File: oprt.gd

package info (click to toggle)
gap 4r8p6-2
  • links: PTS
  • area: main
  • in suites: stretch
  • size: 33,476 kB
  • ctags: 7,663
  • sloc: ansic: 108,841; xml: 47,807; sh: 3,628; perl: 2,342; makefile: 796; asm: 62; awk: 6
file content (2622 lines) | stat: -rw-r--r-- 88,678 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
#############################################################################
##
#W  oprt.gd                     GAP library                    Heiko Theißen
##
##
#Y  Copyright (C)  1997,  Lehrstuhl D für Mathematik,  RWTH Aachen, Germany
#Y  (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y  Copyright (C) 2002 The GAP Group
##

DeclareInfoClass( "InfoAction" );
DeclareSynonym( "InfoOperation",InfoAction );


#############################################################################
##
#C  IsExternalSet(<obj>)
##
##  <#GAPDoc Label="IsExternalSet">
##  <ManSection>
##  <Filt Name="IsExternalSet" Arg='obj' Type='Category'/>
##
##  <Description>
##  An <E>external set</E> specifies a group action
##  <M>\mu: \Omega \times G \mapsto \Omega</M> of a group <M>G</M>
##  on a domain <M>\Omega</M>. The external set knows the group,
##  the domain and the actual acting function.
##  Mathematically, an external set is the set&nbsp;<M>\Omega</M>,
##  which is endowed with the action of a group <M>G</M> via the group action
##  <M>\mu</M>.
##  For this reason &GAP; treats an external set as a domain whose elements
##  are the  elements of <M>\Omega</M>.
##  An external set is always a union of orbits.
##  Currently the domain&nbsp;<M>\Omega</M> must always be finite.
##  If <M>\Omega</M> is not a list,
##  an enumerator for <M>\Omega</M> is automatically chosen,
##  see <Ref Func="Enumerator"/>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareCategory( "IsExternalSet", IsDomain );

OrbitishReq  := [ IsGroup, IsListOrCollection, IsObject,
                  IsList,
                  IsList,
                  IsFunction ];
OrbitsishReq := [ IsGroup, IsListOrCollection,
                  IsList,
                  IsList,
                  IsFunction ];

#############################################################################
##
#R  IsExternalSubset(<obj>)
##
##  <#GAPDoc Label="IsExternalSubset">
##  <ManSection>
##  <Filt Name="IsExternalSubset" Arg='obj' Type='Representation'/>
##
##  <Description>
##  An external subset is the restriction  of an external  set to a subset
##  of the domain (which must be invariant under the action). It is again an
##  external set.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareRepresentation( "IsExternalSubset",
    IsComponentObjectRep and IsAttributeStoringRep and IsExternalSet,
    [ "start" ] );


#############################################################################
##
#R  IsExternalOrbit(<obj>)
##
##  <#GAPDoc Label="IsExternalOrbit">
##  <ManSection>
##  <Filt Name="IsExternalOrbit" Arg='obj' Type='Representation'/>
##
##  <Description>
##  An external orbit is an external subset consisting of one orbit.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareRepresentation( "IsExternalOrbit",
    IsExternalSubset, [ "start" ] );
DeclareCategory( "IsExternalSetByPcgs", IsExternalSet );



#############################################################################
##
#R  IsExternalSetDefaultRep(<obj>)
#R  IsExternalSetByActorsRep(<obj>)
##
##  <ManSection>
##  <Filt Name="IsExternalSetDefaultRep" Arg='obj' Type='Representation'/>
##  <Filt Name="IsExternalSetByActorsRep" Arg='obj' Type='Representation'/>
##
##  <Description>
##  External sets  can be specified  directly (<C>IsExternalSetDefaultRep</C>), or
##  via <A>gens</A> and <A>acts</A> (<C>IsExternalSetByActorsRep</C>).
##  </Description>
##  </ManSection>
##
DeclareRepresentation( "IsExternalSetDefaultRep",
    IsAttributeStoringRep and IsExternalSet,
    [  ] );
DeclareRepresentation( "IsExternalSetByActorsRep",
    IsAttributeStoringRep and IsExternalSet,
    [ "generators", "operators", "funcOperation" ] );
DeclareSynonym( "IsExternalSetByOperatorsRep",IsExternalSetByActorsRep);

#############################################################################
##
#A  ActingDomain( <xset> )
##
##  <#GAPDoc Label="ActingDomain">
##  <ManSection>
##  <Attr Name="ActingDomain" Arg='xset'/>
##
##  <Description>
##  This attribute returns the group with which the external set <A>xset</A> was
##  defined.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "ActingDomain", IsExternalSet );

#############################################################################
##
#A  HomeEnumerator( <xset> )
##
##  <#GAPDoc Label="HomeEnumerator">
##  <ManSection>
##  <Attr Name="HomeEnumerator" Arg='xset'/>
##
##  <Description>
##  returns an enumerator of the action domain with which the external set
##  <A>xset</A> was defined.
##  For external subsets, this is in general different from the
##  <Ref Func="Enumerator"/> value of <A>xset</A>,
##  which enumerates only the subset.
##  <Example><![CDATA[
##  gap> ActingDomain(e);
##  Group([ (1,2,3), (2,3,4) ])
##  gap> FunctionAction(e)=OnRight;
##  true
##  gap> HomeEnumerator(e);
##  [ (), (2,3,4), (2,4,3), (1,2)(3,4), (1,2,3), (1,2,4), (1,3,2), 
##    (1,3,4), (1,3)(2,4), (1,4,2), (1,4,3), (1,4)(2,3) ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "HomeEnumerator", IsExternalSet );

DeclareRepresentation( "IsActionHomomorphism",
    IsGroupHomomorphism and IsAttributeStoringRep and
    IsPreimagesByAsGroupGeneralMappingByImages, [  ] );

DeclareRepresentation( "IsActionHomomorphismByActors",
      IsActionHomomorphism, [  ] );

DeclareRepresentation("IsActionHomomorphismSubset",IsActionHomomorphism,[]);

#############################################################################
##
#A  ActionKernelExternalSet( <xset> )
##
##  <ManSection>
##  <Attr Name="ActionKernelExternalSet" Arg='xset'/>
##
##  <Description>
##  This attribute gives the kernel of the <C>ActionHomomorphism</C> for <A>xset</A>.
##  <P/>
##  <!--  At the moment no methods exist, the attribute is solely used to transfer-->
##  <!--  information. -->
##  </Description>
##  </ManSection>
##
DeclareAttribute( "ActionKernelExternalSet", IsExternalSet );

#############################################################################
##
#R  IsActionHomomorphismByBase(<obj>)
##
##  <ManSection>
##  <Filt Name="IsActionHomomorphismByBase" Arg='obj' Type='Representation'/>
##
##  <Description>
##  This is chosen if <C>HasBaseOfGroup( <A>xset</A> )</C>.
##  </Description>
##  </ManSection>
##
DeclareRepresentation( "IsActionHomomorphismByBase",
      IsActionHomomorphism, [  ] );

#############################################################################
##
#R  IsConstituentHomomorphism(<obj>)
##
##  <ManSection>
##  <Filt Name="IsConstituentHomomorphism" Arg='obj' Type='Representation'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareRepresentation( "IsConstituentHomomorphism",
    IsActionHomomorphism, [ "conperm" ] );

DeclareRepresentation( "IsBlocksHomomorphism",
    IsActionHomomorphism, [ "reps" ] );

#############################################################################
##
#R  IsLinearActionHomomorphism(<hom>)
##
##  <ManSection>
##  <Filt Name="IsLinearActionHomomorphism" Arg='hom' Type='Representation'/>
##
##  <Description>
##  This   representation is chosen  for  action homomorphisms from matrix
##  groups acting naturally on a set of vectors.
##  </Description>
##  </ManSection>
##
DeclareRepresentation( "IsLinearActionHomomorphism",
      IsActionHomomorphism, [  ] );

#############################################################################
##
#R  IsProjectiveActionHomomorphism(<hom>)
##
##  <ManSection>
##  <Filt Name="IsProjectiveActionHomomorphism" Arg='hom' Type='Representation'/>
##
##  <Description>
##  This   representation is chosen  for  action homomorphisms from matrix
##  groups acting projectively on a set of normed vectors.
##  </Description>
##  </ManSection>
##
DeclareRepresentation( "IsProjectiveActionHomomorphism",
      IsActionHomomorphism, [  ] );

#############################################################################
##
#A  LinearActionBasis(<hom>)
##
##  <ManSection>
##  <Attr Name="LinearActionBasis" Arg='hom'/>
##
##  <Description>
##  for action homomorphisms in the representation
##  <C>IsLinearActionHomomorphism</C> or
##  <C>IsProjectiveActionHomomorphism</C>,
##  this attribute contains a vector space
##  basis as subset of the domain or <K>fail</K> if the domain does not span the
##  vector space that the group acts on.
##  groups acting naturally on a set of vectors.
##  </Description>
##  </ManSection>
##
DeclareAttribute( "LinearActionBasis",IsLinearActionHomomorphism);

#############################################################################
##
#A  FunctionAction( <xset> )
##
##  <#GAPDoc Label="FunctionAction">
##  <ManSection>
##  <Attr Name="FunctionAction" Arg='xset'/>
##
##  <Description>
##  is the acting function with which the external set <A>xset</A> was
##  defined.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "FunctionAction", IsExternalSet );

#############################################################################
##
#A  StabilizerOfExternalSet( <xset> ) .  stabilizer of `Representative(xset)'
##
##  <#GAPDoc Label="StabilizerOfExternalSet">
##  <ManSection>
##  <Attr Name="StabilizerOfExternalSet" Arg='xset'/>
##
##  <Description>
##  computes the stabilizer of the <Ref Func="Representative"/> value of
##  the external set <A>xset</A>.
##  The stabilizer will have the acting group of <A>xset</A> as its parent.
##  <Example><![CDATA[
##  gap> Representative(e);
##  (1,2,3)
##  gap> StabilizerOfExternalSet(e);
##  Group([ (1,2,3) ])
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "StabilizerOfExternalSet", IsExternalSet );

#############################################################################
##
#A  CanonicalRepresentativeOfExternalSet( <xset> )
##
##  <#GAPDoc Label="CanonicalRepresentativeOfExternalSet">
##  <ManSection>
##  <Attr Name="CanonicalRepresentativeOfExternalSet" Arg='xset'/>
##
##  <Description>
##  The canonical representative of an external set <A>xset</A> may only
##  depend on the defining attributes <A>G</A>, <A>Omega</A>, <A>act</A>
##  of <A>xset</A> and (in the case of external subsets)
##  <C>Enumerator( <A>xset</A> )</C>.
##  It must <E>not</E> depend, e.g., on the representative of an external
##  orbit.
##  &GAP; does not know methods for arbitrary external sets to compute a
##  canonical representative,
##  see <Ref Func="CanonicalRepresentativeDeterminatorOfExternalSet"/>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "CanonicalRepresentativeOfExternalSet", IsExternalSet );


#############################################################################
##
#A  CanonicalRepresentativeDeterminatorOfExternalSet( <xset> )
##
##  <#GAPDoc Label="CanonicalRepresentativeDeterminatorOfExternalSet">
##  <ManSection>
##  <Attr Name="CanonicalRepresentativeDeterminatorOfExternalSet" Arg='xset'/>
##
##  <Description>
##  returns a function that takes as its arguments the acting group and a
##  point.
##  This function returns a list of length 1 or 3,
##  the first entry being the canonical representative and the other entries
##  (if bound) being the stabilizer of the canonical representative and a
##  conjugating element, respectively.
##  An external set is only guaranteed to be able to compute a canonical
##  representative if it has a
##  <Ref Func="CanonicalRepresentativeDeterminatorOfExternalSet"/>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "CanonicalRepresentativeDeterminatorOfExternalSet",
    IsExternalSet );

#############################################################################
##
#P  CanEasilyDetermineCanonicalRepresentativeExternalSet( <xset> )
##
##  <ManSection>
##  <Prop Name="CanEasilyDetermineCanonicalRepresentativeExternalSet" Arg='xset'/>
##
##  <Description>
##  This property indicates whether an extrenal set knows or has a
##  possibility to determine a canonical representative
##  </Description>
##  </ManSection>
##
DeclareAttribute( "CanEasilyDetermineCanonicalRepresentativeExternalSet",
    IsExternalSet );

