1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
|
#############################################################################
##
#W smlinfo.gi GAP group library Hans Ulrich Besche
## Bettina Eick, Eamonn O'Brien
##
## This file contains the ...
##
Revision.smlinfo_gi :=
"@(#)$Id: smlinfo.gi,v 4.5 2000/01/06 10:21:53 gap Exp $";
#############################################################################
##
#F SMALL_GROUPS_INFORMATION
##
## ...
SMALL_GROUPS_INFORMATION := [ ];
#############################################################################
##
#F SmallGroupsInformation( size )
##
## ...
InstallGlobalFunction( SmallGroupsInformation, function( size )
local smav, idav, num, lib, t;
smav := SMALL_AVAILABLE( size );
idav := ID_AVAILABLE( size );
if size = 1024 then
Print( "The groups of size 1024 are not available. \n");
return;
fi;
if smav = fail then
Print( "The groups of size ", size, " are not available. \n");
return;
fi;
lib := 1;
if IsBound( smav.lib ) then
lib := smav.lib;
fi;
if IsBound( smav.number ) then
num := smav.number;
else
num := NUMBER_SMALL_GROUPS_FUNCS[ smav.func ]( size, smav ).number;
fi;
if num = 1 then
Print("\n There is 1 group of order ",size,".\n");
else
Print("\n There are ",num," groups of order ",size,".\n" );
fi;
SMALL_GROUPS_INFORMATION[ smav.func ]( size, smav, num );
Print("\n This size belongs to layer ",lib,
" of the SmallGroups library. \n");
if idav <> fail then
Print(" IdGroup is available for this size. \n \n");
else
Print(" IdGroup is not available for this size. \n \n");
fi;
end );
#############################################################################
##
#F SMALL_GROUPS_INFORMATION[ 1 ]( size, smav, num )
##
SMALL_GROUPS_INFORMATION[ 1 ] := function( size, smav, num )
local all, i;
all := AllSmallGroups( size );
for i in [ 1 .. Length( all ) ] do
if HasNameIsomorphismClass( all[ i ] ) then
Print(" ",i," is of type ",NameIsomorphismClass(all[i]),".\n");
else
if HasNameIsomorphismClass( all[ i - 1 ] ) then
Print( " ", i, " - ", Length(all)-1, " are of types " );
if smav.func = 6 then
Print( smav.q,":",smav.p,"+",smav.q,":",smav.p,".\n" );
else
Print( smav.q,":",smav.p,"+",smav.r,":",smav.p,".\n" );
fi;
fi;
fi;
od;
Print("\n");
Print(" The groups whose order factorises in at most 3 primes \n");
Print(" have been classified by O. Hoelder. This classification is \n");
Print(" used in the SmallGroups library. \n");
end;
SMALL_GROUPS_INFORMATION[ 2 ] := SMALL_GROUPS_INFORMATION[ 1 ];
SMALL_GROUPS_INFORMATION[ 3 ] := SMALL_GROUPS_INFORMATION[ 1 ];
SMALL_GROUPS_INFORMATION[ 4 ] := SMALL_GROUPS_INFORMATION[ 1 ];
SMALL_GROUPS_INFORMATION[ 5 ] := SMALL_GROUPS_INFORMATION[ 1 ];
SMALL_GROUPS_INFORMATION[ 6 ] := SMALL_GROUPS_INFORMATION[ 1 ];
SMALL_GROUPS_INFORMATION[ 7 ] := SMALL_GROUPS_INFORMATION[ 1 ];
#############################################################################
##
#F SMALL_GROUPS_INFORMATION[ 8 .. 10 ]( size, smav, num )
##
SMALL_GROUPS_INFORMATION[ 8 ] := function( size, smav, num )
local ffid, prop, i, l;
ffid := IdGroup( OneSmallGroup( size, FrattinifactorSize, size ) );
prop := PROPERTIES_SMALL_GROUPS[ size ].frattFacs;
if not IsPrimePowerInt( size ) then
Print(" There are sorted by their Frattini factors. \n");
i := 1;
repeat
if prop.pos[ i ][ 1 ] = -prop.pos[ i ][ 2 ] then
Print( " ", prop.pos[ i ][ 1 ],
" has Frattini factor ", prop.frattFacs[ i ], ".\n" );
else
Print( " ", prop.pos[ i ][ 1 ], " - ",
-prop.pos[ i ][ 2 ], " have Frattini factor ",
prop.frattFacs[ i ], ".\n" );
fi;
i := i + 1;
until prop.frattFacs[ i ] = ffid;
Print(" ", ffid[2], " - ", num,
" have trivial Frattini subgroup.\n");
else
Print(" There are sorted by their ranks. \n");
Print(" ", 1, " is cyclic. \n");
i := 2;
repeat
l := Length( Factors( prop.frattFacs[ i ][1] ) );
if prop.pos[ i ][ 1 ] = -prop.pos[ i ][ 2 ] then
Print( " ", prop.pos[ i ][ 1 ], " has rank ", l, ".\n" );
else
Print( " ", prop.pos[ i ][ 1 ], " - ",
-prop.pos[ i ][ 2 ], " have rank ", l, ".\n" );
fi;
i := i + 1;
until prop.frattFacs[ i ] = ffid;
Print(" ", ffid[2], " is elementary abelian. \n");
fi;
Print( "\n For the selection functions the values of the ",
"following attributes \n are precomputed and stored:\n ");
if IsPrimePowerInt( size ) then
Print( " IsAbelian, PClassPGroup, RankPGroup,",
" FrattinifactorSize and \n FrattinifactorId. \n");
else
