File: fieldfin.gi

package info (click to toggle)
gap 4r8p6-2
  • links: PTS
  • area: main
  • in suites: stretch
  • size: 33,476 kB
  • ctags: 7,663
  • sloc: ansic: 108,841; xml: 47,807; sh: 3,628; perl: 2,342; makefile: 796; asm: 62; awk: 6
file content (917 lines) | stat: -rw-r--r-- 26,836 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
#############################################################################
##
#W  fieldfin.gi                 GAP library                     Werner Nickel
#W                                                         & Martin Schönert
##
##
#Y  Copyright (C)  1997,  Lehrstuhl D für Mathematik,  RWTH Aachen,  Germany
#Y  (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y  Copyright (C) 2002 The GAP Group
##
##  This file    contains  methods for  finite  fields.    Note that  we must
##  distinguish finite fields and fields that  consist of `FFE's.  (The image
##  of the natural embedding of the field  `GF(<q>)' into a field of rational
##  functions is of  course a finite field  but  its elements are  not `FFE's
##  since this would be a property given by their family.)
##
##  Special methods for `FFE's can be found in the file `ffe.gi'.
##
##  1. Miscellaneous Functions
##  2. Groups of FFEs
##  3. Bases of Finite Fields
##  4. Automorphisms of Finite Fields
##


#############################################################################
##
##  1. Miscellaneous Functions
##


#############################################################################
##
#M  GeneratorsOfLeftModule( <F> ) . . . .  the vectors of the canonical basis
##
InstallMethod( GeneratorsOfLeftModule,
    "for a finite field (return the vectors of the canonical basis)",
    [ IsField and IsFinite ],
    function( F )
    local z;
    z:= RootOfDefiningPolynomial( F );
    return List( [ 0 .. Dimension( F ) - 1 ], i -> z^i );
#T call of `UseBasis' ?
    end );


#############################################################################
##
#M  Random( <F> ) . . . . . . . . . . . .  random element from a finite field
##
##  We have special methods for finite prime fields and for fields with
##  primitive root, for efficiency reasons.
##  All other cases are handled by the vector space methods.
##
InstallMethod( Random,
    "for a finite prime field",
    [ IsField and IsPrimeField and IsFinite ],
    F -> Random(1,Size(F)) * One( F ) );

InstallMethod( Random,
    "for a finite field with known primitive root",
    [ IsField and IsFinite and HasPrimitiveRoot ],
    function ( F )
    local   rnd;
    rnd := Random( 0, Size( F )-1 );
    if rnd = 0  then
      rnd := Zero( F );
    else
      rnd := PrimitiveRoot( F )^rnd;
    fi;
    return rnd;
    end );


#############################################################################
##
#M  Units( <F> )  . . . . . . . . . . . . . . . . . . . . via `PrimitiveRoot'
##
InstallMethod( Units,
    "for a finite field",
    [ IsField and IsFinite ],
    F -> GroupByGenerators( [ PrimitiveRoot( F ) ] ) );


#############################################################################
##
#M  \=( <F>, <G> ) . . . . . . . . . . . . . . . . . .  for two finite fields
##
##  Note that for two finite fields in the same family,
##  it suffices to check the dimensions as vector spaces over the (common)
##  prime field.
##
InstallMethod( \=,
    "for two finite fields in the same family",
    IsIdenticalObj,
    [ IsField and IsFinite, IsField and IsFinite ],
    function ( F, G )
    return DegreeOverPrimeField( F ) = DegreeOverPrimeField( G );
    end );


#############################################################################
##
#M  IsSubset( <F>, <G> )  . . . . . . . . . . . . . . . for two finite fields
##
##  Note that for two finite fields in the same family,
##  it suffices to check the dimensions as vector spaces over the (common)
##  prime field.
##
InstallMethod( IsSubset,
    "for two finite fields in the same family",
    IsIdenticalObj,
    [ IsField and IsFinite, IsField and IsFinite ],
    function( F, G )
    return DegreeOverPrimeField( F ) mod DegreeOverPrimeField( G ) = 0;
    end );


