File: sgpres.gi

package info (click to toggle)
gap 4r8p6-2
  • links: PTS
  • area: main
  • in suites: stretch
  • size: 33,476 kB
  • ctags: 7,663
  • sloc: ansic: 108,841; xml: 47,807; sh: 3,628; perl: 2,342; makefile: 796; asm: 62; awk: 6
file content (2806 lines) | stat: -rw-r--r-- 96,262 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
#############################################################################
##
#W  sgpres.gi                  GAP library                     Volkmar Felsch
##
##
#Y  Copyright (C)  1997,  Lehrstuhl D für Mathematik,  RWTH Aachen,  Germany
#Y  (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y  Copyright (C) 2002 The GAP Group
##
##  This file  contains  the methods for  subgroup presentations  in finitely
##  presented groups (fp groups).
##


#############################################################################
##
#M  AbelianInvariantsNormalClosureFpGroupRrs( <G>, <H> )  . . . . . . . . . .
#M  . . . . . abelian invariants of the normal closure of the subgroup H of G
##
##  uses the Reduced Reidemeister-Schreier method to compute the abelian
##  invariants of the normal closure of a subgroup <H> of a finitely
##  presented group <G>.
##
InstallGlobalFunction( AbelianInvariantsNormalClosureFpGroupRrs,
function ( G, H )
local M;
  M:=RelatorMatrixAbelianizedNormalClosureRrs( G, H );
  if Length(M)=0 then
    return [];
  else
    DiagonalizeMat( Integers, M );
    return AbelianInvariantsOfList(DiagonalOfMat(M));
  fi;
end );


#############################################################################
##
#M  AbelianInvariantsSubgroupFpGroupMtc( <G>, <H> ) . . . . . . . . . . . . .
#M  . . . . . abelian invariants of the normal closure of the subgroup H of G
##
##  uses the Modified Todd-Coxeter method to compute the abelian
##  invariants of a subgroup <H> of a finitely presented group <G>.
##
InstallGlobalFunction( AbelianInvariantsSubgroupFpGroupMtc,
function ( G, H )
local M;
  M:=RelatorMatrixAbelianizedSubgroupMtc( G, H );
  if Length(M)=0 then
    return [];
  else
    DiagonalizeMat( Integers, M );
    return AbelianInvariantsOfList(DiagonalOfMat(M));
  fi;
end );


#############################################################################
##
#M  AbelianInvariantsSubgroupFpGroupRrs( <G>, <H> ) . . . . . . . . . . . . .
#M  AbelianInvariantsSubgroupFpGroupRrs( <G>, <costab> ) . . .  . . . . . . .
#M  . . . . . abelian invariants of the normal closure of the subgroup H of G
##
##  uses the Reduced Reidemeister-Schreier method to compute the abelian
##  invariants of a subgroup <H> of a finitely presented group <G>.
##
##  Alternatively to the subgroup <H>, its coset table <table> in <G> may be
##  given as second argument.
##
InstallGlobalFunction( AbelianInvariantsSubgroupFpGroupRrs,
function ( G, H )
local M;
  M:=RelatorMatrixAbelianizedSubgroupRrs( G, H );
  if Length(M)=0 then
    return [];
  else
    DiagonalizeMat( Integers, M );
    return AbelianInvariantsOfList(DiagonalOfMat(M));
  fi;
end );


#############################################################################
##
#M  AugmentedCosetTableInWholeGroup
##
InstallGlobalFunction(AugmentedCosetTableInWholeGroup,
function(arg)
local aug,H,wor,w;
  H:=arg[1];
  if Length(arg)=1 then
    return AugmentedCosetTableRrsInWholeGroup(H);
  fi;
  wor:=List(arg[2],UnderlyingElement); # words for given elements
  # is there an MTc table we can use?
  if HasAugmentedCosetTableMtcInWholeGroup(H) then
    aug := AugmentedCosetTableMtcInWholeGroup( H );
    if IsSubset(aug.primaryGeneratorWords,wor) or
       IsSubset(SecondaryGeneratorWordsAugmentedCosetTable(aug),wor) then
      return aug;
    fi;
  fi;
  # try the Rrs table
  aug := AugmentedCosetTableRrsInWholeGroup( H );
  if IsSubset(aug.primaryGeneratorWords,wor) or
      IsSubset(SecondaryGeneratorWordsAugmentedCosetTable(aug),wor) then
    return aug;
  fi;

  # still not: need completely new table
  w:=FamilyObj(H)!.wholeGroup;
  aug:=AugmentedCosetTableMtc(w,SubgroupNC(w,arg[2]),2,"y" );

  return aug;
end);


#############################################################################
##
#M  AugmentedCosetTableMtcInWholeGroup
##
InstallMethod( AugmentedCosetTableMtcInWholeGroup,
  "subgroup of fp group", true, [IsSubgroupFpGroup], 0,
function( H )
  local G, aug;
  G := FamilyObj( H )!.wholeGroup;
  aug := AugmentedCosetTableMtc( G, H, 2, "y" );
  return aug;
end);


#############################################################################
##
#M  AugmentedCosetTableRrsInWholeGroup
##
InstallMethod( AugmentedCosetTableRrsInWholeGroup,
  "subgroup of fp group", true, [IsSubgroupFpGroup], 0,
function( H )
  local G, costab, fam, aug, gens;
  G := FamilyObj( H )!.wholeGroup;
  costab := CosetTableInWholeGroup( H );
  aug := AugmentedCosetTableRrs( G, costab, 2, "y" );

  # if H has not yet any generators, we store them (and then also can store
  # the coset table as Mtc table)
  if not (HasGeneratorsOfGroup(H)
          or HasAugmentedCosetTableMtcInWholeGroup(H)) then
    SetAugmentedCosetTableMtcInWholeGroup(H,aug);
    gens := aug.primaryGeneratorWords;
    # do we need to wrap?
    if not IsFreeGroup( G ) then
      fam := ElementsFamily( FamilyObj( H ) );
      gens := List( gens, i -> ElementOfFpGroup( fam, i ) );
    fi;
    SetGeneratorsOfGroup( H, gens );
  fi;

  return aug;
end);

InstallMethod( AugmentedCosetTableRrsInWholeGroup, "use Mtc table", true,
  [IsSubgroupFpGroup and HasAugmentedCosetTableMtcInWholeGroup], 0,
  AugmentedCosetTableMtcInWholeGroup);

#############################################################################
##
#M  AugmentedCosetTableNormalClosureInWholeGroup( <H> ) . . . augmented coset
#M           table of the normal closure of an fp subgroup in its whole group
##
##  is equivalent to `AugmentedCosetTableNormalClosure( <G>, <H> )' where <G>
##  is the  (unique) finitely presented group  such that <H> is a subgroup of
##  <G>.
##
InstallMethod( AugmentedCosetTableNormalClosureInWholeGroup,
  "subgroup of fp group", true, [IsSubgroupFpGroup], 0,
function( H )
  local G, costab, aug;

  # get the whole group G of H
  G := FamilyObj( H )!.wholeGroup;

  # compute a coset table of the normal closure N of H in G
  costab := CosetTableNormalClosureInWholeGroup( H );

  # apply the Reduced Reidemeister-Schreier method to construct an
  # augmented coset table of N in G
  aug := AugmentedCosetTableRrs( G, costab, 2, "%" );

  return aug;
end );


#############################################################################
##
#M  AugmentedCosetTableMtc( <G>, <H>, <type>, <string> )  . . . . . . . . . .
#M  . . . . . . . . . . . . .  do an MTC and return the augmented coset table
##
##  is an internal function used by the subgroup presentation functions
##  described in "Subgroup Presentations". It applies a Modified Todd-Coxeter
##  coset representative enumeration to construct an augmented coset table
##  (see "Subgroup presentations") for the given subgroup <H> of <G>. The
##  subgroup generators will be named <string>1, <string>2, ... .
##
##  Valid types are 1 (for the one generator case), 0 (for the abelianized
##  case), and 2 (for the general case). A type value of -1 is handled in
##  the same way as the case type = 1, but the function will just return the
##  the exponent <aug>.exponent of the given cyclic subgroup <H> and its
##  index <aug>.index in <G> as the only components of the resulting record
##  <aug>.
##
InstallGlobalFunction( AugmentedCosetTableMtc,
    function ( G, H, ttype, string )

    local   fgens,                  # generators of asscociated free group
            grels,                  # relators of G
            sgens,                  # subgroup generators of H
            fsgens,                 # preimages of subgroup generators in F
            involutions,            # indices of involutory gens of G
            next,  prev,            # next and previous coset on lists
            fact,                   # factor to previous coset rep
            firstFree,  lastFree,   # first and last free coset
            firstDef,   lastDef,    # first and last defined coset
            table,                  # coset table to be built up
            coFacTable,             # coset factor table
            rels,                   # representatives for the relators
            relsGen,                # relators sorted by start generator
            subgroup,               # rows for the subgroup gens
            tree,                   # tree of generators
            tree1, tree2,           # components of tree of generators
            treelength,             # number of gens (primary + secondary)
            type,                   # type
            deductions,             # deduction queue
            i, gen, inv,            # loop variables for generators
            g, f,                   # loop variables for generator cols
            rel,                    # loop variable for relations
            p, p1, p2,              # generator position numbers
            app,                    # arguments list for 'MakeConsequences2'
            limit,                  # limit of the table
            maxlimit,               # maximal size of the table
            j,                      # integer variable
            length, length2,        # length of relator
            cols,                   #
            nums,                   #
            l,                      #
            nrdef,                  # number of defined cosets
            nrmax,                  # maximal value of the above
            nrdel,                  # number of deleted cosets
            nrinf,                  # number for next information message
            numgens,                # number of generators
            F,                      # a new free group
            gens,                   # new generators
            ngens,                  # number of new generators
            defs,                   # definitions of primary subgroup gens
            index,                  # index of H in G
            numcols,                # number of columns in the tables
            numoccs,                # number of gens which occur in the table
            occur,                  #
            treeNums,               #
            exponent,               # order of subgroup in case type = 1
            convert,                # conversion list for subgroup generators
            aug,                    # augmented coset table
            field,                  # loop variable for record field names
	    silent;		    # do we want the algorithm to silently
	                            # return `fail' if the algorithm did not
				    # finish in the permitted size?

