File: stbcbckt.gi

package info (click to toggle)
gap 4r8p6-2
  • links: PTS
  • area: main
  • in suites: stretch
  • size: 33,476 kB
  • ctags: 7,663
  • sloc: ansic: 108,841; xml: 47,807; sh: 3,628; perl: 2,342; makefile: 796; asm: 62; awk: 6
file content (3192 lines) | stat: -rw-r--r-- 109,404 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
#############################################################################
##
#W  stbcbckt.gi                 GAP library                    Heiko Theißen
##
##
#Y  Copyright (C)  1997,  Lehrstuhl D für Mathematik,  RWTH Aachen, Germany
#Y  (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y  Copyright (C) 2002 The GAP Group
##
##  This file contains the basic   routines for permutation group   backtrack
##  algorithms that are based  on partitions. These  routines are used in the
##  calculation  of   set   stabilizers, normalizers,    centralizers     and
##  intersections.
##

if not IsBound( LARGE_TASK )  then  LARGE_TASK := false;   fi;

# set some global variables
BindGlobal("STBBCKT_STRING_CENTRALIZER","Centralizer");
BindGlobal("STBBCKT_STRING_REGORB1","_RegularOrbit1");
BindGlobal("STBBCKT_STRING_REGORB2","RegularOrbit2");
BindGlobal("STBBCKT_STRING_REGORB3","RegularOrbit3");
BindGlobal("STBBCKT_STRING_SPLITOFF","SplitOffBlock");
BindGlobal("STBBCKT_STRING_INTERSECTION","Intersection");
BindGlobal("STBBCKT_STRING_PROCESSFIX","ProcessFixpoint");
BindGlobal("STBBCKT_STRING_MAKEBLOX","_MakeBlox");
BindGlobal("STBBCKT_STRING_SUBORBITS0","Suborbits0");
BindGlobal("STBBCKT_STRING_SUBORBITS1","Suborbits1");
BindGlobal("STBBCKT_STRING_SUBORBITS2","Suborbits2");
BindGlobal("STBBCKT_STRING_SUBORBITS3","Suborbits3");
BindGlobal("STBBCKT_STRING_TWOCLOSURE","TwoClosure");

# #############################################################################
# ##
# #F  YndexSymmetricGroup( <S>, <U> ) . . . . . . . . . . . yndex of <U> in <S>
# ##
# InstallGlobalFunction( YndexSymmetricGroup, function( S, U )
#     local   deg,  p,  e,  i,  f,  log;
#     
#     deg := NrMovedPoints( S );
#     if not IsTrivial( U )  then
#         for p  in Collected( FactorsInt( Size( U ) ) )  do
#             e := 0;
#             f := deg;  log := 0;
#             while f mod p[ 1 ] = 0  do
#                 f := f / p[ 1 ];  log := log + 1;
#             od;
#             for i  in [ 1 .. log ]  do
#                 e := e + QuoInt( deg, p[ 1 ] ^ i );
#                 if e > p[ 2 ]  then
#                     return p[ 1 ];
#                 fi;
#             od;
#         od;
#     fi;
#     return 1;
# end );

#############################################################################
##
#F  IsSlicedPerm( <perm> )  . . . . . . . . . . . . . . . sliced permutations
##
DeclareRepresentation( "IsSlicedPerm", IsPerm,
                        [ "length", "word", "lftObj","opr" ] );

#############################################################################
##
#F  UnslicedPerm@( <perm> ) . . . . . . . . . . . . . . . . . . . . . . local
##
InstallGlobalFunction( UnslicedPerm@, function( perm )
    local   prm,  i;
    
    if IsSlicedPerm( perm )  then
        prm := ();
        for i  in [ 1 .. perm!.length ]  do
            prm := LeftQuotient( perm!.word[ i ], prm );
        od;
        return prm;
    else
        return perm;
    fi;
end );

InstallMethod( \^, "sliced perm",true, [ IsPerm, IsSlicedPerm ], 0,
    function( p, perm )  return p ^ UnslicedPerm@( perm );  end );
InstallMethod( \^, "sliced perm",true, [ IsInt, IsSlicedPerm ], 0,
    function( p, perm )
    local   i;
    
    for i  in Reversed( [ 1 .. perm!.length ] )  do
        p := p / perm!.word[ i ];
    od;
    return p;
end );

InstallOtherMethod( \/,"sliced perm", true, [ IsObject, IsSlicedPerm ], 0,
    function( p, perm )
    local   i;
    
    for i  in [ 1 .. perm!.length ]  do
        p := p ^ perm!.word[ i ];
    od;
    return p;
end );

InstallMethod( PrintObj,"sliced perm", true, [ IsSlicedPerm ], 0,
    function( perm )
    Print( "<perm word of length ", perm!.length, ">" );
end );

InstallMethod( ViewObj,"sliced perm", true, [ IsSlicedPerm ], 0,
    function( perm )
    Print( "<perm word of length ", perm!.length, ">" );
end );

DeclareRepresentation( "IsSlicedPermInv", IsPerm,
                           [ "length", "word", "lftObj", "opr" ] );

InstallOtherMethod( \^,"sliced perm", true, [ IsObject, IsSlicedPermInv ], 0,
    function( p, perm )
    local   i;
    
    for i  in [ 1 .. perm!.length ]  do
        p := p ^ perm!.word[ i ];
    od;
    return p;
end );

InstallMethod( PrintObj,"sliced perm", true, [ IsSlicedPermInv ], 0,
    function( perm )
    Print( "<perm word of length ", perm!.length, ">" );
end );

InstallMethod( ViewObj,"sliced perm", true, [ IsSlicedPermInv ], 0,
    function( perm )
    Print( "<perm word of length ", perm!.length, ">" );
end );

#############################################################################
##
#F  PreImageWord( <p>, <word> ) . . . . . . preimage under sliced permutation
##
InstallGlobalFunction( PreImageWord, function( p, word )
    local   i;
    
    for i  in Reversed( [ 1 .. Length( word ) ] )  do
        p := p / word[ i ];
    od;
    return p;
end );

#############################################################################
##
#F  ExtendedT( <t>, <pnt>, <img>, <G> ) . .  prescribe one more image for <t>
##
InstallGlobalFunction( ExtendedT, function( t, pnt, img, simg, G )
    local   bpt,  len,  edg;
    
    # Map the image with the part <t> that is already known.
    if simg = 0  then  img := img / t;
                 else  img := simg;     fi;
    
    # If <G> fixes <pnt>, nothing more can  be changed, so test whether <pnt>
    # = <img>.
    bpt := BasePoint( G );             
    if bpt <> pnt  then
        if pnt <> img  then
            return false;
        fi;
                      
    elif not IsBound( G.translabels[ img ] )  then
        return false;
    elif IsSlicedPerm( t )  then
        len := t!.length;
        while img <> bpt  do
            len := len + 1;
            edg := G.transversal[ img ];
            img := img ^ edg;
#            t!.rgtObj := t!.opr( t!.rgtObj, edg );
            t!.word[ len ] := edg;
        od;
        t!.length := len;
    else
        t := LeftQuotient( InverseRepresentative( G, img ), t );
    fi;
    
    return t;
end );

#############################################################################
##
#F  MeetPartitionStrat( <rbase>,<image>,<S>,<strat> ) .  meet acc. to <strat>
##
InstallGlobalFunction( MeetPartitionStrat, function(rbase,image,S,g,strat )
local  P,  p;
  
  if Length( strat ) = 0  then
    return false;
  fi;
  
  P := image.partition;
  for p  in strat  do
    if p[1] =  0  and
      not ProcessFixpoint( image, p[2], FixpointCellNo( P, p[3] ) )
    or p[1] <> 0  and
      SplitCell( P, p[1], S, p[2], g, p[3] ) <> p[3]  then
      return false;
    fi;
  od;
  return true;
end );

#############################################################################
##
#F  StratMeetPartition( <rbase>, <P>, <S>, <g> )  . construct a meet strategy
##
##  Entries in <strat> have the following meaning:
##    [p,s,i] (p<>0) means that `0 < |P[p]\cap S[s]/g| = i < |P[p]|',
##            i.e., a new cell with <i> points was appended to <P>
##                  (and these <i> have been taken out of `P[p]'),
##    [0,a,p] means that fixpoint <a> was mapped to fixpoint in `P[p]',
##            i.e., `P[p]' has become a one-point cell.
##
InstallGlobalFunction( StratMeetPartition, function( arg )
    local   P,  S,  # first and second partition
            g,      # permutation such that <P> meet <S> / <g> is constructed
            rbase,  # R-base record, which records processing of fixpoints
            strat,  # meet strategy, the result
            p,  s,  # indices looping over the cells of <P> resp. <S>
            i,      # result of call to `SpliltCell'
            pnt,    # fixpoint to be processed
            cellsP, #\
            blist,  #  >see explanation below
            blist2, #/
	    splits,
	    lS,
            rap,  cell,  nrcells;

    if not IsPartition( arg[ 1 ] )  then  rbase := arg[ 1 ];  p := 2;
                                    else  rbase := false;     p := 1;  fi;
    P := arg[ p ];
    S := arg[ p + 1 ];
    if Length( arg ) = p + 2  then  g := arg[ p + 2 ];
                              else  g := ();            fi;
    strat := [  ];
                          
    # <cellsP> is a   list whose <a>th entry is   <i> if `a^g  in P[p]'. Then
    # `Set(cellsP{S[s]})'  is  the set of    (numbers of) cells  of <P>  that
    # contain a point from `S[s]/g'. A cell splits iff it contains points for
    # two such values of <s>.
    if IsOne( g )  then
        cellsP := P.cellno;
    else
        cellsP := ListWithIdenticalEntries( Length( P.cellno ), 0 );
        for i  in [ 1 .. NumberCells( P ) ]  do
            cell := Cell( P, i );
            cellsP{ OnTuples( cell, g ) } := i + 0 * cell;
        od;
    fi;
    
    # If <S> is just a set, it is interpreted as partition ( <S>|<S>^compl ).
    if IsPartition( S )  then
        nrcells := NumberCells( S ) - 1;
	lS:=S;
    else
        nrcells := 1;
        blist := BlistList( [ 1 .. NumberCells( P ) ], cellsP{ S } );
        p := Position( blist, true );
        if p <> fail  then
            IntersectBlist( blist, BlistList( [ 1 .. NumberCells( P ) ],
                cellsP{ Difference( [ 1 .. Length( P.cellno ) ], S ) } ) );
            p := Position( blist, true );
        fi;
	lS:=S;
        S := false;
    fi;
    
    for s  in [ 1 .. nrcells ]  do
      # now split with cell number s of S.
      if S=false then
        p:=lS;
      else
        p:=Cell(S,s);
      fi;
      p:=cellsP{p}; # the affected P-cells
      p:=Collected(p);
      splits:=[];
      for i in p do
	# a cell will split iff it contains more points than are in the
	# s-cell
        if P.lengths[i[1]]>i[2] then
	  Add(splits,i[1]);
	fi;
      od;

      # this code is new, the extensive construction of blists in the old
      # version was awfully slow in larger degrees. ahulpke 11-aug-00
      for p in splits do
            # Last argument `true' means that the cell will split.
            i := SplitCell( P, p, lS, s, g, true );
            if not IsOne( g )  then
                cell := Cell( P, NumberCells( P ) );
                cellsP{ OnTuples( cell, g ) } := NumberCells( P ) + 0 * cell;
            fi;
            
            if rbase <> false  then
                Add( strat, [ p, s, i ] );
                
                # If  we have one  or two  new fixpoints, put  them  into the
                # base.
                if i = 1  then
                    pnt := FixpointCellNo( P, NumberCells( P ) );
                    ProcessFixpoint( rbase, pnt );
                    Add( strat, [ 0, pnt, NumberCells( P ) ] );
                    if IsTrivialRBase( rbase )  then
                        return strat;
                    fi;
                fi;
                if P.lengths[ p ] = 1  then
                    pnt := FixpointCellNo( P, p );
                    ProcessFixpoint( rbase, pnt );
                    Add( strat, [ 0, pnt, p ] );
                    if IsTrivialRBase( rbase )  then
                        return strat;
                    fi;
                fi;
                
            fi;
#            p := Position( blist, true, p );
        od;
    od;
    return strat;
end );

# the following functions are for suborbits given by blists, by element
# lists, or as points (the latter are crucial to save memory)
InstallGlobalFunction(SuboLiBli,function(ran,b)
  if IsInt(b) then
    return [b];
  elif IsBlistRep(b) then
    return ListBlist(ran,b);
  fi;
  return b;
end);

InstallGlobalFunction(SuboSiBli,function(b)
  if IsInt(b) then
    return 1;
  elif IsBlistRep(b) then
    return SizeBlist(b);
  else
    return Length(b);
  fi;
end);

InstallGlobalFunction(SuboTruePos,function(ran,b)
  if IsInt(b) then
    return Position(ran,b);
  elif IsBlistRep(b) then
    return Position(b,true);
  elif HasIsSSortedList(b) and IsSSortedList(b) then
    return Position(ran,MinimumList(b));
  else
    return First([1..Length(ran)],i->ran[i] in b);
  fi;
end);

InstallGlobalFunction(SuboUniteBlist,function(ran,a,b)
  if IsInt(b) then
    a[Position(ran,b)]:=true;
  elif IsBlistRep(b) then
    UniteBlist(a,b);
  else
    #UniteBlist(a,BlistList(ran,b));
    UniteBlistList(ran,a,b);
  fi;
end);

# sb is a list of length 3: [points,subs,blists]. The function returns a
# cell as sorted list of points
InstallGlobalFunction(ConcatSubos,function(ran,sb)
local b,i;
  if Length(sb[3])>0 then
    # blists are used
    b:=ShallowCopy(sb[3][1]);
    for i in [2..Length(sb[3])] do
      UniteBlist(b,sb[3][i]);
    od;
    UniteBlistList(ran,b,sb[1]);
    for i in sb[2] do
      UniteBlistList(ran,b,i);
    od;
    return ListBlist(ran,b);
  elif Length(sb[2])>0 then
    # blists are not used but worth using
    b:=BlistList(ran,sb[1]);
    for i in sb[2] do
      UniteBlistList(ran,b,i);
    od;
    return ListBlist(ran,b);
  else
    b:=ShallowCopy(sb[1]);
    for i in sb[2] do
      UniteSet(b,i);
    od;
    return b;
  fi;
end);

