      # Nilpotent groups are monomial.
      test:= rec( isMonomial := true,
                  comment    := "nilpotent group" );

    else

      ssr:= SupersolvableResiduum( G );

      if IsTrivial( ssr ) then

        # Supersolvable groups are monomial.
        test:= rec( isMonomial := true,
                    comment    := "supersolvable group" );

      elif IsAbelian( ssr ) then

        # Abelian by supersolvable groups are monomial.
        test:= rec( isMonomial := true,
                    comment    := "abelian by supersolvable group" );

      elif ForAll( Set( FactorsInt( Size( ssr ) ) ),
                   x -> IsAbelian( SylowSubgroup( ssr, x ) ) ) then

        # Sylow abelian by supersolvable groups are monomial.
        test:= rec( isMonomial := true,
                    comment    := "Sylow abelian by supersolvable group" );

      else

        # No more cheap tests are available.
        test:= rec( isMonomial := "?",
                    comment    := "no decision by cheap tests" );

      fi;

    fi;

    Info( InfoMonomial, 1,
          "TestMonomialQuick returns with `", test.isMonomial, "'" );
    return test;
    end );


#############################################################################
##
#M  TestMonomial( <chi> ) . . . . . . . . . . . . . . . . . . for a character
#M  TestMonomial( <chi>, <uselattice> ) . . .  for a character, and a Boolean
##
##  Called with a character <chi> as argument, `TestMonomialQuick( <chi> )'
##  is inspected first.  If this did not decide the question, we test all
##  those normal subgroups of $G$ to that <chi> restricts nonhomogeneously
##  whether the interesting character of the inertia subgroup is monomial.
##  (If <chi> is quasiprimitive then it is nonmonomial.)
##
BindGlobal( "TestMonomialFromLattice", function( chi )
    local G, H, source;

    G:= UnderlyingGroup( chi );

    # Loop over representatives of the conjugacy classes of subgroups.
    for H in List( ConjugacyClassesSubgroups( G ), Representative ) do
      if Index( G, H ) = chi[1] then
        source:= First( LinearCharacters( H ), lambda -> lambda^G = chi );
        if source <> fail then
          return source;
        fi;
      fi;
    od;

    # Return the negative result.
    return fail;
end );

InstallMethod( TestMonomial,
    "for a character",
    [ IsClassFunction ],
    chi -> TestMonomial( chi, false ) );

InstallMethod( TestMonomial,
    "for a character, and a Boolean",
    [ IsClassFunction, IsBool ],
    function( chi, uselattice )
    local G,         # group of `chi'
          test,      # result record
          t,         # character table of `G'
          nsg,       # list of normal subgroups of `G'
          ker,       # kernel of `chi'
          isqp,      # is `chi' quasiprimitive
          i,         # loop over normal subgroups
          testhom,   # does `chi' restrict homogeneously
          theta,     # constituent of the restriction
          found,     # monomial character found
          found2,    # monomial character found
          T,         # inertia group of `theta'
          fus,       # fusion of conjugacy classes `T' in `G'
          deg,       # degree of `theta'
          rest,      # restriction of `chi' to `T'
          j,         # loop over irreducibles of `T'
          psi,       # character of `T'
          testmon,   # test for monomiality
          orbits,    # orbits of irreducibles of `T'
          poss;      # list of possibly nonmonomial characters

    Info( InfoMonomial, 1, "TestMonomial called" );

    # Start wirth elementary tests for monomiality.
    test:= TestMonomialQuick( chi );

    if test.isMonomial = "?" then

      G:= UnderlyingGroup( chi );

      if not IsSolvableGroup( G ) then

        # Use the subgroup lattice or give up.
        if uselattice or Size( G ) <= TestMonomialUseLattice then

          test:= TestMonomialFromLattice( chi );
          if test = fail then
            test:= rec( isMonomial := false,
                        comment    := "lattice checked" );
          else
            test:= rec( isMonomial := true,
                        comment    := "induced from \'character\'",
                        character  := test );
          fi;

        else

          # We do not know whether <chi> is monomial.
          Info( InfoMonomial, 1,
                "TestMonomial: nonsolvable group" );
          test:= rec( isMonomial:= "?",
                      comment:= "no criterion for nonsolvable group" );

        fi;

      else

        # Loop over all normal subgroups of `G' to that <chi> restricts
        # nonhomogeneously.
        # (If there are no such normal subgroups then <chi> is
        # quasiprimitive hence not monomial.)
        t:= CharacterTable( G );
        ker:= ClassPositionsOfKernel( ValuesOfClassFunction( chi ) );
        nsg:= Filtered( ClassPositionsOfNormalSubgroups( t ),
                        x -> IsSubsetSet( x, ker ) );
        isqp:= true;

        i:= 1;
        found:= false;

        while not found and i <= Length( nsg ) do

          testhom:= TestHomogeneous( chi, nsg[i] );
          if not testhom.isHomogeneous then

            isqp:= false;

            # Take a constituent `theta' in a nonhomogeneous restriction.
            theta:= testhom.character;

            # We have $<chi>_N = e \sum_{i=1}^t \theta_i$.
            # <chi> is induced from an irreducible character of
            # $'T' = I_G(\theta_1)$ that restricts to $e \theta_1$,
            # so we have proved monomiality if $e = \theta(1) = 1$.
            if     testhom.multiplicity = 1
               and DegreeOfCharacter( theta ) = 1 then

              found:= true;
              test:= rec( isMonomial := true,
                          comment    := "induced from \'character\'",
                          character  := theta );

            else

              # Compute the inertia group `T'.
              T:= InertiaSubgroup( G, theta );
              if TestMonomialQuick( T ).isMonomial = true then