    # check the arguments
    if not ( IsSubgroupFpGroup( G ) and IsGroupOfFamily( G ) ) then
        Error( "<G> must be a finitely presented group" );
    fi;
    if FamilyObj( H ) <> FamilyObj( G ) then
        Error( "<H> must be a subgroup of <G>" );
    fi;

    # get some local variables
    fgens := FreeGeneratorsOfFpGroup( G );
    grels := RelatorsOfFpGroup( G );
    sgens := GeneratorsOfGroup( H );
    fsgens := List( sgens, gen -> UnderlyingElement( gen ) );

    # check the given type for being -1, 0, 1, or 2.
    if ttype < -1 or ttype > 2 then
        Error( "invalid type value; it should be -1, 0, 1, or 2" );
    fi;
    type := ttype;
    if type = -1 then type := 1; fi;

    # check the number of generators and the type for being consistent.
    numgens := Length( sgens );
    if type = 1 and numgens > 1 then
        Error( "type 1 is illegal for more than 1 generators" );
    fi;

    # give some information
    Info( InfoFpGroup, 2, "AugmentedCosetTableMtc called:" );
    Info( InfoFpGroup, 2, "    defined deleted alive   maximal");
    nrdef := 1;
    nrmax := 1;
    nrdel := 0;
    nrinf := 1000;

    # initialize size of the table
    limit := CosetTableDefaultLimit;
    maxlimit:=ValueOption("max");
    if maxlimit=fail or not IsInt(maxlimit) then
      maxlimit := CosetTableDefaultMaxLimit;
    fi;

    silent:=ValueOption("silent")=true;

    # define one coset (1)
    firstDef  := 1;  lastDef  := 1;
    firstFree := 2;  lastFree := limit;

    # make the lists that link together all the cosets
    next := [ 2 .. limit+1 ];  next[1] := 0;  next[limit] := 0;
    prev := [ 0 .. limit-1 ];  prev[2] := 0;
    fact := [ 1 .. limit ];  fact[1] := 0;  fact[2] := 0;

    # get the representatives of the relators
    rels := RelatorRepresentatives( grels );

    # make the columns for the generators
    involutions := IndicesInvolutaryGenerators( G );
    table := [ ];                                           
    coFacTable := [ ];                                                    
    for i in [ 1 .. Length( fgens ) ] do           
        g := ListWithIdenticalEntries( limit, 0 );            
        f := ListWithIdenticalEntries( limit, 0 );                         
        Add( table, g );                                              
        Add( coFacTable, f );                                     
        if not i in involutions then
            g := ListWithIdenticalEntries( limit, 0 );            
            f := ListWithIdenticalEntries( limit, 0 );                
        fi;                                                        
        Add( table, g );                                                 
        Add( coFacTable, f );                                         
    od;

    # construct the list relsGen which for each generator or inverse
    # generator contains a list of all cyclically reduced relators,
    # starting with that element, which can be obtained by conjugating or
    # inverting given relators. The relators in relsGen are represented as
    # lists of the coset table columns corresponding to the generators and,
    # in addition, as lists of the respective column numbers.
    relsGen := RelsSortedByStartGen( fgens, rels, table, true );

    # make the rows for the subgroup generators
    subgroup := [ ];
    for rel  in fsgens  do
      #T this code should use ExtRepOfObj -- its faster
      # cope with SLP elms
      if IsStraightLineProgElm(rel) then
        rel:=EvalStraightLineProgElm(rel);
      fi;
      length := Length( rel );
      nums := [ ]; 
      cols := [ ]; 
      if length>0 then
        length2 := 2 * length;
	nums[length2] := 0;
	cols[length2] := 0;

        # compute the lists.
        i := 0;  j := 0;
        while i < length do
            i := i + 1;  j := j + 2;
            gen := Subword( rel, i, i );
            p := Position( fgens, gen );
            if p = fail then
                p := Position( fgens, gen^-1 );
                p1 := 2 * p;
                p2 := 2 * p - 1;
            else
                p1 := 2 * p - 1;
                p2 := 2 * p;
            fi;
            nums[j]   := p1;  cols[j]   := table[p1];
            nums[j-1] := p2;  cols[j-1] := table[p2];
        od;
      fi;
      Add( subgroup, [ nums, cols ] );
    od;

    # define the primary subgroup generators.
    ngens := numgens;
    defs := fsgens;

    # initialize the tree of secondary generators.
    if type = 1 then
        treelength := 1;
        tree1 := [ 1 ];
        tree2 := [ 0 ];
    elif type = 0 then
        treelength := numgens;
        length := treelength + 100;
        tree1 := ListWithIdenticalEntries( length, 0 );
        for i in [ 1 .. numgens ] do
            tree1[i] := ListWithIdenticalEntries( i, 0 );
            tree1[i][i] := 1;
        od;
        tree2 := ListWithIdenticalEntries( numgens, 0 );
    else
        treelength := numgens;
        length := treelength + 100;
        tree1 := ListWithIdenticalEntries( length, 0 );
        tree2 := ListWithIdenticalEntries( length, 0 );
    fi;
    tree := [ tree1, tree2, treelength, numgens, type ];

    # add an empty deduction list
    deductions := [ ];

    # initialize the subgroup exponent (which is needed in case type = 1)
    exponent := 0;

    # check if the subgroup generator is an involution?
    if type = 1 and NumberSyllables(fsgens[1])=1 then
        i := Position( fgens, fsgens[1] );
        if i <> fail then
            if IsIdenticalObj( table[2*i-1], table[2*i] ) then
               exponent := 2;
            fi;

	    # do we have power relators for this generator?
	    i:=GeneratorSyllable(fsgens[1],1);
	    for j in rels do
	      if NumberSyllables(j)=1 and GeneratorSyllable(j,1)=i then
	        exponent:=Gcd(exponent,AbsInt(ExponentSyllable(j,1)));
	      fi;
	    od;
        fi;
    fi;

    # make the structure that is passed to 'MakeConsequences2'
    app := ListWithIdenticalEntries( 16, 0 );
    app[1] := table;
    app[2] := next;
    app[3] := prev;
    app[4] := relsGen;
    app[5] := subgroup;
    app[12] := coFacTable;
    app[13] := fact;
    app[14] := tree;
    app[15] := numgens;
    app[16] := exponent;

    # run over all the cosets
    while firstDef <> 0  do

        # run through all the rows and look for undefined entries
        for i  in [ 1 .. Length( table ) ]  do
            gen := table[i];

            if gen[firstDef] = 0  then

                inv := i + 2*(i mod 2) - 1;

                # if necessary expand the table
                if firstFree = 0  then
                    if 0 < maxlimit and  maxlimit <= limit  then
			if silent then
			  return fail;
			fi;
                        maxlimit := Maximum(maxlimit*2,limit*2);
                        Error( "the coset enumeration has defined more ",
                               "than ", limit, " cosets:\ntype 'return;' ",
                               "if you want to continue with a new limit ",
                               "of ", maxlimit, " cosets,\ntype 'quit;' ",
                               "if you want to quit the coset ",
                               "enumeration,\ntype 'maxlimit := 0; return;'",
                               " in order to continue without a limit,\n" );
                    fi;
                    next[2*limit] := 0;
                    prev[2*limit] := 2*limit-1;
                    fact[2*limit] := 0;
                    for g  in table  do g[2*limit] := 0;  od;
                    for g  in coFacTable  do g[2*limit] := 0;  od;
                    for l  in [ limit+2 .. 2*limit-1 ]  do
                        next[l] := l+1;
                        prev[l] := l-1;
                        fact[l] := 0;
                        for g  in table  do g[l] := 0;  od;
                        for g  in coFacTable  do g[l] := 0;  od;
                    od;
                    next[limit+1] := limit+2;
                    prev[limit+1] := 0;
                    fact[limit+1] := 0;
                    for g  in table  do g[limit+1] := 0;  od;
                    for g  in coFacTable  do g[limit+1] := 0;  od;
                    firstFree := limit+1;
                    limit := 2*limit;
                    lastFree := limit;
                fi;

                # update the debugging information
                nrdef := nrdef + 1;
                if nrmax <= firstFree  then
                    nrmax := firstFree;
                fi;

                # define a new coset
                gen[firstDef]              := firstFree;
                coFacTable[i][firstDef]    := 0;
                table[inv][firstFree]      := firstDef;
                coFacTable[inv][firstFree] := 0;
                next[lastDef]              := firstFree;
                prev[firstFree]            := lastDef;
                fact[firstFree]            := 0;
                lastDef                    := firstFree;
                firstFree                  := next[firstFree];
                next[lastDef]              := 0;

                # set up the deduction queue and run over it until it's empty
                app[6]  := firstFree;
                app[7]  := lastFree;
                app[8]  := firstDef;
                app[9]  := lastDef;
                app[10] := i;
                app[11] := firstDef;
                nrdel := nrdel + MakeConsequences2( app );
                firstFree := app[6];
                lastFree  := app[7];
                firstDef  := app[8];
                lastDef   := app[9];

                # give some information
                while nrinf <= nrdef+nrdel  do
                    Info( InfoFpGroup, 2, "\t", nrdef, "\t", nrinf-nrdef,
                        "\t", 2*nrdef-nrinf, "\t", nrmax );
                    nrinf := nrinf + 1000;
                od;

            fi;
        od;

        firstDef := next[firstDef];
    od;

    Info( InfoFpGroup, 2, "\t", nrdef, "\t", nrdel, "\t", nrdef-nrdel,
        "\t", nrmax );

    # In case of type = -1 return just index and exponent of the given cyclic
    # subroup.
    if ttype = -1 then
        index := nrdef - nrdel;
        SetIndexInWholeGroup( H, index );
        Info( InfoFpGroup, 1, "index = ", index, "  total = ", nrdef,
            "  max = ", nrmax );
        aug := rec( );
	aug.index := index;
        exponent := app[16];
        if exponent = 0 then
            exponent := infinity;
        elif exponent < 0 then
            exponent := - exponent;
        fi;
        aug.exponent := exponent;
        return aug;
    fi;

    # separate pairs of identical columns in the coset tables.
    for i in [ 1 .. Length( fgens ) ] do                         
        if i in involutions then
            table[2*i] := StructuralCopy( table[2*i-1] );       
            coFacTable[2*i] := StructuralCopy( coFacTable[2*i-1] );       
        fi;                                        
    od;

    # standardize the tables.
    StandardizeTable2( table, coFacTable );

    # save coset table and index in the group record of H.
    if not HasCosetTableInWholeGroup( H ) then
        SetCosetTableInWholeGroup( H, table );
    fi;
    index := IndexCosetTab( table );
    if not HasIndexInWholeGroup( H ) then
        SetIndexInWholeGroup( H, index );
        Info( InfoFpGroup, 1, "index = ", index, "  total = ", nrdef,
            "  max = ", nrmax );
    elif IndexInWholeGroup( H ) <> index then
        Error( "inconsistent values for the index of H in G" );
    fi;

    if type = 2 then

        # reduce the tree to its proper length.
        treelength := tree[3];
        length := Length( tree1 );
        while length > treelength do
            Unbind( tree1[length] );
            Unbind( tree2[length] );
            length := length - 1;
        od;

        # determine which generators occur in the augmented table.
        occur := ListWithIdenticalEntries( treelength, 0 );
        for i in [ 1 .. numgens ] do
            occur[i] := 1;
        od;
        numcols := Length( coFacTable );
        numoccs := numgens;
        i := 1;
        while i < numcols do
            for next in coFacTable[i] do
                if next <> 0 then
                    j := AbsInt( next );
                    if occur[j] = 0 then
                        occur[j] := 1;  numoccs := numoccs + 1;
                    fi;
                fi;
            od;
            i := i + 2;
        od;

        # build up a list of pointers from the occurring generators to the
        # tree, and define names for the occurring secondary generators.
        treeNums := [ 1 .. numoccs ];
        for j in [ numgens+1 .. treelength ] do
            if occur[j] <> 0 then
                ngens := ngens + 1;
                treeNums[ngens] := j;
            fi;
        od;
    fi;

    # get ngens new generators
    F := FreeGroup( ngens, string );
    gens := GeneratorsOfGroup( F );

    # create the augmented coset table record.
    aug := rec( );
    aug.isAugmentedCosetTable := true;
    aug.type := type;
    aug.tableType := TABLE_TYPE_MTC;
    aug.groupGenerators := fgens;
    aug.groupRelators := grels;
    aug.cosetTable := table;
    aug.cosetFactorTable := coFacTable;
    aug.primaryGeneratorWords := defs;
    aug.numberOfSubgroupGenerators := ngens;
    aug.nameOfSubgroupGenerators := Immutable( string );
    aug.subgroupGenerators := gens;
    aug.tree := tree;

    if type = 1 then
        exponent := app[16];
        if exponent = 0 then
            aug.exponent := infinity;
            aug.subgroupRelators := [ [ ] ];
        else
            if exponent < 0 then  exponent := - exponent;  fi;
            aug.exponent := exponent;
            aug.subgroupRelators :=
                [ ListWithIdenticalEntries( exponent, 1 ) ];
        fi;

    elif type = 2 then
        aug.treeNumbers := treeNums;

        # prepare a conversion list for the subgroup generator numbers if
        # they do not all occur in the subgroup relators.
        numgens := Length( gens );
        if numgens < treelength then
            convert := ListWithIdenticalEntries( treelength, 0 );
            for i in [ 1 .. numgens ] do
                convert[treeNums[i]] := i;
            od;
            aug.conversionList := convert;
        fi;
    fi;

    # ensure that all components of the augmented coset table are immutable.
    for field in RecFields( aug ) do
      MakeImmutable( aug.(field) );
    od;

    # display a message
    if treelength > 0 then
        numgens := Length( defs );
        Info( InfoFpGroup, 1, "MTC defined ", numgens, " primary and ",
            treelength - numgens, " secondary subgroup generators" );
    fi;