InstallTrueMethod(CanEasilyDetermineCanonicalRepresentativeExternalSet,
  HasCanonicalRepresentativeDeterminatorOfExternalSet);
InstallTrueMethod(CanEasilyDetermineCanonicalRepresentativeExternalSet,
  HasCanonicalRepresentativeOfExternalSet);

#############################################################################
##
#A  ActorOfExternalSet( <xset> )
##
##  <#GAPDoc Label="ActorOfExternalSet">
##  <ManSection>
##  <Attr Name="ActorOfExternalSet" Arg='xset'/>
##
##  <Description>
##  returns an element mapping <C>Representative(<A>xset</A>)</C> to
##  <C>CanonicalRepresentativeOfExternalSet(<A>xset</A>)</C> under the given
##  action.
##  <Example><![CDATA[
##  gap> u:=Subgroup(g,[(1,2,3)]);;
##  gap> e:=RightCoset(u,(1,2)(3,4));;
##  gap> CanonicalRepresentativeOfExternalSet(e);
##  (2,4,3)
##  gap> ActorOfExternalSet(e);
##  (1,3,2)
##  gap> FunctionAction(e)((1,2)(3,4),last);
##  (2,4,3)
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "ActorOfExternalSet", IsExternalSet );
DeclareSynonymAttr( "OperatorOfExternalSet", ActorOfExternalSet );


#############################################################################
##
#F  TestIdentityAction(acts,pnt,act)
##
##  <ManSection>
##  <Func Name="TestIdentityAction" Arg='acts,pnt,act'/>
##
##  <Description>
##  tests whether the identity element fixes <A>pnt</A>
##  &ndash;if not the action is
##  not well-defined. If the global option <C>NoTestAction</C> is set to <K>true</K>
##  this test is skipped. (This is essentially a hack.)
##  </Description>
##  </ManSection>
##
BindGlobal("TestIdentityAction",function(acts,pnt,act)
local id,img;
  if ValueOption("NoTestAction")<>true and Length(acts)>0 then
    id:=One(acts[1]);
    img:=act(pnt,id);
    if img<>pnt then
      Error("Action not well-defined. See the manual section\n",
      "``Action on canonical representatives''.");
    fi;
    pnt:=img;
  fi;
  return pnt;
end);

#############################################################################
##
#F  OrbitsishOperation( <name>, <reqs>, <usetype>, <AorP> ) . orbits-like op.
##
##  <#GAPDoc Label="OrbitsishOperation">
##  <ManSection>
##  <Func Name="OrbitsishOperation" Arg='name, reqs, usetype, AorP'/>
##
##  <Description>
##  declares an attribute <C>op</C>, with name <A>name</A>.
##  The second argument <A>reqs</A> specifies the list of required filters
##  for the usual (five-argument) methods that do the real work.
##  <P/>
##  If the third argument <A>usetype</A> is <K>true</K>,
##  the function call <C>op( xset )</C> will
##  &ndash;if the value of <C>op</C> for <C>xset</C> is not yet known&ndash;
##  delegate to the five-argument call of <C>op</C> with second argument
##  <C>xset</C> rather than with <C>D</C>.
##  This allows certain methods for <C>op</C> to make use of the type of
##  <C>xset</C>, in which the types of the external subsets of <C>xset</C>
##  and of the external orbits in <C>xset</C> are stored.
##  (This is used to avoid repeated calls of
##  <Ref Func="NewType"/> in functions like
##  <C>ExternalOrbits( xset )</C>,
##  which call <C>ExternalOrbit( xset, pnt )</C> for several values of
##  <C>pnt</C>.)
##  <P/>
##  For property testing functions such as
##  <Ref Func="IsTransitive" Label="for a group, an action domain, etc."/>,
##  the fourth argument <A>AorP</A> must be
##  <Ref Func="NewProperty"/>,
##  otherwise it must be <Ref Func="NewAttribute"/>;
##  in the former case, a property is returned, in the latter case an
##  attribute that is not a property.
##  <P/>
##  For example, to set up the operation <Ref Func="Orbits"/>,
##  the declaration file <F>lib/oprt.gd</F> contains the following line of
##  code:
##  <Log><![CDATA[
##  OrbitsishOperation( "Orbits", OrbitsishReq, false, NewAttribute );
##  ]]></Log>
##  The global variable <C>OrbitsishReq</C> contains the standard
##  requirements
##  <Log><![CDATA[
##  OrbitsishReq := [ IsGroup, IsList,
##                    IsList,
##                    IsList,
##                    IsFunction ];
##  ]]></Log>
##  which are usually entered in calls to <Ref Func="OrbitsishOperation"/>.
##  <P/>
##  The new operation, e.g., <Ref Func="Orbits"/>,
##  can be called either as <C>Orbits( <A>xset</A> )</C> for an external set
##  <A>xset</A>, or as <C>Orbits( <A>G</A> )</C> for a permutation group
##  <A>G</A>, meaning the orbits on the moved
##  points of <A>G</A> via <Ref Func="OnPoints"/>,
##  or as
##  <P/>
##  <C>Orbits( <A>G</A>, <A>Omega</A>[, <A>gens</A>, <A>acts</A>][,
##  <A>act</A>] )</C>,
##  <P/>
##  with a group <A>G</A>, a domain or list <A>Omega</A>,
##  generators <A>gens</A> of <A>G</A>, and corresponding elements
##  <A>acts</A> that act on <A>Omega</A> via the function <A>act</A>;
##  the default of <A>gens</A> and <A>acts</A> is a list of group generators
##  of <A>G</A>,
##  the default of <A>act</A> is <Ref Func="OnPoints"/>.
##  <P/>
##  Only methods for the five-argument version need to be installed for
##  doing the real work.
##  (And of course methods for one argument in case one wants to define
##  a new meaning of the attribute.)
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
BindGlobal( "OrbitsishOperation", function( name, reqs, usetype, NewAorP )
    local nname, op;

    # Create the attribute or property.
    op:= NewAorP( name, IsExternalSet );
    BIND_GLOBAL( name, op );
    nname:= "Set"; APPEND_LIST_INTR( nname, name );
    BIND_GLOBAL( nname, SETTER_FILTER( op ) );
    nname:= "Has"; APPEND_LIST_INTR( nname, name );
    BIND_GLOBAL( nname, TESTER_FILTER( op ) );

    # Make a declaration for non-default methods.
    DeclareOperation( name, reqs );

    # Install the default methods.

    # 1. `op( <xset> )'
    # (The `usetype' value concerns only the `return' statement.)
    if usetype then

      InstallMethod( op,
          "for an external set",
          true,
          [ IsExternalSet ], 0,
          function( xset )
          local G, gens, acts, act;
          G := ActingDomain( xset );
          if IsExternalSetByActorsRep( xset )  then
            gens := xset!.generators;
            acts := xset!.operators;
            act  := xset!.funcOperation;
          else
            if CanEasilyComputePcgs( G ) then
              gens := Pcgs( G );
            else
              gens := GeneratorsOfGroup( G );
            fi;
            acts := gens;
            act  := FunctionAction( xset );
          fi;
          return op( G, xset, gens, acts, act );
          end );

    else

      InstallMethod( op,
          "for an external set",
          true,
          [ IsExternalSet ], 0,
          function( xset )
          local G, gens, acts, act;
          G := ActingDomain( xset );
          if IsExternalSetByActorsRep( xset )  then
            gens := xset!.generators;
            acts := xset!.operators;
            act  := xset!.funcOperation;
          else
            if CanEasilyComputePcgs( G ) then
              gens := Pcgs( G );
            else
              gens := GeneratorsOfGroup( G );
            fi;
            acts := gens;
            act  := FunctionAction( xset );
          fi;
          return op( G, Enumerator( xset ), gens, acts, act );
          end );

    fi;

    # 2. `op( <permgrp> )'
    InstallOtherMethod( op,
        "for a permutation group",
        true,
        [ IsPermGroup ], 0,
        function( G )
        local gens;
        gens:= GeneratorsOfGroup( G );
        return op( G, MovedPoints( G ), gens, gens, OnPoints );
        end );

    # 3. `op( <G>, <Omega> )' with group <G> and domain or list <Omega>
    #    (add group generators and `OnPoints' as default arguments)
    InstallOtherMethod( op,
        "for a group and a domain or list",
        true,
        [ IsGroup, IsObject ], 0,
        function( G, D )
        local gens;
        if CanEasilyComputePcgs( G ) then
          gens:= Pcgs( G );
        else
          gens:= GeneratorsOfGroup( G );
        fi;
        if IsDomain( D ) then
	   if IsFinite( D ) then D:= Elements( D ); else D:= Enumerator( D ); fi;
        fi;
        return op( G, D, gens, gens, OnPoints );
        end );

    # 4. `op( <G>, <Omega> )' with permutation group <G> and domain or list
    # <Omega>
    #    of integers
    #    (if <Omega> equals the moved points of <G> then call `op( <G> )')
    InstallOtherMethod( op,
        "for a permutation group and a domain or list of integers",
        true,
        [ IsPermGroup, IsListOrCollection ], 0,
        function( G, D )
        if D = MovedPoints( G ) then
          return op( G );
        else
          TryNextMethod();
        fi;
        end );

    # 5. `op( <G>, <Omega>, <act> )' with group <G>, domain or list <Omega>,
    #    and function <act>
    #    (add group generators as default arguments)
    InstallOtherMethod( op,
        "for a group, a domain or list, and a function",
        true,
        [ IsGroup, IsObject, IsFunction ], 0,
        function( G, D, act )
        local gens;
        if CanEasilyComputePcgs( G ) then
          gens:= Pcgs( G );
        else
          gens:= GeneratorsOfGroup( G );
        fi;
        if IsDomain( D ) then
	   if IsFinite( D ) then D:= Elements( D ); else D:= Enumerator( D ); fi;
        fi;
        return op( G, D, gens, gens, act );
        end );

    # 6. `op( <G>, <Omega>, <act> )' with permutation group <G>,
    #    domain or list <Omega> of integers, and function <act>
    #    (if <Omega> equals the moved points of <G> and <act> equals `OnPoints'
    #    then call `op( <G> )')
    InstallOtherMethod( op,
        "for permutation group, domain or list of integers, and function",
        true,
        [ IsPermGroup, IsListOrCollection, IsFunction ], 0,
        function( G, D, act )
        if D = MovedPoints( G ) and IsIdenticalObj( act, OnPoints ) then
          return op( G );
        else
          TryNextMethod();
        fi;
        end );

    # 7. `op( <G>, <Omega>, <gens>, <acts> )' with group <G>,
    #    domain or list <Omega>, and two lists <gens>, <acts>
    #    (add default value `OnPoints')
    InstallOtherMethod( op,
        "for a group, a domain or list, and two lists",
        true,
        [ IsGroup, IsObject, IsList, IsList ], 0,
        function( G, D, gens, acts )
        if IsDomain( D ) then
	   if IsFinite( D ) then D:= Elements( D ); else D:= Enumerator( D ); fi;
        fi;
        return op( G, D, gens, acts, OnPoints );
        end );

    # 8. `op( <G>, <Omega>, <gens>, <acts>, <act> )' with group <G>,
    #    domain <Omega>, two lists <gens>, <acts>, and function <act>
    #    (delegate to a (non-default!) method with <Omega> a list)
    InstallOtherMethod( op,
        "for a group, a domain, two lists, and a function",
        true,
        [ IsGroup, IsDomain, IsList, IsList, IsFunction ], 0,
        function( G, D, gens, acts, act )
        return op( G, Enumerator( D ), gens, acts, act );
        end );
end );