#############################################################################
##
#M  Subfields( <F> )  . . . . . . . . . . . . . . subfields of a finite field
##
InstallMethod( Subfields,
    "for finite field of FFEs",
    [ IsField and IsFFECollection ],
    function( F )
    local d, p;
    d:= DegreeOverPrimeField( F );
    p:= Characteristic( F );
    return List( DivisorsInt( d ), n -> GF( p, n ) );
    end );

#############################################################################
##
#M  Subfields( <F> )  . . . . . . . . . . . . . . subfields of a finite field
##
InstallMethod( Subfields, "for finite fields that are not FFEs",
    [ IsField and IsFinite ],
function( F )
local d, p,l,i,mp,fac,S;
  d:= DegreeOverPrimeField( F );
  p:= Characteristic( F );
  l:=[];
  for i in Filtered(DivisorsInt(d),x->x<d) do
    mp:=MinimalPolynomial(GF(p),PrimitiveRoot(GF(p^i)));
    mp:=Value(mp,X(F),One(F));
    fac:=Factors(mp);
    fac:=RootsOfUPol(fac[1])[1]; # one root
    S:=FieldByGenerators([fac]);
    SetDegreeOverPrimeField(S,i);
    SetSize(S,p^i);
    # hack, as there is no good print routine for subfields
    SetName(S,Concatenation("Field([",String(fac),"])"));
    Add(l,S);
  od;
  Add(l,F); # field itself -- save on expensive factorization
  return l;
end );


#############################################################################
##
#M  PrimeField( <F> ) . . . . . . . . . . . . . . . . . .  for a finite field
##
InstallMethod( PrimeField,
    "for finite field of FFEs",
    [ IsField and IsFFECollection ],
    F -> GF( Characteristic( F ) ) );


#############################################################################
##
#M  MinimalPolynomial( <F>, <z>, <inum> )
##
InstallMethod( MinimalPolynomial,
    "finite field, finite field element, and indet. number",
    IsCollsElmsX,
    [ IsField and IsFinite, IsScalar, IsPosInt ],
function( F, z, inum )
    local   df,  dz,  q,  dd,  pol,  deg,  con,  i;

    # get the field in which <z> lies
    df := DegreeOverPrimeField(F);
    dz := DegreeOverPrimeField(DefaultField(z));
    q  := Size(F);
    dd := LcmInt(df,dz) / df;

    # compute the minimal polynomial simply by multiplying $x-cnj$
    pol := [ One(F) ];
    deg := 0;
    for con  in Set( List( [ 0 .. dd-1 ], x -> z^(q^x) ) )  do
        pol[deg+2] := pol[deg+1];
        for i  in [ deg+1, deg .. 2 ]  do
            pol[i] := pol[i-1] -  con*pol[i];
        od;
        pol[1] := -con*pol[1];
        deg := deg + 1;
    od;

    # return the coefficients list of the minimal polynomial
    return UnivariatePolynomial( F, pol, inum );
end );


#############################################################################
##
##  2. Groups of FFEs
##


#############################################################################
##
#M  IsHandledByNiceMonomorphism( <G> )  . . . . . . `true' for groups of FFEs
##
InstallTrueMethod( IsHandledByNiceMonomorphism,
    IsGroup and IsFFECollection );


#############################################################################
##
#M  IsCyclic( <G> ) . . . . . . . . . . . . . . . . groups of FFEs are cyclic
##
InstallTrueMethod( IsCyclic, IsGroup and IsFFECollection );


#############################################################################
##
#M  <elm> in <G>  . . . . . . . . . . . . . . . . . . . . via `PrimitiveRoot'
##
InstallMethod( \in,
    "for groups of FFE",
    IsElmsColls,
    [ IsFFE, IsGroup and IsFFECollection ],
    function( elm, G )
    local F;

    F:= Field( Concatenation( GeneratorsOfGroup( G ), [ One( G ) ] ) );
    return     elm in F and not IsZero( elm )
           and LogFFE( elm, PrimitiveRoot( F ) ) mod
               ( ( Size( F ) - 1 ) / Size( G ) ) = 0;
    end );