                # `chi' is induced from `T', and `T' is monomial.
                found:= true;
                test:= rec( isMonomial := true,
                            comment    := "induced from monomial subgroup",
                            subgroup   := T );

              else

                # Check whether a character of `T' from that <chi>
                # is induced can be proved to be monomial.

                # First get all characters `psi' of `T'
                # from that <chi> is induced.
                t:= Irr( T );
                fus:= FusionConjugacyClasses( OrdinaryCharacterTable( T ),
                                              OrdinaryCharacterTable( G ) );
                deg:= DegreeOfCharacter( chi ) / Index( G, T );
                rest:= ValuesOfClassFunction( chi ){ fus };
                j:= 1;
                found2:= false;
                while not found2 and j <= Length(t) do
                  if     DegreeOfCharacter( t[j] ) = deg
                     and ScalarProduct( CharacterTable( T ),
                                        ValuesOfClassFunction( t[j] ),
                                        rest ) <> 0 then
                    psi:= t[j];
                    testmon:= TestMonomial( psi );
                    if testmon.isMonomial = true then
                      found:= true;
                      found2:= true;
                      test:= testmon;
                    fi;
                  fi;
                  j:= j+1;
                od;

              fi;

            fi;

          fi;

          i:= i+1;

        od;

        if isqp then

          # <chi> is quasiprimitive, for a solvable group this implies
          # primitivity,
          # for a nonlinear character this proves nonmonomiality.
          test:= rec( isMonomial := false,
                      comment    := "quasiprimitive character" );

        elif not found then

          # We have tried all suitable normal subgroups and always got
          # back that the character of the inertia subgroup was
          # (possibly) nonmonomial.
          if uselattice or Size( G ) <= TestMonomialUseLattice then

            # Use explicit computations with the subgroup lattice,
            test:= TestMonomialFromLattice( chi );
            if test = fail then
              test:= rec( isMonomial := false,
                          comment    := "lattice checked" );
            else
              test:= rec( isMonomial := true,
                          comment    := "induced from \'character\'",
                          character  := test );
            fi;

          else

            # We cannot decide whether <chi> is monomial.
            test:= rec( isMonomial:= "?",
                     comment:= "all inertia subgroups checked, no result" );

          fi;

        fi;

      fi;

    fi;

    # Return the result.
    Info( InfoMonomial, 1,
          "TestMonomial returns with `", test.isMonomial, "'" );
    return test;
    end );


#############################################################################
##
#M  TestMonomial( <G> ) . . . . . . . . . . . . . . . . . . . . . for a group
#M  TestMonomial( <G>, <uselattice> ) . . . . . .  for a group, and a Boolean
##
##  Called with a group <G> the program checks whether all representatives
##  of character orbits are monomial.
##
#T used e.g. by `Irr' for supersolvable groups, function `IrrConlon'!
##
InstallOtherMethod( TestMonomial,
    "for a group",
    [ IsGroup ],
    G -> TestMonomial( G, false ) );

InstallOtherMethod( TestMonomial,
    "for a group, and a Boolean",
    [ IsGroup, IsBool ],
    function( G, uselattice )

    local test,      # result record
          found,     # monomial character found
          testmon,   # test for monomiality
          j,         # loop over irreducibles of `T'
          psi,       # character of `T'
          orbits,    # orbits of irreducibles of `T'
          poss;      # list of possibly nonmonomial characters

    Info( InfoMonomial, 1, "TestMonomial called for a group" );

    # elementary test for monomiality
    test:= TestMonomialQuick( G );

    if test.isMonomial = "?" then

      if Size( G ) mod 2 = 0 and ForAny( Delta( G ), x -> 1 < x ) then

        # For even order groups it is checked whether
        # the list `Delta( G )' contains an entry that is bigger
        # than one. (For monomial groups and for odd order groups
        # this is always less than one,
        # according to Taketa's Theorem and Berger's result).
        test:= rec( isMonomial := false,
                    comment    := "list Delta( G ) contains entry > 1" );

      else

        orbits:= OrbitRepresentativesCharacters( Irr( G ) );
        found:= false;
        j:= 2;
        poss:= [];
        while ( not found ) and j <= Length( orbits ) do
          psi:= orbits[j];
          testmon:= TestMonomial( psi, uselattice ).isMonomial;
          if testmon = false then
            found:= true;
          elif testmon = "?" then
            Add( poss, psi );
          fi;
          j:= j+1;
        od;

        if found then

          # A nonmonomial character was found.
          test:= rec( isMonomial := false,
                      comment    := "nonmonomial character found",
                      character  := psi );

        elif IsEmpty( poss ) then

          # All checks answered `true'.
          test:= rec( isMonomial := true,
                      comment    := "all characters checked" );

        else

          # We give up.
          test:= rec( isMonomial := "?",
                      comment    := "(possibly) nonmon. characters found",
                      characters := poss );

        fi;

      fi;

    fi;

    # Return the result.
    Info( InfoMonomial, 1,
          "TestMonomial returns with `", test.isMonomial, "'" );
    return test;
    end );


#############################################################################
##
#M  IsMonomialGroup( <G> ) . . . . . . . . . . . . . . . . . . .  for a group
##
InstallMethod( IsMonomialGroup,
    "for a group",
    [ IsGroup ],
    G -> TestMonomial( G, true ).isMonomial );


#############################################################################
##
#M  IsMonomialCharacter( <chi> )  . . . . . . . . . . . . . . for a character
##
InstallMethod( IsMonomialCharacter,
    "for a character",
    [ IsClassFunction ],
    chi -> TestMonomial( chi, true ).isMonomial );