#############################################################################
##
#F  OrbitishFO( <name>, <reqs>, <famrel>, <usetype>, <realenum> )
##
##  <#GAPDoc Label="OrbitishFO">
##  <ManSection>
##  <Func Name="OrbitishFO" Arg='name, reqs, famrel, usetype, realenum'/>
##
##  <Description>
##  is used to create operations like <Ref Func="Orbit"/>.
##  This function is analogous to <Ref Func="OrbitsishOperation"/>,
##  but for operations <A>orbish</A> like
##  <C>Orbit( <A>G</A>, <A>Omega</A>, <A>pnt</A> )</C>.
##  Since the return values of these operations depend on the additional
##  argument <A>pnt</A>, there is no associated attribute.
##  <P/>
##  The call of <Ref Func="OrbitishFO"/> declares a wrapper function and its
##  operation, with names <A>name</A> and <A>name</A><C>Op</C>.
##  <P/>
##  The second argument <A>reqs</A> specifies the list of required filters
##  for the operation <A>name</A><C>Op</C>.
##  <P/>
##  The third argument <A>famrel</A> is used to test the family relation
##  between the second and third argument of
##  <C><A>name</A>( <A>G</A>, <A>D</A>, <A>pnt</A> )</C>.
##  For example, <A>famrel</A> is <C>IsCollsElms</C> in the case of
##  <Ref Func="Orbit"/> because <A>pnt</A> must be an element
##  of <A>D</A>.
##  Similarly, in the call <C>Blocks( <A>G</A>, <A>D</A>, <A>seed</A> )</C>,
##  <A>seed</A> must be a subset of <A>D</A>,
##  and the family relation must be
##  <Ref Func="IsIdenticalObj"/>.
##  <P/>
##  The fourth argument <A>usetype</A> serves the same purpose as in the case
##  of <Ref Func="OrbitsishOperation"/>.
##  <A>usetype</A> can also be an attribute, such as
##  <C>BlocksAttr</C> or <C>MaximalBlocksAttr</C>.
##  In this case, if only one of the two arguments <A>Omega</A> and
##  <A>pnt</A> is given,
##  blocks with no seed are computed, they are stored as attribute values
##  according to the rules of <Ref Func="OrbitsishOperation"/>.
##  <P/>
##  If the 5th argument is set to <K>true</K>, the action for an external set
##  should use the enumerator, otherwise it uses the
##  <Ref Func="HomeEnumerator"/> value. This will
##  make a difference for external orbits as part of a larger domain.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "PreOrbishProcessing", [IsGroup]);

InstallMethod( PreOrbishProcessing, [IsGroup], x->x );

BindGlobal( "OrbitishFO", function( name, reqs, famrel, usetype,realenum )
local str, nname, orbish, func,isnotest;

    # Create the operation.
    str:= SHALLOW_COPY_OBJ( name );
    isnotest:=Length(name)>5 and name{[Length(name)-5..Length(name)]}="Blocks";
    isnotest:=isnotest or name="ExternalSubset";
    APPEND_LIST_INTR( str, "Op" );
    orbish := NewOperation( str, reqs );
    BIND_GLOBAL( str, orbish );

    # Create the wrapper function.
    func := function( arg )
    local   G,  D,  pnt,  gens,  acts,  act,  xset,  p,  attrG,  result,le;

      # Get the arguments.
      if Length( arg ) <= 2 and IsExternalSet( arg[ 1 ] )  then
	  xset := arg[ 1 ];
	  if Length(arg)>1 then
	    # force immutability
	    pnt := Immutable(arg[ 2 ]);
	  else
	      # `Blocks' like operations
	      pnt:=[];
	  fi;

	  G := ActingDomain( xset );
	  if realenum then
	    D:=Enumerator(xset);
	  else
	    if HasHomeEnumerator( xset )  then
		D := HomeEnumerator( xset );
	    fi;
	  fi;
	  if IsExternalSetByActorsRep( xset )  then
	      gens := xset!.generators;
	      acts := xset!.operators;
	      act  := xset!.funcOperation;
	  else
	      act := FunctionAction( xset );
	  fi;
      elif 2 <= Length( arg ) then
	  le:=Length(arg);
	  G := arg[ 1 ];
	  if IsFunction( arg[ le ] )  then
	      act := arg[ le ];
	      le:=le-1;
	  else
	      act := OnPoints;
	  fi;
	  if     Length( arg ) > 2
	    and famrel( FamilyObj( arg[ 2 ] ), FamilyObj( arg[ 3 ] ) )
	    # for blocks on the groups elements
	    and not (IsOperation(usetype) and le=4)
	    then
	      D := arg[ 2 ];
	      if IsDomain( D )  then
	   if IsFinite( D ) then D:= Elements( D ); else D:= Enumerator( D ); fi;
	      fi;
	      p := 3;
	  else
	      p := 2;
	  fi;
	  pnt := Immutable(arg[ p ]);
	  if Length( arg ) > p + 1  then
	      gens := arg[ p + 1 ];
	      acts := arg[ p + 2 ];
	  fi;
      else
	Error( "usage: ", name, "(<xset>,<pnt>)\n",
	      "or ", name, "(<G>[,<Omega>],<pnt>[,<gens>,<acts>][,<act>])" );
      fi;
      
      G := PreOrbishProcessing(G);
      
      if not IsBound( gens )  then
	  if (not IsPermGroup(G)) and CanEasilyComputePcgs( G )  then
	    gens := Pcgs( G );
	  else
	    gens := GeneratorsOfGroup( G );
	  fi;
	  acts := gens;
      fi;

      if not isnotest then
	# `Blocks' has <pnt> a list of points
	pnt:=TestIdentityAction(acts,pnt,act);
      fi;

      # In  the  case of `[Maximal]Blocks',  where  $G$  is a permutation group
      # acting on its moved points, use an attribute for $G$.
      attrG := IsOperation( usetype )
	  and gens = acts
	  and act = OnPoints
	  and not IsBound( D )
	  and HasMovedPoints( G )
	  and pnt = MovedPoints( G );
      if attrG  and  IsBound( xset )  and  Tester( usetype )( xset )  then
	  result := usetype( xset );
      elif attrG  and  Tester( usetype )( G )  then
	  result := usetype( G );
      elif usetype = true  and  IsBound( xset )  then
	  result := orbish( G, xset, pnt, gens, acts, act );
      elif IsBound( D )  then
	  result := orbish( G, D, pnt, gens, acts, act );
      else

	  # The following line is also executed  when `Blocks(<G>, <Omega>, <act>)'
	  # is called to compute blocks with no  seed, but then <pnt> is really
	  # <Omega>, i.e., the operation domain!
	  result := orbish( G, pnt, gens, acts, act );

      fi;

      # Store the result in the case of an attribute `[Maximal]BlocksAttr'.
      if attrG  then
	  if IsBound( xset )  then
	      Setter( usetype )( xset, result );
	  fi;
	  Setter( usetype )( G, result );
      fi;

      return result;
  end;
  BIND_GLOBAL( name, func );
end );


#############################################################################
##
#O  ActionHomomorphism(<G>,<Omega> [,<gens>,<acts>] [,<act>] [,"surjective"])
#A  ActionHomomorphism( <xset> [,"surjective"] )
#A  ActionHomomorphism( <action> )
##
##  <#GAPDoc Label="ActionHomomorphism">
##  <ManSection>
##  <Heading>ActionHomomorphism</Heading>
##  <Func Name="ActionHomomorphism"
##   Arg='G, Omega[, gens, acts][, act][, "surjective"]'
##   Label="for a group, an action domain, etc."/>
##  <Func Name="ActionHomomorphism" Arg='xset[, "surjective"]'
##   Label="for an external set"/>
##  <Func Name="ActionHomomorphism" Arg='action'
##   Label="for an action image"/>
##
##  <Description>
##  computes a homomorphism from <A>G</A> into the symmetric group on
##  <M>|<A>Omega</A>|</M> points that gives the permutation action of
##  <A>G</A> on <A>Omega</A>. (In particular, this homomorphism is a
##  permutation equivalence, that is the permutation image of a group element
##  is given by the positions of points in <A>Omega</A>.)
##  <P/>
##  By default the homomorphism returned by
##  <Ref Func="ActionHomomorphism" Label="for a group, an action domain, etc."/>
##  is not necessarily surjective (its 
##  <Ref Func="Range" Label="of a general mapping"/> value is the full
##  symmetric group) to avoid unnecessary computation of the image.
##  If the optional string argument <C>"surjective"</C> is given,
##  a surjective homomorphism is created.
##  <P/>
##  The third version (which is supported only for &GAP;3 compatibility)
##  returns the action homomorphism that belongs to the image obtained via
##  <Ref Func="Action" Label="for a group, an action domain, etc."/>.
##  <P/>
##  (See Section&nbsp;<Ref Sect="Basic Actions"/>
##  for information about specific actions.)
##  <P/>
##  <Example><![CDATA[
##  gap> g:=Group((1,2,3),(1,2));;
##  gap> hom:=ActionHomomorphism(g,Arrangements([1..4],3),OnTuples);
##  <action homomorphism>
##  gap> Image(hom);
##  Group(
##  [ (1,9,13)(2,10,14)(3,7,15)(4,8,16)(5,12,17)(6,11,18)(19,22,23)(20,21,
##      24), (1,7)(2,8)(3,9)(4,10)(5,11)(6,12)(13,15)(14,16)(17,18)(19,
##      21)(20,22)(23,24) ])
##  gap> Size(Range(hom));Size(Image(hom));
##  620448401733239439360000
##  6
##  gap> hom:=ActionHomomorphism(g,Arrangements([1..4],3),OnTuples,
##  > "surjective");;
##  gap> Size(Range(hom));
##  6
##  ]]></Example>
##  <P/>
##  When acting on a domain, the operation <Ref Func="PositionCanonical"/>
##  is used to determine the position of elements in the domain.
##  This can be used to act on a domain given by a list of representatives
##  for which <Ref Func="PositionCanonical"/> is implemented,
##  for example the return value of <Ref Func="RightTransversal"/>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "ActionHomomorphism" );
DeclareAttribute( "ActionHomomorphismAttr", IsExternalSet );
DeclareGlobalFunction( "ActionHomomorphismConstructor" );


#############################################################################
##
#A  SurjectiveActionHomomorphismAttr( <xset> )
##
##  <#GAPDoc Label="SurjectiveActionHomomorphismAttr">
##  <ManSection>
##  <Attr Name="SurjectiveActionHomomorphismAttr" Arg='xset'/>
##
##  <Description>
##  returns an action homomorphism for the external set <A>xset</A>
##  which is surjective.
##  (As the <Ref Func="Image" Label="set of images of the source of a general mapping"/>
##  value of this homomorphism has to be computed
##  to obtain the range, this may take substantially longer
##  than <Ref Func="ActionHomomorphism" Label="for an external set"/>.)
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "SurjectiveActionHomomorphismAttr", IsExternalSet );

#############################################################################
##
#A  UnderlyingExternalSet( <acthom> )
##
##  <#GAPDoc Label="UnderlyingExternalSet">
##  <ManSection>
##  <Attr Name="UnderlyingExternalSet" Arg='acthom'/>
##
##  <Description>
##  The underlying set of an action homomorphism <A>acthom</A> is
##  the external set on which it was defined.
##  <Example><![CDATA[
##  gap> g:=Group((1,2,3),(1,2));;
##  gap> hom:=ActionHomomorphism(g,Arrangements([1..4],3),OnTuples);;
##  gap> s:=UnderlyingExternalSet(hom);
##  <xset:[[ 1, 2, 3 ],[ 1, 2, 4 ],[ 1, 3, 2 ],[ 1, 3, 4 ],[ 1, 4, 2 ],
##  [ 1, 4, 3 ],[ 2, 1, 3 ],[ 2, 1, 4 ],[ 2, 3, 1 ],[ 2, 3, 4 ],
##  [ 2, 4, 1 ],[ 2, 4, 3 ],[ 3, 1, 2 ],[ 3, 1, 4 ],[ 3, 2, 1 ], ...]>
##  gap> Print(s,"\n");
##  [ [ 1, 2, 3 ], [ 1, 2, 4 ], [ 1, 3, 2 ], [ 1, 3, 4 ], [ 1, 4, 2 ], 
##    [ 1, 4, 3 ], [ 2, 1, 3 ], [ 2, 1, 4 ], [ 2, 3, 1 ], [ 2, 3, 4 ], 
##    [ 2, 4, 1 ], [ 2, 4, 3 ], [ 3, 1, 2 ], [ 3, 1, 4 ], [ 3, 2, 1 ], 
##    [ 3, 2, 4 ], [ 3, 4, 1 ], [ 3, 4, 2 ], [ 4, 1, 2 ], [ 4, 1, 3 ], 
##    [ 4, 2, 1 ], [ 4, 2, 3 ], [ 4, 3, 1 ], [ 4, 3, 2 ] ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "UnderlyingExternalSet", IsActionHomomorphism );