#############################################################################
##
#M  Size( <G> ) . . . . . . . . . . . . . . . . . . . . . via `PrimitiveRoot'
##
InstallMethod( Size,
    "for groups of FFE",
    [ IsGroup and IsFFECollection ],
    function( G )
    local   gens, F, z, k;

    if IsTrivial( G )  then
        return 1;
    fi;

    gens := GeneratorsOfGroup( G );
    F := Field( gens );
    z := PrimitiveRoot( F );
    k := Gcd( Integers, List( gens, g -> LogFFE(g, z) ) );
    return ( Size( F ) - 1 ) /  GcdInt(k, ( Size( F ) - 1 ));
end );


#############################################################################
##
#M  AbelianInvariants( <G> ) . . . . . . . . . . . . . .  via `PrimitiveRoot'
##
InstallMethod( AbelianInvariants,
    "for groups of FFE",
    [ IsGroup and IsFFECollection ],
    G -> AbelianInvariantsOfList( [Size( G )] ) );

#############################################################################
##
#M  CanEasilyComputeWithIndependentGensAbelianGroup( <G> )
##
InstallTrueMethod(CanEasilyComputeWithIndependentGensAbelianGroup,
    IsGroup and IsFFECollection);

#############################################################################
##
#M  IndependentGeneratorsOfAbelianGroup( <G> ) . . . . .  via `PrimitiveRoot'
##
InstallMethod( IndependentGeneratorsOfAbelianGroup,
    "for groups of FFE",
    [ IsGroup and IsFFECollection ],
    function( G )
    local   F, g, base, ord, o, cf, j;

    if IsTrivial( G )  then
        return [];
    fi;

    F := Field( GeneratorsOfGroup( G ) );
    g := PrimitiveRoot( F ) ^ ( ( Size( F ) - 1 ) / Size( G ) );
    base := [];
    ord := [];
    o := Order( g );
    cf:=Collected( Factors( o ) );
    for j in cf do
        j := j[1]^j[2];
        Add( base, g^(o/j) );
        Add( ord, j );
    od;
    SortParallel(ord,base);
    return base;
end );

#############################################################################
##
#M  IndependentGeneratorExponents( <G> ) . . . . . . . .  via `PrimitiveRoot'
##
InstallMethod( IndependentGeneratorExponents,
    "for groups of FFE",
    IsCollsElms,
    [ IsGroup and IsFFECollection, IsFFE ],
    function( G, elm )
    local   F, z, gens, j, exps;

    if IsTrivial( G )  then
        return [];
    fi;

    F := Field( GeneratorsOfGroup( G ) );
    z := PrimitiveRoot( F );
    gens := IndependentGeneratorsOfAbelianGroup( G );

    # We need to compute LogFFE for every element of gens, which is
    # in general quite expensive. But if gens was computed by our
    # IndependentGeneratorsOfAbelianGroup method, then we actually
    # know the LogFFE value. Since verifying this is cheap, try that
    # first before resorting to LogFFE.
    exps := List( gens, g -> ( Size(F) - 1 ) / Order( g ) );

    if ForAny( [ 1 .. Length(exps) ], i -> gens[i] <> z^exps[i] ) then
        # We have to do it the hard way...
        exps := List( gens, g -> LogFFE( g, z ) );
    fi;

    j := LogFFE( elm, z );
    exps := List( [1..Length(exps)], i -> ( j / exps[i] ) mod Order( gens[i] ) );

    Assert( 0, elm = Product( [1..Length(exps)], i -> gens[i]^exps[i]) );
    return exps;
end );


#############################################################################
##
##  3. Bases of Finite Fields
##
##  *Note*:  Bases of *subspaces* of fields which are themselves not fields
##  are handled by the mechanism of nice bases (see `field.gi').
##


