File: invsgp.gd

package info (click to toggle)
gap 4r8p6-2
  • links: PTS
  • area: main
  • in suites: stretch
  • size: 33,476 kB
  • ctags: 7,663
  • sloc: ansic: 108,841; xml: 47,807; sh: 3,628; perl: 2,342; makefile: 796; asm: 62; awk: 6
file content (43 lines) | stat: -rw-r--r-- 1,735 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
#############################################################################
##
#W  invsgp.gd              GAP library                         J. D. Mitchell
##
#Y  Copyright (C)  1997,  Lehrstuhl D für Mathematik,  RWTH Aachen,  Germany
#Y  (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y  Copyright (C) 2002 The GAP Group
##
##  This file contains the declaration of operations for inverse semigroups.
##

DeclareSynonym("IsInverseMonoid", IsMonoid and IsInverseSemigroup);

DeclareOperation("IsInverseSubsemigroup", [IsSemigroup, IsSemigroup]);

DeclareGlobalFunction("InverseMonoid");
DeclareGlobalFunction("InverseSemigroup");

DeclareProperty("IsGeneratorsOfInverseSemigroup", IsListOrCollection);
InstallTrueMethod(IsGeneratorsOfSemigroup, IsGeneratorsOfInverseSemigroup);

DeclareAttribute("GeneratorsOfInverseMonoid", IsInverseSemigroup);
DeclareAttribute("GeneratorsOfInverseSemigroup", IsInverseSemigroup);

DeclareOperation("InverseMonoidByGenerators", [IsCollection]);
DeclareOperation("InverseSemigroupByGenerators", [IsCollection]);

DeclareOperation("InverseSubsemigroup",
[IsInverseSemigroup, IsCollection]);
DeclareOperation("InverseSubsemigroupNC",
[IsInverseSemigroup, IsCollection]);
DeclareOperation("InverseSubmonoid",
[IsInverseMonoid, IsCollection]);
DeclareOperation("InverseSubmonoidNC",
[IsInverseMonoid, IsCollection]);

DeclareAttribute("AsInverseSemigroup", IsCollection);
DeclareAttribute("AsInverseMonoid", IsCollection);
DeclareOperation("AsInverseSubsemigroup", [IsDomain, IsCollection]);
DeclareOperation("AsInverseSubmonoid", [IsDomain, IsCollection]);

DeclareAttribute("ReverseNaturalPartialOrder", IsSemigroup);
DeclareAttribute("NaturalPartialOrder", IsSemigroup);