#############################################################################
##
#F  DoSparseActionHomomorphism(<G>,<start>,<gens>,<acts>,<act>,<phash>,<sort>)
##
##  <ManSection>
##  <Func Name="DoSparseActionHomomorphism"
##   Arg='G, start, gens, acts, act, phash, sort'/>
##
##  <Description>
##  is the function implementing the sparse action homomorphisms and syntax
##  is as for these.
##  <A>phash</A> must be an injective (&GAP;)-function, for
##  example a perfect hash, element comparisons are done in its range.
##  Unless a fast enumeration is known, <C>IdFunc</C> should be used.
##  If <A>sort</A> is true, the action domain for the resulting homomorphism
##  will be sorted.
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction("DoSparseActionHomomorphism");

DeclareGlobalFunction("MultiActionsHomomorphism");

#############################################################################
##
#O  SparseActionHomomorphism( <G>, <start> [,<gens>,<acts>] [,<act>] )
#O  SortedSparseActionHomomorphism(<G>,<start>[,<gens>,<acts>] [,<act>])
##
##  <#GAPDoc Label="SparseActionHomomorphism">
##  <ManSection>
##  <Oper Name="SparseActionHomomorphism"
##   Arg='G, start[, gens, acts][, act]'/>
##  <Oper Name="SortedSparseActionHomomorphism"
##   Arg='G, start[, gens, acts][, act]'/>
##
##  <Description>
##  <Ref Func="SparseActionHomomorphism"/> computes the action homomorphism
##  (see <Ref Func="ActionHomomorphism" Label="for a group, an action domain, etc."/>)
##  with arguments <A>G</A>, <M>D</M>, and the optional arguments given,
##  where <M>D</M> is the union of the <A>G</A>-orbits of all points in
##  <A>start</A>.
##  In the <Ref Func="Orbit"/> calls that are used to create <M>D</M>,
##  again the optional arguments given are entered.)
##  <P/>
##  If <A>G</A> acts on a very large domain not surjectively
##  this may yield a permutation image of
##  substantially smaller degree than by action on the whole domain.
##  <P/>
##  The operation <Ref Func="SparseActionHomomorphism"/> will only use
##  <Ref Func="\="/> comparisons of points in the orbit.
##  Therefore it can be used even if no good <Ref Func="\&lt;"/>
##  comparison method for these points is available.
##  However the image group will depend on the
##  generators <A>gens</A> of <A>G</A>.
##  <P/>
##  The operation <Ref Func="SortedSparseActionHomomorphism"/> in contrast
##  will sort the orbit and thus produce an image group which does not
##  depend on these generators.
##  <P/>
##  <Example><![CDATA[
##  gap> h:=Group(Z(3)*[[[1,1],[0,1]]]);
##  Group([ [ [ Z(3), Z(3) ], [ 0*Z(3), Z(3) ] ] ])
##  gap> hom:=ActionHomomorphism(h,GF(3)^2,OnRight);;
##  gap> Image(hom);
##  Group([ (2,3)(4,9,6,7,5,8) ])
##  gap> hom:=SparseActionHomomorphism(h,[Z(3)*[1,0]],OnRight);;
##  gap> Image(hom);
##  Group([ (1,2,3,4,5,6) ])
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
OrbitishFO( "SparseActionHomomorphism", OrbitishReq,
               IsIdenticalObj, false,false );
OrbitishFO( "SortedSparseActionHomomorphism", OrbitishReq,
               IsIdenticalObj, false,false );

#############################################################################
##
#O  ImageElmActionHomomorphism( <op>,<elm> )
##
##  <ManSection>
##  <Oper Name="ImageElmActionHomomorphism" Arg='op,elm'/>
##
##  <Description>
##  computes the image of <A>elm</A> under the action homomorphism <A>op</A> and is
##  guaranteed to use the action (and not the <C>AsGHBI</C>, this is required
##  in some methods to bootstrap the range).
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction( "ImageElmActionHomomorphism" );

#############################################################################
##
#O  Action( <G>, <Omega> [<gens>,<acts>] [,<act>] )
#A  Action( <xset> )
##
##  <#GAPDoc Label="Action">
##  <ManSection>
##  <Func Name="Action" Arg='G, Omega[, gens, acts][, act]'
##   Label="for a group, an action domain, etc."/>
##  <Func Name="Action" Arg='xset'
##   Label="for an external set"/>
##
##  <Description>
##  returns the image group of
##  <Ref Func="ActionHomomorphism" Label="for a group, an action domain, etc."/>
##  called with the same parameters.
##  <P/>
##  Note that (for compatibility reasons to be able to get the
##  action homomorphism) this image group internally stores the action
##  homomorphism.
##  If <A>G</A> or <A>Omega</A> are extremely big, this can cause memory
##  problems. In this case compute only generator images and form the image
##  group yourself.
##  <P/>
##  (See Section&nbsp;<Ref Sect="Basic Actions"/>
##  for information about specific actions.)
##  <P/>
##  <Index>regular action</Index>
##  The following code shows for example how to create the regular action of a
##  group.
##  <P/>
##  <Example><![CDATA[
##  gap> g:=Group((1,2,3),(1,2));;
##  gap> Action(g,AsList(g),OnRight);
##  Group([ (1,4,5)(2,3,6), (1,3)(2,4)(5,6) ])
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "Action" );


#############################################################################
##
#O  ExternalSet( <G>, <Omega>[, <gens>, <acts>][, <act>] )
##
##  <#GAPDoc Label="ExternalSet">
##  <ManSection>
##  <Oper Name="ExternalSet" Arg='G, Omega[, gens, acts][, act]'/>
##
##  <Description>
##  creates the external set for the action <A>act</A> of <A>G</A> on <A>Omega</A>.
##  <A>Omega</A> can be either a proper set, or a domain which is represented as
##  described in <Ref Sect="Domains"/> and <Ref Chap="Collections"/>, or (to use
##  less memory but with a slower performance) an enumerator 
##  (see <Ref Attr="Enumerator"/> ) of this domain.
##  <Example><![CDATA[
##  gap> g:=Group((1,2,3),(2,3,4));;
##  gap> e:=ExternalSet(g,[1..4]);
##  <xset:[ 1, 2, 3, 4 ]>
##  gap> e:=ExternalSet(g,g,OnRight);
##  <xset:[ (), (2,3,4), (2,4,3), (1,2)(3,4), (1,2,3), (1,2,4), (1,3,2), 
##    (1,3,4), (1,3)(2,4), (1,4,2), (1,4,3), (1,4)(2,3) ]>
##  gap> Orbits(e);
##  [ [ (), (1,2)(3,4), (1,3)(2,4), (1,4)(2,3), (2,4,3), (1,4,2), 
##        (1,2,3), (1,3,4), (2,3,4), (1,3,2), (1,4,3), (1,2,4) ] ]
##  ]]></Example>
##  
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
OrbitsishOperation( "ExternalSet", OrbitsishReq, false, NewAttribute );

DeclareGlobalFunction( "ExternalSetByFilterConstructor" );
DeclareGlobalFunction( "ExternalSetByTypeConstructor" );

#############################################################################
##
#O  RestrictedExternalSet( <xset>, <U> )
##
##  <ManSection>
##  <Oper Name="RestrictedExternalSet" Arg='xset, U'/>
##
##  <Description>
##  If <A>U</A> is a subgroup of the <C>ActingDomain</C> of <A>xset</A> this operation
##  returns an external set for the same action which has the
##  <C>ActingDomain</C> <A>U</A>.
##  </Description>
##  </ManSection>
##
DeclareOperation("RestrictedExternalSet",[IsExternalSet,IsGroup]);

#############################################################################
##
#O  ExternalSubset(<G>,<xset>,<start>,[<gens>,<acts>,]<act>)
##
##  <#GAPDoc Label="ExternalSubset">
##  <ManSection>
##  <Oper Name="ExternalSubset" Arg='G,xset,start,[gens,acts,]act'/>
##
##  <Description>
##  constructs the external subset of <A>xset</A> on the union of orbits of the
##  points in <A>start</A>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
OrbitishFO( "ExternalSubset",
    [ IsGroup, IsList, IsList,
      IsList,
      IsList,
      IsFunction ], IsIdenticalObj, true, false );


#############################################################################
##
#O  ExternalOrbit( <G>, <Omega>, <pnt>, [<gens>,<acts>,] <act> )
##
##  <#GAPDoc Label="ExternalOrbit">
##  <ManSection>
##  <Oper Name="ExternalOrbit" Arg='G, Omega, pnt, [gens,acts,] act'/>
##
##  <Description>
##  constructs the external subset on the orbit of <A>pnt</A>. The
##  <Ref Func="Representative"/> value of this external set is <A>pnt</A>.
##  <Example><![CDATA[
##  gap> e:=ExternalOrbit(g,g,(1,2,3));
##  (1,2,3)^G
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
OrbitishFO( "ExternalOrbit", OrbitishReq, IsCollsElms, true, false );


#############################################################################
##
#O  Orbit( <G>[, <Omega>], <pnt>[, <gens>, <acts>][, <act>] )
##
##  <#GAPDoc Label="Orbit">
##  <ManSection>
##  <Oper Name="Orbit" Arg='G[, Omega], pnt[, gens, acts][, act]'/>
##
##  <Description>
##  The orbit of the point <A>pnt</A> is the list of all images of <A>pnt</A>
##  under the action of the group <A>G</A> w.r.t. the action function
##  <A>act</A> or <Ref Func="OnPoints"/> if no action function is given.
##  <P/>
##  (Note that the arrangement of points in this list is not defined by the
##  operation.)
##  <P/>
##  The orbit of <A>pnt</A> will always contain one element that is
##  <E>equal</E> to <A>pnt</A>, however for performance reasons
##  this element is not necessarily <E>identical</E> to <A>pnt</A>,
##  in particular if <A>pnt</A> is mutable.
##  <Example><![CDATA[
##  gap> g:=Group((1,3,2),(2,4,3));;
##  gap> Orbit(g,1);
##  [ 1, 3, 2, 4 ]
##  gap> Orbit(g,[1,2],OnSets);
##  [ [ 1, 2 ], [ 1, 3 ], [ 1, 4 ], [ 2, 3 ], [ 3, 4 ], [ 2, 4 ] ]
##  ]]></Example>
##  <P/>
##  (See Section&nbsp;<Ref Sect="Basic Actions"/>
##  for information about specific actions.)
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
OrbitishFO( "Orbit", OrbitishReq, IsCollsElms, false, false );


#############################################################################
##
#O  Orbits( <G>, <seeds>[, <gens>, <acts>][, <act>] )
#A  Orbits( <xset> )
##
##  <#GAPDoc Label="Orbits">
##  <ManSection>
##  <Oper Name="Orbits" Arg='G, seeds[, gens, acts][, act]' Label="operation"/>
##  <Attr Name="Orbits" Arg='xset' Label="attribute"/>
##
##  <Description>
##  returns a duplicate-free list of the orbits of the elements in
##  <A>seeds</A> under the action <A>act</A> of <A>G</A> or under
##  <Ref Func="OnPoints"/> if no action function is given.
##  <P/>
##  (Note that the arrangement of orbits or of points within one orbit is
##  not defined by the operation.)
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
OrbitsishOperation( "Orbits", OrbitsishReq, false, NewAttribute );