#############################################################################
##
#A  TestRelativelySM( <G> )
#A  TestRelativelySM( <chi> )
#F  TestRelativelySM( <G>, <N> )
#F  TestRelativelySM( <chi>, <N> )
##
##  The algorithm for a character <chi> and a normal subgroup <N>
##  proceeds as follows.
##  If <N> is abelian or has nilpotent factor then <chi> is relatively SM
##  with respect to <N>.
##  Otherwise we check whether <chi> restricts irreducibly to <N>; in this
##  case we also get a positive answer.
##  Otherwise a subnormal subgroup from that <chi> is induced must be
##  contained in a maximal normal subgroup of <N>.  So we get all maximal
##  normal subgroups containing <N> from that <chi> can be induced, take a
##  character that induces to <chi>, and check recursively whether it is
##  relatively subnormally monomial with respect to <N>.
##
##  For a group $G$ we consider only representatives of character orbits.
##
BindGlobal( "TestRelativelySMFun", function( arg )

    local test,      # result record
          G,         # argument, group
          chi,       # argument, character of `G'
          N,         # argument, normal subgroup of `G'
          n,         # classes in `N'
          t,         # character table of `G'
          nsg,       # list of normal subgroups of `G'
          newnsg,    # filtered list of normal subgroups
          orbits,    # orbits on `t.irreducibles'
          found,     # not relatively SM character found?
          i,         # loop over `nsg'
          j,         # loop over characters
          fus,       # fusion of conjugacy classes `N' in `G'
          norm,      # norm of restriction of `chi' to `N'
          isrelSM,   # is the constituent relatively SM?
          check,     #
          induced,   # is a subnormal subgroup found from where
                     # the actual character can be induced?
          k;         # loop over `newnsg'

    # step 1:
    # Check the arguments.
    if     Length( arg ) < 1 or 2 < Length( arg )
        or not ( IsGroup( arg[1] ) or IsCharacter( arg[1] ) ) then
      Error( "first argument must be a group or a character" );
    elif HasTestRelativelySM( arg[1] ) then
      return TestRelativelySM( arg[1] );
    fi;

    if IsGroup( arg[1] ) then
      G:= arg[1];
      Info( InfoMonomial, 1,
            "TestRelativelySM called with group ", GroupString( G, "G" ) );
    elif IsCharacter( arg[1] ) then
      G:= UnderlyingGroup( arg[1] );
      chi:= ValuesOfClassFunction( arg[1] );
      Info( InfoMonomial, 1,
            "TestRelativelySM called with character ",
            CharacterString( arg[1], "chi" ) );
    fi;

    # step 2:
    # Get the interesting normal subgroups.

    # We want to consider normal subgroups and factor groups.
    # If this test  yields a solution we can avoid to compute
    # the character table of `G'.
    # But if the character table of `G' is already known we use it
    # and store the factor groups.

    if   Length( arg ) = 1 then

      # If a normal subgroup <N> is abelian or has nilpotent factor group
      # then <G> is relatively SM w.r. to <N>, so consider only the other
      # normal subgroups.

      if HasOrdinaryCharacterTable( G ) then

        nsg:= ClassPositionsOfNormalSubgroups( CharacterTable( G ) );
        newnsg:= [];
        for n in nsg do
          if not CharacterTable_IsNilpotentFactor( CharacterTable( G ),
                     n ) then
            N:= NormalSubgroupClasses( CharacterTable( G ), n );
#T geht das?
#T        if IsSubset( n, centre ) and
            if not IsAbelian( N ) then
              Add( newnsg, N );
            fi;
          fi;
        od;
        nsg:= newnsg;

      else

        nsg:= NormalSubgroups( G );
        nsg:= Filtered( nsg, x -> not IsAbelian( x ) and
                                  not IsNilpotentGroup( G / x ) );

      fi;

    elif Length( arg ) = 2 then

      nsg:= [];

      if IsList( arg[2] ) then

        if not CharacterTable_IsNilpotentFactor( CharacterTable( G ),
                   arg[2] ) then
          N:= NormalSubgroupClasses( CharacterTable( G ), arg[2] );
          if not IsAbelian( N ) then
            nsg[1]:= N;
          fi;
        fi;

      elif IsGroup( arg[2] ) then

        N:= arg[2];
        if not IsAbelian( N ) and not IsNilpotentGroup( G / N ) then
          nsg[1]:= N;
        fi;

      else
        Error( "second argument must be normal subgroup or classes list" );
      fi;

    fi;

    # step 3:
    # Test whether all characters are relatively SM for all interesting
    # normal subgroups.

    if IsEmpty( nsg ) then

      test:= rec( isRelativelySM := true,
                  comment        :=
          "normal subgroups are abelian or have nilpotent factor group" );

    else

      t:= CharacterTable( G );
      if IsGroup( arg[1] ) then

        # Compute representatives of orbits of characters.
        orbits:= OrbitRepresentativesCharacters( Irr( t ) );
        orbits:= orbits{ [ 2 .. Length( orbits ) ] };

      else
        orbits:= [ chi ];
      fi;

      # Loop over all normal subgroups in `nsg' and all
      # irreducible characters in `orbits' until a not rel. SM
      # character is found.
      found:= false;
      i:= 1;
      while ( not found ) and i <= Length( nsg ) do

        N:= nsg[i];
        j:= 1;
        while ( not found ) and j <= Length( orbits ) do

#T use the kernel or centre here!!
#T if N does not contain the centre of chi then we need not test?
#T Isn't it sufficient to consider the factor modulo
#T the product of `N' and kernel of `chi'?
          chi:= orbits[j];

          # Is the restriction of `chi' to `N' irreducible?
          # This means we can choose $H = G$.
          n:= ClassPositionsOfNormalSubgroup( OrdinaryCharacterTable( G ),
                                              N );
          fus:= FusionConjugacyClasses( OrdinaryCharacterTable( N ),
                                        OrdinaryCharacterTable( G ) );
          norm:= Sum( n,
              c -> SizesConjugacyClasses( CharacterTable( G ) )[c] * chi[c]
                   * GaloisCyc( chi[c], -1 ), 0 );

          if norm = Size( N ) then

            test:= rec( isRelativelySM := true,
                        comment        := "irreducible restriction",
                        character      := Character( G, chi ) );

          else

            # If there is a subnormal subgroup $H$ from where <chi> is
            # induced then $H$ is contained in a maximal normal subgroup
            # of $G$ that contains <N>.