    # return the augmented coset table.
    return aug;
end );





#############################################################################
##
#M  AugmentedCosetTableRrs( <G>, <coset table>, <type>, <string> )  . . . . .
#M                              do a RRS and return the augmented coset table
##
##  'AugmentedCosetTableRrs' applies the Reduced Reidemeister-Schreier method
##  to construct an  augmented coset table  for the  subgroup of  G  which is
##  defined by the  given coset table.  The new  subgroup generators  will be
##  named  <string>1, <string>2, ... .
##
InstallGlobalFunction( AugmentedCosetTableRrs,
    function ( G, table, type, string )

    local   fgens,                  # generators of asscociated free group
            grels,                  # relators of G
            involutions,            # indices of involutory gens of G
            index,                  # index of the group in the parent group
            cosTable,               # coset table
            negTable,               # coset table to be built up
            coFacTable,             # coset factor table
            numcols,                # number of columns in the tables
            numgens,                # number of generators
            F,                      # a new free group
            span,                   # spanning tree
            ggens,                  # parent group gens prallel to columns
            gens,                   # new generators
            ngens,                  # number of new generators
            defs,                   # definitions of primary subgroup gens
            tree,                   # tree of generators
            tree1, tree2,           # components of tree of generators
            treelength,             # number of gens (primary + secondary)
            rels,                   # representatives for the relators
            relsGen,                # relators beginning with a gen
            deductions,             # deduction queue
            ded,                    # index of current deduction in above
            nrdeds,                 # current number of deductions in above
            i, ii, gen, inv,        # loop variables for generator
            triple,                 # loop variable for relators as triples
            word, factors,          # words defining subgroup generators
            app,                    # application stack for 'ApplyRel'
            app2,                   # application stack for 'ApplyRel2'
            j, k,                   # loop variables
            fac,                    # tree entry
            count,                  # number of negative table entries
            next,                   #
            numoccs,                # number of gens which occur in the table
            occur,                  #
            treeNums,               #
            convert,                # conversion list for subgroup generators
            aug,                    # augmented coset table
            field,                  # loop variable for record field names
            EnterDeduction,         # subroutine
            LoopOverAllCosets;      # subroutine


  EnterDeduction := function ( )

    # a deduction has been found, check the current coset table entry.
    # if triple[2][app[1]][app[2]] <> -app[4] or
    #     triple[2][app[3]][app[4]] <> -app[2] then
    #     Error( "unexpected coset table entry" );
    # fi;

    # compute the corresponding factors in "factors".
    app2[1] := triple[3];
    app2[2] := deductions[ded][2];
    app2[3] := -1;
    app2[4] := app2[2];
    ApplyRel2( app2, triple[2], triple[1] );
    factors := app2[7];
#if Length(factors)>0 then Print(Length(factors)," ",Maximum(factors)," ",Minimum(factors),"\n");fi;

    # ensure that the scan provided a deduction.
    # if app2[1] - 1 <> app2[3]
    # or triple[2][app2[1]][app2[2]] <> - app2[4]
    # or triple[2][app2[3]][app2[4]] <> - app2[2]
    # then
    #     Error( "the given scan does not provide a deduction" );
    # fi;

    # extend the tree to define a proper factor, if necessary.
    fac := TreeEntry( tree, factors );

    # now enter the deduction to the tables.
    triple[2][app2[1]][app2[2]] := app2[4];
    coFacTable[triple[1][app2[1]]][app2[2]] := fac;
    triple[2][app2[3]][app2[4]] := app2[2];
    coFacTable[triple[1][app2[3]]][app2[4]] := - fac;
    nrdeds := nrdeds + 1;
    deductions[nrdeds] := [ triple[1][app2[1]], app2[2] ];
    treelength := tree[3];
    count := count - 2;
  end;

  LoopOverAllCosets:=function()
    # loop over all the cosets
    for j in [ 1 .. index ] do
      CompletionBar(InfoFpGroup,2,"Coset Loop: ",j/index);

        # run through all the rows and look for negative entries
        for i  in [ 1 .. numcols ]  do
            gen := negTable[i];

            if gen[j] < 0  then

                # add the current Schreier generator to the set of new
                # subgroup generators, and add the definition as deduction.
                k := - gen[j];
                word := ggens[i];
                while k > 1 do
                   word := word * ggens[span[2][k]]^-1;  k := span[1][k];
                od;
                k := j;
                while k > 1 do
                   word := ggens[span[2][k]] * word;  k := span[1][k];
                od;
                numgens := numgens + 1;
                defs[numgens] := word;
                treelength := treelength + 1;
                tree[3] := treelength;
                tree[4] := numgens;
                if type = 0 then
                    tree1[treelength] :=
                        ListWithIdenticalEntries( numgens, 0 );
                    tree1[treelength][numgens] := 1;
                    tree2[numgens] := 0;
                else
                    tree1[treelength] := 0;
                    tree2[treelength] := 0;
                fi;

                # add the definition as deduction.
                inv := negTable[i + 2*(i mod 2) - 1];
                k := - gen[j];
                gen[j] := k;
                coFacTable[i][j] := treelength;
                if inv[k] < 0 then
                    inv[k] := j;
                    ii := i + 2*(i mod 2) - 1;
                    coFacTable[ii][k] := - treelength;
                fi;
                count := count - 2;

                # set up the deduction queue and run over it until it's empty
		deductions:=[];
                deductions[1] := [i,j];
                nrdeds := 1;
                ded := 1;
                while ded <= nrdeds  do

                    # apply all relators that start with this generator
                    for triple in relsGen[deductions[ded][1]] do
                        app[1] := triple[3];
                        app[2] := deductions[ded][2];
                        app[3] := -1;
                        app[4] := app[2];
                        if ApplyRel( app, triple[2] ) and
                            triple[2][app[1]][app[2]] < 0 and
                            triple[2][app[3]][app[4]] < 0 then
                            # a deduction has been found: compute the
                            # corresponding factor and enter the deduction to
                            # the tables and to the deductions lists.
                            EnterDeduction( );
                            if count <= 0 then
			      return;
                            fi;
                        fi;
                    od;

                    ded := ded + 1;
                od;

            fi;
        od;
    od;
  end;



    # check G to be a finitely presented group.
    if not ( IsSubgroupFpGroup( G ) and IsGroupOfFamily( G ) ) then
        Error( "<G> must be a finitely presented group" );
    fi;

    # check the type for being 0 or 2.
    if type <> 0 and type <> 2 then
        Error( "invalid type; it should be 0 or 2" );
    fi;

    # get some local variables
    fgens := FreeGeneratorsOfFpGroup( G );
    grels := RelatorsOfFpGroup( G );

    # check the number of columns of the given coset table to be twice the
    # number of generators of the parent group G.
    numcols := Length( table );
    if numcols <> 2 * Length( fgens ) then
        Error( "parent group and coset table are inconsistent" );
    fi;
    index  := IndexCosetTab( table );

    # get a negative copy of the coset table, and initialize the coset factor
    # table (parallel to it) by zeros.
    involutions := IndicesInvolutaryGenerators( G );
    if Length( involutions ) = 0 then
        cosTable := table;
    else
        cosTable := [ ];
        for i in [ 1 .. Length( fgens ) ] do
            cosTable[2*i-1] := table[2*i-1];
            if i in involutions then
                cosTable[2*i] := table[2*i-1];
            else
                cosTable[2*i] := table[2*i];
            fi;
        od;
    fi;
    negTable := [ ];
    coFacTable := [ ];
    for i in [ 1 .. Length( fgens ) ] do
        negTable[2*i-1] := List( cosTable[2*i-1], x -> -x );
        coFacTable[2*i-1] := ListWithIdenticalEntries( index, 0 );
        if i in involutions then
            negTable[2*i] := negTable[2*i-1];
            coFacTable[2*i] := coFacTable[2*i-1];
        else
	    negTable[2*i] := List( cosTable[2*i], x -> -x );
	    coFacTable[2*i] := ListWithIdenticalEntries( index, 0 );
        fi;
    od;
    count := index * ( numcols - 2 ) + 2;

    # construct the list relsGen which for each generator or inverse
    # generator contains a list of all cyclically reduced relators,
    # starting with that element, which can be obtained by conjugating or
    # inverting given relators. The relators in relsGen are represented as
    # lists of the coset table columns corresponding to the generators and,
    # in addition, as lists of the respective column numbers.
    rels := RelatorRepresentatives( grels );
    relsGen := RelsSortedByStartGen( fgens, rels, negTable, true );
    SortRelsSortedByStartGen( relsGen );

    # check the number of columns to be twice the number of generators of
    # the parent group G.
    if numcols <> 2 * Length( fgens ) then
        Error( "parent group and coset table are inconsistent" );
    fi;

    # initialize the tree of secondary generators.
    tree1 := ListWithIdenticalEntries( 100, 0 );
    if type = 0 then
        tree2 := [ ];
    else
        tree2 := ListWithIdenticalEntries( 100, 0 );
    fi;
    treelength := 0;
    tree := [ tree1, tree2, treelength, 0, type ];

    # initialize an empty deduction list
    deductions := [ ]; deductions[index] := 0;
    nrdeds := 0;

    # get a spanning tree for the cosets
    span := SpanningTree( cosTable );

    # enter the coset definitions into the coset table.
    for k in [ 2 .. index ] do

        j := span[1][k];
        i := span[2][k];
        ii := i + 2*(i mod 2) - 1;

        # check the current table entry.
        if negTable[i][j] <> - k or negTable[ii][k] <> -j then
            Error( "coset table and spanning tree are inconsistent" );
        fi;

        # enter the deduction.
        negTable[i][j] := k;
        if negTable[ii][k] < 0 then  negTable[ii][k] := j;  fi;
        nrdeds := nrdeds + 1;
        deductions[nrdeds] := [i,j];
    od;

    # make the local structures that are passed to 'ApplyRel' or, via
    # EnterDeduction, to 'ApplyRel2".
    app := ListWithIdenticalEntries( 4, 0 );
    app2 := ListWithIdenticalEntries( 9, 0 );
    if type = 0 then
        factors := tree2;
    else
        factors := [ ];
    fi;

    # set those arguments of ApplyRel2 which are global with respect to the
    # following loops.
    app2[5] := type;
    app2[6] := coFacTable;
    app2[7] := factors;
    if type = 0 then
        app2[8] := tree;
    fi;

    # set up the deduction queue and run over it until it's empty
    ded := 1;
    while ded <= nrdeds  do
      if ded mod 50=0 then
	CompletionBar(InfoFpGroup,2,"Queue: ",ded/nrdeds);
      fi;

        # apply all relators that start with this generator
        for triple in relsGen[deductions[ded][1]] do
            app[1] := triple[3];
            app[2] := deductions[ded][2];
            app[3] := -1;
            app[4] := app[2];
            if ApplyRel( app, triple[2] ) and triple[2][app[1]][app[2]] < 0
                and triple[2][app[3]][app[4]] < 0  then
                # a deduction has been found: compute the corresponding
                # factor and enter the deduction to the tables and to the
                # deductions lists.
                EnterDeduction( );
            fi;
        od;

        ded := ded + 1;
    od;
    CompletionBar(InfoFpGroup,2,"Queue: ",false);

    # get a list of the parent group generators parallel to the table
    # columns.
    ggens := [ ];
    for i in [ 1 .. numcols/2 ] do
        ggens[2*i-1] := fgens[i];
        ggens[2*i] := fgens[i]^-1;
    od;

    # initialize the list of new subgroup generators
    numgens := 0;
    defs := [ ];

    # loop over cosets
    LoopOverAllCosets();
    CompletionBar(InfoFpGroup,2,"Coset Loop: ",false);

    # save the number of primary subgroup generators and the number of all
    # subgroup generators in the tree.
    tree[3] := treelength;

    # get an immutable coset table with no two columns identical.
    if IsMutable( table ) then
        cosTable := Immutable( table );
    else
        cosTable := table;
    fi;