#############################################################################
##
#O  OrbitsDomain( <G>, <Omega>[, <gens>, <acts>][, <act>] )
#A  OrbitsDomain( <xset> )
##
##  <#GAPDoc Label="OrbitsDomain">
##  <ManSection>
##  <Heading>OrbitsDomain</Heading>
##  <Oper Name="OrbitsDomain" Arg='G, Omega[, gens, acts][, act]'
##   Label="for a group and an action domain"/>
##  <Attr Name="OrbitsDomain" Arg='xset'
##   Label="of an external set"/>
##
##  <Description>
##  returns a list of the orbits of <A>G</A> on the domain <A>Omega</A>
##  (given as lists) under the action <A>act</A> or under 
##  <Ref Func="OnPoints"/> if no action function is given.
##  <P/>
##  This operation is often faster than
##  <Ref Func="Orbits" Label="operation"/>.
##  The domain <A>Omega</A> must be closed under the action of <A>G</A>,
##  otherwise an error can occur.
##  <P/>
##  (Note that the arrangement of orbits or of points within one orbit is
##  not defined by the operation.)
##  <Example><![CDATA[
##  gap> g:=Group((1,3,2),(2,4,3));;
##  gap> Orbits(g,[1..5]);
##  [ [ 1, 3, 2, 4 ], [ 5 ] ]
##  gap> OrbitsDomain(g,Arrangements([1..4],3),OnTuples);
##  [ [ [ 1, 2, 3 ], [ 3, 1, 2 ], [ 1, 4, 2 ], [ 2, 3, 1 ], [ 2, 1, 4 ], 
##        [ 3, 4, 1 ], [ 1, 3, 4 ], [ 4, 2, 1 ], [ 4, 1, 3 ], 
##        [ 2, 4, 3 ], [ 3, 2, 4 ], [ 4, 3, 2 ] ], 
##    [ [ 1, 2, 4 ], [ 3, 1, 4 ], [ 1, 4, 3 ], [ 2, 3, 4 ], [ 2, 1, 3 ], 
##        [ 3, 4, 2 ], [ 1, 3, 2 ], [ 4, 2, 3 ], [ 4, 1, 2 ], 
##        [ 2, 4, 1 ], [ 3, 2, 1 ], [ 4, 3, 1 ] ] ]
##  gap> OrbitsDomain(g,GF(2)^2,[(1,2,3),(1,4)(2,3)],
##  > [[[Z(2)^0,Z(2)^0],[Z(2)^0,0*Z(2)]],[[Z(2)^0,0*Z(2)],[0*Z(2),Z(2)^0]]]);
##  [ [ <an immutable GF2 vector of length 2> ], 
##    [ <an immutable GF2 vector of length 2>, 
##        <an immutable GF2 vector of length 2>, 
##        <an immutable GF2 vector of length 2> ] ]
##  ]]></Example>
##  <P/>
##  (See Section&nbsp;<Ref Sect="Basic Actions"/>
##  for information about specific actions.)
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
OrbitsishOperation( "OrbitsDomain", OrbitsishReq, false, NewAttribute );


#############################################################################
##
#O  OrbitLength( <G>, <Omega>, <pnt> [, <gens>, <acts>][, <act>] )
##
##  <#GAPDoc Label="OrbitLength">
##  <ManSection>
##  <Oper Name="OrbitLength" Arg='G, Omega, pnt[, gens, acts][, act]'/>
##
##  <Description>
##  computes the length of the orbit of <A>pnt</A> under 
##  the action function <A>act</A> or <Ref Func="OnPoints"/> 
##  if no action function is given.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
OrbitishFO( "OrbitLength", OrbitishReq, IsCollsElms, false, false );


#############################################################################
##
#O  OrbitLengths( <G>, <seeds>[, <gens>, <acts>][, <act>] )
#A  OrbitLengths( <xset> )
##
##  <#GAPDoc Label="OrbitLengths">
##  <ManSection>
##  <Heading>OrbitLengths</Heading>
##  <Oper Name="OrbitLengths" Arg='G, seeds[, gens, acts][, act]'
##   Label="for a group, a set of seeds, etc."/>
##  <Attr Name="OrbitLengths" Arg='xset' Label="for an external set"/>
##
##  <Description>
##  computes the lengths of all the orbits of the elements in <A>seeds</A>
##  under the action <A>act</A> of <A>G</A>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
OrbitsishOperation( "OrbitLengths", OrbitsishReq, false, NewAttribute );


#############################################################################
##
#O  OrbitLengthsDomain( <G>, <Omega>[, <gens>, <acts>][, <act>] )
#A  OrbitLengthsDomain( <xset> )
##
##  <#GAPDoc Label="OrbitLengthsDomain">
##  <ManSection>
##  <Heading>OrbitLengthsDomain</Heading>
##  <Oper Name="OrbitLengthsDomain" Arg='G, Omega[, gens, acts][, act]'
##   Label="for a group and a set of seeds"/>
##  <Attr Name="OrbitLengthsDomain" Arg='xset' Label="of an external set"/>
##
##  <Description>
##  computes the lengths of all the orbits of <A>G</A> on <A>Omega</A>.
##  <P/>
##  This operation is often faster than
##  <Ref Func="OrbitLengths" Label="for a group, a set of seeds, etc."/>.
##  The domain <A>Omega</A> must be closed under the action of <A>G</A>,
##  otherwise an error can occur.
##  <Example><![CDATA[
##  gap> g:=Group((1,3,2),(2,4,3));;
##  gap> OrbitLength(g,[1,2,3,4],OnTuples);
##  12
##  gap> OrbitLengths(g,Arrangements([1..4],4),OnTuples);
##  [ 12, 12 ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
OrbitsishOperation( "OrbitLengthsDomain", OrbitsishReq, false, NewAttribute );


#############################################################################
##
#O  OrbitStabilizer( <G>, [<Omega>,] <pnt>, [<gens>,<acts>,] <act> )
##
##  <#GAPDoc Label="OrbitStabilizer">
##  <ManSection>
##  <Oper Name="OrbitStabilizer" Arg='G[, Omega], pnt[, gens, acts,] act'/>
##
##  <Description>
##  computes the orbit and the stabilizer of <A>pnt</A> simultaneously in a
##  single orbit-stabilizer algorithm.
##  <P/>
##  The stabilizer will have <A>G</A> as its parent.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
OrbitishFO( "OrbitStabilizer", OrbitishReq, IsCollsElms, false,false );


#############################################################################
##
#O  ExternalOrbits( <G>, <Omega>[, <gens>, <acts>][, <act>] )
#A  ExternalOrbits( <xset> )
##
##  <#GAPDoc Label="ExternalOrbits">
##  <ManSection>
##  <Heading>ExternalOrbits</Heading>
##  <Oper Name="ExternalOrbits" Arg='G, Omega[, gens, acts][, act]'
##   Label="for a group, an action domain, etc."/>
##  <Attr Name="ExternalOrbits" Arg='xset'
##   Label="for an external set"/>
##
##  <Description>
##  computes a list of external orbits that give the orbits of <A>G</A>.
##  <Example><![CDATA[
##  gap> ExternalOrbits(g,AsList(g));
##  [ ()^G, (2,3,4)^G, (2,4,3)^G, (1,2)(3,4)^G ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
OrbitsishOperation( "ExternalOrbits", OrbitsishReq, true, NewAttribute );


#############################################################################
##
#O  ExternalOrbitsStabilizers( <G>, <Omega>[, <gens>, <acts>][, <act>] )
#A  ExternalOrbitsStabilizers( <xset> )
##
##  <#GAPDoc Label="ExternalOrbitsStabilizers">
##  <ManSection>
##  <Heading>ExternalOrbitsStabilizers</Heading>
##  <Oper Name="ExternalOrbitsStabilizers"
##   Arg='G, Omega[, gens, acts][, act]'
##   Label="for a group, an action domain, etc."/>
##  <Attr Name="ExternalOrbitsStabilizers" Arg='xset'
##   Label="for an external set"/>
##
##  <Description>
##  In addition to
##  <Ref Func="ExternalOrbits" Label="for a group, an action domain, etc."/>,
##  this operation also computes the stabilizers of the representatives of
##  the external orbits at the same time.
##  (This can be quicker than computing the
##  <Ref Func="ExternalOrbits" Label="for a group, an action domain, etc."/>
##  value first and the stabilizers afterwards.)
##  <Example><![CDATA[
##  gap> e:=ExternalOrbitsStabilizers(g,AsList(g));
##  [ ()^G, (2,3,4)^G, (2,4,3)^G, (1,2)(3,4)^G ]
##  gap> HasStabilizerOfExternalSet(e[3]);
##  true
##  gap> StabilizerOfExternalSet(e[3]);
##  Group([ (2,4,3) ])
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
OrbitsishOperation( "ExternalOrbitsStabilizers", OrbitsishReq,
    true, NewAttribute );


#############################################################################
##
#O  Transitivity( <G>, <Omega>[, <gens>, <acts>][, <act>] )
#A  Transitivity( <xset> )
##
##  <#GAPDoc Label="Transitivity:oprt">
##  <ManSection>
##  <Heading>Transitivity</Heading>
##  <Oper Name="Transitivity" Arg='G, Omega[, gens, acts][, act]'
##   Label="for a group and an action domain"/>
##  <Attr Name="Transitivity" Arg='xset' Label="for an external set"/>
##
##  <Description>
##  returns the degree <M>k</M> (a non-negative integer) of transitivity of
##  the action implied by the arguments,
##  i.e. the largest integer <M>k</M> such that the action is
##  <M>k</M>-transitive.
##  If the action is not transitive <C>0</C> is returned.
##  <P/>
##  An action is <E><M>k</M>-transitive</E> if every <M>k</M>-tuple of points
##  can be mapped simultaneously to every other <M>k</M>-tuple.
##  <Example><![CDATA[
##  gap> g:=Group((1,3,2),(2,4,3));;
##  gap> IsTransitive(g,[1..5]);
##  false
##  gap> Transitivity(g,[1..4]);
##  2
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
OrbitsishOperation( "Transitivity", OrbitsishReq, false, NewAttribute );


#############################################################################
##
#O  Blocks( <G>, <Omega>[, <seed>][, <gens>, <acts>][, <act>] )
#A  Blocks( <xset>[, <seed>] )
##
##  <#GAPDoc Label="Blocks">
##  <ManSection>
##  <Heading>Blocks</Heading>
##  <Oper Name="Blocks" Arg='G, Omega[, seed][, gens, acts][, act]'
##   Label="for a group, an action domain, etc."/>
##  <Attr Name="Blocks" Arg='xset[, seed]'
##   Label="for an external set"/>
##
##  <Description>
##  computes a block system for the action.
##  If <A>seed</A> is not given and the action is imprimitive,
##  a minimal nontrivial block system will be found.
##  If <A>seed</A> is given, a block system in which <A>seed</A>
##  is the subset of one block is computed.
##  The action must be transitive.
##  <Example><![CDATA[
##  gap> g:=TransitiveGroup(8,3);
##  E(8)=2[x]2[x]2
##  gap> Blocks(g,[1..8]);
##  [ [ 1, 8 ], [ 2, 3 ], [ 4, 5 ], [ 6, 7 ] ]
##  gap> Blocks(g,[1..8],[1,4]);
##  [ [ 1, 4 ], [ 2, 7 ], [ 3, 6 ], [ 5, 8 ] ]
##  ]]></Example>
##  <P/>
##  (See Section&nbsp;<Ref Sect="Basic Actions"/>
##  for information about specific actions.)
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "BlocksAttr", IsExternalSet );

OrbitishFO( "Blocks",
    [ IsGroup, IsList, IsList,
      IsList,
      IsList,
      IsFunction ], IsIdenticalObj, BlocksAttr, true );


#############################################################################
##
#O  MaximalBlocks( <G>, <Omega>[, <seed>][, <gens>, <acts>][, <act>] )
#A  MaximalBlocks( <xset>[, <seed>] )
##
##  <#GAPDoc Label="MaximalBlocks">
##  <ManSection>
##  <Heading>MaximalBlocks</Heading>
##  <Oper Name="MaximalBlocks" Arg='G, Omega[, seed][, gens, acts][, act]'
##   Label="for a group, an action domain, etc."/>
##  <Attr Name="MaximalBlocks" Arg='xset[, seed]'
##   Label="for an external set"/>
##
##  <Description>
##  returns a block system that is maximal (i.e., blocks are maximal with
##  respect to inclusion) for the action of <A>G</A> on <A>Omega</A>.
##  If <A>seed</A> is given, a block system is computed in which <A>seed</A>
##  is a subset of one block.
##  <Example><![CDATA[
##  gap> MaximalBlocks(g,[1..8]);
##  [ [ 1, 2, 3, 8 ], [ 4, 5, 6, 7 ] ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "MaximalBlocksAttr", IsExternalSet );

OrbitishFO( "MaximalBlocks",
    [ IsGroup, IsList, IsList,
      IsList,
      IsList,
      IsFunction ], IsIdenticalObj, MaximalBlocksAttr,true );

#T  the following syntax would be nice for consistency as well:
##  RepresentativesMinimalBlocks(<G>,<Omega>[,<seed>][,<gens>,<acts>][,<act>])
##  RepresentativesMinimalBlocks( <xset>, <seed> )