            # So compute all maximal subgroups ...
            newnsg:= ClassPositionsOfMaximalNormalSubgroups(
                         CharacterTable( G ) );

            # ... containing <N> ...
            newnsg:= Filtered( newnsg, x -> IsSubsetSet( x, n ) );

            # ... from where <chi> possibly can be induced.
            newnsg:= List( newnsg,
                           x -> TestInducedFromNormalSubgroup(
                                 Character( G, chi ),
                                 NormalSubgroupClasses( CharacterTable( G ),
                                                        x ) ) );

            induced:= false;
            k:= 1;
            while not induced and k <= Length( newnsg ) do

              check:= newnsg[k];
              if check.isInduced then

                # check whether the constituent is relatively SM w.r. to <N>
                isrelSM:= TestRelativelySM( check.character, N );
                if isrelSM.isRelativelySM then
                  induced:= true;
                fi;

              fi;
              k:= k+1;

            od;

            if induced then
              test:= rec( isRelativelySM := true,
                          comment := "suitable character found"
                         );
              if IsBound( isrelSM.character ) then
                test.character:= isrelSM.character;
              fi;
            else
              test:= rec( isRelativelySM := false,
                          comment := "all possibilities checked" );
            fi;

          fi;

          if not test.isRelativelySM then

            found:= true;
            test.character:= chi;
            test.normalSubgroup:= N;

          fi;

          j:= j+1;

        od;

        i:= i+1;

      od;

      if not found then

        # All characters are rel. SM w.r. to all normal subgroups.
        test:= rec( isRelativelySM := true,
                    comment        := "all possibilities checked" );
      fi;

    fi;

    Info( InfoMonomial, 1, "TestRelativelySM returns with `", test, "'" );
    return test;
end );

InstallMethod( TestRelativelySM,
    "for a character",
    [ IsClassFunction ],
    TestRelativelySMFun );

InstallOtherMethod( TestRelativelySM,
    "for a group",
    [ IsGroup ],
    TestRelativelySMFun );

InstallOtherMethod( TestRelativelySM,
    "for a character, and an object",
    [ IsClassFunction, IsObject ],
    TestRelativelySMFun );

InstallOtherMethod( TestRelativelySM,
    "for a group, and an object",
    [ IsGroup, IsObject ],
    TestRelativelySMFun );


#############################################################################
##
#M  IsRelativelySM( <chi> )
#M  IsRelativelySM( <G> )
##
InstallMethod( IsRelativelySM,
    "for a character",
    [ IsClassFunction ],
    chi -> TestRelativelySM( chi ).isRelativelySM );

InstallOtherMethod( IsRelativelySM,
    "for a group",
    [ IsGroup ],
    G -> TestRelativelySM( G ).isRelativelySM );


#############################################################################
##
##  4. Minimal Nonmonomial Groups
##


#############################################################################
##
#M  IsMinimalNonmonomial( <G> ) . . . . . . . . . . .  for a (solvable) group
##
##  We use the classification by van der Waall.
##
InstallMethod( IsMinimalNonmonomial,
    "for a (solvable) group",
    [ IsGroup ],
    function( K )

    local F,          # Fitting subgroup
          factsize,   # index of `F' in `K'
          facts,      # prime factorization of the order of `F'
          p,          # prime dividing the order of `F'
          m,          # `F' is of order $p ^ m $
          syl,        # Sylow subgroup
          sylgen,     # one generator of `syl'
          gens,       # generators list
          C,          # centre of `K' in dihedral case
          fc,         # element in $F C$
          q;          # half of `factsize' in dihedral case

    # Check whether `K' is solvable.
    if not IsSolvableGroup( K ) then
      TryNextMethod();
    fi;

    # Compute the Fitting factor of the group.
    F:= FittingSubgroup( K );
    factsize:= Index( K, F );

    # The Fitting subgroup of a minimal nomonomial group is a $p$-group.
    facts:= FactorsInt( Size( F ) );
    p:= Set( facts );
    if 1 < Length( p ) then
      return false;
    fi;
    p:= p[1];
    m:= Length( facts );

    # Check for the five possible structures.
    if   factsize = 4 then

      # If $K$ is minimal nonmonomial then
      # $K / F(K)$ is cyclic of order 4,
      # $F(K)$ is extraspecial of order $p^3$ and of exponent $p$
      # where $p \equiv -1 \pmod{4}$.

      if     IsPrimeInt( p )
         and p >= 3
         and ( p + 1 ) mod 4 = 0
         and m = 3
         and Centre( F ) = FrattiniSubgroup( F )
         and Size( Centre( F ) ) = p then

        # Check that the factor is cyclic and acts irreducibly.
        # For that, it is sufficient that the square acts
        # nontrivially.

        syl:= SylowSubgroup( K, 2 );
        if     IsCyclic( syl )
           and ForAny( GeneratorsOfGroup( syl ),
                       x ->     Order( x ) = 4
                            and ForAny( GeneratorsOfGroup( F ),
                                    y -> not IsOne( Comm( y, x^2 ) ) ) ) then
          SetIsMonomialGroup( K, false );
          return true;
        fi;

      fi;

    elif factsize = 8 then

      # If $K$ is minimal nonmonomial then
      # $K / F(K)$ is quaternion of order 8,
      # $F(K)$ is extraspecial of order $p^3$ and of exponent $p$
      # where $p \equiv 1 \pmod{4}$.

      if    IsPrimeInt( p )
         and p >= 5
         and ( p - 1 ) mod 4 = 0
         and m = 3
         and Centre( F ) = FrattiniSubgroup( F )
         and Size( Centre( F ) ) = p then

        # Check whether $K/F(K)$ is quaternion of order 8,
        # (i.e., is nonabelian with two *generators* of order 4 that do
        # not generate the same subgroup)
        # and that it acts irreducibly on $F$
        # For that, it is sufficient to show that the central involution
        # acts nontrivially.