#############################################################################
##
#F  Suborbits( <G>, <tofix>, <b>, <Omega> ) . . . . . . . . . . . . suborbits
##
##  Returns a record with the following components:
##
##     domain: the set <Omega>
##  stabChainTop: top level of stabilizer chain for  $G_tofix$ (pointwise stabilizer)  with
##             base point <a> (may be different from <b>)
##       conj: an element mapping <b> to <a>
##      which: a list  whose  <p>th entry   is the  number   of the  suborbit
##             containing <p>
##    lengths: a (not strictly) sorted list of suborbit lengths (subdegrees)
##  byLengths: a list whose <i>th entry is the set of numbers of suborbits of
##             the <i>th distinct length appearing in `lengths'
##  partition: the partition into unions of suborbits of equal length
##  The  next three entries  are lists  whose <k>  entry refers  to the <k>th
##  suborbit.
##     blists: the suborbits as boolean lists
##       reps: a transversal  in  <G> s.t.   $a.reps[k]$  lies in  the  <k>th
##             suborbit (reps[k] = `false' if this is impossible)
##  orbitalPartitions:
##             a list to store the `OrbitalPartition' for each suborbit in
##
InstallGlobalFunction( Suborbits, function( arg )
    local   H,  tofix,  b,  Omega,  suborbits,  len,  bylen,
            G,  GG,  a,  conj,  ran,  subs,  all,  k,  pnt,  orb,  gen,
            perm,  omega,  P,  cell,  part,  p,  i, sublique,la,bl,
	    rep,rep2,te,stabgens;
    
    # Get the arguments.
    H := arg[ 1 ];
    tofix := arg[ 2 ];
    b     := arg[ 3 ];
    Omega := arg[ 4 ];
    IsRange(Omega);
    if b = 0  then  part := false;  b := Omega[ 1 ];
	      else  part := true;   fi;

    G := StabChainMutable( H );
    bl:=Length(BaseStabChain(G));
    conj := One( H );
    
    # Replace  <H> by  the stabilizer of  all elements  of <tofix> except the
    # last.
    len := Length( tofix );
    for i  in [ 1 .. len ]  do
        conj := conj * InverseRepresentative( G, tofix[ i ] ^ conj );
        G := G.stabilizer;
    od;

    if len <> 0  then
      b := b ^ conj;
      suborbits:=[];
    else
      if not IsBound( H!.suborbits )  then
	H!.suborbits := [  ];
      fi;
      suborbits := H!.suborbits;
    fi;
    
    # Replace <b> by the minimal element <a> in its <G>-orbit.
    # rep 0 is an element that maps <b> to the orbits base point
    if not IsInBasicOrbit( G, b )  then
      GG := EmptyStabChain( [  ], One( H ), b );
      AddGeneratorsExtendSchreierTree( GG, G.generators );
    else
      GG := G;
    fi;
    a := Minimum( GG.orbit );

    rep:=InverseRepresentative(GG,b);
    rep2:=InverseRepresentative(GG,a)^-1;
    conj := conj * rep*rep2;

    # try whether a and b are in the same path
    #conj := conj * InverseRepresentative( GG, b ) /
    #               InverseRepresentative( GG, a );

    ran := Immutable([ 1 .. Maximum( Omega ) ]);
    IsSSortedList(ran);

    k:=1;
    while k<=Length(suborbits) 
      and (suborbits[k][1]<>a or Omega<>suborbits[k][2]) do
      k:=k+1;
    od;
    if k<=Length(suborbits) and suborbits[k][1]=a and Omega=suborbits[k][2] then
      subs := suborbits[ k ][3];
      Info(InfoBckt,2,"Cached suborbits ",a);
    else
      Info(InfoBckt,2,"Enter suborbits ",Size(H),":",a);
        
        # Construct the suborbits rooted at <a>. 
	# GG is a head of a stabilizer chain with base orbit containing
	# b with min elm a
	if not IsIdenticalObj(G,GG) then
	  GG:=CopyStabChain( G );
	  ChangeStabChain( GG, [ a ], false );
	  te:=GG.transversal;
	  stabgens:=GG.stabilizer.generators;
	  Unbind(GG);
	else
	  stabgens:=G.stabilizer.generators;
	  # now conjugate with rep, so that we get things based at 'a'
	  # rep2 maps the basepoint to a
	  te:=ShallowCopy(G.transversal);
	  te[G.orbit[1]]:=rep2; # just one mapper further
	  te[a]:=G.identity; 
	  stabgens:=List(stabgens,i->i^rep2);
	fi;

        subs := rec( stabChainTop := rec(orbit:=[a],
	                                 transversal:=te,
					 identity:=G.identity),
                        domain := Omega,
                         which := ListWithIdenticalEntries( Length(ran), 0 ),
                          reps := [ G.identity ],
		          blists:=[],
                       lengths := [ 1 ],
             orbitalPartitions := [  ] );
	subs.blists[1]:=[a];
        subs.which[ a ] := 1;
	if IsRange(Omega) and 1 in Omega then
	  all:=BlistList(ran,[]);
	else
	  all := BlistList( ran, ran );
	  SubtractBlist( all, BlistList( ran, Omega ) ); 
	fi;
	all[ a ] := true;
	la:=Length(all)-1;

        k := 1;
        pnt := Position( all, false );
        while pnt <> fail  do
	  k := k + 1;
	  orb := [ pnt ];
	  all[ pnt ] := true;
	  for p  in orb  do
	    for gen  in stabgens  do
	      i := p ^ gen;
	      if not all[ i ]  then
		Add( orb, i );
		all[ i ] := true;
	      fi;
	    od;
	  od;
	  la:=la-Length(orb);
	  subs.which{ orb } := k + 0 * orb;
	  #if IsInBasicOrbit( G, pnt )  then
	  if IsBound(te[pnt]) then
	    subs.reps[ k ] := true;
	    subs.lengths[ k ] := Length( orb );
	  else
	    # Suborbits outside the root's orbit get negative length.
	    subs.reps[ k ] := false;
	    subs.lengths[ k ] := -Length( orb );
	  fi;
	  #UniteBlist( all, sublique );
	  if QuoInt(Length(ran),Length(orb))>100 then
	    if Length(orb)=1 then
	      subs.blists[ k ] := orb[1];
	    else
	      subs.blists[ k ] := Immutable(Set(orb));
	    fi;
	  else
	    subs.blists[ k ] := BlistList(ran,orb);
	  fi;
	  if la=0 then
	    pnt:=fail;
	  else
	    pnt := Position( all, false, pnt );
	  fi;
        od;
	subs.sublilen:=Length(subs.blists);

	# store if not too many
	if Length(suborbits)>bl then
	  for i in [1..Length(suborbits)-1] do
	    suborbits[i]:=suborbits[i+1];
	  od;
	  suborbits[Length(suborbits)]:=[a,Omega,subs];
	else
	  Add(suborbits,[a,Omega,subs]);
	fi;

    fi;
    
    if part  and  not IsBound( subs.partition )  then
        if not IsBound( subs.lengths )  then
Error("this should not happen 2719");
#            subs.lengths := [  ];
#            for k  in [ 1 .. subs.sublilen ]  do
#                if subs.reps[ k ] = false  then
#                    Add( subs.lengths, -SizeBlist( subs.blists[k] ) );
#                else
#                    Add( subs.lengths, SizeBlist( subs.blists[k] ) );
#                fi;
#            od;
        fi;
        perm := Sortex( subs.lengths ) ^ -1;
        
        # Determine the partition into unions of suborbits of equal length.
        subs.byLengths := [  ];
        P := [  ];  omega := Set( Omega );  cell := [  ];  bylen := [  ];
        for k  in [ 1 .. Length( subs.lengths ) ]  do
            Append( cell, SuboLiBli( ran, subs.blists[ k ^ perm ] ) );
            AddSet( bylen, k ^ perm );
            if    k = Length( subs.lengths )
               or subs.lengths[ k + 1 ] <> subs.lengths[ k ]  then
                Add( P, cell );  SubtractSet( omega, cell );  cell := [  ];
                Add( subs.byLengths, bylen );  bylen := [  ];
            fi;
        od;
        if Length( omega ) <> 0  then
            Add( P, omega );
        fi;
        subs.partition := Partition( P );
    fi;
    subs := ShallowCopy( subs );
    subs.conj := conj;
    return subs;
end );

#############################################################################
##
#F  OrbitalPartition( <subs>, <k> ) . . . . . . . . . . make a nice partition
##
##
## ahulpke, added aug-2-00: If there are only one or two cells, the function
## will return just one cell (the partitions split functions can treat this
## as a special case anyhow).
InstallGlobalFunction( OrbitalPartition, function( subs, k )
local  dom,  # operation domain for the group
	ran,  # range including <dom>, for blist construction
	d,    # number of suborbits, estimate for diameter
	len,  # current path length
	K,    # set of suborbits <k> to process
	Key,  # discriminating information for each suborbit
	key,  # discriminating information for suborbit number <k>
	old,  # farthest distance zone constructed so far
	new,  # new distance zone being constructed
	img,  # new endpoint of path with known predecessor
	o, i, # suborbit of predecessor resp. endpoint
	P,    # points ordered by <key> information, as partition
	typ,  # types of <key> information that occur
	sub,  # suborbit as list of integers
	csiz,
	ls,
	pos;  # position of cell with given <key> in <P>

  if IsInt( k ) and IsBound( subs.orbitalPartitions[ k ] ) then
    Info(InfoBckt,2,"Orbital partition ",k," cached");
    P:=subs.orbitalPartitions[k];
  else
    ran := Immutable([ 1 .. Length( subs.which ) ]);
    IsSSortedList(ran);
    d   := subs.sublilen;
    if IsRecord( k )  then  K := k.several;
		      else  K := [ k ];      fi;
    Key := 0;
    for k  in K  do
      if IsList( k )  and  Length( k ) = 1  then
	k := k[ 1 ];
      fi;
      key := ListWithIdenticalEntries( d, 0 );
      
      # Initialize the flooding algorithm for the <k>th suborbit.
      if IsInt( k )  then
	if subs.reps[ k ] = false  then
	  sub := 0;
	  key[ k ] := -1;
	  new := [  ];
	else
	  sub := SuboLiBli( ran, subs.blists[ k ] );
	  key[ k ] := 1;
	  new := [ k ];
	fi;
      else
	#sub := ListBlist( ran, UnionBlist( subs.blists{ k } ) );
	if IsEmpty(k) then
	  sub:=[];
	else
	  sub:=subs.blists[k[1]];
	  if IsInt(sub) then
	    sub:=BlistList(ran,[sub]);
	  elif not IsBool(sub[1]) then
	    sub:=BlistList(ran,sub);
	  else
	    sub:=ShallowCopy(sub); # don't overwrite
	  fi;
	  for o in [2..Length(k)] do
	    SuboUniteBlist(ran,sub,subs.blists[k[o]]);
	  od;
	  sub:=ListBlist(ran,sub);
	fi;

	key{ k } := 1 + 0 * k;
	new := Filtered( k, i -> subs.reps[ i ] <> false );
      fi;
      len := 1;
	  
      # If no new points were found in the last round, stop.
      while Length( new ) <> 0  do
	len := len + 1;
	old := new;
	new := [  ];
	
	# Map the suborbit <sub> with each old representative.
	for o  in old  do
	  if subs.reps[ o ] = true  then
	    subs.reps[ o ] := InverseRepresentative( subs.stabChainTop,
		SuboTruePos(ran, subs.blists[ o ] ) ) ^ -1;
	  fi;
	  for img  in OnTuples( sub, subs.reps[ o ] )  do
	    
	    # Find the suborbit <i> of the image.
	    i := subs.which[ img ];
	    
	    # If this suborbit is encountered for the first time, add
	    # it to <new> and store its distance <len>.
	    if key[ i ] = 0  then
	      Add( new, i );
	      key[ i ] := len;
	    fi;
	    
	    # Store the arrow which starts at suborbit <o>.
	    key[ o ] := key[ o ] + d *
			Length( sub ) ^ ( key[ i ] mod d );
	  od;
	od;
      od;

      if sub <> 0  then
	Key := Key * ( d + d * Length( sub ) ^ d ) + key;
      fi;
    od;

    # Partition  <dom> into unions   of  suborbits w.r.t. the  values  of
    # <Key>.
    if Key = 0  then
      P:=[];
      if IsInt( k )  then
	subs.orbitalPartitions[ k ] := P;
      fi;
      return P;
    else

#T1:=Runtime()-T1;
      typ := Set( Key );
      csiz:=ListWithIdenticalEntries(Length(typ),0);
      dom:=List(typ,i->[[],[],[]]);
      for i in [1..Length(Key)] do
	pos := Position( typ, Key[ i ] );
	csiz[pos]:=csiz[pos]+AbsInt(subs.lengths[i]);
	if IsInt(subs.blists[i]) then
	  AddSet(dom[pos][1],subs.blists[i]);
	elif IsBlistRep(subs.blists[i]) then
	  Add(dom[pos][3],subs.blists[i]);
	else
	  Add(dom[pos][2],subs.blists[i]);
	fi;
      od;
      if Sum(csiz)=Length(subs.domain) and Length(typ)=1 then
	P:=[];
	if IsInt( k )  then
	  subs.orbitalPartitions[ k ] := P;
	fi;
        return P;
      elif Sum(csiz)=Length(subs.domain) and Length(typ)=2 then
        # only two cells
	# we need to indicate the first cell, the trick to take the sorted
	# one does not work
	P:=ConcatSubos(ran,dom[1]);
	if IsInt( k )  then
	  subs.orbitalPartitions[ k ] := P;
	fi;
        return P;
      fi;

      P:=[];
      for pos in [1..Length(typ)] do
	sub := ConcatSubos( ran, dom[pos] );
        Add(P,sub);
      od;
#fi;
#T1:=Runtime()-T1;


      if Sum(List(P,Length)) <> Length(subs.domain)  then
	# there are fixpoints missing
	Add( P, Difference(subs.domain,Union(P)));
      fi;

    fi;
    
    P := Partition( P );
    if IsInt( k )  then
      subs.orbitalPartitions[ k ] := P;
    fi;

  fi;
  return P;
end );