#############################################################################
##
#O  RepresentativesMinimalBlocks(<G>,<Omega>[,<gens>,<acts>][,<act>])
#A  RepresentativesMinimalBlocks( <xset> )
##
##  <#GAPDoc Label="RepresentativesMinimalBlocks">
##  <ManSection>
##  <Heading>RepresentativesMinimalBlocks</Heading>
##  <Oper Name="RepresentativesMinimalBlocks"
##   Arg='G, Omega[, gens, acts][, act]'
##   Label="for a group, an action domain, etc."/>
##  <Attr Name="RepresentativesMinimalBlocks" Arg='xset'
##   Label="for an external set"/>
##
##  <Description>
##  computes a list of block representatives for all minimal (i.e blocks are
##  minimal with respect to inclusion) nontrivial block systems for the
##  action. 
##  <Example><![CDATA[
##  gap> RepresentativesMinimalBlocks(g,[1..8]);
##  [ [ 1, 2 ], [ 1, 3 ], [ 1, 4 ], [ 1, 5 ], [ 1, 6 ], [ 1, 7 ], 
##    [ 1, 8 ] ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "RepresentativesMinimalBlocksAttr", IsExternalSet );

OrbitishFO( "RepresentativesMinimalBlocks",
    [ IsGroup, IsList, IsList,
      IsList,
      IsList,
      IsFunction ], IsIdenticalObj, RepresentativesMinimalBlocksAttr,true );


#############################################################################
##
#O  Earns( <G>, <Omega>[, <gens>, <acts>][, <act>] )
#A  Earns( <xset> )
##
##  <#GAPDoc Label="Earns">
##  <ManSection>
##  <Heading>Earns</Heading>
##  <Oper Name="Earns" Arg='G, Omega[, gens, acts][, act]'
##   Label="for a group, an action domain, etc."/>
##  <Attr Name="Earns" Arg='xset'
##   Label="for an external set"/>
##
##  <Description>
##  returns a list of the elementary abelian regular
##  (when acting on <A>Omega</A>) normal subgroups of <A>G</A>.
##  <P/>
##  At the moment only methods for a primitive group <A>G</A> are implemented.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
OrbitsishOperation( "Earns", OrbitsishReq, false, NewAttribute );


#############################################################################
##
#O  IsTransitive( <G>, <Omega>[, <gens>, <acts>][, <act>] )
#O  IsTransitive( <permgroup> )
#P  IsTransitive( <xset> )
##
##  <#GAPDoc Label="IsTransitive:oprt">
##  <ManSection>
##  <Heading>IsTransitive</Heading>
##  <Oper Name="IsTransitive" Arg='G, Omega[, gens, acts][, act]'
##   Label="for a group, an action domain, etc."/>
##  <Prop Name="IsTransitive" Arg='G'
##   Label="for a permutation group"/>
##  <Prop Name="IsTransitive" Arg='xset'
##   Label="for an external set"/>
##
##  <Description>
##  returns <K>true</K> if the action implied by the arguments is transitive,
##  or <K>false</K> otherwise.
##  <P/>
##  <Index>transitive</Index>
##  We say that a  group <A>G</A> acts <E>transitively</E> on a domain
##  <M>D</M> if and only if for every pair of points <M>d, e \in D</M>
##  there is an element <M>g</M> in <A>G</A> such that <M>d^g = e</M>.
##  <P/>
##  For permutation groups, the syntax <C>IsTransitive(<A>G</A>)</C> is also
##  permitted and tests whether the group is transitive on the points moved
##  by it, that is the group <M>\langle (2,3,4),(2,3) \rangle</M>
##  is transitive (on 3 points).
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
OrbitsishOperation( "IsTransitive", OrbitsishReq, false, NewProperty );


#############################################################################
##
#O  IsPrimitive( <G>, <Omega>[, <gens>, <acts>][, <act>] )
#P  IsPrimitive( <xset> )
##
##  <#GAPDoc Label="IsPrimitive">
##  <ManSection>
##  <Heading>IsPrimitive</Heading>
##  <Oper Name="IsPrimitive" Arg='G, Omega[, gens, acts][, act]'
##   Label="for a group, an action domain, etc."/>
##  <Prop Name="IsPrimitive" Arg='xset'
##   Label="for an external set"/>
##
##  <Description>
##  returns <K>true</K> if the action implied by the arguments is primitive,
##  or <K>false</K> otherwise.
##  <P/>
##  <Index>primitive</Index>
##  An action is <E>primitive</E> if it is transitive and the action admits
##  no nontrivial block systems. See&nbsp;<Ref Sect="Block Systems"/>.
##  <Example><![CDATA[
##  gap> IsPrimitive(g,Orbit(g,(1,2)(3,4)));
##  true
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
OrbitsishOperation( "IsPrimitive", OrbitsishReq, false, NewProperty );


#############################################################################
##
#O  IsPrimitiveAffine( <G>, <Omega>[, <gens>, <acts>][, <act>] )
#P  IsPrimitiveAffine( <xset> )
##
##  <ManSection>
##  <Oper Name="IsPrimitiveAffine" Arg='G, Omega[, gens, acts][, act]'
##   Label="for a group, an action domain, etc."/>
##  <Prop Name="IsPrimitiveAffine" Arg='xset'
##   Label="for an external set"/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
OrbitsishOperation( "IsPrimitiveAffine", OrbitsishReq, false, NewProperty );


#############################################################################
##
#O  IsSemiRegular( <G>, <Omega>[, <gens>, <acts>][, <act>] )
#P  IsSemiRegular( <xset> )
##
##  <#GAPDoc Label="IsSemiRegular">
##  <ManSection>
##  <Heading>IsSemiRegular</Heading>
##  <Oper Name="IsSemiRegular" Arg='G, Omega[, gens, acts][, act]'
##   Label="for a group, an action domain, etc."/>
##  <Prop Name="IsSemiRegular" Arg='xset'
##   Label="for an external set"/>
##
##  <Description>
##  returns <K>true</K> if the action implied by the arguments is
##  semiregular, or <K>false</K> otherwise.
##  <P/>
##  <Index>semiregular</Index>
##  An action is <E>semiregular</E> is the stabilizer of each point is the
##  identity.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
OrbitsishOperation( "IsSemiRegular", OrbitsishReq, false, NewProperty );


#############################################################################
##
#O  IsRegular( <G>, <Omega>[, <gens>, <acts>][, <act>] )
#P  IsRegular( <xset> )
##
##  <#GAPDoc Label="IsRegular">
##  <ManSection>
##  <Heading>IsRegular</Heading>
##  <Oper Name="IsRegular" Arg='G, Omega[, gens, acts][, act]'
##   Label="for a group, an action domain, etc."/>
##  <Prop Name="IsRegular" Arg='xset'
##   Label="for an external set"/>
##
##  <Description>
##  returns <K>true</K> if the action implied by the arguments is regular, or
##  <K>false</K> otherwise.
##  <P/>
##  <Index>regular</Index>
##  An action is <E>regular</E> if it is both semiregular
##  (see&nbsp;<Ref Func="IsSemiRegular" Label="for a group, an action domain, etc."/>)
##  and transitive
##  (see&nbsp;<Ref Prop="IsTransitive" Label="for a group, an action domain, etc."/>).
##  In this case every point <A>pnt</A> of <A>Omega</A> defines a one-to-one
##  correspondence between <A>G</A> and <A>Omega</A>.
##  <Example><![CDATA[
##  gap> IsSemiRegular(g,Arrangements([1..4],3),OnTuples);
##  true
##  gap> IsRegular(g,Arrangements([1..4],3),OnTuples);
##  false
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
OrbitsishOperation( "IsRegular", OrbitsishReq, false, NewProperty );


#############################################################################
##
#O  RankAction( <G>, <Omega>[, <gens>, <acts>][, <act>] )
#A  RankAction( <xset> )
##
##  <#GAPDoc Label="RankAction">
##  <ManSection>
##  <Heading>RankAction</Heading>
##  <Oper Name="RankAction" Arg='G, Omega[, gens, acts][, act]'
##   Label="for a group, an action domain, etc."/>
##  <Attr Name="RankAction" Arg='xset'
##   Label="for an external set"/>
##
##  <Description>
##  returns the rank of a transitive action, i.e. the number of orbits of
##  the point stabilizer.
##  <Example><![CDATA[
##  gap> RankAction(g,Combinations([1..4],2),OnSets);
##  4
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
OrbitsishOperation( "RankAction", OrbitsishReq, false, NewAttribute );


#############################################################################
##
#F  Permutation( <g>, <Omega>[, <gens>, <acts>][, <act>] )
#F  Permutation( <g>, <xset> )
##
##  <#GAPDoc Label="Permutation">
##  <ManSection>
##  <Heading>Permutation</Heading>
##  <Func Name="Permutation" Arg='g, Omega[, gens, acts][, act]'
##   Label="for a group, an action domain, etc."/>
##  <Func Name="Permutation" Arg='g, xset' Label="for an external set"/>
##
##  <Description>
##  computes the permutation that corresponds to the action of <A>g</A> on
##  the permutation domain <A>Omega</A>
##  (a list of objects that are permuted).
##  If an external set <A>xset</A> is given,
##  the permutation domain is the <Ref Func="HomeEnumerator"/> value
##  of this external set (see Section&nbsp;<Ref Sect="External Sets"/>).
##  Note that the points of the returned permutation refer to the positions 
##  in <A>Omega</A>, even if <A>Omega</A> itself consists of integers.
##  <P/>
##  If <A>g</A> does not leave the domain invariant, or does not map the
##  domain injectively then <K>fail</K> is returned.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "Permutation" );

DeclareOperation( "PermutationOp", [ IsObject, IsList, IsFunction ] );


#############################################################################
##
#O  PermutationCycle( <g>, <Omega>, <pnt>[, <act>] )
##
##  <#GAPDoc Label="PermutationCycle">
##  <ManSection>
##  <Func Name="PermutationCycle" Arg='g, Omega, pnt[, act]'/>
##
##  <Description>
##  computes the permutation that represents the cycle of <A>pnt</A> under
##  the action of the element <A>g</A>.
##  <Example><![CDATA[
##  gap> Permutation([[Z(3),-Z(3)],[Z(3),0*Z(3)]],AsList(GF(3)^2));
##  (2,7,6)(3,4,8)
##  gap> Permutation((1,2,3)(4,5)(6,7),[4..7]);
##  (1,2)(3,4)
##  gap> PermutationCycle((1,2,3)(4,5)(6,7),[4..7],4);
##  (1,2)
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "PermutationCycle" );

DeclareOperation( "PermutationCycleOp",
    [ IsObject, IsList, IsObject, IsFunction ] );


#############################################################################
##
#O  Cycle( <g>, <Omega>, <pnt> [,<act>] )
##
##  <#GAPDoc Label="Cycle">
##  <ManSection>
##  <Func Name="Cycle" Arg='g, Omega, pnt[, act]'/>
##
##  <Description>
##  returns a list of the points in the cycle of <A>pnt</A> under the action
##  of the element <A>g</A>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "Cycle" );

DeclareOperation( "CycleOp", [ IsObject, IsList, IsObject, IsFunction ] );


#############################################################################
##
#O  Cycles( <g>, <Omega> [,<act>] )
##
##  <#GAPDoc Label="Cycles">
##  <ManSection>
##  <Func Name="Cycles" Arg='g, Omega[, act]'/>
##
##  <Description>
##  returns a list of the cycles (as lists of points) of the action of the
##  element <A>g</A>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "Cycles" );

DeclareOperation( "CyclesOp", [ IsObject, IsList, IsFunction ] );


#############################################################################
##
#O  CycleLength( <g>, <Omega>, <pnt> [,<act>] )
##
##  <#GAPDoc Label="CycleLength">
##  <ManSection>
##  <Func Name="CycleLength" Arg='g, Omega, pnt[, act]'/>
##
##  <Description>
##  returns the length of the cycle of <A>pnt</A> under the action of the element
##  <A>g</A>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "CycleLength" );

DeclareOperation( "CycleLengthOp",
    [ IsObject, IsList, IsObject, IsFunction ] );


#############################################################################
##
#O  CycleLengths( <g>, <Omega>[, <act>] )
##
##  <#GAPDoc Label="CycleLengths">
##  <ManSection>
##  <Oper Name="CycleLengths" Arg='g, Omega[, act]'/>
##
##  <Description>
##  returns the lengths of all the cycles under the action of the element
##  <A>g</A> on <A>Omega</A>.
##  <Example><![CDATA[
##  gap> Cycle((1,2,3)(4,5)(6,7),[4..7],4);
##  [ 4, 5 ]
##  gap> CycleLength((1,2,3)(4,5)(6,7),[4..7],4);
##  2
##  gap> Cycles((1,2,3)(4,5)(6,7),[4..7]);
##  [ [ 4, 5 ], [ 6, 7 ] ]
##  gap> CycleLengths((1,2,3)(4,5)(6,7),[4..7]);
##  [ 2, 2 ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "CycleLengths" );