        syl:= SylowSubgroup( K, 2 );
        gens:= Filtered( GeneratorsOfGroup( syl ), x -> Order( x ) = 4 );
        if     not IsAbelian( syl )
           and ForAny( gens,
                       x ->     x <> gens[1]
                            and x <> gens[1]^(-1)
                            and ForAny( GeneratorsOfGroup( F ),
                                    y -> not IsOne( Comm( y, x^2 ) ) ) ) then
          SetIsMonomialGroup( K, false );
          return true;
        fi;

      fi;

    elif factsize <> 2 and IsPrimeInt( factsize ) then

      # If $K$ is minimal nonmonomial then
      # $K / F(K)$ has order an odd prime $q$.
      # $F(K)$ is extraspecial of order $p^{2m+1}$ and of exponent $p$
      # where $2m$ is the order of $p$ modulo $q$.

      if    OrderMod( p, factsize ) = m-1
         and m mod 2 = 1
         and Centre( F ) = FrattiniSubgroup( F )
         and Size( Centre( F ) ) = p then

        # Furthermore, $F / Z(F)$ is a chief factor.
        # It is sufficient to show that the Fitting factor acts
        # trivially on $Z(F)$, and that there is no nontrivial
        # fixed point under the action on $F / Z(F)$.
        # These conditions are sufficient for our test.

        syl:= SylowSubgroup( K, factsize );
        sylgen:= First( GeneratorsOfGroup( syl ), g -> not IsOne( g ) );
        if     IsCentral( Centre( F ), syl )
           and ForAny( GeneratorsOfGroup( F ),
                       x ->     not x in Centre( F )
                            and not IsOne( Comm( x, sylgen ) ) )
          then
          SetIsMonomialGroup( K, false );
          return true;
        fi;

      fi;

    elif factsize mod 2 = 0 and IsPrimeInt( factsize / 2 ) then

      # If $K$ is minimal nonmonomial then
      # $K / F(K)$ is dihedral of order $2 q$ where $q$ is an odd prime.
      # Let $m$ denote the order of 2 mod $q$.
      # $F(K)$ is a central product of an extraspecial group $F$ of order
      # $2^{2m+1}$ (that is purely dihedral) with a cyclic group $C$
      # of order $2^{s+1}$.
      # We have $C = Z(K)$ and $F(K) = C_K( F/Z(F) )$.

      q:= factsize / 2;
      m:= OrderMod( 2, q );

      if m mod 2 = 1 then

        # Compute a Sylow $q$ subgroup $Q$, with generator $r$.
        syl:= SylowSubgroup( K, q );
        sylgen:= First( GeneratorsOfGroup( syl ), g -> not IsOne( g ) );

        # Show that the Fitting factor is dihedral.
        if not IsConjugate( K, sylgen, sylgen^-1 ) then
          return false;
        fi;

        # The centralizer of $Q$ is $Q \times C$.
        # Take an element $fc$ in $F(K) \setminus C$ with $f\in F$,
        # $c\in C$ (exists, since otherwise $Q$ would centralize $F(K)$),
        # and consider $[r,fc] = [r,f] \in F$.  This commutator cannot lie
        # in $Z = F \cap C$ since this would imply that $r^2$ fixes $f$,
        # because of odd order this means $r$ fixes $f$, a contradiction.
        # Thus we find $F$ as the normal closure of $[r,f]$,
        # of order $2^{2m+1}$.
        C:= SylowSubgroup( Centralizer( K, syl ), 2 );
        fc:= First( GeneratorsOfGroup( F ), x -> not x in C );
        F:= NormalClosure( K, Subgroup( K, [ Comm( sylgen, fc ) ] ) );

        if    Size( F ) <> 2^(2*m+1)
           or IsAbelian( F )
           or not IsCentral( K, C )
           or not IsCyclic( C )
           or Size( Intersection( F, C ) ) <> 2         then
          return false;
        fi;

        # Now $Q$ acts nontrivially on $F$, and because every nontrivial
        # irreducible 2-modular representation of $D_{2q}$ has degree
        # $2m$ we have necessarily $F / Z$ an irreducible module, thus
        # $F$ must be extraspecial.

        SetIsMonomialGroup( K, false );
        return true;

      fi;

    elif factsize mod 4 = 0 and IsPrimeInt( factsize / 4 ) then

      # $K / F(K)$ is a central extension of the dihedral group of order
      # $2 t$ where $t$ is an odd prime, such that all involutions lift to
      # elements of order 4.  $F(K)$ is an extraspecial $p$-group
      # for an odd prime $p$ with $p \equiv 1 \pmod{4}$.
      # Let $m$ denote the order of $p$ mod $t$, then $F(K)$ is of order
      # $p^{2m+1}$, and $m$ is odd.

      if    m mod 2 <> 0
         and ( p - 1 ) mod 4 = 0
         and OrderMod( p, factsize / 4 ) = ( m-1 ) / 2
         and Centre( F ) = FrattiniSubgroup( F )
         and Size( Centre( F ) ) = p then

        # Check whether the factor has the required isomorphism type,
        # i.e., whether it is of order $4t$ where $t$ is an odd prime,
        # and each element of order 4 inverts a generator of the
        # Sylow $t$ subgroup (then the presentation is satisfied).