#############################################################################
##
#R  IsBasisFiniteFieldRep( <F> )
##
##  Bases of finite fields in the representation `IsBasisFiniteFieldRep'
##  are dealt with as follows.
##
##  Coefficients w.r.t.~a basis $B = (b_0, b_1, \ldots, b_d)$ of the field
##  extension $GF(q^{d+1})$ over $GF(q)$ can be computed as follows.
##  $x \in GF(q^{d+1})$ is of the form $x = \sum_{i=0}^d a_i b_i$,
##  with $a_i \in GF(q)$, if and only if for $0 \leq k \leq d$ the equation
##  $x^{q^k} = \sum_{i=0}^d a_i b_i^{q^k}$ holds.
##  Thus we have the matrix equation
##  $$
##  [ x^{q^k} ]_{k=0}^d = [ a_i ]_{i=0}^d [ b_i^{q^k} ]_{i,k=0}^d ,
##  $$
##  from which the coefficients $a_i$ can be computed.
##  The inverse of the matrix $[ b_i^{q^k} ]_{i,k=0}^d$ is stored in the
##  basis as value of the component `inverseBase'.
##
DeclareRepresentation( "IsBasisFiniteFieldRep",
    IsAttributeStoringRep,
    [ "inverseBase", "d", "q" ] );

InstallTrueMethod( IsFinite, IsBasis and IsBasisFiniteFieldRep );


#############################################################################
##
#M  Basis( <F> )
##
##  We know a canonical basis for finite fields.
##
InstallMethod( Basis,
    "for a finite field (delegate to `CanonicalBasis')",
    [ IsField and IsFinite ], CANONICAL_BASIS_FLAGS,
    CanonicalBasis );


#############################################################################
##
#M  Basis( <F>, <gens> )
#M  BasisNC( <F>, <gens> )
##
InstallMethod( Basis,
    "for a finite field, and a hom. list",
    IsIdenticalObj,
    [ IsField and IsFinite, IsFFECollection and IsList ],
    function( F, gens )

    local B,     # the basis, result
          q,     # size of the subfield
          d,     # dimension of the extension
          mat,
          b,b1,
          cnjs,
          k;

    # Set up the basis object.
    B:= Objectify( NewType( FamilyObj( gens ),
                                IsFiniteBasisDefault
                            and IsBasisFiniteFieldRep ),
                   rec() );
    SetUnderlyingLeftModule( B, F );
    SetBasisVectors( B, gens );

    # Get the size `q' of the subfield and the dimension `d'
    # of the extension with respect to the subfield.
    q:= Size( LeftActingDomain( F ) );
    d:= Dimension( F );

    # Test that the basis vectors really define the
    # (unique) finite field extension of degree `d'.
    if d <> Length( gens ) then
      return fail;
    fi;

    # Build the matrix `M[i][k] = vectors[i]^(q^k)'.
    mat:= [];
    for b in gens do
        cnjs := [];
        b1 := b;
        cnjs := [b];
        for k in [ 1 .. d-1 ] do
            b1 := b1^q;
            Add( cnjs, b1 );
        od;
        Add( mat, cnjs );
    od;

    # We have a basis if and only if `mat' is invertible.
    if Length(mat) > 0 then
        mat:= Inverse( mat );
        if mat = fail then
            return fail;
        fi;
    else
        mat := Immutable(mat);
    fi;

    # Add the coefficients information.
    B!.inverseBase:= mat;
    B!.d:= d;
    B!.q:= q;

    # Return the basis.
    return B;
    end );

InstallMethod( BasisNC,
    "for a finite field, and a hom. list",
    IsIdenticalObj,
    [ IsField and IsFinite, IsHomogeneousList ], 10,
    function( F, gens )

    local B,     # the basis, result
          q,     # size of the subfield
          d,     # dimension of the extension
          mat,
          b,b1,
          cnjs,
          k;

    # Set up the basis object.
    B:= Objectify( NewType( FamilyObj( gens ),
                                IsFiniteBasisDefault
                            and IsBasisFiniteFieldRep ),
                   rec() );
    SetUnderlyingLeftModule( B, F );
    SetBasisVectors( B, gens );

    # Get the size `q' of the subfield and the dimension `d'
    # of the extension with respect to the subfield.
    q:= Size( LeftActingDomain( F ) );
    d:= Dimension( F );

    # Build the matrix `M[i][k] = vectors[i]^(q^k)'.
    mat:= [];
    for b in gens do
        cnjs := [b];
        b1 := b;
        for k in [ 1 .. d-1 ] do
            b1 := b1^q;
            Add( cnjs, b1 );
        od;
        Add( mat, cnjs );
    od;