    # separate pairs of identical columns in the coset factor table.
    for i in [ 1 .. Length( fgens ) ] do
        if i in involutions then
            coFacTable[2*i] := StructuralCopy( coFacTable[2*i-1] );
        fi;
    od;

    # create the augmented coset table record.
    aug := rec( );
    aug.isAugmentedCosetTable := true;
    aug.type := type;
    aug.tableType := TABLE_TYPE_RRS;
    aug.groupGenerators := fgens;
    aug.groupRelators := grels;
    aug.cosetTable := cosTable;
    aug.cosetFactorTable := coFacTable;
    aug.primaryGeneratorWords := defs;
    aug.tree := tree;

    # renumber the generators such that the primary ones precede the
    # secondary ones, and sort the tree and the factor table accordingly.
    if type = 2 then
        RenumberTree( aug );

        # determine which generators occur in the augmented table.
        occur := ListWithIdenticalEntries( treelength, 0 );
        for i in [ 1 .. numgens ] do
            occur[i] := 1;
        od;
        numcols := Length( coFacTable );
        numoccs := numgens;
        i := 1;
        while i < numcols do
            for next in coFacTable[i] do
                if next <> 0 then
                    j := AbsInt( next );
                    if occur[j] = 0 then
                        occur[j] := 1;  numoccs := numoccs + 1;
                    fi;
                fi;
            od;
            i := i + 2;
        od;

        # build up a list of pointers from the occurring generators to the
        # tree, and define names for the occurring secondary generators.
        ngens := numgens;
        treeNums := [ 1 .. numoccs ];
        for j in [ numgens+1 .. treelength ] do
            if occur[j] <> 0 then
                ngens := ngens + 1;
                treeNums[ngens] := j;
            fi;
        od;
        aug.treeNumbers := treeNums;

        # get ngens new generators
        F := FreeGroup( ngens, string );
        gens := GeneratorsOfGroup( F );

        # prepare a conversion list for the subgroup generator numbers if
        # they do not all occur in the subgroup relators.
        numgens := Length( gens );
        if numgens < treelength then
            convert := ListWithIdenticalEntries( treelength, 0 );
            for i in [ 1 .. numgens ] do
                convert[treeNums[i]] := i;
            od;
            aug.conversionList := convert;
        fi;
        aug.numberOfSubgroupGenerators := ngens;
        aug.nameOfSubgroupGenerators := Immutable( string );
        aug.subgroupGenerators := gens;
    fi;

    # ensure that all components of the augmented coset table are immutable.
    for field in RecFields( aug ) do
      MakeImmutable( aug.(field) );
    od;

    # display a message
    numgens := Length( defs );
    Info( InfoFpGroup, 1, "RRS defined ", numgens, " primary and ",
        treelength - numgens, " secondary subgroup generators" );

    # return the augmented coset table.
    return aug;
end );


#############################################################################
##
#M  AugmentedCosetTableNormalClosure( <G>, <H> )  . . . augmented coset table
#M          of the normal closure of a subgroup in a finitely presented group
##
InstallMethod( AugmentedCosetTableNormalClosure,
    "for finitely presented groups",
    true,
    [ IsSubgroupFpGroup and IsGroupOfFamily, IsSubgroupFpGroup ],
    0,
function( G, H );

    if G <> FamilyObj( H )!.wholeGroup then
        Error( "<H> must be a subgroup of <G>" );
    fi;
    return AugmentedCosetTableNormalClosureInWholeGroup( H );

end );


#############################################################################
##
#M  CosetTableBySubgroup(<G>,<H>)
## 
##  returns a coset table for the action of <G> on the cosets of <H>. The
##  columns of the table correspond to the `GeneratorsOfGroup(<G>)'.
##
InstallMethod(CosetTableBySubgroup,"coset action",IsIdenticalObj,
  [IsGroup,IsGroup],0,
function ( G, H )
local column, gens, i, range, table, transversal;

  # construct a permutations representation of G on the cosets of H.
  gens := GeneratorsOfGroup(G);
  if not (IsPermGroup(G) and IsPermGroup(H) and
          IsEqualSet(Orbit(G,1),[1..NrMovedPoints(G)]) and H=Stabilizer(G,1)) then
    transversal := RightTransversal( G, H );
    gens := List( gens, gen -> Permutation( gen, transversal,OnRight ) );
    range := [ 1 .. Length( transversal ) ];
  else
    range := [ 1 .. NrMovedPoints(G) ];
  fi;

  # initialize the coset table.
  table := [];

  # construct the columns of the table from the permutations.
  for i in gens do
    column := OnTuples( range, i );
    Add( table, column );
    column:=OnTuples(range,i^-1);
    Add( table, column );
  od;

  # standardize the table and return it.
  StandardizeTable( table );
  return table;

end);

InstallMethod(CosetTableBySubgroup,"use `CosetTableInWholeGroup",
  IsIdenticalObj, [IsSubgroupFpGroup,IsSubgroupFpGroup],0,
function(G,H)
  if IndexInWholeGroup(G)>1 or not IsIdenticalObj(G,Parent(G))
      or List(GeneratorsOfGroup(G),UnderlyingElement)
         <>FreeGeneratorsOfFpGroup(Parent(G)) then
    TryNextMethod();
  fi;
  return CosetTableInWholeGroup(H);
end);


#############################################################################
##
#M  CanonicalRelator( <relator> )  . . . . . . . . . . . .  canonical relator
##
##  'CanonicalRelator'  returns the  canonical  representative  of the  given
##  relator.
##
InstallGlobalFunction( CanonicalRelator, function ( Rel )

    local i, i1, ii, j, j1, jj, k, k1, kk, length, max, min, rel;

    rel := Rel;
    length := Length( rel );
    max := Maximum( rel );
    min := Minimum( rel );

    if max < - min then
        i := 0;
    else
        i := Position( rel, max, 0 );
        k := i;
        while k <> false do
            k := Position( rel, max, k );
            if k <> false then
                ii := i;  kk := k;  k1 := k - 1;
                while kk <> k1 do
                    if ii = length then ii := 1;  else  ii := ii + 1;  fi;
                    if kk = length then kk := 1;  else  kk := kk + 1;  fi;
                    if rel[kk] > rel[ii] then  i := k;  kk := k1;
                    elif rel[kk] < rel[ii] then  kk := k1;
                    elif kk = k1 then  k := false;  fi;
                od;
            fi;
        od;
    fi;

    if - min < max then
        j := 0;
    else
        j := Position( rel, min, 0 );
        k := j;
        while k <> false do
            k := Position( rel, min, k );
            if k <> false then
                jj := j;  kk := k;  j1 := j + 1;
                while jj <> j1 do
                    if jj = 1 then jj := length;  else  jj := jj - 1;  fi;
                    if kk = 1 then kk := length;  else  kk := kk - 1;  fi;
                    if rel[kk] < rel[jj] then  j := k;  jj := j1;
                    elif rel[kk] > rel[jj] then  jj := j1;
                    elif jj = j1 then  k := false;  fi;
                od;
            fi;
        od;
    fi;

    if - min = max then
        if i = 1 then i1 := length;  else  i1 := i - 1;  fi;
        ii := i;  jj := j;
        while ii <> i1 do
            if ii = length then ii := 1;  else  ii := ii + 1;  fi;
            if jj = 1 then jj := length;  else  jj := jj - 1;  fi;
            if - rel[jj] < rel[ii] then  j := 0;  ii := i1;
            elif - rel[jj] > rel[ii] then  i := 0;  ii := i1;  fi;
        od;
    fi;

    if i = 0 then  rel := - Reversed( rel );  i := length + 1 - j;  fi;
    if i > 1 then  rel := Concatenation(
        rel{ [i..length] }, rel{ [1..i-1] } );
    fi;

    return( rel );
end );


#############################################################################
##
#M  CheckCosetTableFpGroup( <G>, <table> ) . . . . . . . checks a coset table
##
##  'CheckCosetTableFpGroup'  checks whether  table is a legal coset table of
##  the finitely presented group G.
##
InstallGlobalFunction( CheckCosetTableFpGroup, function ( G, table )

    local fgens, grels, i, id, index, ngens, perms;

    # check G to be a finitely presented group.
    if not ( IsSubgroupFpGroup( G ) and IsGroupOfFamily( G ) ) then
        Error( "<G> must be a finitely presented group" );
    fi;

    # check table to be a list of lists.
    if not ( IsList( table ) and ForAll( table, IsList ) ) then
        Error( "<table> must be a coset table" );
    fi;

    # get some local variables
    fgens := FreeGeneratorsOfFpGroup( G );
    grels := RelatorsOfFpGroup( G );

    # check the number of columns against the number of group generators.
    ngens := Length( fgens );
    if Length( table ) <> 2 * ngens then
        Error( "inconsistent number of group generators and table columns" );
    fi;

    # check the columns to be permutations of equal degree.
    index := IndexCosetTab( table );
    perms := [ ]; perms[ngens] := 0;
    for i in [ 1 .. ngens ] do
        if Length( table[2*i-1] ) <> index then
            Error( "table has columns of different length" );
        fi;
        perms[i] := PermList( table[2*i-1] );
        if PermList( table[2*i] ) <> perms[i]^-1 then
            Error( "table has inconsistent inverse columns" );
        fi;
    od;

    # check the permutations to act transitively.
    id := perms[1]^0;
    if not IsTransitive( GroupByGenerators( perms, id ), [ 1 .. index ] ) then
        Error( "table does not act transitively" );
    fi;

    # check the permutations to satisfy the group relators.
    if not ForAll( grels, rel -> MappedWord( rel, fgens, perms )
        = id ) then
        Error( "table columns do not satisfy the group relators" );
    fi;

end );


#############################################################################
##
#M  IsStandardized( <costab> ) . . . . .  test if coset table is standardized
##
InstallGlobalFunction( IsStandardized, function ( table )

    local i, index, j, next;

    index := IndexCosetTab( table );
    j := 1;
    next := 2;
    while next < index do
        for i in [ 1, 3 .. Length( table ) - 1 ] do
            if table[i][j] >= next then
                if table[i][j] > next then  return false;  fi;
                next := next + 1;
            fi;
        od;
        j := j + 1;
    od;
    return true;

end );


#############################################################################
##
#R  IsPresentationDefaultRep( <pres> )
##
##  is the default representation of presentations.
##  `IsPresentationDefaultRep' is a subrepresentation of
##  `IsComponentObjectRep'.
##
DeclareRepresentation( "IsPresentationDefaultRep",
    IsComponentObjectRep and IsAttributeStoringRep, [] );
#T eventually the admissible component names should be listed here


#############################################################################
##
#M  \.( <pres>, <nam> )  . . . . . . . . . . . . . . . . . for a presentation
##
InstallMethod( \.,
    "for a presentation in default representation",
    true,
    [ IsPresentation and IsPresentationDefaultRep, IsPosInt ], 0,
    function( pres, nam )
Error("still record access");
    return pres!.( NameRNam( nam ) );
    end );


#############################################################################
##
#M  IsBound\.( <pres>, <nam> ) . . . . . . . . . . . . . . for a presentation
##
InstallMethod( IsBound\.,
    "for a presentation in default representation",
    true,
    [ IsPresentation and IsPresentationDefaultRep, IsPosInt ], 0,
    function( pres, nam )
Error("still record access");
    return IsBound( pres!.( NameRNam( nam ) ) );
    end );


#############################################################################
##
#M  \.\:\=( <pres>, <nam>, <val> ) . . . . . . . . . . . . for a presentation
##
InstallMethod( \.\:\=,
    "for a mutable presentation in default representation",
    true,
    [ IsPresentation and IsPresentationDefaultRep and IsMutable,
      IsPosInt, IsObject ], 0,
    function( pres, nam, val )
Error("still record access");
    pres!.( NameRNam( nam ) ):= val;
    end );


#############################################################################
##
#M  Unbind\.( <pres>, <nam> )  . . . . . . . . . . . . . . for a presentation
##
InstallMethod( Unbind\.,
    "for a mutable presentation in default representation",
    true,
    [ IsPresentation and IsPresentationDefaultRep and IsMutable,
      IsPosInt ], 0,
    function( pres, nam )
Error("still record access");
    Unbind( pres!.( NameRNam( nam ) ) );
    end );