        # Check whether the action of the factor on $F$ is irreducible.
        # Since every faithful representation is of the required
        # dimension we must only check that the central involution and
        # the generator of the Sylow $t$ subgroup both act nontrivially.

        syl:=  SylowSubgroup( K, factsize / 4 );
        sylgen:= First( GeneratorsOfGroup( syl ), g -> not IsOne( g ) );
        gens:= Filtered( GeneratorsOfGroup( SylowSubgroup( K, 2 ) ),
                         x -> Order( x ) = 4 );

        if     not IsEmpty( gens )
           and sylgen * gens[1] * sylgen = gens[1]
           and ForAny( GeneratorsOfGroup( F ),
                       x -> not IsOne( Comm( gens[1], x ) ) )
           and ForAny( GeneratorsOfGroup( F ),
                       x -> not IsOne( Comm( sylgen, x ) ) ) then

          SetIsMonomialGroup( K, false );
          return true;

        fi;

      fi;

    fi;

    # None of the structure conditions is satisfied.
    return false;
end );


#############################################################################
##
#F  MinimalNonmonomialGroup( <p>, <factsize> )
##
InstallGlobalFunction( MinimalNonmonomialGroup, function( p, factsize )

    local K,          # free group
          Kgens,      # free generators of `K'
          rels,       # relators of `K'
          name,       # name of `K'
          t,          # number with suitable multiplicative order
          form,       # matrix of the commutator form
          x,          # indeterminate
          val,        # one entry in `form'
          i,          # loop
          j,          # loop
          v,          # coefficient vector
          rhs,        # right hand side of a relator when viewed as relation
          q,          # another name for `factsize'
          2m,         # exponent of size of Frattini factor of group $F$
          m,          # half of `2m'
          facts,      # factors of cylotomic polynomial
          coeff,      # coefficients vector of one factor in `facts'
          inv,        # inverse of first in `coeff'
          f,          # `GF(2)'
          s,          # exponent of centre (minus 1) in dihedral case
          W,          # part of matrix of an order 2 automorphism
          Winv,       # part of matrix of an order 2 automorphism
          Atr;        # transposed of $A$

    if   factsize = 4 then

      # $K / F(K)$ is cyclic of order 4,
      # $F(K)$ is extraspecial of order $p^3$ and of exponent $p$
      # where $p \equiv -1 \pmod{4}$.

      if not IsPrimeInt( p ) or p < 3 or ( p + 1 ) mod 4 <> 0 then
        Info( InfoMonomial, 1, "<p> must be a prime congruent 1 mod 4" );
        return fail;
      fi;

      K:= FreeGroup(IsSyllableWordsFamily, 5 );
      Kgens:= GeneratorsOfGroup( K );
      name:= Concatenation( String(p), "^(1+2):4" );
      rels:= [
                # the relators of the cyclic group
                Kgens[1]^2 / Kgens[2], Kgens[2]^2,

                # the relators of the extraspecial group
                Kgens[3]^p, Kgens[4]^p, Kgens[5]^p,
                Kgens[4]^Kgens[3] / ( Kgens[4] * Kgens[5]^-1 ),

                # the action of the cyclic group
                Kgens[3]^Kgens[1] / Kgens[4],
                Kgens[4]^Kgens[1] / Kgens[3]^-1,
                Kgens[3]^Kgens[2] / Kgens[3]^-1,
                Kgens[4]^Kgens[2] / Kgens[4]^-1    ];

    elif factsize = 8 then

      # $K / F(K)$ is quaternion of order 8,
      # $F(K)$ is extraspecial of order $p^3$ and of exponent $p$
      # where $p \equiv 1 \pmod{4}$.

      if not IsPrimeInt( p ) or p < 5 or ( p - 1 ) mod 4 <> 0 then
        Info( InfoMonomial, 1, "<p> must be a prime congruent 1 mod 4" );
        return fail;
      fi;

      # Choose $t$ with $t^2 \equiv -1 \pmod{p}$.
      t:= PrimitiveRootMod( p ) ^ ( (p-1)/4 );

      K:= FreeGroup(IsSyllableWordsFamily, 6 );
      Kgens:= GeneratorsOfGroup( K );
      name:= Concatenation( String(p), "^(1+2):Q8" );
      rels:= [
               # the relators of the quaternion group
               Kgens[1]^2 / Kgens[3], Kgens[2]^2 / Kgens[3], Kgens[3]^2,
               (Kgens[2]^Kgens[1] ) / ( Kgens[2]^-1 ),

               # the relators of the extraspecial group
               Kgens[4]^p, Kgens[5]^p, Kgens[6]^p,
               Kgens[5]^Kgens[4] / ( Kgens[5]*Kgens[6]^-1 ),

               # the action of the quaternion group
               Kgens[4]^Kgens[1] / Kgens[4]^t,
               Kgens[5]^Kgens[1] / Kgens[5]^( (1/t) mod p ),
               Kgens[4]^Kgens[2] / Kgens[5],
               Kgens[5]^Kgens[2] / Kgens[4]^-1,
               Kgens[4]^Kgens[3] / Kgens[4]^-1,
               Kgens[5]^Kgens[3] / Kgens[5]^-1  ];

    elif factsize <> 2 and IsPrimeInt( factsize ) then

      # $K / F(K)$ has order an odd prime $q$.
      # $F(K)$ is extraspecial of order $p^{2m+1}$ and of exponent $p$
      # where $2m$ is the order of $p$ modulo $q$,

      q:= factsize;
      2m:= OrderMod( p, q );

      if 2m = 0 or 2m mod 2 <> 0 then
        Info( InfoMonomial, 1,
              "order of <p> mod <factsize> must be nonzero and even" );
        return fail;
      fi;

      m:= 2m / 2;

      # The `q'-th cyclotomic polynomial splits over the field with
      # `p' elements into factors of degree `2*m'.
      facts:= Factors( CyclotomicPolynomial( GF(p), q ) );

      # Take the coefficients i$a_1, a_2, \ldots, a_{2m}, 1$ of a factor.
      coeff:= IntVecFFE(
          - CoefficientsOfLaurentPolynomial( facts[1] )[1] );

      # Compute the vector $\epsilon$.
      v:= [];
      v[ 2m-1 ]:= 1;
      for i in [ m .. 2m-2 ] do
        v[i]:= 0;
      od;
      for j in [ m-1, m-2 .. 1 ] do
        v[j]:= coeff[ j+2 ] - coeff[j];
        for i in [ 1 .. m-j-1 ] do
          v[j]:= v[j] + v[ m-i ] * coeff[ m+i+j+1 ];
        od;
        v[j]:= v[j] mod p;
      od;