DeclareOperation( "CycleLengthsOp",
    [ IsObject, IsList, IsFunction ] );


#############################################################################
##
#F  CycleIndex( <g>, <Omega>[, <act>] )
#F  CycleIndex( <G>, <Omega>[, <act>] )
##
##  <#GAPDoc Label="CycleIndex">
##  <ManSection>
##  <Heading>CycleIndex</Heading>
##  <Func Name="CycleIndex" Arg='g, Omega[, act]'
##   Label="for a permutation and an action domain"/>
##  <Func Name="CycleIndex" Arg='G, Omega[, act]'
##   Label="for a permutation group and an action domain"/>
##
##  <Description>
##  The <E>cycle index</E> of a permutation <A>g</A> acting on <A>Omega</A>
##  is defined as
##  <Display Mode="M">
##  z(<A>g</A>) = s_1^{{c_1}} s_2^{{c_2}} \cdots s_n^{{c_n}}
##  </Display>
##  where <M>c_k</M> is the number of <M>k</M>-cycles in the cycle
##  decomposition of <A>g</A> and the <M>s_i</M> are indeterminates.
##  <P/>
##  The <E>cycle index</E> of a group <A>G</A> is defined as
##  <Display Mode="M">
##  Z(<A>G</A>) = \left( \sum_{{g \in <A>G</A>}} z(g) \right) / |<A>G</A>| .
##  </Display>
##  <P/>
##  The indeterminates used by
##  <Ref Func="CycleIndex" Label="for a permutation and an action domain"/>
##  are the indeterminates <M>1</M> to <M>n</M> over the rationals
##  (see&nbsp;<Ref Func="Indeterminate" Label="for a ring (and a number)"/>).
##  <P/>
##  <Example><![CDATA[
##  gap> g:=TransitiveGroup(6,8);
##  S_4(6c) = 1/2[2^3]S(3)
##  gap> CycleIndex(g);
##  1/24*x_1^6+1/8*x_1^2*x_2^2+1/4*x_1^2*x_4+1/4*x_2^3+1/3*x_3^2
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "CycleIndex" );

DeclareOperation( "CycleIndexOp",
    [ IsObject, IsListOrCollection, IsFunction ] );


#############################################################################
##
#O  RepresentativeAction( <G> [,<Omega>], <d>, <e> [,<gens>,<acts>] [,<act>] )
##
##  <#GAPDoc Label="RepresentativeAction">
##  <ManSection>
##  <Func Name="RepresentativeAction"
##   Arg='G[, Omega], d, e[, gens, acts][, act]'/>
##
##  <Description>
##  computes an element of <A>G</A> that maps <A>d</A> to <A>e</A> under the
##  given action and returns <K>fail</K> if no such element exists.
##  <Example><![CDATA[
##  gap> g:=Group((1,3,2),(2,4,3));;
##  gap> RepresentativeAction(g,1,3);
##  (1,3)(2,4)
##  gap> RepresentativeAction(g,1,3,OnPoints);
##  (1,3)(2,4)
##  gap> RepresentativeAction(g,(1,2,3),(2,4,3));
##  (1,2,4)
##  gap> RepresentativeAction(g,(1,2,3),(2,3,4));
##  fail
##  gap> RepresentativeAction(g,Group((1,2,3)),Group((2,3,4)));
##  (1,2,4)
##  gap>  RepresentativeAction(g,[1,2,3],[1,2,4],OnSets);
##  (2,4,3)
##  gap>  RepresentativeAction(g,[1,2,3],[1,2,4],OnTuples);
##  fail
##  ]]></Example>
##  <P/>
##  (See Section&nbsp;<Ref Sect="Basic Actions"/>
##  for information about specific actions.)
##  <P/>
##  Again the standard method for <Ref Func="RepresentativeAction"/> is
##  an orbit-stabilizer algorithm,
##  for permutation groups and standard actions a backtrack algorithm is used.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "RepresentativeAction" );
DeclareOperation( "RepresentativeActionOp",
    [ IsGroup, IsList, IsObject, IsObject, IsFunction ] );


#############################################################################
##
#F  Stabilizer( <G> [,<Omega>], <pnt> [,<gens>,<acts>] [,<act>] )
##
##  <#GAPDoc Label="Stabilizer">
##  <ManSection>
##  <Func Name="Stabilizer" Arg='G[, Omega], pnt[, gens, acts][, act]'/>
##
##  <Description>
##  computes the stabilizer in <A>G</A> of the point <A>pnt</A>,
##  that is the subgroup of those elements of <A>G</A> that fix <A>pnt</A>.
##  The stabilizer will have <A>G</A> as its parent.
##  <Example><![CDATA[
##  gap> g:=Group((1,3,2),(2,4,3));;
##  gap> Stabilizer(g,4);
##  Group([ (1,3,2) ])
##  ]]></Example>
##  <P/>
##  The stabilizer of a set or tuple of points can be computed by specifying
##  an action of sets or tuples of points.
##  <Example><![CDATA[
##  gap> Stabilizer(g,[1,2],OnSets);
##  Group([ (1,2)(3,4) ])
##  gap> Stabilizer(g,[1,2],OnTuples);
##  Group(())
##  gap> OrbitStabilizer(g,[1,2],OnSets);
##  rec( 
##    orbit := [ [ 1, 2 ], [ 1, 3 ], [ 1, 4 ], [ 2, 3 ], [ 3, 4 ], 
##        [ 2, 4 ] ], stabilizer := Group([ (1,2)(3,4) ]) )
##  ]]></Example>
##  <P/>
##  (See Section&nbsp;<Ref Sect="Basic Actions"/>
##  for information about specific actions.)
##  <P/>
##  The standard methods for all these actions are an orbit-stabilizer
##  algorithm. For permutation groups backtrack algorithms are used. For
##  solvable groups an orbit-stabilizer algorithm for solvable groups, which
##  uses the fact that the orbits of a normal subgroup form a block system
##  (see <Cite Key="SOGOS"/>) is used.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "Stabilizer" );

OrbitishFO( "StabilizerFunc", OrbitishReq, IsCollsElms, false,false );
BindGlobal( "StabilizerOp", StabilizerFuncOp );


#############################################################################
##
#F  StabilizerPcgs( <pcgs>, <pnt> [,<acts>] [,<act>] )
##
##  <#GAPDoc Label="StabilizerPcgs">
##  <ManSection>
##  <Func Name="StabilizerPcgs" Arg='pcgs, pnt[, acts][, act]'/>
##
##  <Description>
##  computes the stabilizer in the group generated by <A>pcgs</A> of the
##  point <A>pnt</A>.
##  If given, <A>acts</A> are elements by which <A>pcgs</A> acts,
##  <A>act</A> is the acting function.
##  This function returns a pcgs for the stabilizer which is induced by the
##  <C>ParentPcgs</C> of <A>pcgs</A>, that is it is compatible
##  with <A>pcgs</A>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "StabilizerPcgs" );

#############################################################################
##
#F  OrbitStabilizerAlgorithm( <G>, <Omega>, <blist>, <gens>,<acts>, <pntact> )
##
##  <#GAPDoc Label="OrbitStabilizerAlgorithm">
##  <ManSection>
##  <Oper Name="OrbitStabilizerAlgorithm"
##   Arg='G, Omega, blist, gens, acts, pntact'/>
##
##  <Description>
##  This operation should not be called by a user. It is documented however
##  for purposes to extend or maintain the group actions package
##  (the word <Q>package</Q> here refers to the &GAP; functionality for 
##  group actions, not to a &GAP; package).
##  <P/>
##  <Ref Oper="OrbitStabilizerAlgorithm"/> performs an orbit stabilizer
##  algorithm for the group <A>G</A> acting with the generators <A>gens</A>
##  via the generator images <A>gens</A> and the group action <A>act</A> on
##  the element <A>pnt</A>.
##  (For technical reasons <A>pnt</A> and <A>act</A> are put in one record
##  with components <C>pnt</C> and <C>act</C> respectively.)
##  <P/>
##  The <A>pntact</A> record may carry a component <A>stabsub</A>.
##  If given, this must be a subgroup stabilizing <E>all</E> points in the
##  domain and can be used to abbreviate stabilizer calculations.
##  <P/>
##  The <A>pntact</A> component also may contain the boolean entry <C>onlystab</C> set
##  to <K>true</K>. In this case the <C>orbit</C> component may be omitted from the
##  result.
##  <P/>
##  The argument <A>Omega</A> (which may be replaced by <K>false</K> to be ignored) is
##  the set within which the orbit is computed (once the orbit is the full
##  domain, the orbit calculation may stop).  If <A>blist</A> is given it must be
##  a bit list corresponding to <A>Omega</A> in which elements which have been found
##  already will be <Q>ticked off</Q> with <K>true</K>. (In particular, the entries
##  for the orbit of <A>pnt</A> still must be all set to <K>false</K>). Again the
##  remaining action domain (the bits set initially to <K>false</K>) can be
##  used to stop if the orbit cannot grow any longer.
##  Another use of the bit list is if <A>Omega</A> is an enumerator which can
##  determine <Ref Func="PositionCanonical"/> values very quickly.
##  In this situation it can be
##  worth to search images not in the orbit found so far, but via their
##  position in <A>Omega</A> and use a the bit list to keep track whether the
##  element is in the orbit found so far.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "OrbitStabilizerAlgorithm",
  [IsGroup,IsObject,IsObject,IsList,IsList,IsRecord] );

DeclareGlobalFunction( "OrbitByPosOp" );


# AH, 5-feb-99 This function is neither documented not used.
#DeclareGlobalFunction( "OrbitStabilizerListByGenerators" );

DeclareGlobalFunction( "SetCanonicalRepresentativeOfExternalOrbitByPcgs" );

DeclareGlobalFunction( "StabilizerOfBlockNC" );

#############################################################################
##
#O  AbelianSubfactorAction(<G>,<M>,<N>)
##
##  <#GAPDoc Label="AbelianSubfactorAction">
##  <ManSection>
##  <Oper Name="AbelianSubfactorAction" Arg='G, M, N'/>
##
##  <Description>
##  Let <A>G</A> be a group and <M><A>M</A> \geq <A>N</A></M> be subgroups
##  of a common parent that are normal under <A>G</A>, such that
##  the subfactor <M><A>M</A>/<A>N</A></M> is elementary abelian.
##  The operation <Ref Func="AbelianSubfactorAction"/> returns a list
##  <C>[ <A>phi</A>, <A>alpha</A>, <A>bas</A> ]</C> where
##  <A>bas</A> is a list of elements of <A>M</A> which are representatives
##  for a basis of <M><A>M</A>/<A>N</A></M>,
##  <A>alpha</A> is a map from <A>M</A> into a <M>n</M>-dimensional row space
##  over <M>GF(p)</M> where <M>[<A>M</A>:<A>N</A>] = p^n</M> that is the
##  natural homomorphism of <A>M</A> by <A>N</A> with the quotient
##  represented as an additive group.
##  Finally <A>phi</A> is a homomorphism from <A>G</A>
##  into <M>GL_n(p)</M> that represents the action of <A>G</A> on the factor
##  <M><A>M</A>/<A>N</A></M>.
##  <P/>
##  Note: If only matrices for the action are needed,
##  <Ref Func="LinearActionLayer"/> might be faster.
##  <Example><![CDATA[
##  gap> g:=Group((1,8,10,7,3,5)(2,4,12,9,11,6),
##  >             (1,9,5,6,3,10)(2,11,12,8,4,7));;
##  gap> c:=ChiefSeries(g);;List(c,Size);
##  [ 96, 48, 16, 4, 1 ]
##  gap> HasElementaryAbelianFactorGroup(c[3],c[4]);
##  true
##  gap> SetName(c[3],"my_group");;
##  gap> a:=AbelianSubfactorAction(g,c[3],c[4]);
##  [ [ (1,8,10,7,3,5)(2,4,12,9,11,6), (1,9,5,6,3,10)(2,11,12,8,4,7) ] -> 
##      [ <an immutable 2x2 matrix over GF2>, 
##        <an immutable 2x2 matrix over GF2> ], 
##    MappingByFunction( my_group, ( GF(2)^
##      2 ), function( e ) ... end, function( r ) ... end ), 
##    Pcgs([ (2,9,3,8)(4,11,5,10), (1,6,12,7)(4,10,5,11) ]) ]
##  gap> mat:=Image(a[1],g);
##  Group([ <an immutable 2x2 matrix over GF2>, 
##    <an immutable 2x2 matrix over GF2> ])
##  gap> Size(mat);
##  3
##  gap> e:=PreImagesRepresentative(a[2],[Z(2),0*Z(2)]);
##  (2,9,3,8)(4,11,5,10)
##  gap> e in c[3];e in c[4];
##  true
##  false
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "AbelianSubfactorAction",[IsGroup,IsGroup,IsGroup] );