#############################################################################
##
#F  EmptyRBase( <G>, <Omega>, <P> ) . . . . . . . . . . . . initialize R-base
##
InstallGlobalFunction( EmptyRBase, function( G, Omega, P )
    local   rbase,  pnt;
    
    rbase := rec( domain := Omega,
                    base := [  ],
                   where := [  ],
                     rfm := [  ],
               partition := StructuralCopy( P ),
                     lev := [  ] );
    if IsList( G )  then
        if IsIdenticalObj( G[ 1 ], G[ 2 ] )  then
            rbase.level2 := true;
        else
            rbase.level2 := CopyStabChain( StabChainMutable( G[ 2 ] ) );
            rbase.lev2   := [  ];
        fi;
        G := G[ 1 ];
    else
        rbase.level2 := false;
    fi;
#    if IsSymmetricGroupQuick( G )  then
#        Info( InfoBckt, 1, "Searching in symmetric group" );
#        rbase.fix   := [  ];
#        rbase.level := NrMovedPoints( G );
#    else
        rbase.chain := CopyStabChain( StabChainMutable( G ) );
        rbase.level := rbase.chain;
#    fi;
    
    # Process all fixpoints in <P>.
    for pnt  in Fixcells( P )  do
        ProcessFixpoint( rbase, pnt );
    od;
    
    return rbase;
end );

#############################################################################
##
#F  IsTrivialRBase( <rbase> ) . . . . . . . . . . . . . .  is R-base trivial?
##
InstallGlobalFunction( IsTrivialRBase, function( rbase )
    return        IsInt( rbase.level )
              and rbase.level <= 1
           or     IsRecord( rbase.level )
              and Length( rbase.level.genlabels ) = 0;
end );

#############################################################################
##
#F  AddRefinement( <rbase>, <func>, <args> )  . . . . . register R-refinement
##
InstallGlobalFunction( AddRefinement, function( rbase, func, args )
    if    Length( args ) = 0
       or not IsList( args[ Length( args ) ] )
       or Length( args[ Length( args ) ] ) <> 0  then
        Add( rbase.rfm[ Length( rbase.rfm ) ], rec( func := func,
                                                    args := args ) );
        Info( InfoBckt, 1, "Refinement ", func, ": ",
                NumberCells( rbase.partition ), " cells" );
    fi;
end );

#############################################################################
##
#F  ProcessFixpoint( <rbase>|<image>, <pnt> [, <img> ] )  .  process fixpoint
##
##  `ProcessFixpoint( rbase, pnt )' puts in <pnt> as new base point and steps
##  down to the stabilizer, unless <pnt>  is redundant, in which case `false'
##  is returned.
##  `ProcessFixpoint( image, pnt, img )' prescribes <img> as image for <pnt>,
##  extends the permutation and steps down to  the stabilizer. Returns `true'
##  if this was successful and `false' otherwise.
##
InstallGlobalFunction( ProcessFixpoint, function( arg )
    local   rbase,  image,  pnt,  img,  simg,  t;
    
    if Length( arg ) = 2  then
        rbase := arg[ 1 ];
        pnt   := arg[ 2 ];
        if rbase.level2 <> false  and  rbase.level2 <> true  then
            ChangeStabChain( rbase.level2, [ pnt ] );
            if BasePoint( rbase.level2 ) = pnt  then
                rbase.level2 := rbase.level2.stabilizer;
            fi;
        fi;
        if IsInt( rbase.level )  then
            rbase.level := rbase.level - 1;
        else
            ChangeStabChain( rbase.level, [ pnt ] );
            if BasePoint( rbase.level ) = pnt  then
                rbase.level := rbase.level.stabilizer;
            else
                return false;
            fi;
        fi;
    else
        image := arg[ 1 ];
        pnt   := arg[ 2 ];
        img   := arg[ 3 ];
        if image.perm <> true  then
            if Length( arg ) = 4  then  simg := arg[ 4 ];
                                  else  simg := 0;         fi;
            t := ExtendedT( image.perm, pnt, img, simg, image.level );
            if t = false  then
                return false;
            elif BasePoint( image.level ) = pnt  then
                image.level := image.level.stabilizer;
            fi;
            image.perm := t;
        fi;
        if image.level2 <> false  then
            t := ExtendedT( image.perm2, pnt, img, 0, image.level2 );
            if t = false  then
                return false;
            elif BasePoint( image.level2 ) = pnt  then
                image.level2 := image.level2.stabilizer;
            fi;
            image.perm2 := t;
        fi;
    fi;
    return true;
end );

#############################################################################
##
#F  RegisterRBasePoint( <P>, <rbase>, <pnt> ) . . . . . register R-base point
##
InstallGlobalFunction( RegisterRBasePoint, function( P, rbase, pnt )
    local   O,  strat,  k,  lev;
    
    if rbase.level2 <> false  and  rbase.level2 <> true  then
        Add( rbase.lev2, rbase.level2 );
    fi;
    Add( rbase.lev, rbase.level );
    Add( rbase.base, pnt );
    k := IsolatePoint( P, pnt );
    Info( InfoBckt, 1, "Level ", Length( rbase.base ), ": ", pnt, ", ",
            P.lengths[ k ] + 1, " possible images" );
    if not ProcessFixpoint( rbase, pnt )  then
        Info(InfoWarning,2,"Warning: R-base point is already fixed" );
    fi;
    Add( rbase.where, k );
    Add( rbase.rfm, [  ] );
    if P.lengths[ k ] = 1  then
        pnt := FixpointCellNo( P, k );
        ProcessFixpoint( rbase, pnt );
        AddRefinement( rbase, STBBCKT_STRING_PROCESSFIX, [ pnt, k ] );
    fi;
    if rbase.level2 <> false  then
        if rbase.level2 = true  then  lev := rbase.level;
                                else  lev := rbase.level2;  fi;
        if not IsInt( lev )  then
            O := OrbitsPartition( lev, rbase.domain );
            strat := StratMeetPartition( rbase, P, O );
            AddRefinement( rbase, STBBCKT_STRING_INTERSECTION, [ O, strat ] );
        fi;
    fi;
end );

#############################################################################
##
#F  NextRBasePoint( <P>, <rbase> [, <order> ] ) . . .  find next R-base point
##
InstallGlobalFunction( NextRBasePoint, function( arg )
    local  rbase,    # R-base to be extended
           P,        # partition of <Omega> to be refined
           order,    # order in which to try the cells of <Omega>
           lens,     # sequence of cell lengths of <P>
           p,        # the next point chosen
           k,  l;    # loop variables
    
    # Get the arguments.
    P     := arg[ 1 ];
    rbase := arg[ 2 ];
    if Length( arg ) > 2  then  order := arg[ 3 ];
                          else  order := false;     fi;
                          
    # When  this is called,   there is  a point  that   is neither  fixed  by
    # <rbase.level> nor in <P>.
    lens := P.lengths;
    p := fail;
    if order <> false  then
        if IsInt( rbase.level )  then
            p := PositionProperty( order, p ->
                         lens[ CellNoPoint(P,p ) ] <> 1 );
        else
            p := PositionProperty( order, p ->
                         lens[ CellNoPoint(P,p) ] <> 1
                     and not IsFixedStabilizer( rbase.level, p ) );
        fi;
    fi;
    
    if p <> fail  then
        p := order[ p ];
    else
        lens := ShallowCopy( lens );
        order := [ 1 .. NumberCells( P ) ];
        SortParallel( lens, order );
        k := PositionProperty( lens, x -> x <> 1 );
        l := fail;
        while l = fail  do
            if IsInt( rbase.level )  then
                l := 1;
            else
                l := PositionProperty
                     ( P.firsts[ order[ k ] ] - 1 + [ 1 .. lens[ k ] ],
                       i -> not IsFixedStabilizer( rbase.level,
                               P.points[ i ] ) );
            fi;
            k := k + 1;
        od;
        p := P.points[ P.firsts[ order[ k - 1 ] ] - 1 + l ];
    fi;
    
    RegisterRBasePoint( P, rbase, p );
end );

#############################################################################
##
#F  RRefine( <rbase>, <image>, <uscore> ) . . . . . . . . . apply refinements
##
InstallGlobalFunction( RRefine, function( rbase, image, uscore )
local  Rf,  t;
    
  if not uscore then
    for Rf  in rbase.rfm[ image.depth ]  do
      t := CallFuncList( Refinements.( Rf.func ), Concatenation
		    ( [ rbase, image ], Rf.args ) );
      if   t = false  then  return fail;
      elif t <> true  then  return t;     fi;
    od;
    return true;
  else
    for Rf  in rbase.rfm[ image.depth ]  do
      if Rf.func[ 1 ] = '_'  then
	t := CallFuncList( Refinements.( Rf.func ), Concatenation
		      ( [ rbase, image ], Rf.args ) );
	if   t = false  then  return fail;
	elif t <> true  then  return t;     fi;
      fi;
    od;
    return true;
  fi;

  #old code
  for Rf  in rbase.rfm[ image.depth ]  do
      if not uscore  or  Rf.func[ 1 ] = '_'  then
	  t := CallFuncList( Refinements.( Rf.func ), Concatenation
			( [ rbase, image ], Rf.args ) );
	  if   t = false  then  return fail;
	  elif t <> true  then  return t;     fi;
      fi;
  od;
  return true;

end );

#############################################################################
##
#F  PBIsMinimal( <range>, <a>, <b>, <S> ) . . . . . . . . . . minimality test
##
InstallGlobalFunction( PBIsMinimal, function( range, a, b, S )
    local   orb,  old,  pnt,  l,  img;

    if IsInBasicOrbit( S, b )  then
        return ForAll( S.orbit, p -> a <= p );
    elif b < a                      then  return false;
    elif IsFixedStabilizer( S, b )  then  return true;   fi;
    
    orb := [ b ];
    old := BlistList( range, orb );
    for pnt  in orb  do
        for l  in S.genlabels  do
            img := pnt ^ S.labels[ l ];
            if not old[ img ]  then
                if img < a  then
                    return false;
                fi;
                old[ img ] := true;
                Add( orb, img );
            fi;
        od;
    od;
    return true;
end );

#############################################################################
##
#F  SubtractBlistOrbitStabChain( <blist>, <R>, <pnt> )  remove orbit as blist
##
InstallGlobalFunction( SubtractBlistOrbitStabChain, function( blist, R, pnt )
    local   orb,  gen,  img;
    
    orb := [ pnt ];
    blist[ pnt ] := false;
    for pnt  in orb  do
        for gen  in R.generators  do
            img := pnt ^ gen;
            if blist[ img ]  then
                blist[ img ] := false;
                Add( orb, img );
            fi;
        od;
    od;
end );
                 
#############################################################################
##
#F  PartitionBacktrack( <G>, <Pr>, <repr>, <rbase>, <data>, <L>, <R> )  . . . 
##
InstallGlobalFunction( PartitionBacktrack,
    function( G, Pr, repr, rbase, data, L, R )
    local  PBEnumerate,
           blen,         # length of R-base
           rep,          # representative or `false', the result
           branch,       # level where $Lstab\ne Rstab$ starts
           image,        # image information running through the tree
           oldcel,       # old value of <image.partition.cellno>
           orb,  org,    # intersected (mapped) basic orbits of <G>
           orB,          # backup of <orb>
           range,        # range for construction of <orb>
           fix,  fixP,   # fixpoints of partitions at root of search tree
           obj,  prm,    # temporary variables for constructed permutation
	   nrback,	 # backtrack counter
	   bail,	 # do we want to bail out quickly?
           i,  dd,  p;   # loop variables
    
#############################################################################
##
#F      PBEnumerate( ... )  . . . . . . . recursive enumeration of a subgroup
##
    PBEnumerate := function( d, wasTriv )
        local  undoto,   # number of cells of <P> wanted after undoing
               oldprm,   #\
               oldrgt,   #  > old values of <image>
               oldprm2,  #/
               a,        # current R-base point
               m,        # initial number of candidates in <orb>
               max,      # maximal number of candidates still needed
               b,        # image of base point currently being considered
               t;        # group element constructed, to be handed upwards
        
        if image.perm = false  then
            return fail;
        fi;
        image.depth := d;

        # Store the original values of <image.*>.
        undoto := NumberCells( image.partition );
        if image.perm = true  then
            oldcel := image.partition;
        else
            oldcel := image.partition.cellno;
            if IsSlicedPerm( image.perm ) then  oldprm := image.perm!.length;
                                          else  oldprm := image.perm;
					  fi;
        fi;
        if image.level2 <> false  then  oldprm2 := image.perm2;
                                  else  oldprm2 := false;        fi;
        
        # Recursion comes to an end  if all base  points have been prescribed
        # images.
        if d > Length( rbase.base )  then
            if IsTrivialRBase( rbase )  then
                blen := Length( rbase.base );
                
                # Do     not  add the   identity    element  in the  subgroup
                # construction.
                if wasTriv  then

                    # In the subgroup case, assign to  <L> and <R> stabilizer
                    # chains when the R-base is complete.
                    L := ListStabChain( CopyStabChain( StabChainOp( L,
                                 rec( base := rbase.base,
                                   reduced := false ) ) ) );
                    R := ShallowCopy( L );
                    
                    if image.perm <> true  then
                        Info( InfoBckt, 1, "Stabilizer chain with depths ",
                                DepthSchreierTrees( rbase.chain ) );
                    fi;
                    Info( InfoBckt, 1, "Indices: ",
                          IndicesStabChain( L[ 1 ] ) );
                    return fail;
                
                else
                    if image.perm = true  then
                        prm := MappingPermListList
                               ( rbase.fix[ Length( rbase.base ) ],
                                 Fixcells( image.partition ) );
                    else
                        prm := image.perm;
                    fi;
                    if image.level2 <> false  then
                        prm := UnslicedPerm@( prm );
                        if SiftedPermutation( image.level2,
                                   prm / UnslicedPerm@( image.perm2 ) )
                           = image.level2.identity  then
                            return prm;
                        fi;
                    elif Pr( prm )  then
                        return UnslicedPerm@( prm );
                    fi;
                    return fail;
                fi;
                
            # Construct the   next refinement  level. This  also  initializes
            # <image.partition> for the case ``image = base point''.
            else
                if not repr  then
                    oldcel := StructuralCopy( oldcel );
                fi;
                rbase.nextLevel( rbase.partition, rbase );
                if image.perm = true  then
                    Add( rbase.fix, Fixcells( rbase.partition ) );
                fi;
                Add( org, ListWithIdenticalEntries( Length( range ), 0 ) );
                if repr  then
                    