      # Write down the presentation,
      K:= FreeGroup(IsSyllableWordsFamily, 2m+2 );
      Kgens:= GeneratorsOfGroup( K );
      name:= Concatenation( String(p), "^(1+", String( 2m ), "):",
                            String(q) );

      # power relators \ldots
      rels:= [ Kgens[1]^q ];
      if p = 2 then
        for j in [ 2 .. 2m+1 ] do
          Add( rels, Kgens[j]^p / Kgens[2m+2] );
        od;
        Add( rels, Kgens[ 2m+2 ]^p );
      else
        for j in [ 2 .. 2m+2 ] do
          Add( rels, Kgens[j]^p );
        od;
      fi;

      # \ldots action of the automorphism, \ldots
      for j in [ 2 .. 2m ] do
        Add( rels, Kgens[j]^Kgens[1] / Kgens[j+1] );
      od;
      rhs:= One( K );
      for j in [ 1 .. 2m ] do
        rhs:= rhs * Kgens[j+1]^Int( coeff[j] );
      od;

      Add( rels, Kgens[2m+1]^Kgens[1] / rhs );

      # \ldots and commutator relators.
      for i in [ 3 .. 2m+1 ] do
        for j in [ 2 .. i-1 ] do
          Add( rels, Kgens[i]^Kgens[j]
                     / ( Kgens[i] * Kgens[2m+2]^v[ 2m+j-i ] ) );
        od;
      od;

    elif factsize mod 2 = 0 and IsPrimeInt( factsize / 2 ) then

      # $K / F(K)$ is dihedral of order $2 q$ where $q$ is an odd prime.
      # Let $m$ denote the order of 2 mod $q$ (which is odd).
      # $F(K)$ is a central product of an extraspecial group $F$ of order
      # $2^{2m+1}$ (that is purely dihedral) with a cyclic group $C$
      # of order $2^{s+1}$.  Note that in this case the second argument
      # is $s+1$.
      # We have $C = Z(K)$ and $F(K) = C_K( F/Z(F) )$.

      s:= p-1;
      q:= factsize / 2;
      m:= OrderMod( 2, q );

      if m mod 2 = 0 then
        Info( InfoMonomial, 1, "order of 2 mod <factsize>/2 must be odd" );
        return fail;
      fi;

      # The first generator is $t$, the second is $r$,
      # generators 3 to $3+s-1$ are the powers of $t$ that are
      # not contained in $Z(K)$.
      K:= FreeGroup(IsSyllableWordsFamily, 2*m + s + 3 );
      Kgens:= GeneratorsOfGroup( K );
      name:= Concatenation( "2^(1+", String( 2*m ), ")" );
      if 0 < s then
        name:= Concatenation( "(", name, "Y", String( 2^(s+1) ), ")" );
      fi;
      name:= Concatenation( name, ":D", String( factsize ) );

      rels:= [];

      # $t^2$ is a generator of $Z(K)$.
      if s = 0 then

        # $t$ squares to $z$ or the identity, since for $s = 0$ we have
        # $Z(K) = \langle z \rangle$.
        # Here we choose the identity in order to get Dade\'s example.
        rels[1]:= Kgens[1]^2 / One( K );

      else

        # Describe the cyclic group spanned by $t^2$.
        rels[1]:= Kgens[1]^2 / Kgens[2];
        for i in [ 2 .. s ] do
          rels[i]:= Kgens[i]^2 / Kgens[i+1];
        od;
        rels[ s+1 ]:= Kgens[ s+1 ]^2 / Kgens[ 2*m+s+3 ];

      fi;

      # The $(s+2)$-nd generator is $r$, that of order $q$.
      rels[ s+2 ]:= Kgens[ s+2 ]^q;

      # $t$ inverts $r$.
      rels[ s+3 ]:= Kgens[ s+2 ] ^ Kgens[1] / Kgens[ s+2 ]^-1;

      # The remaining $2m+1$ generators form the extraspecial group $F$.
      for i in [ s+3 .. 2*m+s+3 ] do
        rels[ i+1 ]:= Kgens[ i ]^2;
      od;
      for i in [ 1 .. m ] do
        Add( rels, Kgens[ s+2+m+i ]^Kgens[ s+2+i ]
                   / ( Kgens[ s+2+m+i ] / Kgens[ 2*m+s+3 ] ) );
      od;

      # Describe the actions of $t$ and $r$ on $F$.
      # First we construct the matrices of the linear actions on the
      # Frattini factor of $F$.  (Note that because of even characteristic
      # the sign plays no role here.)
      f:= GF(2);
      facts:= Factors( CyclotomicPolynomial( f, q ) );
      coeff:= CoefficientsOfLaurentPolynomial( facts[1] )[1];

      Atr:= NullMat( m, m, f );
      for i in [ 1 .. m-1 ] do
        Atr[i+1][i]:= One( f );
      od;
      for i in [ 1 .. m ] do
        Atr[i][m]:= coeff[i];
      od;

      v:= Zero( f );
      v:= List( Atr, x -> v );
      v[1]:= One( f );
      W:= [ v ];
      for i in [ 2 .. m ] do
        v:= v * Atr;
        W[i]:= v;
      od;

      Winv:= W^-1;

      W     := List( W   , IntVecFFE );
      Winv  := List( Winv, IntVecFFE );
      coeff := IntVecFFE( coeff );

      # The action of $t$ is described by `W' and its inverse.
      for i in [ s+3 .. s+m+2 ] do
        rhs:= One( K );
        for j in [ 1 .. m ] do
          rhs:= rhs * Kgens[ s+2+m+j ]^W[i-s-2][j];
        od;
        Add( rels, Kgens[i] ^ Kgens[1] / rhs );
      od;
      for i in [ s+m+3 .. s+2*m+2 ] do
        rhs:= One( K );
        for j in [ 1 .. m ] do
          rhs:= rhs * Kgens[ s+2+j ]^Winv[i-s-m-2][j];
        od;
        Add( rels, Kgens[i] ^ Kgens[1] / rhs );
      od;