#############################################################################
##
#M  PresentationAugmentedCosetTable( <aug>, <string> [,<print level>] ) . . .
#M                                                     create a Tietze record
##
##  'PresentationAugmentedCosetTable'  creates a presentation,  i.e. a Tietze
##  record, from the given augmented coset table. It assumes that <aug> is an
##  augmented coset table of type 2.  The generators will be named <string>1,
##  <string>2, ... .
##
InstallGlobalFunction( PresentationAugmentedCosetTable,
    function ( arg )

    local aug, coFacTable, comps, F, fgens, gens, i, invs, lengths, numgens,
          numrels, pointers, printlevel, rels, string, T, tietze, total,
          tree, treelength, treeNums;

    # check the first argument to be an augmented coset table.
    aug := arg[1];
    if not ( IsRecord( aug ) and IsBound( aug.isAugmentedCosetTable ) and
        aug.isAugmentedCosetTable ) then
        Error( "first argument must be an augmented coset table" );
    fi;

    # get the generators name.
    string := arg[2];
    if not IsString( string ) then
        Error( "second argument must be a string" );
    fi;

    # check the third argument to be an integer.
    printlevel := 1;
    if Length( arg ) >= 3 then  printlevel := arg[3];  fi;
    if not IsInt( printlevel ) then
        Error ("third argument must be an integer" );
    fi;

    # initialize some local variables.
    coFacTable := aug.cosetFactorTable;
    tree := ShallowCopy( aug.tree );
    treeNums := ShallowCopy( aug.treeNumbers );
    treelength := Length( tree[1] );
    F := FreeGroup(IsLetterWordsFamily, infinity, string );
    fgens := GeneratorsOfGroup( F );
    gens := ShallowCopy(aug.subgroupGenerators);
    rels := List(aug.subgroupRelators,ShallowCopy);
    numrels := Length( rels );
    numgens := Length( gens );

    # create the Tietze object.
    T := Objectify( NewType( PresentationsFamily,
                                 IsPresentationDefaultRep
                             and IsPresentation
                             and IsMutable ),
                    rec() );

    # construct the relator lengths list.
    lengths := List( [ 1 .. numrels ], i -> Length( rels[i] ) );
    total := Sum( lengths );

    # initialize the Tietze stack.
    tietze := ListWithIdenticalEntries( TZ_LENGTHTIETZE, 0 );
    tietze[TZ_NUMRELS] := numrels;
    tietze[TZ_RELATORS] := rels;
    tietze[TZ_LENGTHS] := lengths;
    tietze[TZ_FLAGS] := ListWithIdenticalEntries( numrels, 1 );
    tietze[TZ_TOTAL] := total;

    # construct the generators and the inverses list, and save the generators
    # as components of the Tietze record.
    invs := [ ]; invs[2*numgens+1] := 0;
    pointers := [ 1 .. treelength ];
    for i in [ 1 .. numgens ] do
        invs[numgens+1-i] := i;
        invs[numgens+1+i] := - i;
        T!.(String( i )) := fgens[i];
        pointers[treeNums[i]] := treelength + i;
    od;
    invs[numgens+1] := 0;
    comps := [ 1 .. numgens ];

    # define the remaining Tietze stack entries.
    tietze[TZ_FREEGENS] := fgens;
    tietze[TZ_NUMGENS] := numgens;
    tietze[TZ_GENERATORS] := List( [ 1 .. numgens ], i -> fgens[i] );
    tietze[TZ_INVERSES] := invs;
    tietze[TZ_NUMREDUNDS] := 0;
    tietze[TZ_STATUS] := [ 0, 0, -1 ];
    tietze[TZ_MODIFIED] := false;

    # define some Tietze record components.
    T!.generators := tietze[TZ_GENERATORS];
    T!.tietze := tietze;
    T!.components := comps;
    T!.nextFree := numgens + 1;
    T!.identity := One( fgens[1] );
    SetOne(T,One( fgens[1] ));

    # save the tree as component of the Tietze record.
    tree[TR_TREENUMS] := treeNums;
    tree[TR_TREEPOINTERS] := pointers;
    tree[TR_TREELAST] := treelength;
    T!.tree := tree;

    # save the definitions of the primary generators as words in the original
    # group generators.
    SetPrimaryGeneratorWords(T,aug.primaryGeneratorWords);

    # handle relators of length 1 or 2, but do not eliminate any primary
    # generators.
    TzOptions(T).protected := tree[TR_PRIMARY];
    TzOptions(T).printLevel := printlevel;
    if Length(arg)>3 and arg[4]=true then
      # the stupid Length1or2 convention might mess up the connection to the
      # coset table.
      TzInitGeneratorImages(T);
    fi;
    if numgens>0 then
      TzHandleLength1Or2Relators( T );
    fi;
    T!.hasRun1Or2:=true;
    TzOptions(T).protected := 0;

    # sort the relators.
    TzSort( T );

    TzOptions(T).printLevel := printlevel;
    # return the Tietze record.
    return T;
end );


#############################################################################
##
#M  PresentationNormalClosureRrs( <G>, <H> [,<string>] ) . . .  Tietze record
#M                                       for the normal closure of a subgroup
##
##  'PresentationNormalClosureRrs'  uses  the  Reduced  Reidemeister-Schreier
##  method  to compute a  presentation  (i.e. a presentation record)  for the
##  normal closure  N, say,  of a subgroup H of a finitely presented group G.
##  The  generators in the  resulting presentation  will be named  <string>1,
##  <string>2, ... , the default string is `\"_x\"'.
##
InstallGlobalFunction( PresentationNormalClosureRrs,
    function ( arg )

    local   G,          # given group
            H,          # given subgroup
            string,     # given string
            F,          # associated free group
            fgens,      # generators of <F>
            hgens,      # generators of <H>
            fhgens,     # their preimages in <F>
            grels,      # relators of <G>
            krels,      # relators of normal closure <N>
            K,          # factor group of F isomorphic to G/N
            cosTable,   # coset table of <G> by <N>
            i,          # loop variable
            aug,        # auxiliary coset table of <G> by <N>
            T;          # resulting Tietze record

    # check the first two arguments to be a finitely presented group and a
    # subgroup of that group.
    G := arg[1];
    if not ( IsSubgroupFpGroup( G ) and IsGroupOfFamily( G ) ) then
        Error( "<G> must be a finitely presented group" );
    fi;
    H := arg[2];
    if not IsSubgroupFpGroup( H ) or FamilyObj( H ) <> FamilyObj( G ) then
        Error( "<H> must be a subgroup of <G>" );
    fi;

    # get the generators name.
    if Length( arg ) = 2 then
        string := "_x";
    else
        string := arg[3];
        if not IsString( string ) then
            Error( "third argument must be a string" );
        fi;
    fi;

    # get some local variables
    F     := FreeGroupOfFpGroup( G );
    fgens := GeneratorsOfGroup( F );
    grels := RelatorsOfFpGroup( G );
    hgens := GeneratorsOfGroup( H );
    fhgens := List( hgens, gen -> UnderlyingElement( gen ) );

    # construct a factor group K of F isomorphic to the factor group of G by
    # the normal closure N of H.
    krels := Concatenation( grels, fhgens );
    K := F / krels;

    # get the coset table of N in G by constructing the coset table of the
    # trivial subgroup in K.
    cosTable := CosetTable( K, TrivialSubgroup( K ) );
    Info( InfoFpGroup, 1, "index is ", Length( cosTable[1] ) );

#   # obsolete: No columns should be equal!
#   for i in [ 1 .. Length( fgens ) ] do
#   if IsIdenticalObj( cosTable[2*i-1], cosTable[2*i] ) then
#   Error( "there is a bug in PresentationNormalClosureRrs" ); fi; od;

    # apply the Reduced Reidemeister-Schreier method to construct a coset
    # table presentation of N.
    aug := AugmentedCosetTableRrs( G, cosTable, 2, string );

    # determine a set of subgroup relators.
    aug.subgroupRelators := RewriteSubgroupRelators( aug, aug.groupRelators);

    # create a Tietze record for the resulting presentation.
    T := PresentationAugmentedCosetTable( aug, string );

    # handle relators of length 1 or 2, but do not eliminate any primary     
    # generators.      
    TzOptions(T).protected := T!.tree[TR_PRIMARY];                              
    TzHandleLength1Or2Relators( T );
    T!.hasRun1Or2:=true;       
    TzOptions(T).protected := 0;

    # sort the relators.
    TzSort( T );

    return T;
end );


#############################################################################
##
#M  PresentationSubgroupMtc(<G>, <H> [,<string>] [,<print level>] ) . . . . .
#M                                               Tietze record for a subgroup
##
##  'PresentationSubgroupMtc' uses the Modified Todd-Coxeter coset represent-
##  ative enumeration method  to compute a presentation  (i.e. a presentation
##  record) for a subgroup H of a finitely presented group G.  The generators
##  in the resulting presentation will be named   <string>1, <string>2, ... ,
##  the default string is `\"_x\"'.
##  The default print level is 1.
##  If the print level is set to 0, then the printout of the 'DecodeTree'
##  command will be suppressed.
##
InstallGlobalFunction( PresentationSubgroupMtc,
    function ( arg )

    local aug, G, gens, H, i, printlevel, ngens, string, T;

    # check the first two arguments to be a finitely presented group and a
    # subgroup of that group.
    G := arg[1];
    if not ( IsSubgroupFpGroup( G ) and IsGroupOfFamily( G ) ) then
        Error( "<G> must be a finitely presented group" );
    fi;
    H := arg[2];
    if not IsSubgroupFpGroup( H ) or FamilyObj( H ) <> FamilyObj( G ) then
        Error( "<H> must be a subgroup of <G>" );
    fi;

    # initialize the generators name string and the print level.
    string := "_x";
    printlevel := 1;

    # get the optional parameters.
    for i in [ 3 .. 4 ] do
        if Length( arg ) >= i then
            if IsInt( arg[i] ) then printlevel := arg[i];
            elif IsString( arg[i] ) then string := arg[i];
            else
                Error( "optional parameter must be a string or an integer" );
            fi;
        fi;
    od;

    # get a copy of an augmented MTC coset table of H in G.
    aug := CopiedAugmentedCosetTable(
        AugmentedCosetTableMtcInWholeGroup( H ) );

    # insert the required subgroup generator names if necessary.
    if aug.nameOfSubgroupGenerators <> string then
        aug.nameOfSubgroupGenerators := string;
        ngens := aug.numberOfSubgroupGenerators;
        gens := GeneratorsOfGroup( FreeGroup( ngens, string ) );
        aug.subgroupGenerators := gens;
    fi;

    # determine a set of subgroup relators.
    aug.subgroupRelators := RewriteSubgroupRelators( aug, aug.groupRelators);

    # create a Tietze record for the resulting presentation.
    T := PresentationAugmentedCosetTable( aug, string );
    if printlevel >= 1 then  TzPrintStatus( T, true );  fi;

    # decode the subgroup generators tree.
    Info( InfoFpGroup, 1, "calling DecodeTree" );
    TzOptions(T).printLevel := printlevel;
    DecodeTree( T );
    TzOptions(T).printLevel := 1;

    return T;
end );


#############################################################################
##
#M  PresentationSubgroupRrs( <G>, <H> [,<string>] ) . . . . . . Tietze record
#M  PresentationSubgroupRrs( <G>, <costab> [,<string>] )  . .  for a subgroup
##
##  'PresentationSubgroupRrs'  uses the  Reduced Reidemeister-Schreier method
##  to compute a presentation  (i.e. a presentation record)  for a subgroup H
##  of a  finitely  presented  group  G.  The  generators  in  the  resulting
##  presentation   will be  named   <string>1,  <string>2, ... ,  the default
##  string is "_x".
##
##  Alternatively to a finitely presented group, the subgroup H  may be given
##  by its coset table.
##
InstallGlobalFunction( PresentationSubgroupRrs, function ( arg )

    local aug, G, gens, H, ngens, string, T, table;