                    # In  the representative  case,  change  the   stabilizer
                    # chains of <L> and <R>.
                    ChangeStabChain( L[ d ], [ rbase.base[ d ] ], false );
                    L[ d + 1 ] := L[ d ].stabilizer;
                    ChangeStabChain( R[ d ], [ rbase.base[ d ] ], false );
                    R[ d + 1 ] := R[ d ].stabilizer;
                    
                fi;
            fi;
            
        fi;
        a := rbase.base[ d ];
        Info(InfoBckt,3,Ordinal(d)," basepoint: ",a);
        
        # Intersect  the current cell of <P>  with  the mapped basic orbit of
        # <G> (and also with the one of <H> in the intersection case).
        if image.perm = true  then
            orb[ d ] := BlistList( range, Cell( oldcel, rbase.where[ d ] ) );
            if image.level2 <> false  then
                b := Position( orb[ d ], true );
                while b <> fail  do
                    if not IsInBasicOrbit( rbase.lev2[ d ], b / image.perm2 )
                       then
                        orb[ d ][ b ] := false;
                    fi;
                    b := Position( orb[ d ], true, b );
                od;
            fi;
        else
            orb[ d ] := BlistList( range, [  ] );
            for p  in rbase.lev[ d ].orbit  do
                b := p ^ image.perm;
                if oldcel[ b ] = rbase.where[ d ]
               and ( image.level2 = false
                  or IsInBasicOrbit( rbase.lev2[d], b/image.perm2 ) )  then
                    orb[ d ][ b ] := true;
                    org[ d ][ b ] := p;
                fi;
            od;
        fi;
	if d=1 and ForAll(GeneratorsOfGroup(G),x->a^x=a) then
	  orb[d][a]:=true; # ensure a is a possible image (can happen if
			  # acting on permutations with more points)
	fi;

        orB[ d ] := StructuralCopy( orb[ d ] );
        
        # Loop  over the candidate images  for the  current base point. First
        # the special case ``image = base'' up to current level.
        if wasTriv  then
            image.bimg[ d ] := a;
            
            # Refinements that start with '_' must be executed even when base
            # = image since they modify `image.data' etc.
            RRefine( rbase, image, true );
            
            # Recursion.
            PBEnumerate( d + 1, true );
            image.depth := d;
            
            # Now we  can  remove  the  entire   <R>-orbit of <a>  from   the
            # candidate list.
            SubtractBlist( orb[ d ], BlistList( range, L[ d ].orbit ) );

        fi;
        
        # Only the early points of the orbit have to be considered.
        m := SizeBlist( orB[ d ] );
        if m < Length( L[ d ].orbit )  then
            return fail;
        fi;
        max := PositionNthTrueBlist( orB[ d ],
                       m - Length( L[ d ].orbit ) + 1 );
        if wasTriv  and  a > max  then
            m := m - 1;
            if m < Length( L[ d ].orbit )  then
                return fail;
            fi;
            max := PositionNthTrueBlist( orB[ d ],
                           m - Length( L[ d ].orbit ) + 1 );
        fi;
            
        # Now the other possible images.
        b := Position( orb[ d ], true );
        if b <> fail  and  b > max  then
            b := fail;
        fi;
        while b <> fail  do
            
            # Try to prune the node with prop 8(ii) of Leon's paper.
            if not repr  and  not wasTriv  and  IsBound( R[ d ].orbit )  then
                dd := branch;
                while dd < d  do
                    if IsInBasicOrbit( L[ dd ], a )  and  not PBIsMinimal
                       ( range, R[ dd ].orbit[ 1 ], b, R[ d ] )  then
                        Info( InfoBckt, 3, d, ": point ", b,
                                " pruned by minimality condition" );
                        dd := d + 1;
                    else
                        dd := dd + 1;
                    fi;
                od;
            else
                dd := d;
            fi;
            
            if dd = d  then
                
                # Undo the  changes made to  <image.partition>, <image.level>
                # and <image.perm>.
                for i  in [ undoto+1 .. NumberCells( image.partition ) ]  do
                    UndoRefinement( image.partition );
                od;
                if image.perm <> true  then
                    image.level := rbase.lev[ d ];
                    if IsSlicedPerm( image.perm )  then
                        image.perm!.length := oldprm;
#                        image.perm!.rgtObj := oldrgt;
                    else
                        image.perm := oldprm;
                    fi;
                fi;
                if image.level2 <> false  then
                    image.level2 := rbase.lev2[ d ];
                    image.perm2  := oldprm2;
                fi;
                
                # If <b> could not be prescribed as image for  <a>, or if the
                # refinement was impossible, give up for this image.
                image.bimg[ d ] := b;
                IsolatePoint( image.partition, b );

                if ProcessFixpoint( image, a, b, org[ d ][ b ] )  then
#Error(a," ",b," ",Cells(rbase.partition),Cells(image.partition));
                    t := RRefine( rbase, image, false );
                else
                    t := fail;
                fi;
                
                if t <> fail  then
                        
                    # Subgroup case, base <> image   at current level:   <R>,
                    #   which until now is identical to  <L>, must be changed
                    #   without affecting <L>, so take a copy.
                    if wasTriv  and  IsIdenticalObj( L[ d ], R[ d ] )  then
                        R{ [ d .. Length( rbase.base ) ] } := List(
                        L{ [ d .. Length( rbase.base ) ] }, CopyStabChain );
                        branch := d;
                    fi;

                    if 2 * d <= blen  then
                        ChangeStabChain( R[ d ], [ b ], false );
                        R[ d + 1 ] := R[ d ].stabilizer;
                    else
                        if IsBound( R[ d ].stabilizer )  then
                            R[ d + 1 ] := StrongGeneratorsStabChain( R[ d ] );
                        else
                            R[ d + 1 ] := R[ d ].generators;
                        fi;
                        R[ d + 1 ] := rec( generators := Filtered
                            ( R[ d + 1 ], gen -> b ^ gen = b ) );
                    fi;
                    
                else
                    Info( InfoBckt, 5, d, ": point ", b,
                            " pruned by partition condition" );
                fi;
                
                # Recursion.
                if t = true  then
                    t := PBEnumerate( d + 1, false );
		    nrback:=nrback+1;
		    if bail and nrback>500 then
		      return infinity; # bail out, this will bail out
		                       # recursively
		    fi;
                    image.depth := d;
                fi;
                    
                # If   <t>   =   `fail', either   the   recursive   call  was
                #   unsuccessful,  or all new  elements   have been added  to
                #   levels  below  the current one   (this happens if  base =
                #   image up to current level).
                if t <> fail  then
                    
                    # Representative case, element found: Return it.
                    # Subgroup case, base <> image  before current level:  We
                    #   need  only find  a representative  because we already
                    #   know the stabilizer of <L> at an earlier level.
                    if repr  or  not wasTriv  then
                        return t;
                        
                    # Subgroup case, base  <> image at current level: Enlarge
                    #   <L>    with  <t>. Decrease <max>     according to the
                    #   enlarged <L>. Reset <R> to the enlarged <L>.
                    else
                        for dd  in [ 1 .. d ]  do
                            AddGeneratorsExtendSchreierTree( L[ dd ], [ t ] );
                        od;
                        Info( InfoBckt, 1, "Level ", d,
                                ": ", IndicesStabChain( L[ 1 ] ) );
                        if m < Length( L[ d ].orbit )  then
                            return fail;
                        fi;
                        max := PositionNthTrueBlist( orB[ d ],
                                       m - Length( L[ d ].orbit ) + 1 );
                        R{ [ d .. Length( rbase.base ) ] } := List(
                        L{ [ d .. Length( rbase.base ) ] }, CopyStabChain );
                    fi;
                    
                fi;
                
                # Now  we can remove the   entire <R>-orbit  of <b> from  the
                # candidate list.
                if      IsBound( R[ d ].translabels )
                    and IsBound( R[ d ].translabels[ b ] )  then
                    SubtractBlist( orb[ d ],
                            BlistList( range, R[ d ].orbit ) );
                else
                    SubtractBlistOrbitStabChain( orb[ d ], R[ d ], b );
                fi;
                
            fi;
            
            b := Position( orb[ d ], true, b );
            if b <> fail  and  b > max  then
                b := fail;
            fi;
        od;
        
        return fail;
    end;

##
#F      main function . . . . . . . . . . . . . . . . . . . . . . . . . . . .
##
    
    nrback:=0; # count the number of times we jumped up
    bail:=repr and ValueOption("bailout")=true;

    # If necessary, convert <Pr> from a list to a function.
    if     IsList( Pr )
       and (    IsTrivial( G )
             #or IsSymmetricGroupQuick( G )
	     ) then
        obj := rec( lftObj := Pr[ 1 ],
#                    rgtObj := Pr[ 2 ],
                       opr := Pr[ 3 ],
                      prop := Pr[ 4 ] );
        Pr := gen -> obj.prop
              ( rec( lftObj := obj.lftObj
#	      ,
#                     rgtObj := obj.opr( obj.rgtObj, gen ^ -1 ) 
	    ) );
    fi;
    
    # Trivial cases first.
    if IsTrivial( G )  then
        if   not repr        then  return G;
        elif Pr( One( G ) )  then  return One( G );
                             else  return fail;      fi;
    fi;
    
    # Construct the <image>.
    image := rec( data := data,
                  bimg := [  ],
                 depth := 1 );
    if repr  then  image.partition := data[ 1 ];
             else  image.partition := rbase.partition;  fi;
    if IsBool( rbase.level2 )  then
        image.level2 := false;
    else
        image.level2 := rbase.level2;
        image.perm2  := rbase.level2.identity;
    fi;
    
    # If  <Pr> is  function,   multiply  permutations. Otherwise, keep   them
    # factorized.
#    if IsSymmetricGroupQuick( G )  then
#        image.perm := true;
#    else
        if IsList( Pr )  then
            image.perm := Objectify
                ( NewType( PermutationsFamily, IsSlicedPerm ),
                  rec( length := 0, word := [  ] ) );
            image.perm!.lftObj := Pr[ 1 ];
#            image.perm!.rgtObj := Pr[ 2 ];
            image.perm!.opr    := Pr[ 3 ];
            Pr                 := Pr[ 4 ];
        else
            image.perm := One( G );
        fi;
        image.level := rbase.chain;
#    fi;
    
    if repr  then
        
        # In the representative case, map the  fixpoints of the partitions at
        # the root of the search tree.
        if rbase.partition.lengths <> image.partition.lengths  then
            image.perm := false;
        else
            fix  := Fixcells( rbase.partition );
            fixP := Fixcells( image.partition );
            for i  in [ 1 .. Length( fix ) ]  do
                ProcessFixpoint( image, fix[ i ], fixP[ i ] );
            od;
        fi;
        
        # In   the representative case,   assign  to <L>  and <R>  stabilizer
        # chains.
        L := ListStabChain( CopyStabChain( StabChainMutable( L ) ) );
        R := ListStabChain( CopyStabChain( StabChainMutable( R ) ) );

    fi;
    
    org := [  ];  orb := [  ];  orB := [  ];
    range := [ 1 .. rbase.domain[ Length( rbase.domain ) ] ];
    blen := infinity;
    rep := PBEnumerate( 1, not repr );
    if not repr  then
        ReduceStabChain( L[ 1 ] );
        return GroupStabChain( G, L[ 1 ], true );
    else
        return rep;
    fi;
end );
    
#############################################################################
##
#V  Refinements . . . . . . . . . . . . . . .  record of refinement processes
##
InstallValue( Refinements, rec() );

#############################################################################
##
#F  Refinements.ProcessFixpoint( <pnt>, <cellnum> )  . . .  process a fixpoint
##
InstallGlobalFunction(Refinements_ProcessFixpoint,
function( rbase, image, pnt, cellnum )
    local   img;
    
    img := FixpointCellNo( image.partition, cellnum );
    return ProcessFixpoint( image, pnt, img );
end);
Refinements.(STBBCKT_STRING_PROCESSFIX) := Refinements_ProcessFixpoint;

#############################################################################
##
#F  Refinements.Intersection( <O>, <strat> )  . . . . . . . . . . second type
##
InstallGlobalFunction(Refinements_Intersection,
function( rbase, image, Q, strat )
    local   t;
    
    if image.level2 = false  then  t := image.perm;
                             else  t := image.perm2;  fi;
    if IsSlicedPerm( t )  then
        t := ShallowCopy( t );
        SET_TYPE_COMOBJ( t, NewType( PermutationsFamily, IsSlicedPermInv ) );
    else
        t := t ^ -1;
    fi;
    return MeetPartitionStrat( rbase, image, Q, t, strat );
end);
Refinements.(STBBCKT_STRING_INTERSECTION) := Refinements_Intersection;

#############################################################################
##
#F  Refinements.Centralizer(<no>,<g>,<pnt>,<strat>) . P meet Pz for one point
##
InstallGlobalFunction(Refinements_Centralizer,
function( rbase, image, cellnum, g, pnt, strat )
    local   P,  img;
    
    P := image.partition;
    img := FixpointCellNo( P, cellnum ) ^ image.data[ g + 1 ];
    return     IsolatePoint( P, img ) = strat
           and ProcessFixpoint( image, pnt, img );
end);
Refinements.(STBBCKT_STRING_CENTRALIZER) := Refinements_Centralizer;

#############################################################################
##
#F  Refinements._MakeBlox( <rbase>, <image>, <len> )  . . . . . . . make blox
##
InstallGlobalFunction(Refinements__MakeBlox,
function( rbase, image, len )
    local   F;
    
    F := image.data[ 2 ];
    image.data[ 4 ] := Partition( Blocks( F, rbase.domain,
                               image.bimg{ [ 1, len ] } ) );
    return Collected( rbase.blox.lengths ) =
           Collected( image.data[ 4 ].lengths );
end);
Refinements.(STBBCKT_STRING_MAKEBLOX) := Refinements__MakeBlox;

#############################################################################
##
#F  Refinements.SplitOffBlock( <k>, <strat> ) . . . . . . . . split off block
##
InstallGlobalFunction(Refinements_SplitOffBlock,
function( rbase, image, k, strat )
    local   B,  a,  orb;
    
    B   := image.data[ 4 ];
    a   := FixpointCellNo( image.partition, k );
    orb := Cell( B, CellNoPoint(B,a) );
    if Length( orb ) = Length( rbase.domain )  then
        return false;
    else
        return MeetPartitionStrat( rbase, image, orb, (),strat );
    fi;
end);
Refinements.(STBBCKT_STRING_SPLITOFF) := Refinements_SplitOffBlock;