    # Add the coefficients information.
    if Length(mat) > 0 then
        B!.inverseBase:= Inverse( mat );
    else
        B!.inverseBase:= Immutable(mat);
    fi;
    B!.d:= d;
    B!.q:= q;

    # Return the basis.
    return B;
    end );


#############################################################################
##
#M  Coefficients( <B>, <z> )  . . . . . . . . . . for basis of a finite field
##
InstallMethod( Coefficients,
    "for a basis of a finite field, and a scalar",
    IsCollsElms,
    [ IsBasis and IsBasisFiniteFieldRep, IsScalar ],
    function ( B, z )
    local   q, d, k, zz;

    if   not z in UnderlyingLeftModule( B ) then
      return fail;
    fi;

    # Get the size `q' of the subfield and the degree `d' of the extension
    # with respect to the subfield.
    q := B!.q;
    d := B!.d;

    # Compute the vector of conjugates of `z'.
    zz := [];
    for k  in [0..d-1]  do
        Add( zz, z^(q^k) );
    od;

    # The `inverseBase' component of the basis defines the base change
    # to the normal basis.
    return zz * B!.inverseBase;
    end );


#############################################################################
##
#M  LinearCombination( <B>, <coeffs> )
##
InstallMethod( LinearCombination,
    "for a basis of a finite field, and a hom. list",
    IsIdenticalObj,
    [ IsBasis and IsBasisFiniteFieldRep, IsHomogeneousList ],
        function ( B, coeffs )
    if Length(coeffs) = 0 then
        TryNextMethod();
    fi;
    return coeffs * BasisVectors( B );
#T This calls PROD_LIST_LIST_DEFAULT
#T if both lists are known to be small,
#T and PROD_LIST_LIST_TRY otherwise!
#T Is this method necessary at all??
    end );


#############################################################################
##
#M  CanonicalBasis( <F> )
##
##  The canonical basis of the finite field with $p^n$ elements, viewed over
##  its subfield with $p^d$ elements, consists of the vectors `<z> ^ <i>',
##  $0 \leq i \< n/d$, where <z> is the primitive root of <F>.
##
InstallMethod( CanonicalBasis,
    "for a finite field",
    [ IsField and IsFinite ],
    function( F )
    local z,         # primitive root
          B;         # basis record, result

    z:= RootOfDefiningPolynomial( F );
    B:= BasisNC( F, List( [ 0 .. Dimension( F ) - 1 ], i -> z ^ i ) );
    SetIsCanonicalBasis( B, true );

    # Return the basis object.
    return B;
    end );


#############################################################################
##  
#M  NormalBase( <F>, <elm> )
##  
##  For finite fields just search.
##  
InstallMethod( NormalBase,
"for a finite field and scalar",
    [ IsField and IsFinite, IsScalar ],
function(F, b)
    local q, d, z, l, bas, i;
    if b=0*b then
        b := One(F);
    fi;
    q := Size(LeftActingDomain(F));
    d := Dimension(F);
    z := PrimitiveRoot(F);
    repeat
        l := [b];
        for i in [1..d-1] do
          Add(l, l[i]^q);
        od;
        bas := Basis(F, l);
        b := b*z;
    until bas <> fail;
    return l;
end);


#############################################################################
##
##  4. Automorphisms of Finite Fields
##


#############################################################################
##
#R  IsFrobeniusAutomorphism( <obj> )  . test if an object is a Frobenius aut.
##
DeclareRepresentation( "IsFrobeniusAutomorphism",
        IsFieldHomomorphism
    and IsMapping
    and IsAttributeStoringRep,
    [ "power" ] );


#############################################################################
##
#F  FrobeniusAutomorphism(<F>)  . .  Frobenius automorphism of a finite field
##
BindGlobal( "FrobeniusAutomorphismI", function ( F, i )

    local Fam, frob;

    # Catch the bad case.
    if Size( F ) = 2 then
      i:= 1;
    else
      i:= i mod ( Size( F ) - 1 );
    fi;

    if i = 1 then
      return IdentityMapping( F );
    fi;

    Fam:= ElementsFamily( FamilyObj( F ) );