      # The action of $r$ is described by $A$ and its transposed inverse.
      # (first half)
      for i in [ s+3 .. s+m+1 ] do
        Add( rels, Kgens[i] ^ Kgens[s+2] / Kgens[i+1] );
      od;
      rhs:= One( K );
      for j in [ 1 .. m ] do
        rhs:= rhs * Kgens[ s+2+j ]^coeff[j];
      od;
      Add( rels, Kgens[ s+m+2 ] ^ Kgens[s+2] / rhs );

      # (second half)
      for i in [ s+m+3 .. s+2*m+1 ] do
        Add( rels, Kgens[i] ^ Kgens[s+2]
                   / ( Kgens[s+m+3]^coeff[i-s-m-1] * Kgens[i+1] ) );
      od;
      Add( rels, Kgens[ s+2*m+2 ] ^ Kgens[s+2] / Kgens[s+m+3] );

    elif factsize mod 4 = 0 and IsPrimeInt( factsize / 4 ) then

      # $K / F(K)$ is a central extension of the dihedral group of order
      # $2 t$ where $t$ is an odd prime, such that all involutions lift to
      # elements of order 4.  $F(K)$ is an extraspecial $p$-group
      # for an odd prime $p$ with $p \equiv 1 \pmod{4}$.
      # Let $m$ denote the order of $p$ mod $t$, then $F(K)$ is of order
      # $p^{2m+1}$, and $m$ is odd.

      t:= factsize / 4;
      m:= OrderMod( p, t );

      if m mod 2 = 0 or ( p - 1 ) mod 4 <> 0 then
        Info( InfoMonomial, 1,
              "order of <p> mod <t> must be odd, <p> congr. 1 mod 4" );
        return fail;
      fi;

      facts:= Factors( CyclotomicPolynomial( GF(p), t ) );
      coeff:= CoefficientsOfLaurentPolynomial( facts[1] )[1];
      inv:= Int( coeff[1]^-1 );
      coeff:= IntVecFFE( coeff );

      # The symplectic form (that will be used to define the
      # commutator form) is derived from the standard symplectic form
      # for the 2-dimensional vector space over $GF(p^{2m})$ by first
      # blowing up to the $2m$ dimensional vector space over $GF(p)$,
      # and then projecting onto $GF(p)$ (that is, the first component).

      # (We need only the lower triangle of the matrix of the form,
      # and this is nonzero only in the lower left square.)

      form:= [];
      for i in [ 1 .. m ] do
        form[i]:= [];
        for j in [ 1 .. m-i+1 ] do
          form[i][j]:= 0;
        od;
      od;
      form[1][1]:= -1;
      x:= Indeterminate( GF(p) );
      for i in [ 2 .. m ] do
        val:= CoefficientsOfLaurentPolynomial(
                  x^(i+m-2) mod facts[1] );
        val:= - Int( ShiftedCoeffs( val[1], val[2] )[1] );
        for j in [ i .. m ] do
          form[ m+i-j ][j]:= val;
        od;
      od;

      # Write down the presentation.
      K:= FreeGroup(IsSyllableWordsFamily, 2*m + 4 );
      Kgens:= GeneratorsOfGroup( K );
      name:= Concatenation( String(p), "^(1+", String( 2*m), "):2.D",
                            String( factsize/2 ) );

      # power relations,
      rels:= [ Kgens[1]^2 / Kgens[3], Kgens[2]^t / Kgens[3], Kgens[3]^2 ];
      for i in [ 4 .. 2*m+4 ] do
        Add( rels, Kgens[i]^p );
      od;

      # action of the Frattini factor,
      # first the order 4 element
      for i in [ 4 .. m+3 ] do
        Add( rels, Kgens[i]^Kgens[1] / Kgens[ i+m ]^-1 );
        Add( rels, Kgens[ i+m ]^Kgens[1] / Kgens[i] );
      od;
      Add( rels, Kgens[2] ^ Kgens[1] / Kgens[2]^-1 );

      # (The element of order $2t$ ...)
      for i in [ 4 .. m+2 ] do
        Add( rels, Kgens[i]^Kgens[2] / Kgens[i+1]^-1 );
      od;
      rhs:= One( K );
      for i in [ 1 .. m ] do
        rhs:= rhs * Kgens[ i+3 ]^coeff[i];
      od;
      Add( rels, Kgens[ m+3 ]^Kgens[2] / rhs );

      rhs:= One( K );
      for i in [ 1 .. m ] do
        rhs:= rhs * Kgens[ m+i+3 ]^( coeff[i+1] * inv );
      od;
      Add( rels, Kgens[ m+4 ]^Kgens[2] / rhs );

      for i in [ 5 .. m+3 ] do
        Add( rels, Kgens[ m+i ]^Kgens[2] / Kgens[ m+i-1 ]^-1 );
      od;

      # (The central involution of the Fitting factor inverts.)
      for i in [ 4 .. m+3 ] do
        Add( rels, Kgens[i]^Kgens[3] / Kgens[i]^-1 );
        Add( rels, Kgens[ i+m ]^Kgens[3] / Kgens[ i+m ]^-1 );
      od;

      # The extraspecial group is defined by the commutator form
      # constructed above.
      for i in [ m+1 .. 2*m ] do
        for j in [ 1 .. m ] do
          Add( rels, Kgens[i+3]^Kgens[j+3]
                     / ( Kgens[i+3] * Kgens[ 2*m + 4 ]^form[i-m][j] ) );
        od;
      od;

    else
      return fail;
    fi;

    K:= PolycyclicFactorGroup( K, rels );
    ConvertToStringRep( name );
    SetName( K, name );
    return K;
end );


#############################################################################
##
#E