#############################################################################
##
#F  Refinements._RegularOrbit1( <d>, <len> )  . . . . . . extend mapped orbit
##
##  Computes orbit and transversal `bF' for group <F>  = `data[6]' regular on
##  that orbit.
##
InstallGlobalFunction(Refinements__RegularOrbit1,
function( rbase, image, d, len )
    local   F,  trees;
    
    trees := image.data[ 5 ];
    if d = 1  then
        F := image.data[ 6 ];
        image.regorb := EmptyStabChain( [  ], One( F ), image.bimg[ d ] );
        AddGeneratorsExtendSchreierTree( image.regorb,
                GeneratorsOfGroup( F ) );
        if Length( image.regorb.orbit ) <> Length( rbase.regorb.orbit )  then
            return false;
        fi;
        trees[ d ] := EmptyStabChain( [  ], One( F ),
                              image.regorb.orbit[ 1 ] );
    else
        trees[ d ] := StructuralCopy( trees[ d - 1 ] );
        AddGeneratorsExtendSchreierTree( trees[ d ],
          [ QuickInverseRepresentative
            ( image.regorb, image.bimg[ d ] ) ^ -1 ] );
        if Length( trees[ d ].orbit ) <> len  then
            return false;
        fi;
    fi;
    return true;
end);
Refinements.(STBBCKT_STRING_REGORB1) := Refinements__RegularOrbit1;

#############################################################################
##
#F  Refinements.RegularOrbit2( <d>, <orb>, <strat> )  . . . meet mapped orbit
##
##  Compute images `bhg' of `bh' under  $g$ in `trees[<d>].orbit = bE$ ($h\in
##  E$).
##  Entries in <strat> have the following meaning:
##    [i,j] means  that the image `bhg\in  P[j]' of  `bh  = orb[<i>]'  can be
##          calculated from `bg'.
##   [-p,j] means that fixpoint <p> was mapped to fixpoint in `P[j]',
##          i.e., `P[j]' has become a one-point cell.
##
InstallGlobalFunction(Refinements_RegularOrbit2,
function( rbase, image, d, orbit, strat )
    local   P,  trees,  orb,  i;
    
    P     := image.partition;
    trees := image.data[ 5 ];
    orb   := trees[ d ].orbit;
    for i  in strat  do
        if (   i[ 1 ] < 0
           and not ProcessFixpoint( image, -i[1], FixpointCellNo(P,i[2]) ) )
        or (   i[ 1 ] > 0
           and (    IsolatePoint( P, orb[ i[ 1 ] ] ) <> i[ 2 ]
                 or not ProcessFixpoint( image, orbit[i[1]], orb[i[1]] ) ) )
           then  return false;
        fi;
    od;
    return true;
end);
Refinements.(STBBCKT_STRING_REGORB2) := Refinements_RegularOrbit2;

#############################################################################
##
#F  Refinements.RegularOrbit3( <f>, <strat> ) . . . . .  find images of orbit
##
##  Register images `yhg' of `yh' under $g$ in an arbitrary orbit `yE' ($h\in
##  E$). `yg\in P[f]' is a one-point cell.
##  Entries in <strat> have the following meaning:
##    [yh,i,j] means that  the image `yhg\in P[j]' of  `yh' can be calculated
##             from `yg' and `bhg\in P[i]' (a one-point cell).
##      [-p,j] means that fixpoint <p> was mapped to fixpoint in `P[j]',
##             i.e., `P[j]' has become a one-point cell.
##
InstallGlobalFunction(Refinements_RegularOrbit3,
function( rbase, image, f, strat )
    local   P,  yg,  bhg,  hg,  yhg,  i;
    
    P   := image.partition;
    yg  := FixpointCellNo( P, f );
    for i  in strat  do
        if i[ 1 ] < 0  then
            if not ProcessFixpoint( image, -i[1], FixpointCellNo(P,i[2]) )
               then
                return false;
            fi;
        else
            bhg := FixpointCellNo( P, i[ 2 ] );
            hg  := InverseRepresentativeWord( image.regorb, bhg );
            yhg := PreImageWord( yg, hg );
            if    IsolatePoint( P, yhg ) <> i[ 3 ]
               or not ProcessFixpoint( image, i[ 1 ], yhg )  then
                return false;
            fi;
        fi;
    od;
    return true;
end);
Refinements.(STBBCKT_STRING_REGORB3) := Refinements_RegularOrbit3;
    
#############################################################################
##
#F  Refinements.Suborbits0( <tra>, <f>, <lens>, <byLen>, <strat> ) subdegrees
##
##  Computes   suborbits of the stabilizer in   <F> =  `image.data[2]' of the
##  fixpoint in cell no. <f>.  (If <F> is multiply  transitive, replace it by
##  the stabilizer of the first <tra>-1 images of R-base points.)
##
##  Returns `true' if (1)~the  list  of suborbit lengths (subdegrees)  equals
##  <lens>, (2)~the list of subdegree  frequencies equals <byLen> and (3)~the
##  meet  with  the  partition  into unions   of   suborbits of equal  length
##  succeeds.
##
InstallGlobalFunction(Refinements_Suborbits0,
function( rbase, image, tra, f, lens, byLen, strat )
    local   F,  pnt,  subs;
    
    F    := image.data[ 2 ];
    pnt  := FixpointCellNo( image.partition, f );
    subs := Suborbits( F, image.bimg{ [ 1 .. tra - 1 ] }, pnt,
                    rbase.domain );
    if    subs.lengths <> lens
       or List( subs.byLengths, Length ) <> byLen  then
        return false;
    else
        return MeetPartitionStrat( rbase, image, subs.partition, subs.conj,
                       strat );
    fi;
end);
Refinements.(STBBCKT_STRING_SUBORBITS0):=Refinements_Suborbits0;

#############################################################################
##
#F  Refinements.Suborbits1( <rbase>, <image>, <tra>, <f>, <k>, <strat> )  . .
##
##  Meets  the  image partition with the  orbital  partition of the  union of
##  orbital graphs of suborbits of length `subs.byLengths[ <k> ]'. (<tra> and
##  <f> as in `Suborbits0'.)
##
InstallGlobalFunction(Refinements_Suborbits1,
function( rbase, image, tra, f, k, strat )
    local   F,  pnt,  subs,  Q;
    
    F    := image.data[ 2 ];
    pnt  := FixpointCellNo( image.partition, f );
    subs := Suborbits( F, image.bimg{ [ 1 .. tra - 1 ] }, pnt,
                    rbase.domain );
    Q := OrbitalPartition( subs, subs.byLengths[ k ] );
    return MeetPartitionStrat( rbase, image, Q, subs.conj, strat );
end);
Refinements.(STBBCKT_STRING_SUBORBITS1) := Refinements_Suborbits1;

#############################################################################
##
#F  Refinements.Suborbits2( <rbase>, <image>, <tra>, <f>, <start>, <coll> ) .
##
##  Computes  for each suborbit the  intersection sizes with cells <start> or
##  more in the image partition. Stores the  result in `data[3]' (needed only
##  on this level,  hence no  '_'). Returns  `true'  if the collected  result
##  equals <coll>.
##
InstallGlobalFunction(Refinements_Suborbits2,
function( rbase, image, tra, f, start, coll )
    local   F,  types,  pnt,  subs,  i, k;
    
    F    := image.data[ 2 ];
    pnt  := FixpointCellNo( image.partition, f );
    subs := Suborbits( F, image.bimg{ [ 1 .. tra - 1 ] }, pnt,
                    rbase.domain );
    if start = 1  then
        image.data[ 3 ] := List( subs.blists, o -> [ -SuboSiBli( o ) ] );
    fi;
    types := image.data[ 3 ];
    for i  in [ start .. NumberCells( image.partition ) ]  do
        for k  in Set( subs.which
          { OnTuples( Cell( image.partition, i ), subs.conj ) } )  do
            AddSet( types[ k ], i );
        od;
    od;
    return Collected( types ) = coll;
end);
Refinements.(STBBCKT_STRING_SUBORBITS2) := Refinements_Suborbits2;

#############################################################################
##
#F  Refinements.Suborbits3( <rbase>, <image>, <tra>, <f>, <typ>, <strat> )  .
##
##  Meets  the image  partition with  the orbital partition   of the union of
##  orbital  graphs of suborbits of type  <typ>. Returns `false' if there are
##  not <many> of them. (<tra> and <f> as in `Suborbits0'.)
##  
InstallGlobalFunction(Refinements_Suborbits3,
function( rbase, image, tra, f, typ, many, strat )
    local   F,  types,  pnt,  subs,  k,  Q;
    
    F     := image.data[ 2 ];
    types := image.data[ 3 ];
    pnt   := FixpointCellNo( image.partition, f );
    subs  := Suborbits( F, image.bimg{ [ 1 .. tra - 1 ] }, pnt,
                     rbase.domain );
    k := Filtered( [ 1 .. subs.sublilen ], k -> types[ k ] = typ );
    if Length( k ) <> many  then
        return false;
    else
        Q := OrbitalPartition( subs, k );
        return MeetPartitionStrat( rbase, image, Q, subs.conj, strat );
    fi;
end);
Refinements.(STBBCKT_STRING_SUBORBITS3) := Refinements_Suborbits3;

#############################################################################
##
#F  Refinements.TwoClosure( <G>, <Q>, <d>, <strat> )  . . . . . . two-closure
##
InstallGlobalFunction(Refinements_TwoClosure,
function( rbase, image, G, f, Q, strat )
    local   pnt,  t;
    
    pnt := FixpointCellNo( image.partition, f );
    t   := InverseRepresentative( rbase.suborbits.stabChainTop, pnt );
    return MeetPartitionStrat( rbase, image, Q, t, strat );
end);
Refinements.(STBBCKT_STRING_TWOCLOSURE):=Refinements_TwoClosure;

#############################################################################
##
#F  NextLevelRegularGroups( <P>, <rbase> )  . . . . . . . . . . . . . . local
##
InstallGlobalFunction( NextLevelRegularGroups, function( P, rbase )
    local   d,  b,  gen,  tree,  strat,  i,  j,  p,
            S,  f,  y,  yh,  h,  bh,  fix;
    
    d := Length( rbase.base ) + 1;
    p := fail;

    # All images of  a regular orbit are  known if $s$  are known  (where the
    # regular group has $s$ generators). See sec. 3.7  of my thesis, read `b'
    # for `\omega'.
    if d = 1  then
        p := rbase.regorb.orbit[ 1 ];
        RegisterRBasePoint( P, rbase, p );
        rbase.trees := [ EmptyStabChain( [  ], rbase.regorb.identity, p ) ];
        AddRefinement( rbase, STBBCKT_STRING_REGORB1, [ d, 1 ] );
    else
        tree := rbase.trees[ Length( rbase.trees ) ];
        if Length( tree.orbit ) < Length( rbase.regorb.orbit )  then
            p := PositionProperty( rbase.regorb.orbit, q ->
                         P.lengths[ CellNoPoint(P,q) ] <> 1
                     and (    IsInt( rbase.level )
                           or not IsFixedStabilizer( rbase.level, q ) ) );
            if p <> fail  then
                b := rbase.regorb.orbit[ p ];
                RegisterRBasePoint( P, rbase, b );
                gen := QuickInverseRepresentative( rbase.regorb, b ) ^ -1;
                tree := StructuralCopy( tree );
                AddGeneratorsExtendSchreierTree( tree, [ gen ] );
                AddRefinement( rbase, STBBCKT_STRING_REGORB1,
                        [ d, Length( tree.orbit ) ] );
                strat := [  ];
                for i  in [ 1 .. Length( tree.orbit ) ]  do
                    j := IsolatePoint( P, tree.orbit[ i ] );
                    if j <> false  then
                        ProcessFixpoint( rbase, tree.orbit[ i ] );
                        Add( strat, [ i, j ] );
                        if P.lengths[ j ] = 1  then
                            p := FixpointCellNo( P, j );
                            ProcessFixpoint( rbase, p );
                            Add( strat, [ -p, j ] );
                        fi;
                    fi;
                od;
                Add( rbase.trees, tree );
                AddRefinement( rbase, STBBCKT_STRING_REGORB2,
                        [ d, tree.orbit, strat ] );
            fi;
        fi;
    fi;
    if p = fail  then
        NextRBasePoint( P, rbase );
    fi;
    
    # If the image of a point is known, the image of its <E>-orbit is known.
    # See sec. 3.7 of my thesis, read `y' for `\gamma'.
    fix := Set( CellNoPoints(P,rbase.regorb.orbit));
    f := FixcellPoint( P, fix );
    while f <> false  do
        y := FixpointCellNo( P, f );
        S := EmptyStabChain( [  ], rbase.regorb.identity, y );
                           # ^ rbase.regorb.labels
        AddGeneratorsExtendSchreierTree( S, rbase.regorb.generators );
        UniteSet(fix,CellNoPoints(P,S.orbit));
        strat := [  ];
        for yh  in S.orbit  do
            h := InverseRepresentativeWord( S, yh );
            bh := PreImageWord( rbase.regorb.orbit[ 1 ], h );
            i := CellNoPoint(P,bh);
            if P.lengths[ i ] = 1  then
                j := IsolatePoint( P, yh );
                if j <> false  then
                    ProcessFixpoint( rbase, yh );
                    Add( strat, [ yh, i, j ] );
                    if P.lengths[ j ] = 1  then
                        p := FixpointCellNo( P, j );
                        ProcessFixpoint( rbase, p );
                        Add( strat, [ -p, j ] );
                    fi;
                fi;
            fi;
        od;
        AddRefinement( rbase, STBBCKT_STRING_REGORB3, [ f, strat ] );
        f := FixcellPoint( P, fix );
    od;
    
end );

#############################################################################
##
#F  RBaseGroupsBloxPermGroup( ... ) . . . . .  opr. on groups respecting blox
##
InstallGlobalFunction( RBaseGroupsBloxPermGroup, function( repr, G, Omega, E, div, B )
    local  rbase,      # the R-base for the backtrack algorithm
           order,max,L,# order in which to process the base points
                 min,l,#
           n,          # degree of <G>
           reg,  orbs, # regular subgroup of <E> or `false'
           doneblox,   # blox already considered
           doneroot,   # roots of orbital graphs already considered
           tra,        # degree of transitivity of <E>
           op,
	   cp,
	   len,  i,  range;
    