#############################################################################
##
#F  OnPoints( <pnt>, <g> )
##
##  <#GAPDoc Label="OnPoints">
##  <ManSection>
##  <Func Name="OnPoints" Arg='pnt, g'/>
##
##  <Description>
##  <Index>conjugation</Index>
##  <Index Subkey="by conjugation">action</Index>
##  returns <C><A>pnt</A> ^ <A>g</A></C>.
##  This is for example the action of a permutation group on points,
##  or the action of a group on its elements via conjugation.
##  The action of a matrix group on vectors from the right is described by
##  both <Ref Func="OnPoints"/> and <Ref Func="OnRight"/>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##


#############################################################################
##
#F  OnRight( <pnt>, <g> )
##
##  <#GAPDoc Label="OnRight">
##  <ManSection>
##  <Func Name="OnRight" Arg='pnt, g'/>
##
##  <Description>
##  returns <C><A>pnt</A> * <A>g</A></C>.
##  This is for example the action of a group on its elements via right
##  multiplication,
##  or the action of a group on the cosets of a subgroup.
##  The action of a matrix group on vectors from the right is described by
##  both <Ref Func="OnPoints"/> and <Ref Func="OnRight"/>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##


#############################################################################
##
#F  OnLeftInverse( <pnt>, <g> )
##
##  <#GAPDoc Label="OnLeftInverse">
##  <ManSection>
##  <Func Name="OnLeftInverse" Arg='pnt, g'/>
##
##  <Description>
##  returns <M><A>g</A>^{{-1}}</M> <C>* <A>pnt</A></C>.
##  Forming the inverse is necessary to make this a proper action,
##  as in &GAP; groups always act from the right.
##  <P/>
##  <Ref Func="OnLeftInverse"/> is used for example in the representation
##  of a right coset as an external set
##  (see&nbsp;<Ref Sect="External Sets"/>),
##  that is, a right coset <M>Ug</M> is an external set for the group
##  <M>U</M> acting on it via <Ref Func="OnLeftInverse"/>.)
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##


#############################################################################
##
#F  OnSets( <set>, <g> )
##
##  <#GAPDoc Label="OnSets">
##  <ManSection>
##  <Func Name="OnSets" Arg='set, g'/>
##
##  <Description>
##  <Index Subkey="on sets">action</Index>
##  <Index Subkey="on blocks">action</Index>
##  Let <A>set</A> be a proper set
##  (see&nbsp;<Ref Sect="Sorted Lists and Sets"/>).
##  <Ref Func="OnSets"/> returns the proper set formed by the images
##  of all points <M>x</M> of <A>set</A> via the action function
##  <Ref Func="OnPoints"/>, applied to <M>x</M> and <A>g</A>.
##  <P/>
##  <Ref Func="OnSets"/> is for example used to compute the action of
##  a permutation group on blocks.
##  <P/>
##  (<Ref Func="OnTuples"/> is an action on lists that preserves the ordering
##  of entries.)
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##


#############################################################################
##
#F  OnTuples( <tup>, <g> )
##
##  <#GAPDoc Label="OnTuples">
##  <ManSection>
##  <Func Name="OnTuples" Arg='tup, g'/>
##
##  <Description>
##  Let <A>tup</A> be a list.
##  <Ref Func="OnTuples"/> returns the list formed by the images
##  of all points <M>x</M> of <A>tup</A> via the action function
##  <Ref Func="OnPoints"/>, applied to <M>x</M> and <A>g</A>.
##  <P/>
##  (<Ref Func="OnSets"/> is an action on lists that additionally sorts
##  the entries of the result.)
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##


#############################################################################
##
#F  OnPairs( <tup>, <g> )
##
##  <#GAPDoc Label="OnPairs">
##  <ManSection>
##  <Func Name="OnPairs" Arg='tup, g'/>
##
##  <Description>
##  is a special case of <Ref Func="OnTuples"/> for lists <A>tup</A>
##  of length 2.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##


#############################################################################
##
#F  OnLines( <vec>, <g> )
##
##  <#GAPDoc Label="OnLines">
##  <ManSection>
##  <Func Name="OnLines" Arg='vec, g'/>
##
##  <Description>
##  Let <A>vec</A> be a <E>normed</E> row vector, that is,
##  its first nonzero entry is normed to the identity of the relevant field,
##  see <Ref Func="NormedRowVector"/>.
##  The function <Ref Func="OnLines"/> returns the row vector obtained from
##  first multiplying <A>vec</A> from the right with <A>g</A>
##  (via <Ref Func="OnRight"/>) and then normalizing the resulting row vector
##  by scalar multiplication from the left.
##  <P/>
##  This action corresponds to the projective action of a matrix group
##  on one-dimensional subspaces.
##  <P/>
##  If <A>vec</A> is a zero vector or is not normed then
##  an error is triggered
##  (see&nbsp;<Ref Sect="Action on canonical representatives"/>).
##  <P/>
##  <Example><![CDATA[
##  gap> gl:=GL(2,5);;v:=[1,0]*Z(5)^0;
##  [ Z(5)^0, 0*Z(5) ]
##  gap> h:=Action(gl,Orbit(gl,v,OnLines),OnLines);
##  Group([ (2,3,5,6), (1,2,4)(3,6,5) ])
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction("OnLines");


#############################################################################
##
#F  OnSetsSets( <set>, <g> )
##
##  <#GAPDoc Label="OnSetsSets">
##  <ManSection>
##  <Func Name="OnSetsSets" Arg='set, g'/>
##
##  <Description>
##  implements the action on sets of sets.
##  For the special case that the sets are pairwise disjoint,
##  it is possible to use <Ref Func="OnSetsDisjointSets"/>.
##  <A>set</A> must be a sorted list whose entries are again sorted lists,
##  otherwise an error is triggered
##  (see&nbsp;<Ref Sect="Action on canonical representatives"/>).
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "OnSetsSets" );


#############################################################################
##
#F  OnSetsDisjointSets( <set>, <g> )
##
##  <#GAPDoc Label="OnSetsDisjointSets">
##  <ManSection>
##  <Func Name="OnSetsDisjointSets" Arg='set, g'/>
##
##  <Description>
##  implements the action on sets of pairwise disjoint sets
##  (see also&nbsp;<Ref Func="OnSetsSets"/>).
##  <A>set</A> must be a sorted list whose entries are again sorted lists,
##  otherwise an error is triggered
##  (see&nbsp;<Ref Sect="Action on canonical representatives"/>).
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "OnSetsDisjointSets" );


#############################################################################
##
#F  OnSetsTuples( <set>, <g> )
##
##  <#GAPDoc Label="OnSetsTuples">
##  <ManSection>
##  <Func Name="OnSetsTuples" Arg='set, g'/>
##
##  <Description>
##  implements the action on sets of tuples.
##  <A>set</A> must be a sorted list,
##  otherwise an error is triggered
##  (see&nbsp;<Ref Sect="Action on canonical representatives"/>).
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction("OnSetsTuples");


#############################################################################
##
#F  OnTuplesSets( <set>, <g> )
##
##  <#GAPDoc Label="OnTuplesSets">
##  <ManSection>
##  <Func Name="OnTuplesSets" Arg='set, g'/>
##
##  <Description>
##  implements the action on tuples of sets.
##  <A>set</A> must be a list whose entries are again sorted lists,
##  otherwise an error is triggered
##  (see&nbsp;<Ref Sect="Action on canonical representatives"/>).
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction("OnTuplesSets");


#############################################################################
##
#F  OnTuplesTuples( <set>, <g> )
##
##  <#GAPDoc Label="OnTuplesTuples">
##  <ManSection>
##  <Func Name="OnTuplesTuples" Arg='set, g'/>
##
##  <Description>
##  implements the action on tuples of tuples.
##  <Example><![CDATA[
##  gap> g:=Group((1,2,3),(2,3,4));;
##  gap> Orbit(g,1,OnPoints);
##  [ 1, 2, 3, 4 ]
##  gap> Orbit(g,(),OnRight);
##  [ (), (1,2,3), (2,3,4), (1,3,2), (1,3)(2,4), (1,2)(3,4), (2,4,3), 
##    (1,4,2), (1,4,3), (1,3,4), (1,2,4), (1,4)(2,3) ]
##  gap> Orbit(g,[1,2],OnPairs);
##  [ [ 1, 2 ], [ 2, 3 ], [ 1, 3 ], [ 3, 1 ], [ 3, 4 ], [ 2, 1 ], 
##    [ 1, 4 ], [ 4, 1 ], [ 4, 2 ], [ 3, 2 ], [ 2, 4 ], [ 4, 3 ] ]
##  gap> Orbit(g,[1,2],OnSets);
##  [ [ 1, 2 ], [ 2, 3 ], [ 1, 3 ], [ 3, 4 ], [ 1, 4 ], [ 2, 4 ] ]
##  gap> Orbit(g,[[1,2],[3,4]],OnSetsSets);
##  [ [ [ 1, 2 ], [ 3, 4 ] ], [ [ 1, 4 ], [ 2, 3 ] ], 
##    [ [ 1, 3 ], [ 2, 4 ] ] ]
##  gap> Orbit(g,[[1,2],[3,4]],OnTuplesSets);
##  [ [ [ 1, 2 ], [ 3, 4 ] ], [ [ 2, 3 ], [ 1, 4 ] ], 
##    [ [ 1, 3 ], [ 2, 4 ] ], [ [ 3, 4 ], [ 1, 2 ] ], 
##    [ [ 1, 4 ], [ 2, 3 ] ], [ [ 2, 4 ], [ 1, 3 ] ] ]
##  gap> Orbit(g,[[1,2],[3,4]],OnSetsTuples);
##  [ [ [ 1, 2 ], [ 3, 4 ] ], [ [ 1, 4 ], [ 2, 3 ] ], 
##    [ [ 1, 3 ], [ 4, 2 ] ], [ [ 2, 4 ], [ 3, 1 ] ], 
##    [ [ 2, 1 ], [ 4, 3 ] ], [ [ 3, 2 ], [ 4, 1 ] ] ]
##  gap> Orbit(g,[[1,2],[3,4]],OnTuplesTuples);
##  [ [ [ 1, 2 ], [ 3, 4 ] ], [ [ 2, 3 ], [ 1, 4 ] ], 
##    [ [ 1, 3 ], [ 4, 2 ] ], [ [ 3, 1 ], [ 2, 4 ] ], 
##    [ [ 3, 4 ], [ 1, 2 ] ], [ [ 2, 1 ], [ 4, 3 ] ], 
##    [ [ 1, 4 ], [ 2, 3 ] ], [ [ 4, 1 ], [ 3, 2 ] ], 
##    [ [ 4, 2 ], [ 1, 3 ] ], [ [ 3, 2 ], [ 4, 1 ] ], 
##    [ [ 2, 4 ], [ 3, 1 ] ], [ [ 4, 3 ], [ 2, 1 ] ] ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction("OnTuplesTuples");

#############################################################################
##
#O  DomainForAction( <pnt>, <acts>, <act> )
##
##  <ManSection>
##  <Oper Name="DomainForAction" Arg='pnt, acts, act'/>
##
##  <Description>
##  returns a domain which will contain the orbit of <A>pnt</A> under the action
##  <A>act</A>  of the group
##  generated by <A>acts</A>. (Such a domain can be helpful for obtaining 
##  a dictionary.)
##  The default method returns <K>fail</K> to indicate that no special domain is
##  defined, a special method exists for matrix groups over finite fields.
##  </Description>
##  </ManSection>
##
DeclareOperation("DomainForAction",[IsObject,IsListOrCollection,IsFunction]);


#############################################################################
##
#E