Print( " IsAbelian, IsNilpotentGroup,",
" IsSupersolvableGroup, IsSolvableGroup, \n LGLength,",
" FrattinifactorSize and FrattinifactorId. \n");
fi;
end;
SMALL_GROUPS_INFORMATION[ 9 ] := SMALL_GROUPS_INFORMATION[ 8 ];
SMALL_GROUPS_INFORMATION[ 10 ] := SMALL_GROUPS_INFORMATION[ 8 ];
#############################################################################
##
#F SMALL_GROUPS_INFORMATION[ 11, 17 ]( size, smav, num )
##
SMALL_GROUPS_INFORMATION[ 11 ] := function( size, smav, num )
local i, q;
q := 2;
if IsBound( smav.q ) then q := smav.q; fi;
Print(" There are sorted by normal Sylow subgroups. \n");
Print( " 1 - ", smav.pos[ 2 ], " are the nilpotent groups.\n" );
for i in [ 2 .. Length( smav.types ) ] do
Print( " ", smav.pos[i] + 1, " - ", smav.pos[i+1] );
if smav.types[ i ] = "p-autos" then
Print( " have a normal Sylow ", q,"-subgroup. \n");
elif smav.types[ i ] = "none-p-nil" then
Print( " have no normal Sylow subgroup. \n");
elif IsInt( smav.types[ i ] ) then
Print( " have a normal Sylow ", smav.p, "-subgroup \n");
Print( " with centralizer of index ");
Print( q^smav.types[i],".\n");
fi;
od;
end;
SMALL_GROUPS_INFORMATION[ 17 ] := SMALL_GROUPS_INFORMATION[ 11 ];
#############################################################################
##
#F SMALL_GROUPS_INFORMATION[ 12 ]( size, smav, num )
##
SMALL_GROUPS_INFORMATION[ 12 ] := function( size, smav, num )
if size = 1152 then
Print(" There are sorted using Sylow subgroups. \n");
Print(" 1 - 2328 are nilpotent with Sylow 3-subgroup c9.\n" );
Print(" 2329 - 4656 are nilpotent with Sylow 3-subgroup 3^2.\n");
Print(" 4657 - 153312 are non-nilpotent with normal ");
Print("Sylow 3-subgroup.\n");
Print(" 153313 - 157877 have no normal Sylow 3-subgroup.\n");
return;
fi;
Print(" There are sorted using Hall subgroups. \n");
Print( " 1 - 2328 are the nilpotent groups.\n" );
Print( " 2329 - 236344 have a normal Hall (3,5)-subgroup.\n");
Print( " 236345 - 240416 are solvable without normal Hall",
" (3,5)-subgroup.\n");
Print( " 240417 - 241004 are not solvable.\n" );
end;
#############################################################################
##
#F SMALL_GROUPS_INFORMATION[ 14 ]( size, smav, num )
##
SMALL_GROUPS_INFORMATION[ 14 ] := function( size, smav, num )
Print( " 1 - 10494213 are the nilpotent groups.\n" );
Print( " 10494214 - 408526597 have a normal Sylow 3-subgroup.\n" );
Print( " 408526598 - 408544625 have a normal Sylow 2-subgroup.\n" );
Print( " 408544626 - 408641062 have no normal Sylow subgroup.\n" );
end;
#############################################################################
##
#F SMALL_GROUPS_INFORMATION[ 18 ]( size, smav, num )
##
SMALL_GROUPS_INFORMATION[ 18 ] := function( size, smav, num )
Print( " 1 is cyclic. \n");
Print( " 2 - 10 have rank 2 and p-class 3.\n" );
Print( " 11 - 386 have rank 2 and p-class 4.\n" );
Print( " 387 - 1698 have rank 2 and p-class 5.\n" );
Print( " 1699 - 2008 have rank 2 and p-class 6.\n" );
Print( " 2009 - 2039 have rank 2 and p-class 7.\n" );
Print( " 2040 - 2044 have rank 2 and p-class 8.\n" );
Print( " 2045 has rank 3 and p-class 2.\n" );
Print( " 2046 - 29398 have rank 3 and p-class 3.\n" );
Print( " 29399 - 56685 have rank 3 and p-class 4.\n" );
Print( " 56686 - 60615 have rank 3 and p-class 5.\n" );
Print( " 60616 - 60894 have rank 3 and p-class 6.\n" );
Print( " 60895 - 60903 have rank 3 and p-class 7.\n" );
Print( " 60904 - 67612 have rank 4 and ", "p-class 2.\n" );
Print( " 67613 - 387088 have rank 4 and ", "p-class 3.\n" );
Print( " 387089 - 419734 have rank 4 and ", "p-class 4.\n" );
Print( " 419735 - 420500 have rank 4 and ", "p-class 5.\n" );
Print( " 420501 - 420514 have rank 4 and ", "p-class 6.\n" );
Print( " 420515 - 6249623 have rank 5 and ", "p-class 2.\n" );
Print( " 6249624 - 7529606 have rank 5 and ", "p-class 3.\n" );
Print( " 7529607 - 7532374 have rank 5 and ", "p-class 4.\n" );
Print( " 7532375 - 7532392 have rank 5 and ", "p-class 5.\n" );
Print( " 7532393 - 10481221 have rank 6 and ", "p-class 2.\n" );
Print( " 10481222 - 10493038 have rank 6 and ", "p-class 3.\n" );
Print( " 10493039 - 10493061 have rank 6 and ", "p-class 4.\n" );
Print( " 10493062 - 10494173 have rank 7 ", "and p-class 2.\n" );
Print( " 10494174 - 10494200 have rank 7 ", "and p-class 3.\n" );
Print( " 10494201 - 10494212 have rank 8 ", "and p-class 2.\n" );
Print( " 10494213 is elementary abelian.\n");
end;
|