    # If  <E>  is a multiply  transitive  subgroup  of  <G>, consider orbital
    # graphs of the first non 2-transitive stabilizer.
    tra := Transitivity( E, Omega );
    if tra = 0  then
        tra := 1;
    elif tra > 1  then
        Info( InfoBckt, 1, "Subgroup is ", tra, "-transitive" );
    fi;
        
    # Find the order in which to process the points in the base choice.
    if NumberCells( B ) = 1  then
        order := false;
    else
        n := Length( Omega );
        max := 0;  min := infinity;  i := 0;
        while i < NumberCells( B )  do
            i := i + 1;  len := B.lengths[ i ];
            if len > max  then  max := len;  L := i;  fi;
            if len < min  then  min := len;  l := i;  fi;
        od;
        order := Maximum( List( GeneratorsOfGroup( E ), Order) );
        if 2 * order < n  then  order := Cell( B, l );
                          else  order := Cell( B, L );  fi;
    fi;
    
    # Construct an  R-base. Start with  the partition into  <G>-orbits on the
    # cells of <B>. In the normalizer  case, only the factor group $N_G(E)/E$
    # acts on the cells.
    rbase := EmptyRBase( G, Omega, CollectedPartition( B, div ) );
    range := [ 1 .. rbase.domain[ Length( rbase.domain ) ] ];
    rbase.suborbits := [  ];
    
    if NumberCells( B ) = 1  then  rbase.blox := false;
                             else  rbase.blox := B;      fi;
        
    # See if <E> has a regular orbit or is affine.
    orbs := OrbitsDomain( E, Omega );
    reg := PositionProperty( orbs, orb -> Length( orb ) = Size( E ) );
    if reg <> fail  then
        Info( InfoBckt, 1, "Subgroup has regular orbit" );
        rbase.reggrp := function( E, Omega )  return E;  end;
        rbase.regorb := EmptyStabChain( [  ], One( E ),
                                orbs[ reg ][ 1 ] );
        AddGeneratorsExtendSchreierTree( rbase.regorb,
                GeneratorsOfGroup( E ) );
    elif IsPrimitive( E, Omega )  then
        reg := Earns( E, Omega );
        if reg <> fail  then
            Info( InfoBckt, 1, "Subgroup is affine" );
            rbase.reggrp := Earns;
            rbase.regorb := EmptyStabChain( [  ], One( reg ),
                                    Omega[ 1 ] );
            AddGeneratorsExtendSchreierTree( rbase.regorb,
                    GeneratorsOfGroup( reg ) );
        fi;
    fi;
        
    doneblox := [  ];
    doneroot := [  ];
        
    rbase.nextLevel := function( P, rbase )
        local   len,  a,  Q, strat,  orb,  f,  fpt,  subs,  k,  i,
                start,  oldstart,  types,  typ,  coll,  pnt,  done;

        if reg <> fail  then  NextLevelRegularGroups( P, rbase );
                        else  NextRBasePoint( P, rbase, order );   fi;
        len := Length( rbase.base );
        a := rbase.base[ len ];
        if len >= tra  then
            
            # For each  fixpoint  in   <P>,  consider  the orbits    of   its
            # stabilizer.
            f := FixcellPoint( P, doneroot );
            while f <> false  do
              fpt := FixpointCellNo( P, f );
              subs := Suborbits( E, rbase.base{ [ 1 .. tra - 1 ] },
                                fpt, Omega );
              
              # `Suborbits0' computes and  meets the partition into unions of
              # suborbits of equal length.
              strat := StratMeetPartition( rbase, P, subs.partition,
                               subs.conj );
              AddRefinement( rbase, STBBCKT_STRING_SUBORBITS0, 
	             [ tra, f, subs.lengths,
                      List( subs.byLengths, Length ), strat ] );

              # For each such   length, `Suborbits1' computes  and  meets the
              # `OrbitalPartition' of the   union of orbital  graphs for  the
              # suborbits of  that  length  (only   if there are  less   than
              # sqrt(subdegree) many and if they are  in the component of the
              # root).
              for k  in [ 1 .. Length( subs.byLengths ) ]  do
                  if Length( subs.byLengths[ k ] ) ^ 2
                   < subs.sublilen
                 and subs.reps[ subs.byLengths[ k ][ 1 ] ] <> false  then
                      strat := StratMeetPartition( rbase, P, 
			OrbitalPartition( subs, subs.byLengths[ k ] ),
			subs.conj );
                      AddRefinement( rbase, STBBCKT_STRING_SUBORBITS1,
                              [ tra, f, k, strat ] );
                      if IsTrivialRBase( rbase )  then
                          return;
                      fi;
                  fi;
              od;
              
              # Find   the types of the suborbits,   i.e., the sizes of their
              # intersections with the cells of <P>.
              if LARGE_TASK  then  start := NumberCells( P ) + 1;
                             else  start := 1;  oldstart := 1;     fi;
              types := List( subs.blists, o -> [ -SuboSiBli( o ) ] );
              done := Set( subs.byLengths );
              while start <= NumberCells( P )  do

                # Do not  consider a cell number  in <P> twice (consider only
                # cell numbers between <oldstart> and <start>).
                for i  in [ start .. NumberCells( P ) ]  do
                    for k  in Set( subs.which
                              { OnTuples( Cell( P, i ), subs.conj ) } )  do
                        AddSet( types[ k ], i );
                    od;
                od;
                coll := Collected( StructuralCopy( types ) );
                start := NumberCells( P ) + 1;

                # For each type, consider the `OrbitalPartition' of the union
                # of orbital graphs of that type.
                for typ  in coll  do
                  k := Filtered( [ 1 .. subs.sublilen ],
                         k -> types[ k ] = typ[ 1 ] );
                  if not k in done  then
                    AddSet( done, k );
                    strat := StratMeetPartition( rbase, P, 
                                OrbitalPartition( subs, k ),
				subs.conj );
                    if Length( strat ) <> 0  then

                      # `Suborbits2' computes the types  in the image (stored
                      # in `data[3]') and compares them with <coll> (only for
                      # new cells between <oldstart> and <start>).
                      if oldstart < start  then
                        AddRefinement( rbase, STBBCKT_STRING_SUBORBITS2,
                                [ tra, f, oldstart, coll ] );
                        oldstart := start;
                      fi;

                      # `Suborbits3' computes and meets the orbital partition
                      # for the image.
                      AddRefinement( rbase, STBBCKT_STRING_SUBORBITS3, 
		         [ tra, f, typ[ 1 ], Length( k ), strat ] );
                      if IsTrivialRBase( rbase )  then
                        return;
                      fi;
                    fi;
                  fi;
                od;
                
              od;
              
              # Orbital graphs rooted at a point from the same <E>-orbit seem
              # to yield no extra progress.
              for pnt  in Orbit( E, fpt )  do
		  cp:=CellNoPoint(P,pnt);
                  if P.lengths[cp] = 1  then
                      AddSet( doneroot, cp);
                  fi;
              od;
              
              f := FixcellPoint( P, doneroot );
            od;
        fi;
        
        # Construct a block system for <E>.
        if len > 1  and  rbase.blox = false  then
            Q := Blocks( E, rbase.domain, rbase.base{ [ 1, len ] } );
            if Length( Q ) <> 1  then
                rbase.blox := Partition( Q );
                AddRefinement( rbase, STBBCKT_STRING_MAKEBLOX, [ len ] );
            fi;
        fi;
         
        # Split off blocks whose images are known.
        if rbase.blox <> false  then
            k := FixcellsCell( P, rbase.blox, doneblox );
            while k <> false  do
                for i  in [ 1 .. Length( k[ 1 ] ) ]  do
                    orb := Cell( rbase.blox, k[ 1 ][ i ] );
                    if Length( orb ) <> Length( Omega )  then
                        strat := StratMeetPartition( rbase, P, orb );
                        AddRefinement( rbase, STBBCKT_STRING_SPLITOFF,
                                [ k[ 2 ][ i ], strat ] );
                        if IsTrivialRBase( rbase )  then
                            return;
                        fi;
                    fi;
                od;
                k := FixcellsCell( P, rbase.blox, doneblox );
            od;
        fi;
        
    end;

    return rbase;
end );

#############################################################################
##
#F  RepOpSetsPermGroup( <arg> ) . . . . . . . . . . . . . . operation on sets
##
InstallGlobalFunction( RepOpSetsPermGroup, function( arg )
    local   G,  Phi,  Psi,  repr,  Omega,  rbase,  L,  R,  P,  Q,  p,  Pr,
            gens,  cell,  i,phitail;
    
    G   := arg[ 1 ];
    Phi := Set( arg[ 2 ] );
    if Length( arg ) > 2  and  IsList( arg[ 3 ] )  then
        p := 3;
        Psi := Set( arg[ 3 ] );
        repr := true;
    else
        p := 2;
        Psi := Phi;
        repr := false;
    fi;
    
    Omega := MovedPoints( G );
    if repr  and  Length( Phi ) <> Length( Psi )  then
        return fail;
    fi;

    Psi:=Immutable(Set(Psi));
    
    # Special case if <Omega> is entirely inside or outside <Phi>.
    if IsSubset( Phi, Omega )  or  ForAll( Omega, p -> not p in Phi )  then
        if repr  then
            if Difference( Phi, Omega ) <> Difference( Psi, Omega )  then
                return fail;
            else
                return One( G );
            fi;
        else
            return G;
        fi;
    elif repr and
     ( IsSubset( Psi, Omega )  or  ForAll( Omega, p -> not p in Psi ) )  then
        return fail;
    fi;
    
    P := Partition( [ Intersection( Omega, Phi ),
                        Difference( Omega, Phi ) ] );
    if repr  then  Q := Partition( [ Intersection( Omega, Psi ),
                                       Difference( Omega, Psi ) ] );
             else  Q := P;                                            fi;
                                       
#    # Special treatment for the symmetric group.
#    if IsSymmetricGroupQuick( G )  then
#        if repr  then
#            return MappingPermListList( Phi, Psi );
#        else
#            gens := [  ];
#            for i  in [ 1 .. NumberCells( P ) ]  do
#                cell := Cell( P, i );
#                if Length( cell ) > 1  then
#                    Add( gens, ( cell[ 1 ], cell[ 2 ] ) );
#                    if Length( cell ) > 2  then
#                        Add( gens, MappingPermListList( cell,
#                                cell{ Concatenation( [ 2 .. Length( cell ) ],
#                                        [ 1 ] ) } ) );
#                    fi;
#                fi;
#            od;
#            return GroupByGenerators( gens, () );
#        fi;
#    fi;
    
    if Length( arg ) > p  then
        L := arg[ p + 1 ];
    else
        L:=SubgroupNC(G,
	     Filtered(StrongGeneratorsStabChain(StabChainMutable(G)),
                     gen -> OnSets( Phi, gen ) = Phi ) );
    fi;
    if repr  then
        if Length( arg ) > p + 1  then
            R := arg[ p + 2 ];
        else
            R:=SubgroupNC(G,
	         Filtered(StrongGeneratorsStabChain(StabChainMutable(G)),
                          gen->OnSets(Psi,gen)=Psi));
        fi;
    else
        R := L;
    fi;
    
    # Construct an R-base.
    rbase := EmptyRBase( [ G, G ], Omega, P );
    rbase.nextLevel := NextRBasePoint;

    #Pr := gen -> IsSubsetSet( OnTuples( Phi, gen ), Psi );

    phitail:=Phi{[2..Length(Phi)]};
    Pr:=function(gen)
        local i;
	  if not Phi[1]^gen in Psi then
	    return false;
	  fi;
	  for i in phitail do
	    if not i^gen in Psi then
	      return false;
	    fi;
	  od;
	  return true;
        end;

    # Pr := [ Phi, Psi, OnTuples, gen ->
    #         IsSubsetSet( gen!.lftObj, gen!.rgtObj ) ];
    return PartitionBacktrack( G, Pr, repr, rbase, [ Q ], L, R );
end );

#############################################################################
##
#F  RepOpElmTuplesPermGroup( <repr>, <G>, <e>, <f>, <L>, <R> )  on elm tuples
##
InstallGlobalFunction( RepOpElmTuplesPermGroup,
function( repr, G, e, f, L, R )
local  Omega,      # a common operation domain for <G>, <E> and <F>
	order,      # orders of elements in <e>
	cycles,     # cycles of <e> on <Omega>
	P, Q,       # partition refined during construction of <rbase>
	rbase,      # the R-base for the backtrack algorithm
	Pr,	       # property
	baspts,     # base for group
	eran,       # range
	oe,of,sets,
	pre,l,map,
	bailout,
	i,j, size; # loop/auxiliary variables

  # Central elements and trivial subgroups.
  if ForAll( GeneratorsOfGroup( G ), gen -> OnTuples( e, gen ) = e )  then
      if not repr  then  return G;
      elif e = f   then  return One( G );
		    else  return fail;      fi;
  fi;

  if repr and
      ( Length( e ) <> Length( f )  or  ForAny( [ 1 .. Length( e ) ],
	      i -> CycleStructurePerm( e[ i ] ) <>
		  CycleStructurePerm( f[ i ] ) ) )  then
      return fail;
  fi;

  bailout:=repr;
  if IsTrivial(L) then
    L:=SubgroupNC(G,Filtered( Concatenation(
	    Filtered(e,gen->gen in G),
	    StrongGeneratorsStabChain(StabChainMutable(G))),
	  gen->OnTuples(e,gen)=e)); 
  else
    bailout:=false;
  fi;

  if IsTrivial(R) then
    if repr then
      R:=SubgroupNC(G,Filtered( Concatenation(
	    Filtered(f,gen->gen in G),
	    StrongGeneratorsStabChain(StabChainMutable(G))),
	  gen->OnTuples(f,gen)=f)); 

    else
      R:=L;
    fi;
  fi;

  Omega := MovedPoints( Concatenation( GeneratorsOfGroup( G ), e, f ) );

  P := TrivialPartition( Omega );
  if repr  then  size := 1;
	    else  size := Size( G );  fi;
  for i  in [ 1 .. Length( e ) ]  do
      cycles := Partition( Cycles( e[ i ], Omega ) );
      StratMeetPartition( P, CollectedPartition( cycles, size ) );
  od;
  