    # check G to be a finitely presented group.
    G := arg[1];
    if not ( IsSubgroupFpGroup( G ) and IsGroupOfFamily( G ) ) then
        Error( "<group> must be a finitely presented group" );
    fi;

    # get the generators name.
    if Length( arg ) = 2 then
        string := "_x";
    else
        string := arg[3];
        if not IsString( string ) then
            Error( "third argument must be a string" );
        fi;
    fi;

    # check the second argument to be a subgroup or a coset table of G, and
    # get the coset table in either case.
    H := arg[2];
    if not IsSubgroupFpGroup( H ) or FamilyObj( H ) <> FamilyObj( G ) then

        # check the given table to be a legal coset table.
        table := H;
        CheckCosetTableFpGroup( G, table );
        # ensure that it is standardized.
        if not IsStandardized( table) then Print(
            "#I  Warning: the given coset table is not standardized,\n",
            "#I           a standardized copy will be used instead.\n" );
            StandardizeTable( StructuralCopy( table ) );
        fi;

	# apply the Reduced Reidemeister-Schreier method to construct an
	# augmented RRS coset table of H.
	aug := AugmentedCosetTableRrs( G, table, 2, string );

    else

        # get a copy of an augmented RRS coset table of H in G.
        aug := CopiedAugmentedCosetTable(
            AugmentedCosetTableRrsInWholeGroup( H ) );

        # insert the required subgroup generator names if necessary.
        if aug.nameOfSubgroupGenerators <> string then
            aug.nameOfSubgroupGenerators := string;
            ngens := aug.numberOfSubgroupGenerators;
            gens := GeneratorsOfGroup( FreeGroup( ngens, string ) );
            aug.subgroupGenerators := gens;
        fi;

    fi;

    # determine a set of subgroup relators.
    aug.subgroupRelators := RewriteSubgroupRelators( aug, aug.groupRelators);

    # create a Tietze record for the resulting presentation.
    T := PresentationAugmentedCosetTable( aug, string );

    return T;
end );


#############################################################################
##
#M  ReducedRrsWord( <word> ) . . . . . . . . . . . . . . freely reduce a word
##
##  'ReducedRrsWord' freely reduces the given RRS word and returns the result.
##
InstallGlobalFunction( ReducedRrsWord, function ( word )

    local i, j, reduced;

    # initialize the result.
    reduced := [];

    # run through the factors of the given word and cancel or add them.
    j := 0;
    for i in [ 1 .. Length( word ) ] do
        if word[i] <> 0 then
            if j > 0 and word[i] = - reduced[j] then  j := j-1;
            else  j := j+1;  reduced[j] := word[i];  fi;
        fi;
    od;

    if j < Length( reduced ) then
        reduced := reduced{ [1..j] };
    fi;

    return( reduced );
end );


#############################################################################
##
#M  RelatorMatrixAbelianizedNormalClosureRrs( <G>, <H> )  . .  relator matrix
#M  . . . . . . . . . . . .  for the abelianized normal closure of a subgroup
##
##  'RelatorMatrixAbelianizedNormalClosureRrs' uses the Reduced Reidemeister-
##  Schreier method  to compute a matrix of abelianized defining relators for
##  the  normal  closure of a subgroup  H  of a  finitely presented  group G.
##
InstallGlobalFunction( RelatorMatrixAbelianizedNormalClosureRrs,
    function ( G, H )

    local   F,          # associated free group
            fgens,      # generators of <F>
            hgens,      # generators of <H>
            fhgens,     # their preimages in <F>
            grels,      # relators of <G>
            krels,      # relators of normal closure <N>
            K,          # factor group of F isomorphic to G/N
            cosTable,   # coset table of <G> by <N>
            i,          # loop variable
            aug;        # auxiliary coset table of <G> by <N>

    # check the arguments to be a finitely presented group and a subgroup of
    # that group.
    if not ( IsSubgroupFpGroup( G ) and IsGroupOfFamily( G ) ) then
        Error( "<G> must be a finitely presented group" );
    fi;
    if not IsSubgroupFpGroup( H ) or FamilyObj( H ) <> FamilyObj( G ) then
        Error( "<H> must be a subgroup of <G>" );
    fi;

    # get some local variables
    F     := FreeGroupOfFpGroup( G );
    fgens := GeneratorsOfGroup( F );
    grels := RelatorsOfFpGroup( G );
    hgens := GeneratorsOfGroup( H );
    fhgens := List( hgens, gen -> UnderlyingElement( gen ) );

    # construct a factor group K of F isomorphic to the factor group of G by
    # the normal closure N of H.
    krels := Concatenation( grels, fhgens );
    K := F / krels;

    # get the coset table of N in G by constructing the coset table of the
    # trivial subgroup in K.
    cosTable := CosetTable( K, TrivialSubgroup( K ) );
    Info( InfoFpGroup, 1, "index is ", Length( cosTable[1] ) );

#   # obsolete: No columns should be equal!
#   for i in [ 1 .. Length( fgens ) ] do
#   if IsIdenticalObj( cosTable[2*i-1], cosTable[2*i] ) then
#   Error( "there is a bug in RelatorMatrixAbelianizedNormalClosureRrs" );
#   fi; od;

    # apply the Reduced Reidemeister-Schreier method to construct a coset
    # table presentation of N.
    aug := AugmentedCosetTableRrs( G, cosTable, 0, "_x" );

    # determine a set of abelianized subgroup relators.
    aug.subgroupRelators := RewriteAbelianizedSubgroupRelators( aug,
			     aug.groupRelators);

    return aug.subgroupRelators;

end );

RelatorMatrixAbelianizedNormalClosure :=
    RelatorMatrixAbelianizedNormalClosureRrs;


#############################################################################
##
#M  RelatorMatrixAbelianizedSubgroupMtc( <G>, <H> ) . . . . .  relator matrix
#M  . . . . . . . . . . . . . . . . . . . . . .   for an abelianized subgroup
##
##  'RelatorMatrixAbelianizedSubgroupMtc'   uses  the  Modified  Todd-Coxeter
##  coset representative enumeration method  to compute  a matrix of abelian-
##  ized defining relators for a subgroup H of a finitely presented group  G.
##
InstallGlobalFunction( RelatorMatrixAbelianizedSubgroupMtc,
    function ( G, H )

    local aug;

    # check the arguments to be a finitely presented group and a subgroup of
    # that group.
    if not ( IsSubgroupFpGroup( G ) and IsGroupOfFamily( G ) ) then
        Error( "<G> must be a finitely presented group" );
    fi;
    if not IsSubgroupFpGroup( H ) or FamilyObj( H ) <> FamilyObj( G ) then
        Error( "<H> must be a subgroup of <G>" );
    fi;


    # do a Modified Todd-Coxeter coset representative enumeration to
    # construct an augmented coset table of H.
    aug := AugmentedCosetTableMtc( G, H, 0, "_x" );

    # determine a set of abelianized subgroup relators.
    aug.subgroupRelators := RewriteAbelianizedSubgroupRelators( aug,
			     aug.groupRelators);

    return aug.subgroupRelators;

end );


#############################################################################
##
#M  RelatorMatrixAbelianizedSubgroupRrs( <G>, <H> ) . . .  relator matrix for
#M  RelatorMatrixAbelianizedSubgroupRrs( <G>, <costab> )  . .  an abelianized
#M  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  subgroup
##
##  'RelatorMatrixAbelianizedSubgroupRrs'   uses  the   Reduced Reidemeister-
##  Schreier method  to compute a matrix of abelianized defining relators for
##  a subgroup H of a finitely presented group G.
##
##  Alternatively to a finitely presented group, the subgroup H  may be given
##  by its coset table.
##
InstallGlobalFunction( RelatorMatrixAbelianizedSubgroupRrs, function ( G, H )

    local aug, table;

    # check G to be a finitely presented group.
    if not ( IsSubgroupFpGroup( G ) and IsGroupOfFamily( G ) ) then
        Error( "<group> must be a finitely presented group" );
    fi;


    # check the second argument to be a subgroup or a coset table of G, and
    # get the coset table in either case.
    if not IsSubgroupFpGroup( H ) or FamilyObj( H ) <> FamilyObj( G ) then
        # check the given table to be a legal coset table.
        table := H;
        CheckCosetTableFpGroup( G, table );
        # ensure that it is standardized.
        if not IsStandardized( table) then Print(
            "#I  Warning: the given coset table is not standardized,\n",
            "#I           a standardized copy will be used instead.\n" );
            StandardizeTable( StructuralCopy( table ) );
        fi;
    else
        # construct the coset table of H in G if it is not yet available.
        if not HasCosetTableInWholeGroup( H ) then
            Info( InfoFpGroup, 1, "index is ", IndexInWholeGroup( H ) );
        fi;
        table := CosetTableInWholeGroup( H );
    fi;

    # apply the Reduced Reidemeister-Schreier method to construct an
    # augmented coset table of H.
    aug := AugmentedCosetTableRrs( G, table, 0, "_x" );

    # determine a set of abelianized subgroup relators.
    aug.subgroupRelators := RewriteAbelianizedSubgroupRelators( aug,
			     aug.groupRelators);

    return aug.subgroupRelators;

end );


#############################################################################
##
#M  RenumberTree( <augmented coset table> ) . . . . .  renumber generators in
#M                                                      augmented coset table
##
##  'RenumberTree'  is  a  subroutine  of  the  Reduced Reidemeister-Schreier
##  routines.  It renumbers the generators  such that the  primary generators
##  precede the secondary ones.
##
InstallGlobalFunction( RenumberTree, function ( aug )

    local coFacTable, column, convert, defs, i, index, j, k, null, numcols,
          numgens, tree, tree1, tree2, treelength, treesize;

    # get factor table, generators, and tree.
    coFacTable := aug.cosetFactorTable;
    defs := aug.primaryGeneratorWords;
    tree := aug.tree;

    #  truncate the tree, if necessary.
    treelength := tree[3];
    treesize := Length( tree[1] );
    if treelength < treesize then
        tree[1] := tree[1]{ [ 1 .. treelength ] };
        tree[2] := tree[2]{ [ 1 .. treelength ] };
    fi;

    # initialize some local variables.
    numcols := Length( coFacTable );
    index := Length( coFacTable[1] );
    numgens := Length( defs );

    # establish a local renumbering list.
    convert := ListWithIdenticalEntries( 2 * treelength + 1, 0 );
    null := treelength + 1;
    j := treelength + 1;  k := numgens + 1;
    i := treelength;
    while i >= 1 do
        if tree[1][i] = 0 then
            k := k - 1;  convert[null+i] := k;  convert[null-i] := - k;
        else
            j := j - 1;  convert[null+i] := j;  convert[null-i] := - j;
            tree[1][j] := tree[1][i];  tree[2][j] := tree[2][i];
        fi;
        i := i - 1;
    od;

    if convert[null+numgens] <> numgens then

        # change the tree entries accordingly.
        for i in [1..numgens] do
            tree[1][i] := 0;  tree[2][i] := 0;
        od;
        tree1 := tree[1];  tree2 := tree[2];
        for j in [numgens+1..treelength] do
            tree1[j] := convert[null+tree1[j]];
            tree2[j] := convert[null+tree2[j]];
        od;

        # change the factor table entries accordingly.
        for i in [1..numcols] do
# --------------
# obsolete condition: columns should never be equal.
#            if i mod 2 = 1 or
#                not IsIdenticalObj( coFacTable[i], coFacTable[i-1] ) then
if i > 1 and IsIdenticalObj( coFacTable[i], coFacTable[i-1] ) then
Error( "there is a bug in RenumberTree" ); fi;
# --------------
	    column := coFacTable[i];
	    for j in [1..index] do
		column[j] := convert[null+column[j]];
	    od;
        od;

    fi;
end );