    # make the mapping object
    frob:= Objectify( TypeOfDefaultGeneralMapping( F, F,
                              IsFrobeniusAutomorphism
                          and IsSPGeneralMapping
                          and IsRingWithOneHomomorphism
                          and IsBijective ),
                      rec() );

    frob!.power := i;

    return frob;
end );

InstallMethod( FrobeniusAutomorphism,
    "for a field",
    [ IsField ],
    function ( F )

    # check the arguments
    if not IsPosRat( Characteristic( F ) ) then
        Error( "<F> must be a field of nonzero characteristic" );
    fi;

    # return the automorphism
    return FrobeniusAutomorphismI( F, Characteristic( F ) );
end );


#############################################################################
##
#M  \=( <frob1>, <frob2> )
#M  \=( <id>, <frob> )
#M  \=( <frob>, <id> )
##
InstallMethod( \=,
    "for two Frobenius automorphisms",
    IsIdenticalObj,
    [ IsFrobeniusAutomorphism, IsFrobeniusAutomorphism ],
    function( aut1, aut2 )
    return Source( aut1 ) = Source( aut2 ) and aut1!.power  = aut2!.power;
    end );

InstallMethod( \=,
    "for identity mapping and Frobenius automorphism",
    IsIdenticalObj,
    [ IsMapping and IsOne, IsFrobeniusAutomorphism ],
    function( id, aut )
    return Source( id ) = Source( aut ) and aut!.power = 1;
    end );

InstallMethod( \=,
    "for Frobenius automorphism and identity mapping",
    IsIdenticalObj,
    [ IsFrobeniusAutomorphism, IsMapping and IsOne ],
    function( aut, id )
    return Source( id ) = Source( aut ) and aut!.power = 1;
    end );

InstallMethod( ImageElm,
    "for Frobenius automorphism and source element",
    FamSourceEqFamElm,
    [ IsFrobeniusAutomorphism, IsObject ],
    function( aut, elm )
    return elm ^ aut!.power;
    end );

InstallMethod( ImagesElm,
    "for Frobenius automorphism and source element",
    FamSourceEqFamElm,
    [ IsFrobeniusAutomorphism, IsObject ],
    function( aut, elm )
    return [ elm ^ aut!.power ];
    end );

InstallMethod( ImagesSet,
    "for Frobenius automorphism and field contained in the source",
    CollFamSourceEqFamElms,
    [ IsFrobeniusAutomorphism, IsField ],
    function( aut, elms )
    return elms;
    end );

InstallMethod( ImagesRepresentative,
    "for Frobenius automorphism and source element",
    FamSourceEqFamElm,
    [ IsFrobeniusAutomorphism, IsObject ],
    function( aut, elm )
    return elm ^ aut!.power;
    end );

InstallMethod( CompositionMapping2,
    "for two Frobenius automorphisms",
    IsIdenticalObj,
    [ IsFrobeniusAutomorphism, IsFrobeniusAutomorphism ],
    function( aut1, aut2 )
    if Characteristic( Source( aut1 ) )
       = Characteristic( Source( aut2 ) ) then
      return FrobeniusAutomorphismI( Source( aut1 ),
                                     aut1!.power * aut2!.power );
    else
      Error( "Frobenius automorphisms of different characteristics" );
    fi;
    end );

InstallMethod( InverseGeneralMapping,
    "for a Frobenius automorphism",
    [ IsFrobeniusAutomorphism ],
    aut -> FrobeniusAutomorphismI( Source( aut ),
                                   Size( Source( aut ) ) / aut!.power ) );

InstallMethod( \^,
    "for a Frobenius automorphism, and an integer",
    [ IsFrobeniusAutomorphism, IsInt ],
    function ( aut, i )
    return FrobeniusAutomorphismI( Source( aut ),
                   PowerModInt( aut!.power, i, Size( Source( aut ) ) - 1 ) );
    end );