  # Find the order in which to process the points in the base choice.
  order := cycles.points{ cycles.firsts };
  SortParallel( ShallowCopy( -cycles.lengths ), order );

  repeat

    # Construct an R-base.
    rbase := EmptyRBase( G, Omega, P );
    
    # Loop over the stabilizer chain of <G>.
    rbase.nextLevel := function( P, rbase )
        local   fix,  pnt,  img,  g,  strat;
        
        NextRBasePoint( P, rbase, order );
            
        # Centralizer refinement.
        fix := Fixcells( P );
        for pnt  in fix  do
            for g  in [ 1 .. Length( e ) ]  do
                img := pnt ^ e[ g ];
                strat := IsolatePoint( P, img );
                if strat <> false  then
                    Add( fix, img );
                    ProcessFixpoint( rbase, img );
                    AddRefinement( rbase, STBBCKT_STRING_CENTRALIZER,
                            [ CellNoPoint(P,pnt), g, img, strat ] );
                    if P.lengths[ strat ] = 1  then
                        pnt := FixpointCellNo( P, strat );
                        ProcessFixpoint( rbase, pnt );
                        AddRefinement( rbase, "ProcessFixpoint",
                                [ pnt, strat ] );
                    fi;
                fi;
            od;
        od;
    end;
    
    if repr  then
        Q := TrivialPartition( Omega );
        for i  in [ 1 .. Length( f ) ]  do
            StratMeetPartition( Q, CollectedPartition( Partition
                    ( Cycles( f[ i ], Omega ) ), 1 ) );
        od;
    else
        Q := P;
    fi;

    #Pr:=gen -> gen!.lftObj = gen!.rgtObj;
    baspts:=BaseStabChain(StabChainMutable(G));
    if not (ForAll(e,i->i in G) and ForAll(f,i->i in G)) then
      baspts:=Union(baspts,MovedPoints(Concatenation(e,f)));
    fi;

    eran:=[1..Length(e)];
    Pr:=function(gen)
        local i,j;

	  for i in eran do
	    for j in baspts do
	      if not ((j/gen)^e[i])^gen=j^f[i] then
	        return false;
	      fi;
	    od;
	  od;
	  return true;
        end;

    map:=PartitionBacktrack( G, [ e, f, OnTuples,Pr],
                   repr, rbase, Concatenation( [ Q ], f ), 
		   L, R:bailout:=bailout );
    if not (bailout and map=infinity) then
      return map;
    fi;
    Info(InfoBckt,1,"\n#I  ------\n#I  First compute new L");

    L:=G;
    for i in e do
      L:=Centralizer(L,i);
    od;
    bailout:=false;
    # go back as we need to build the base anew
  until false;

end );

#############################################################################
##
#F  ConjugatorPermGroup( <arg> )  . . . . isomorphism / conjugating element
##
InstallGlobalFunction( ConjugatorPermGroup, function( arg )
local G, E, F, L, R, mpG, mpE, mpF, map, Omega, P, orb, comb, found, pos,
dom, et, ft, Pr, rbase, BF, Q, data,lc;
    
    G := arg[ 1 ];
    E := arg[ 2 ];
    F := arg[ 3 ];
    if   Size( E ) <> Size( F )  then  return fail;
    elif IsTrivial( E )          then  return ();
    elif Size( E ) = 2  then
        if Length( arg ) > 3  then
            L := arg[ 4 ];  R := arg[ 5 ];
        else
            L := TrivialSubgroup( G );  R := L;
        fi;
        E := First( GeneratorsOfGroup( E ), gen -> Order( gen ) <> 1 );
        F := First( GeneratorsOfGroup( F ), gen -> Order( gen ) <> 1 );
        return RepOpElmTuplesPermGroup( true, G, [ E ], [ F ], L, R );
    elif IsAbelian(E) and IsCyclic(F) then
      # special case of cyclic groups
      if not IsCyclic(F) then return fail;fi;
      if Length( arg ) > 3  then
	  L := arg[ 4 ];  R := arg[ 5 ];
      else
	  L := TrivialSubgroup( G );  R := L;
      fi;
      E:=MinimalGeneratingSet(E)[1];
      F:=MinimalGeneratingSet(F)[1];
      Q:=Order(E);
      for pos in Filtered([1..Q],x->Gcd(x,Q)=1) do
        found:=RepOpElmTuplesPermGroup( true, G, [ E ], [ F^pos ], L, R );
	if found<>fail then return found;fi;
      od;
      return fail;
      Error("hier");
    fi;
    # `Suborbits' uses all points. (AH, 7/17/02)
    mpG:=MovedPoints(GeneratorsOfGroup(G));
    mpE:=MovedPoints(GeneratorsOfGroup(E));
    mpF:=MovedPoints(GeneratorsOfGroup(F));

    map:=false;
    Omega := [1..Maximum(Maximum(mpG),Maximum(mpE),Maximum(mpF))];

    if IsSubset(mpG,mpE) and IsSubset(mpG,mpF) and not IsTransitive(G,mpG) then
      # is there a chance to use only some orbits?
      if not (IsSubset(G,E) and IsSubset(G,F)) then
	P:=Group(Concatenation(GeneratorsOfGroup(G),
                               GeneratorsOfGroup(E),GeneratorsOfGroup(F)));
      else
	P:=G;
      fi;
      orb:=Orbits(P,mpG);
      if Length(orb)>7 then
	# join orbits to make only a few
	orb:=ShallowCopy(orb);
	Sort(orb,function(a,b) return Length(a)<Length(b);end);
	comb:=Union(orb{[7..Length(orb)]});
	orb:=Concatenation(orb{[1..6]},[comb]);
      fi;
      comb:=Combinations(orb);
      Sort(comb,function(a,b) return Sum(a,Length)<Sum(b,Length);end);
      found:=false;
      pos:=0; # pos1 is empty
      lc:=Length(mpG)*2/3;
      while pos<Length(comb) and not found and pos<=Length(comb) do
        pos:=pos+1;
	if Sum(comb[pos],Length)<lc then
	  dom:=Union(comb[pos]);
	  if Size(Stabilizer(P,dom,OnTuples))=1 then
	    # found faithful
	    found:=true;
	  fi;
        fi;
      od;
      if found then
	map:=ActionHomomorphism(P,dom,"surjective");
	SetIsInjective(map,true);
	G:=Image(map,G);
	E:=Image(map,E);
	F:=Image(map,F);
	Omega:=[1..Length(dom)];
      fi;
    fi;

    # test whether we have a chance mapping the groups (as their orbits fit
    # together)
    if Collected(List(OrbitsDomain(E,Omega),Length))<>
       Collected(List(OrbitsDomain(F,Omega),Length)) then
      return fail;
    fi;

    # The test uses special condition if primitive, thus rule out different
    # transitivity/primitivity first.
    if not IsIdenticalObj(E,F) then
      et:=IsTransitive(E,Omega);
      ft:=IsTransitive(F,Omega);
      if et<>ft then 
	return fail;
      elif et and IsPrimitive(E,Omega)<>IsPrimitive(F,Omega) then
	return fail;
      fi;
    fi;

    Pr := gen -> ForAll( GeneratorsOfGroup( E ), g -> g ^ gen in F );
    if Length( arg ) > 3  then
      L := arg[ Length( arg ) - 1 ];
      R := arg[ Length( arg ) ];
      if map<>false then
	L:=Image(map,L);
	R:=Image(map,R);
      fi;
    elif IsSubset( G, E )  then
        L := E;
        if IsSubset( G, F )  then  R := F;
                             else  return fail;  fi;
    else
        L := TrivialSubgroup( G );
        R := TrivialSubgroup( G );
    fi;
    
    rbase := RBaseGroupsBloxPermGroup( true, G, Omega,
                     E, 1, OrbitsPartition( E, Omega ) );
    BF := OrbitsPartition( F, Omega );
    Q := CollectedPartition( BF, 1 );
    data := [ Q, F, [  ], BF, [  ] ];
    if IsBound( rbase.reggrp )  then
      P:=rbase.reggrp( F, Omega );
      if P=fail then
	# the first group has an EARNS, the second not.
        return fail;
      fi;
      Add( data, P );
    fi;

    found:=PartitionBacktrack( G, Pr, true, rbase, data, L, R );
    if IsPerm(found) and map<>false then
      found:=PreImagesRepresentative(map,found);
    fi;
    return found;
end );

#############################################################################
##
#F  NormalizerPermGroup( <arg> ) . . . automorphism group / normalizer
##

# the backtrack call
BindGlobal("DoNormalizerPermGroup",function(G,E,L,Omega)
local Pr, div, B, rbase, data, N;

  Pr := gen -> ForAll( GeneratorsOfGroup( E ), g -> g ^ gen in E );
  if not (IsTrivial( G ) or IsTrivial(E)) then
    if IsSubset( G, E )  then
      div := SmallestPrimeDivisor( Index( G, E ) );
    else
      div := SmallestPrimeDivisor( Size( G ) );
    fi;
    if Length(MovedPoints(G))>Size(G) and Length(MovedPoints(G))>500 then
      return SubgroupProperty(G,
	i->ForAll(GeneratorsOfGroup(E),j->j^i in E));
    fi;
    B := OrbitsPartition( E, Omega );
    rbase := RBaseGroupsBloxPermGroup( false, G, Omega, E, div, B );
    data := [ true, E, [  ], B, [  ] ];
    if IsBound( rbase.reggrp )  then
      Add( data, rbase.reggrp( E, Omega ) );
    fi;
    N := PartitionBacktrack( G, Pr, false, rbase, data, L, L );
  else
    N := ShallowCopy( G );
  fi;
  # remove cached information
  Unbind(G!.suborbits);
  Unbind(E!.suborbits);

  # bring the stabilizer chains back into a decent form
  ReduceStabChain(StabChainMutable(G));
  ReduceStabChain(StabChainMutable(E));
  ReduceStabChain(StabChainMutable(N));

  return N;
end );

InstallGlobalFunction( NormalizerPermGroup, function( arg )
local G, E, L, issub, mpG, mpE, cnt, P, Omega, orb, i, start, so, hom, Gh,
Eh, Lh, Nh,G0;

  G := arg[ 1 ];
  E := arg[ 2 ];
  Unbind(G!.suborbits); # in case any remained from interruption
  Unbind(E!.suborbits);
  if IsTrivial( E ) or IsTrivial( G ) then
      return G;
  elif Size( E ) = 2  then
    if Length( arg ) > 2  then  L := arg[ 3 ];
			  else  L := TrivialSubgroup( G );  fi;
    E := [ First( GeneratorsOfGroup( E ),
		  gen -> Order( gen ) <> 1 ) ];
    return RepOpElmTuplesPermGroup( false, G, E, E, L, L );
  fi;

  if   Length( arg ) = 3  then  
    L := arg[ 3 ];
    issub:=fail;
  elif IsSubset( G, E )   then  
    L := E;
    issub:=true;
  else           
    L := TrivialSubgroup( G );  
    issub:=false;;
  fi;

  mpG:=MovedPoints(GeneratorsOfGroup(G));
  mpE:=MovedPoints(GeneratorsOfGroup(E));
  if IsSubset(mpG,mpE) and not IsTransitive(G,mpG) then
    cnt:=0;
    if issub=false then 
      issub:=IsSubset(G,E);
    fi;
    G0:=G;
    if issub then
      P:=G;
    else
      P:=Group(Concatenation(GeneratorsOfGroup(G), GeneratorsOfGroup(E)));
    fi;
    Omega:=ShallowCopy(mpG);

    while Length(Omega)>0 
      # it is not unlikely that some orbits suffice. Thus we can just stop
      # then
      and not IsNormal(G,E) do

      orb:=ShallowCopy(Orbits(P,Omega));
      SortBy(orb,Length);
      i:=1;
      while i<=Length(orb) and Length(orb[i])=1 do
	Omega:=Difference(Omega,orb[i]);
	i:=i+1;
      od;
      if i<=Length(orb) then
	start:=i;
	cnt:=Length(orb[i]);
	i:=i+1;
	# don't bother with very short orbits -- they will give little
	# improvement.
	while i<=Length(orb) and cnt+Length(orb[i])<10 do
	  cnt:=cnt+Length(orb[i]);
	  i:=i+1;
	od;
	if cnt=Length(mpG) then
	  # no orbits...
	  Omega := [1..Maximum(Maximum(mpG),Maximum(mpE))];
	  return DoNormalizerPermGroup(G,E,L,Omega);
	fi;
	so:=Union(orb{[start..i-1]});

	hom:=ActionHomomorphism(P,so,"surjective");
	Gh:=Image(hom,G);
	Eh:=Image(hom,E);
	Lh:=Image(hom,L);
	Nh:=DoNormalizerPermGroup(Gh,Eh,Lh,[1..Length(so)]);
	if Size(Nh)<Size(Gh) then
	  # improvement!
	  if not IsIdenticalObj(P,G) then
	    P:=PreImage(hom,ClosureGroup(Nh,Eh));
	  fi;
	  G:=PreImage(hom,Nh);
	  Info(InfoGroup,1,"Orbit ",Length(so)," reduces by ",Size(Gh)/Size(Nh));
	fi;
	Omega:=Difference(Omega,so);
      fi;
    od;

    if not issub then
      G:=Intersection(G,G0);
    fi;

    if Length(Omega)=0 and not IsNormal(G,E) then
      # we ran through all orbits and did not stop early because everything
      # normalized. We thus have to test the normalization on all orbits
      Nh:=DoNormalizerPermGroup(G,E,L,mpG);
      Info(InfoGroup,1,"Union reduces by ",Size(G)/Size(Nh));
    else
      Nh:=G; # we know that G normalizes
    fi;
    Assert(1,Nh=DoNormalizerPermGroup(G,E,L,
                  [1..Maximum(Maximum(mpG),Maximum(mpE))]));
    return Nh;

  else
    # `Suborbits' uses all points. (AH, 7/17/02)
    Omega := [1..Maximum(Maximum(mpG),Maximum(mpE))];
    return DoNormalizerPermGroup(G,E,L,Omega);
  fi;
end);

InstallMethod( NormalizerOp,"perm group", IsIdenticalObj,
  [ IsPermGroup, IsPermGroup ], 0,
        NormalizerPermGroup );

# this circumvents the FOA mechanism which got changed and does not permit
# three arguments any longer.
InstallOtherMethod( Normalizer,"perm group", true,
  [ IsPermGroup, IsPermGroup,IsPermGroup ], 0,
        NormalizerPermGroup );