#############################################################################
##
#M  RewriteAbelianizedSubgroupRelators( <aug>,<prels> ) . rewrite abelianized
#M  . . . . . . . . . . . . . subgroup relators from an augmented coset table
##
##  'RewriteAbelianizedSubgroupRelators'  is  a  subroutine  of  the  Reduced
##  Reidemeister-Schreier and the Modified Todd-Coxeter routines. It computes
##  a set of subgroup relators  from the  coset factor table  of an augmented
##  coset table of type 0 and the relators <prels> of the parent group.
##
InstallGlobalFunction( RewriteAbelianizedSubgroupRelators,
    function ( aug,prels )

    local app2, coFacTable, cols, cosTable, factor, ggensi, grel,greli, i,
          index, j, length, nums, numgens, numrels, p, rels, total, tree,
          treelength, type,si,ei,nneg,word;

    # check the type for being zero.
    type := aug.type;
    if type <> 0 then
        Error( "type of augmented coset table is not zero" );
    fi;

    # initialize some local variables.
    ggensi := List(aug.groupGenerators,i->AbsInt(LetterRepAssocWord(i)[1]));
    cosTable := aug.cosetTable;
    coFacTable := aug.cosetFactorTable;
    index := Length( cosTable[1] );
    tree := aug.tree;
    treelength := tree[3];
    numgens := tree[4];
    total := numgens;
    rels := List( [ 1 .. total ],
        i -> ListWithIdenticalEntries( numgens, 0 ) );
    numrels := 0;

    # display some information.
    Info( InfoFpGroup, 2, "index is ", index );
    Info( InfoFpGroup, 2, "number of generators is ", numgens );
    Info( InfoFpGroup, 2, "tree length is ", treelength );

    # initialize the structure that is passed to 'ApplyRel2'
    app2 := ListWithIdenticalEntries( 9, 0 );
    app2[5] := type;
    app2[6] := coFacTable;
    app2[8] := tree;

    # loop over all group relators
    for greli in [1..Length(prels)] do
      CompletionBar(InfoFpGroup,2,"Relator Loop:",greli/Length(prels));
      grel:=prels[greli];

      # get two copies of the group relator, one as a list of words in the
      # factor table columns and one as a list of words in the coset table
      # column numbers.
      length := Length( grel );
      if length>0 then

        nums := [ ]; nums[2*length] := 0;
        cols := [ ]; cols[2*length] := 0;

	i:=0;
#        for si in [ 1 .. NrSyllables(grel) ]  do
#	  p:=2*Position(ggensi,GeneratorSyllable(grel,si));
#	  nneg:=ExponentSyllable(grel,si)>0;
#	  for ei in [1..AbsInt(ExponentSyllable(grel,si))] do
#	    i:=i+1;
#	    if nneg then
#	      nums[2*i]   := p-1;
#	      nums[2*i-1] := p;
#	      cols[2*i]   := cosTable[p-1];
#	      cols[2*i-1] := cosTable[p];
#	    else
#	      nums[2*i]   := p;
#	      nums[2*i-1] := p-1;
#	      cols[2*i]   := cosTable[p];
#	      cols[2*i-1] := cosTable[p-1];
#	    fi;
#	  od;
#	od;
	word:=LetterRepAssocWord(grel);
	for si in [1..Length(word)] do
	  p:=2*Position(ggensi,AbsInt(word[si]));
	  i:=i+1;
	  if word[si]>0 then
	    nums[2*i]:=p-1;
	    nums[2*i-1]:=p;
	    cols[2*i]:=cosTable[p-1];
	    cols[2*i-1]:=cosTable[p];
	  else
	    nums[2*i]:=p;
	    nums[2*i-1]:=p-1;
	    cols[2*i]:=cosTable[p];
	    cols[2*i-1]:=cosTable[p-1];
	  fi;
	od;

        # loop over all cosets and determine the subgroup relators which are
        # induced by the current group relator.
        for i in [ 1 .. index ] do

            # scan the ith coset through the current group relator and
            # collect the factors of its invers (!) in rel.
            numrels := numrels + 1;
            if numrels > total then
                total := total + 1;
                rels[total] := ListWithIdenticalEntries( numgens, 0 );
            fi;
            app2[7] := rels[numrels];
            app2[1] := 2;
            app2[2] := i;
            app2[3] := 2 * length - 1;
            app2[4] := i;
            ApplyRel2( app2, cols, nums );

            # add the resulting subgroup relator to rels.
            numrels := AddAbelianRelator( rels, numrels );
        od;
      fi;
    od;
    CompletionBar(InfoFpGroup,2,"Relator Loop:",false);

    # loop over all primary subgroup generators.
    for j in [ 1 .. numgens ] do
      CompletionBar(InfoFpGroup,2,"Generator Loop:",j/numgens);

      # get two copies of the subgroup generator, one as a list of words in
      # the factor table columns and one as a list of words in the coset
      # table column numbers.
      grel := aug.primaryGeneratorWords[j];
      length := Length( grel );

      if length>0 then

        nums := [ ]; nums[2*length] := 0;
        cols := [ ]; cols[2*length] := 0;

	i:=0;
#        for si in [ 1 .. NrSyllables(grel) ]  do
#	  p:=2*Position(ggensi,GeneratorSyllable(grel,si));
#	  nneg:=ExponentSyllable(grel,si)>0;
#	  for ei in [1..AbsInt(ExponentSyllable(grel,si))] do
#	    i:=i+1;
#	    if nneg then
#	      nums[2*i]   := p-1;
#	      nums[2*i-1] := p;
#	      cols[2*i]   := cosTable[p-1];
#	      cols[2*i-1] := cosTable[p];
#	    else
#	      nums[2*i]   := p;
#	      nums[2*i-1] := p-1;
#	      cols[2*i]   := cosTable[p];
#	      cols[2*i-1] := cosTable[p-1];
#	    fi;
#	  od;
#        od;
	word:=LetterRepAssocWord(grel);
	for si in [1..Length(word)] do
	  p:=2*Position(ggensi,AbsInt(word[si]));
	  i:=i+1;
	  if word[si]>0 then
	    nums[2*i]:=p-1;
	    nums[2*i-1]:=p;
	    cols[2*i]:=cosTable[p-1];
	    cols[2*i-1]:=cosTable[p];
	  else
	    nums[2*i]:=p;
	    nums[2*i-1]:=p-1;
	    cols[2*i]:=cosTable[p];
	    cols[2*i-1]:=cosTable[p-1];
	  fi;
	od;

        # scan coset 1 through the current subgroup generator and collect the
        # factors of its invers (!) in rel.
        numrels := numrels + 1;
        if numrels > total then
            total := total + 1;
            rels[total] := ListWithIdenticalEntries( numgens, 0 );
        fi;
        app2[7] := rels[numrels];
        app2[1] := 2;
        app2[2] := 1;
        app2[3] := 2 * length - 1;
        app2[4] := 1;
        ApplyRel2( app2, cols, nums );

      else
        # trivial generator
        numrels := numrels + 1;
        if numrels > total then
            total := total + 1;
            rels[total] := ListWithIdenticalEntries( numgens, 0 );
        fi;
      fi;

      # add as last factor the generator number j.
      rels[numrels][j] := rels[numrels][j] + 1;

      # add the resulting subgroup relator to rels.
      numrels := AddAbelianRelator( rels, numrels );
    od;

    # reduce the relator list to its proper size.
    if numrels < numgens then
        for i in [ numrels + 1 .. numgens ] do
            rels[i] := ListWithIdenticalEntries( numgens, 0 );
        od;
        numrels := numgens;
    fi;
    for i in [ numrels + 1 .. total ] do
        Unbind( rels[i] );
    od;
    CompletionBar(InfoFpGroup,2,"Generator Loop:",false);

    return rels;
end );


#############################################################################
##
#M  RewriteSubgroupRelators( <aug>, <prels> ) rewrite subgroup relators from
#M                                                   an augmented coset table
##
##  'RewriteSubgroupRelators'  is a subroutine  of the  Reduced Reidemeister-
##  Schreier and the  Modified Todd-Coxeter  routines.  It computes  a set of
##  subgroup relators from the coset factor table of an augmented coset table
##  and the  relators <prels> of the  parent  group.  It assumes  that  <aug>
##  is an augmented coset table of type 2.
##
InstallGlobalFunction( RewriteSubgroupRelators,
    function ( aug, prels )

    local app2, coFacTable, cols, convert, cosTable, factor, ggensi,
          greli,grel, i, index, j, last, length, nums, numgens, p, rel, rels,
          treelength, type,si,nneg,ei,word;

    # check the type.
    type := aug.type;
    if type <> 2 then  Error( "invalid type; it should be 2" );  fi;

    # initialize some local variables.
    ggensi := List(aug.groupGenerators,i->AbsInt(LetterRepAssocWord(i)[1]));
    cosTable := aug.cosetTable;
    coFacTable := aug.cosetFactorTable;
    index := Length( cosTable[1] );
    rels := [ ];

    # initialize the structure that is passed to 'ApplyRel2'
    app2 := ListWithIdenticalEntries( 9, 0 );
    app2[5] := type;
    app2[6] := coFacTable;
    app2[7] := [ ]; app2[7][100] := 0;

    # loop over all group relators
    for greli in [1..Length(prels)] do
      CompletionBar(InfoFpGroup,2,"Relator Loop:",greli/Length(prels));
      grel:=prels[greli];
      length := Length( grel );
      if length > 0 then

        # get two copies of the group relator, one as a list of words in the
        # factor table columns and one as a list of words in the coset table
        # column numbers.
        nums := [ ]; nums[2*length] := 0;
        cols := [ ]; cols[2*length] := 0;

	i:=0;
#        for si in [ 1 .. NrSyllables(grel) ]  do
#	  p:=2*Position(ggensi,GeneratorSyllable(grel,si));
#	  nneg:=ExponentSyllable(grel,si)>0;
#	  for ei in [1..AbsInt(ExponentSyllable(grel,si))] do
#	    i:=i+1;
#	    if nneg then
#	      nums[2*i]   := p-1;
#	      nums[2*i-1] := p;
#	      cols[2*i]   := cosTable[p-1];
#	      cols[2*i-1] := cosTable[p];
#	    else
#	      nums[2*i]   := p;
#	      nums[2*i-1] := p-1;
#	      cols[2*i]   := cosTable[p];
#	      cols[2*i-1] := cosTable[p-1];
#	    fi;
#	  od;
#	od;
	word:=LetterRepAssocWord(grel);
	for si in [1..Length(word)] do
	  p:=2*Position(ggensi,AbsInt(word[si]));
	  i:=i+1;
	  if word[si]>0 then
	    nums[2*i]:=p-1;
	    nums[2*i-1]:=p;
	    cols[2*i]:=cosTable[p-1];
	    cols[2*i-1]:=cosTable[p];
	  else
	    nums[2*i]:=p;
	    nums[2*i-1]:=p-1;
	    cols[2*i]:=cosTable[p];
	    cols[2*i-1]:=cosTable[p-1];
	  fi;
	od;

        # loop over all cosets and determine the subgroup relators which are
        # induced by the current group relator.
        for i in [ 1 .. index ] do

            # scan the ith coset through the current group relator and
            # collect the factors of its inverse (!) in rel.
            app2[1] := 2;
            app2[2] := i;
            app2[3] := 2 * length - 1;
            app2[4] := i;
            ApplyRel2( app2, cols, nums );

            # add the resulting subgroup relator to rels.
            rel := app2[7];
            last := Length( rel );
            if last > 0 then
                MakeCanonical( rel );
                if Length( rel ) > 0 and not rel in rels then
                    AddSet( rels, CopyRel( rel ) );
                fi;
            fi;
        od;
      fi;
    od;
    CompletionBar(InfoFpGroup,2,"Relator Loop:",false);

    # loop over all primary subgroup generators.
    numgens := Length( aug.primaryGeneratorWords );
    for j in [ 1 .. numgens ] do
      CompletionBar(InfoFpGroup,2,"Generator Loop:",j/numgens);