InstallMethod( \<,
    "for an identity mapping, and a Frobenius automorphism",
    IsIdenticalObj,
    [ IsMapping and IsOne, IsFrobeniusAutomorphism ],
    function ( id, aut )
    local source1, # source of `id'
          source2, # source of `aut'
          p,       # characteristic
          root,    # primitive root of source
          size,    # size of source
          d,       # degree
          gen;     # generator of cyclic group of subfield

    source1:= Source( id );
    source2:= Source( aut );
    if source1 <> source2 then
      return source1 < source2;
    elif    PrimitiveRoot( source1 )
         <> PrimitiveRoot( source2 ) then
      return   PrimitiveRoot( source1 )
             < PrimitiveRoot( source2 );
#T o.k.?
    else
        p := Characteristic( source1 );
        root:= PrimitiveRoot( source1 );
        size:= Size( source1 );
        for d  in DivisorsInt( LogInt( size, p ) )  do
            gen:= root^( ( size - 1 ) / ( p^d - 1 ) );
            if gen <> gen ^ aut!.power  then
                return gen < gen ^ aut!.power;
            fi;
        od;
        return false;
    fi;
    end );

InstallMethod( \<,
    "for a Frobenius automorphism, and an identity mapping",
    IsIdenticalObj,
    [ IsFrobeniusAutomorphism, IsMapping and IsOne ],
    function ( aut, id )
    local source1, # source of `aut'
          source2, # source of `id'
          p,       # characteristic
          root,    # primitive root of source
          size,    # size of source
          d,       # degree
          gen;     # generator of cyclic group of subfield

    source1:= Source( aut );
    source2:= Source( id );
    if source1 <> source2 then
      return source1 < source2;
    elif    PrimitiveRoot( source1 )
         <> PrimitiveRoot( source2 ) then
      return   PrimitiveRoot( source1 )
             < PrimitiveRoot( source2 );
#T o.k.?
    else
        p := Characteristic( source1 );
        root:= PrimitiveRoot( source1 );
        size:= Size( source1 );
        for d  in DivisorsInt( LogInt( size, p ) )  do
            gen:= root^( ( size - 1 ) / ( p^d - 1 ) );
            if gen ^ aut!.power <> gen then
                return gen ^ aut!.power < gen;
            fi;
        od;
        return false;
    fi;
    end );

InstallMethod( \<,
    "for two Frobenius automorphisms",
    IsIdenticalObj,
    [ IsFrobeniusAutomorphism, IsFrobeniusAutomorphism ],
    function ( aut1, aut2 )
    local source1, # source of `aut1'
          source2, # source of `aut2'
          p,       # characteristic
          root,    # primitive root of source
          size,    # size of source
          d,       # degree
          gen;     # generator of cyclic group of subfield

    source1:= Source( aut1 );
    source2:= Source( aut2 );
    if source1 <> source2 then
      return source1 < source2;
    elif    PrimitiveRoot( source1 )
         <> PrimitiveRoot( source2 ) then
      return   PrimitiveRoot( source1 )
             < PrimitiveRoot( source2 );
#T o.k.?
    else
        p := Characteristic( source1 );
        root:= PrimitiveRoot( source1 );
        size:= Size( source1 );
        for d  in DivisorsInt( LogInt( size, p ) )  do
            gen:= root^( ( size - 1 ) / ( p^d - 1 ) );
            if gen ^ aut1!.power <> gen ^ aut2!.power  then
                return gen ^ aut1!.power < gen ^ aut2!.power;
            fi;
        od;
        return false;
    fi;
    end );

InstallMethod( PrintObj,
    "for a Frobenius automorphism",
    [ IsFrobeniusAutomorphism ],
    function ( aut )
    if aut!.power = Characteristic( Source( aut ) ) then
        Print( "FrobeniusAutomorphism( ", Source( aut ), " )" );
    else
        Print( "FrobeniusAutomorphism( ", Source( aut ), " )^",
               LogInt( aut!.power, Characteristic( Source( aut ) ) ) );
    fi;
    end );


#############################################################################
##
#M  GaloisGroup( <F> )  . . . . . . . . . . .  Galois group of a finite field
##
InstallMethod( GaloisGroup,
    "for a finite field",
    [ IsField and IsFinite ],
    F -> GroupByGenerators(
            [ FrobeniusAutomorphismI( F, Size( LeftActingDomain(F) ) ) ] ) );


#############################################################################
##
#E