#############################################################################
##
#F  ElementProperty( <G>, <Pr> [, <L> [, <R> ] ] )  one element with property
##
InstallGlobalFunction( ElementProperty, function( arg )
    local  G,  Pr,  L,  R,  Omega,  rbase,  P;
    
    # Get the arguments.
    G  := arg[ 1 ];
    Pr := arg[ 2 ];
    if Length( arg ) > 2  then  L := arg[ 3 ];
                          else  L := TrivialSubgroup( G );  fi;
    if Length( arg ) > 3  then  R := arg[ 4 ];
                          else  R := TrivialSubgroup( G );  fi;
                          
    # Treat the trivial case.
    if IsTrivial( G )  then
        if Pr( One( G ) )  then  return One( G );
                           else  return fail;      fi;
    fi;
                              
    # Construct an R-base.
    Omega := MovedPoints( G );
    P := TrivialPartition( Omega );
    rbase := EmptyRBase( G, Omega, P );
    rbase.nextLevel := NextRBasePoint;
    
    return PartitionBacktrack( G, Pr, true, rbase, [ P ], L, R );
end );

#############################################################################
##
#F  SubgroupProperty( <G>, <Pr> [, <L> ] )  . . . . . . . fulfilling subgroup
##
InstallGlobalFunction( SubgroupProperty, function( arg )
    local  G,  Pr,  L,  Omega,  rbase,  P;
    
    # Get the arguments.
    G  := arg[ 1 ];
    Pr := arg[ 2 ];
    if Length( arg ) > 2  then  L := arg[ 3 ];
                          else  L := TrivialSubgroup( G );  fi;
                          
    # Treat the trivial case.
    if IsTrivial( G )  then
        return G;
    fi;
                              
    # Construct an R-base.
    Omega := MovedPoints( G );
    P := TrivialPartition( Omega );
    rbase := EmptyRBase( G, Omega, P );
    rbase.nextLevel := NextRBasePoint;
    
    return PartitionBacktrack( G, Pr, false, rbase, [ P ], L, L );
end );


#############################################################################
##
#M  PartitionStabilizerPermGroup(<G>,<part>)
##
InstallGlobalFunction( PartitionStabilizerPermGroup, function(G,part)
local pl,i,p,W,op,S;

  # first separate the sets of different lengths
  pl:=Set(List(part,Length));
  for i in [1..Length(pl)] do
    pl[i]:=Filtered(part,j->Length(j)=pl[i]);
    G:=Stabilizer(G,Set(Concatenation(pl[i])),OnSets);
  od;

  # now pl is a list of lists of sets of the same length, sorted in
  # ascending size.

  # stabilize the partitioning among sets of the same length
  for p in pl do
    # the trivial partitions are always stabilized.
    if Length(p)>1 and Length(p[1])>1 then
      # the stabilizer is the set of all elements that map every set from p into
      # another set from p.
      # as a subgroup of the stabilizer compute the stabilizer on set tuples
      S:=G;
      for i in p do
	if ForAny(GeneratorsOfGroup(S),j->OnSets(i,j)<>j) then
	  S:=Stabilizer(S,i,OnSets);
	  #Info(InfoPermGroup,1,i," ",Size(S),"\n");
        fi;
      od;
      G:=Normalizer(G,S);

      # If S is trivial (or acts too small) things could still go wrong:
      if not ForAll(GeneratorsOfGroup(G),i->ForAll(p,j->OnSets(j,i) in p)) then
	# the stabilizer of p in S_n is a wreath product of symmetric groups
	# (It seems that computing the intersection is better than the
	# `SubgroupProperty' call commented out below, as `Intersection' uses
	# better refinements internally.
	op:=ActionHomomorphism(G,Concatenation(p),"surjective"); #makes the blocks standard
	W:=WreathProduct(SymmetricGroup(Length(p[1])),
	     SymmetricGroup(Length(p)));
	if Size(W)<10^50 then
	  W:=Intersection(W,Image(op,G)); # the stabilizer
	  G:=PreImage(op,W);
	else

	  # because we want to keep the set property, we make p immutable
	  p:=Immutable(Set(p));
	  # the stabilizer is the set of all elements that map every set from
	  # p into another set from p.  as a subgroup of the stabilizer
	  # compute the stabilizer on set tuples
	  S:=G;
	  for i in p do
	    S:=Stabilizer(S,i,OnSets);
	  od;

	  G:=SubgroupProperty(G,function(gen)
				local i;
				  for i in p do
				    if not OnSets(i,gen) in p then
				      return false;
				    fi;
				  od;
				  return true;
				end,
				S);
	fi;
      fi;
    fi;
  od;
  return G;

end );


#############################################################################
##
#M  Centralizer( <G>, <e> ) . . . . . . . . . . . . . . in permutation groups
##
InstallMethod( CentralizerOp, "perm group,elm",IsCollsElms,
  [ IsPermGroup, IsPerm ], 0,
    function( G, e )
    e := [ e ];
    return RepOpElmTuplesPermGroup( false, G, e, e,
                   TrivialSubgroup( G ), TrivialSubgroup( G ) );
end );

InstallMethod( CentralizerOp, "perm group, perm group", IsIdenticalObj, 
  [ IsPermGroup, IsPermGroup ], 0,
    function( G, E )
    return RepOpElmTuplesPermGroup( false, G,
                   GeneratorsOfGroup( E ), GeneratorsOfGroup( E ),
                   TrivialSubgroup( G ), TrivialSubgroup( G ) );
end );

# this circumvents the FOA mechanism which got changed and does not permit
# three arguments any longer.
InstallOtherMethod( Centralizer, "with given subgroup", true,
        [ IsPermGroup, IsPerm, IsPermGroup ], 0,
    function( G, e, U )
    e := [ e ];
    return RepOpElmTuplesPermGroup( false, G, e, e, U, U );
end );

#############################################################################
##
#M  Intersection( <G>, <H> )  . . . . . . . . . . . . . of permutation groups
##
InstallMethod( Intersection2, "perm groups", IsIdenticalObj,
  [ IsPermGroup, IsPermGroup ], 0,
function( G, H )
local   Omega,  P,  rbase,  L,mg,mh,i;
    
    if IsIdenticalObj( G, H )  then
      return G;
    fi;
    
    # align the acting domains
    mg:=MovedPoints(G);
    mh:=MovedPoints(H);
    Omega := Intersection(mg,mh);

    # disjoint?
    if Length(Omega)=0 then
      return TrivialSubgroup(Parent(G));
    fi;

    G:=Stabilizer(G,Difference(mg,mh),OnTuples);
    H:=Stabilizer(H,Difference(mh,mg),OnTuples);

    if IsSubset(G,H) then
      return H;
    elif IsSubset(H,G) then
      return G;
    fi;


#    # the intersection must stabilize the other groups orbits.
#    # go through the orbits step by step
#    mg:=MovedPoints(G);
#    mg:=ShallowCopy(Orbits(H,mg));
#    Sort(mg,function(a,b) return Length(a)<Length(b);end);
#    for i in mg do
#      if Length(i)<5 then
#	G:=Stabilizer(G,Set(i),OnSets);
#      fi;
#    od;
#    mh:=MovedPoints(H);
#    mh:=ShallowCopy(Orbits(G,mh));
#    Sort(mh,function(a,b) return Length(a)<Length(b);end);
#    for i in mh do
#      if Length(i)<5 then
#	H:=Stabilizer(H,Set(i),OnSets);
#      fi;
#    od;

    P := OrbitsPartition( H, Omega );
    rbase := EmptyRBase( [ G, H ], Omega, P );
    rbase.nextLevel := NextRBasePoint;
    
    # L := SubgroupNC( G, Concatenation
    #                 ( Filtered( GeneratorsOfGroup( G ), gen -> gen in H ),
    #                   Filtered( GeneratorsOfGroup( H ), gen -> gen in G ) ) );
    L := TrivialSubgroup( G );
    L:=PartitionBacktrack( G, H, false, rbase, [ P ], L, L );
    return L;
end );

#############################################################################
##
#F  TwoClosure( <G> [, <merge> ] ) . . . . . . . . . two-closure
##
TwoClosurePermGroup := function( arg )
local   G,  merge,  n,  ran,  Omega,  Agemo,  opr,  S,
	adj,  tot,  k,  kk,  pnt,  orb,  o,  new,  gen,  p,  i,
	tra,  Q,  rbase,  doneroot,  P,  Pr;

    G := arg[ 1 ];
    if IsTrivial( G )  then
        return G;
    fi;
    Omega := MovedPoints( G );
    n := Length( Omega );
    S := SymmetricGroup( Omega );
    tra := Transitivity( G, Omega );
    if tra = 0  then
        Error( "2-closure: <G> must be transitive" );
    elif tra >= 2  then
        return S;
    fi;

    P := TrivialPartition( Omega );
    rbase := EmptyRBase( S, Omega, P );
    if Length( arg ) > 1  then
        rbase.suborbits := arg[ 2 ];
        merge := arg[ 3 ];
        Append( merge, Difference( [ 1 .. rbase.suborbits.sublilen ],
                Concatenation( merge ) ) );
    else
        rbase.suborbits := Suborbits( G, [  ], 0, Omega );
        if rbase.suborbits <> false  then
            merge := [ 1 .. rbase.suborbits.sublilen ];
        fi;
    fi;
    Q := OrbitalPartition( rbase.suborbits, rec( several := merge ) );
        
    doneroot := [  ];
    rbase.nextLevel := function( P, rbase )
        local   f,  fpt,  rep,  strat;
        
        NextRBasePoint( P, rbase, Omega );
        if rbase.suborbits = false  then  f := false;
                                    else  f := FixcellPoint( P, doneroot );
        fi;
        while f <> false  do
            AddSet( doneroot, f );
            fpt := FixpointCellNo( P, f );
            rep := InverseRepresentative( rbase.suborbits.stabChainTop, fpt );
            strat := StratMeetPartition( rbase, P, Q, rep );
            AddRefinement( rbase, STBBCKT_STRING_TWOCLOSURE,
	      [ G, f, Q, strat ] );
            if IsTrivialRBase( rbase )  then  f := false;
                                        else  f := FixcellPoint( P, doneroot );
            fi;
        od;
    end;
    
    Pr := false;
#    # If <G> is primitive and simple, often $G^[2] \le N(G)$.
#    if     IsPrimitive( G, Omega )
#       and IsSimpleGroup( G )  then
#        type := IsomorphismTypeInfoFiniteSimpleGroup( G );
#        param := IsoTypeParam( type );
#        if param = false  and  not [ type, n ]  in
#           [ [ "M(11)",  55 ], [ "M(12)",  66 ], [ "M(23)", 253 ],
#             [ "M(24)", 276 ], [ "A(9)",  120 ] ]
#        or param <> false  and  not
#        (  param.type = "G(2"  and  param.q >= 3  and
#               n = param.q ^ 3 * ( param.q ^ 3 - 1 ) / 2
#        or param.type = "O(7"  and  n = param.q ^ 3 * ( param.q ^ 4 - 1 )
#               / GcdInt( 2, param.q - 1 ) )  then
#            Pr := function( gen )
#                local   k;
#                
#                if not ForAll( GeneratorsOfGroup( G ),
#                           g -> g ^ gen in G )  then
#                    return false;
#                fi;
#                for k  in merge  do
#                    if IsInt( k ) and
#                       OnSuborbits( k, gen, rbase.suborbits ) <> k  then
#                        return false;
#                    elif IsList( k )  and  ForAny( k, i -> not
#                         OnSuborbits( i, gen, rbase.suborbits ) in k )  then
#                        return false;
#                    fi;
#                od;
#                return true;
#            end;
#        fi;
#    fi;
        
    if Pr = false  then
        ran := [ 1 .. n ^ 2 ];
        
        if Omega = [ 1 .. n ]  then
            opr := function( p, g )
                p := p - 1;
                return ( p mod n + 1 ) ^ g
                 + n * ( QuoInt( p, n ) + 1 ) ^ g - n;
            end;
        else
            Agemo := [  ];
            for i  in [ 1 .. n ]  do
                Agemo[ Omega[ i ] ] := i - 1;
            od;
            opr := function( p, g )
                p := p - 1;
                return 1 + Agemo[ Omega[ p mod n + 1 ] ^ g ]
                     + n * Agemo[ Omega[ QuoInt( p, n ) + 1 ] ^ g ];
            end;
        fi;
        
        adj := List( [ 0 .. LogInt(rbase.suborbits.sublilen-1,2) ],
                     i -> BlistList( ran, [  ] ) );
        tot := BlistList( ran, [  ] );
        k   := 0;
        pnt := Position( tot, false );
        while pnt <> fail  do
            
            # start with the singleton orbit
            orb := [ pnt ];
            p := PositionProperty( merge, m -> IsList( m )
                           and rbase.suborbits.which[ pnt ] in m );
            if p <> fail  then
                for i  in merge[ p ]  do
                    Add( orb, SuboTruePos(ran, rbase.suborbits.blists[ i ] ) );
                od;
            fi;
            orb := BlistList( ran, orb );
            o   := StructuralCopy( orb );
            new := BlistList( ran, ran );
            new[ pnt ] := false;

            # loop over all points found
            p := Position( o, true );
            while p <> fail  do
                o[ p ] := false;

                # apply all generators <gen>
                for gen  in GeneratorsOfGroup( G )  do
                    i := opr( p, gen );

                    # add the image <img> to the orbit if it is new
                    if new[ i ]  then
                        orb[ i ] := true;
                        o  [ i ] := true;
                        new[ i ] := false;
                    fi;

                od;
                
                p := Position( o, true );
            od;
    
            kk := k;
            i  := 0;
            while kk <> 0  do
                i := i + 1;
                if kk mod 2 = 1  then
                    UniteBlist( adj[ i ], orb );
                fi;
                kk := QuoInt( kk, 2 );
            od;
            UniteBlist( tot, orb );
            k := k + 1;
            pnt := Position( tot, false, pnt );
        od;
        Pr := function( gen )
            local   p,  i;
            
            gen := UnslicedPerm@( gen );
            for p  in ran  do
                i := opr( p, gen );
                if not ForAll( adj, bit -> bit[ i ] = bit[ p ] )  then
                    return false;
                fi;
            od;
            return true;
        end;
    fi;
    return PartitionBacktrack( S, Pr, false, rbase, [ true ], G, G );
end;

InstallMethod(TwoClosure,"permutation group",true,[IsPermGroup],0,
  TwoClosurePermGroup);


#############################################################################
##
#E