      # get two copies of the subgroup generator, one as a list of words in
      # the factor table columns and one as a list of words in the coset
      # table column numbers.
      grel := aug.primaryGeneratorWords[j];
      length := Length( grel );

      if length>0 then
        nums := [ ]; nums[2*length] := 0;
        cols := [ ]; cols[2*length] := 0;

	i:=0;
#        for si in [ 1 .. NrSyllables(grel) ]  do
#	  p:=2*Position(ggensi,GeneratorSyllable(grel,si));
#	  nneg:=ExponentSyllable(grel,si)>0;
#	  for ei in [1..AbsInt(ExponentSyllable(grel,si))] do
#	    i:=i+1;
#	    if nneg then
#	      nums[2*i]   := p-1;
#	      nums[2*i-1] := p;
#	      cols[2*i]   := cosTable[p-1];
#	      cols[2*i-1] := cosTable[p];
#	    else
#	      nums[2*i]   := p;
#	      nums[2*i-1] := p-1;
#	      cols[2*i]   := cosTable[p];
#	      cols[2*i-1] := cosTable[p-1];
#	    fi;
#	  od;
#        od;
	word:=LetterRepAssocWord(grel);
	for si in [1..Length(word)] do
	  p:=2*Position(ggensi,AbsInt(word[si]));
	  i:=i+1;
	  if word[si]>0 then
	    nums[2*i]:=p-1;
	    nums[2*i-1]:=p;
	    cols[2*i]:=cosTable[p-1];
	    cols[2*i-1]:=cosTable[p];
	  else
	    nums[2*i]:=p;
	    nums[2*i-1]:=p-1;
	    cols[2*i]:=cosTable[p];
	    cols[2*i-1]:=cosTable[p-1];
	  fi;
	od;

        # scan coset 1 through the current subgroup generator and collect the
        # factors of its inverse (!) in rel.
        app2[1] := 2;
        app2[2] := 1;
        app2[3] := 2 * length - 1;
        app2[4] := 1;
        ApplyRel2( app2, cols, nums );

        # add as last factor the generator number j.
        rel := app2[7];
        last := Length( rel );
        if last > 0 and rel[last] = - j then
            last := last - 1;
            rel := rel{ [1 .. last] };
        else
            last := last + 1;
            rel[last] := j;
        fi;
        # add the resulting subgroup relator to rels.
        if last > 0 then
            MakeCanonical( rel );
            if Length( rel ) > 0 and not rel in rels then
                AddSet( rels, CopyRel( rel ) );
            fi;
        fi;
      else
        # trivial generator
	AddSet(rels,[j]);
      fi;
    od;
    CompletionBar(InfoFpGroup,2,"Generator Loop:",false);

    # renumber the generators in the relators, if necessary.
    numgens := Length( aug.subgroupGenerators );
    treelength := Length( aug.tree[1] );
    if numgens < treelength then
        convert := aug.conversionList;
        for rel in rels do
            for i in [ 1 .. Length( rel ) ] do
                if rel[i] > 0 then
                    rel[i] := convert[rel[i]];
                else
                    rel[i] := - convert[-rel[i]];
                fi;
            od;
        od;
    fi;

    return rels;
end );


#############################################################################
##
#M  SortRelsSortedByStartGen(<relsGen>) sort the relators sorted by start gen
##
##  'SortRelsSortedByStartGen' sorts the relators lists  sorted  by  starting
##  generator to get better  results  of  the  Reduced  Reidemeister-Schreier
##  (this is not needed for the Felsch Todd-Coxeter).
##
InstallGlobalFunction( SortRelsSortedByStartGen,
    function ( relsGen )
    local   less, list;

    # 'less' defines an ordering on the triples [ nums, cols, startpos ]
    less := function ( triple1, triple2 )
        local diff, i, k, nums1, nums2;

        if triple1[1][1] <> triple2[1][1] then
            return triple1[1][1] < triple2[1][1];
        fi;

        nums1 := triple1[1];  nums2 := triple2[1];
        i := triple1[3];
        diff := triple2[3] - i;
        k := i + nums1[1] + 2;
        while i < k do
            if nums1[i] <> nums2[i+diff] then
                return nums1[i] < nums2[i+diff];
            fi;
            i := i + 2;
        od;

        return false;
    end;

    # sort the resulting lists
    for list  in relsGen  do
        Sort( list, less );
    od;
end );


#############################################################################
##
#M  SpanningTree( <coset table> ) . . . . . . . . . . . . . . . spanning tree
##
##  'SpanningTree'  returns a spanning tree for the given coset table.
##
InstallGlobalFunction( SpanningTree, function ( cosTable )

    local done, i, j, k, numcols, numrows, span1, span2;

    # check the given argument to be a coset table.
    if not ( IsList( cosTable ) and IsList( cosTable[1] ) ) then
        Error( "argument must be a coset table" );
    fi;
    numcols := Length( cosTable );
    numrows := Length( cosTable[1] );
    for i in [ 2 .. numcols ] do
        if not ( IsList( cosTable[i] ) and
            Length( cosTable[i] ) = numrows ) then
            Error( "argument must be a coset table" );
        fi;
    od;

    # initialize the spanning tree.
    span1 := [ -1, -2 .. -numrows ];
    span2 := ListWithIdenticalEntries( numrows, 0 );
    span1[1] := 0;
    if numrows = 1 then  return [ span1, span2 ];  fi;

    # find the first occurrence in the table of each coset > 1.
    done := [ 1 ];
    for i in done do
        for j in [ 1 .. numcols ] do
            k := cosTable[j][i];
            if span1[k] < 0 then
                span1[k] := i;  span2[k] := j;
                Add( done, k );
                if Length( done ) = numrows then
                    return [ span1, span2 ];
                fi;
            fi;
        od;
    od;

    # you should never come here, the argument is not a valid coset table.
    Error( "argument must be a coset table" );
end );

#############################################################################
##
##  Extensions for rewriting and homomorphisms
##

#############################################################################
##
#F  RewriteWord( <aug>, <word> )
##
InstallGlobalFunction(RewriteWord,function ( aug, word )
local cft, ct, w,l,c,i,j,g,e,ind;

  # check the type.
  Assert(1,aug.type=2);

  # initialize some local variables.
  ct := aug.cosetTable;
  cft := aug.cosetFactorTable;

  # translation table for group generators to numbers
  if not IsBound(aug.transtab) then
    # should do better, also cope with inverses
    aug.transtab:=List(aug.groupGenerators,i->AbsInt(LetterRepAssocWord(i)[1]));
  fi;

  w:=[];
  c:=1; # current coset

  #for i in [1..NrSyllables(word)] do
  #  g:=GeneratorSyllable(word,i);
  #  e:=ExponentSyllable(word,i);
  #  if e<0 then
  #    ind:=2*aug.transtab[g];
  #    e:=-e;
  #  else
  #    ind:=2*aug.transtab[g]-1;
  #  fi;
  #  for j in [1..e] do
  #    # apply the generator, collect cofactor
  #    if cft[ind][c]<>0 then
#	Add(w,cft[ind][c]); #cofactor
#      fi;
#      c:=ct[ind][c]; # new coset number
#    od;
#  od;
  l:=LetterRepAssocWord(word);
  for i in l do
    g:=AbsInt(i);
    if i<0 then
      ind:=2*aug.transtab[g];
    else
      ind:=2*aug.transtab[g]-1;
    fi;
    # apply the generator, collect cofactor
    if cft[ind][c]<>0 then
      Add(w,cft[ind][c]); #cofactor
    fi;
    c:=ct[ind][c]; # new coset number
  od;

  # make sure we got back to start
  if c<>1 then 
    return fail;
  fi;
  return w;

end);

#############################################################################
##
#F  DecodedTreeEntry(<tree>,<imgs>,<nr>) 
##
InstallGlobalFunction(DecodedTreeEntry,function(tree,imgs,nr)
local eval,t1,t2;
  if IsBound(imgs[AbsInt(nr)]) then
    if nr>0 then
      return imgs[nr];
    else
      return imgs[-nr]^-1;
    fi;
  fi;
# as we might not want to construct the full tree, we'll be more specific
  if not IsMutable(imgs) then
    imgs:=ShallowCopy(imgs); # we will add locally
  fi;
  t1:=tree[1];
  t2:=tree[2];
  eval:=function(n)
    if not IsBound(imgs[n]) then
      imgs[n]:=eval(AbsInt(t1[n]))^SignInt(t1[n])
             *eval(AbsInt(t2[n]))^SignInt(t2[n]);
    fi;
    return imgs[n];
  end;
  return eval(nr);
end);

#############################################################################
##
#F  GeneratorTranslationAugmentedCosetTable(<aug>) 
##
## decode the secondary generators as words in the primary generators, using
## the `.subgroupGenerators' and their subset `.primarySubgroupGenerators'.
InstallGlobalFunction(GeneratorTranslationAugmentedCosetTable,function(aug)
local tt,i,t1,t2,tn;
  if not IsBound(aug.translationTable) then
    if not IsBound(aug.primarySubgroupGenerators) then
      aug.primarySubgroupGenerators:=
          aug.subgroupGenerators{[1..Length(aug.primaryGeneratorWords)]};
    fi;
    # now expand the tree to get words for the secondary generators.
    # the first elements are just the primary generators
    tt:=ShallowCopy(aug.primarySubgroupGenerators);
    t1:=aug.tree[1];
    t2:=aug.tree[2];
    tn:=aug.treeNumbers;
    if Length(tn)>0 then
      for i in [Length(tt)+1..Maximum(tn)] do
	tt[i]:=tt[AbsInt(t1[i])]^SignInt(t1[i])
	      *tt[AbsInt(t2[i])]^SignInt(t2[i]);
      od;
    fi;
    aug.translationTable:=Immutable(tt);
  fi;
  return aug.translationTable;
end);

#############################################################################
##
#F  SecondaryGeneratorWordsAugmentedCosetTable(<aug>) 
##
InstallGlobalFunction(SecondaryGeneratorWordsAugmentedCosetTable,function(aug)
local tt;
  if not IsBound(aug.secondaryWords) then
    aug.secondaryWords:=Immutable(
    List(GeneratorTranslationAugmentedCosetTable(aug),i->
      MappedWord(i,aug.primarySubgroupGenerators,aug.primaryGeneratorWords)));
  fi;
  return aug.secondaryWords;
end);

#############################################################################
##
#F  CopiedAugmentedCosetTable(<aug>) 
##
##  returns a new augmented coset table, equal to the old one. The
##  components of this new table are immutable, but new components may be
##  added.
##  (This function is needed to have different homomorphisms share the same
##  augmented coset table data. It must not be applied to augmented coset
##  tables which are not of type 2.)
InstallGlobalFunction(CopiedAugmentedCosetTable,function(aug)
local t;
  t:=rec(
	  isAugmentedCosetTable:=true,
	  type:=aug.type,
	  tableType:=aug.tableType,
	  groupGenerators:=aug.groupGenerators,
	  groupRelators:=aug.groupRelators,
	  cosetTable:=aug.cosetTable,
	  cosetFactorTable:=aug.cosetFactorTable,
	  primaryGeneratorWords:=aug.primaryGeneratorWords,
	  tree:=aug.tree,
	  treeNumbers:=aug.treeNumbers,
	  numberOfSubgroupGenerators:=aug.numberOfSubgroupGenerators,
	  nameOfSubgroupGenerators:=aug.nameOfSubgroupGenerators,
	  subgroupGenerators:=aug.subgroupGenerators
	);
  if IsBound(aug.conversionList) then
    t.conversionList:=aug.conversionList;
  fi;
  if IsBound(aug.primarySubgroupGenerators) then
    t.primarySubgroupGenerators:=Immutable(aug.primarySubgroupGenerators);
  fi;
  if IsBound(aug.subgroupRelators) then
    t.subgroupRelators:=Immutable(aug.subgroupRelators);
  fi;
  if IsBound(aug.translationTable) then
    t.translationTable:=Immutable(aug.translationTable);
  fi;
  if IsBound(aug.secondaryWords) then
    t.secondaryWords:=Immutable(aug.secondaryWords);
  fi;
  return t;
end);

#############################################################################
##
#E  sgpres.gi  . . . . . . . . . . . . . . . . . . . . . . . . . .. ends here