File: trans.grp

package info (click to toggle)
gap4-gdat 4.2-2
  • links: PTS
  • area: non-free
  • in suites: woody
  • size: 78,948 kB
  • ctags: 10,624
  • sloc: ansic: 25,214; fortran: 12,279; ada: 6,377; asm: 4,623; cpp: 2,332; lisp: 910; cs: 503; ruby: 466; yacc: 284; tcl: 167; makefile: 51
file content (715 lines) | stat: -rw-r--r-- 22,358 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
#############################################################################
##
#W  trans.grp         GAP transitive groups library          Alexander Hulpke
##
#H  @(#)$Id: trans.grp,v 4.12 2000/01/11 22:42:14 ahulpke Exp $
##
#Y  Copyright (C)  1997,  Lehrstuhl D fuer Mathematik,  RWTH Aachen,  Germany
##
##  This file contains the routines for the transitive groups library
##
Revision.trans_grp:=
  "@(#)$Id: trans.grp,v 4.12 2000/01/11 22:42:14 ahulpke Exp $";

#############################################################################
##
## tell GAP about the component
##
DeclareComponent("trans","1.0");

Unbind(TRANSGRP);
Unbind(TRANSPROPERTIES);

#############################################################################
##
#V  TRANSGRP  . . . . . . . . . generators and names of the transitive groups
##  List contains one list per degree. Entries are lists itself
##  for each group,starting with generators,then the name.

TRANSGRP := [[[(),"1 = C(1)"]],

[[(1,2),"C(2) = S(2) = 2"]],

[[(1,2,3),"C(3) = A(3) = 3"],[(1,3),(1,2),"S(3)"]],

[[(1,2,3,4),"C(4) = 4"],
[(1,4)(2,3),(1,2)(3,4),"E(4) = 2[x]2"],
[(1,2,3,4),(1,3),"D(4)"],
[(1,3,4),(2,3,4),"A(4)"],
[(1,4),(1,2),(2,3),"S(4)"]],

[[(1,2,3,4,5),"C(5) = 5"],
[(1,2,3,4,5),(1,4)(2,3),"D(5) = 5:2"],
[(1,2,3,4,5),(1,2,4,3),"F(5) = 5:4"],
[(1,4,5),(2,4,5),(3,4,5),"A(5)"],
[(1,5),(1,2),(2,3),(3,4),"S(5)"]],

[[(1,2,3,4,5,6),"C(6) = 6 = 3[x]2"],
[(1,3,5)(2,4,6),(1,4)(2,3)(5,6),"D_6(6) = [3]2"],
[(1,2,3,4,5,6),(1,4)(2,3)(5,6),"D(6) = S(3)[x]2"],
[(1,4)(2,5),(1,3,5)(2,4,6),"A_4(6) = [2^2]3"],
[(2,4,6),(1,4)(2,5)(3,6),"F_18(6) = [3^2]2 = 3 wr 2"],
[(3,6),(1,3,5)(2,4,6),"2A_4(6) = [2^3]3 = 2 wr 3"],
[(1,4)(2,5),(1,3,5)(2,4,6),(1,5)(2,4),"S_4(6d) = [2^2]S(3)"],
[(1,4)(2,5),(1,3,5)(2,4,6),(1,5)(2,4)(3,6),
"S_4(6c) = 1/2[2^3]S(3)"],
[(2,4,6),(1,5)(2,4),(1,4)(2,5)(3,6),"F_18(6):2 = [1/2.S(3)^2]2"],
[(2,4,6),(1,5)(2,4),(1,4,5,2)(3,6),"F_36(6) = 1/2[S(3)^2]2"],
[(3,6),(1,3,5)(2,4,6),(1,5)(2,4),
"2S_4(6) = [2^3]S(3) = 2 wr S(3)"],
[(1,2,3,4,6),(1,4)(5,6),"L(6) = PSL(2,5) = A_5(6)"],
[(2,4,6),(2,4),(1,4)(2,5)(3,6),
"F_36(6):2 = [S(3)^2]2 = S(3) wr 2"],
[(1,2,3,4,6),(1,2)(3,4)(5,6),"L(6):2 = PGL(2,5) = S_5(6)"],
[(1,5,6),(2,5,6),(3,5,6),(4,5,6),"A(6)"],
[(1,6),(1,2),(2,3),(3,4),(4,5),"S(6)"]],

[[(1,2,3,4,5,6,7),"C(7) = 7"],
[(1,2,3,4,5,6,7),(1,6)(2,5)(3,4),"D(7) = 7:2"],
[(1,2,3,4,5,6,7),(1,2,4)(3,6,5),"F_21(7) = 7:3"],
[(1,2,3,4,5,6,7),(1,3,2,6,4,5),"F_42(7) = 7:6"],
[(1,2,3,4,5,6,7),(1,2)(3,6),"L(7) = L(3,2)"],
[(1,6,7),(2,6,7),(3,6,7),(4,6,7),(5,6,7),"A(7)"],
[(1,7),(1,2),(2,3),(3,4),(4,5),(5,6),"S(7)"]]];


#############################################################################
##
#V  TRANSPROPERTIES . . . . . . . . . property list for the transitive groups
##
##  This list is in the same order as the groups generators. For each group,
##  properties are stored as follows: 
##
##      <size>:         Size of the group
##      <primitive>:    1 indicates, that the group operates primitive
##      <transitivity>: Transitivity
##      <sign>:         Sign
##      <shapes>:       List of all occurring shapes (except ()), sorted
##                      according to the ordering of the Partitions command
##      <2Seq>:         Orbits on 2-Sequences
##      <2Set>:         Orbits on 2-Sets
##      <3Set>:         Orbits on 3-Sets
##      <special>:      following entries mark special properties, which
##       ...            are coded as [type,description1,description2,...] .
##                      The list starts with orbit lengths:
##                      
##      Types:
##      1               1-Set=Pts.
##      2               2-Set
##      3               3-Set
##      4               4-Set
##      5               5-Sets
##      6               i/2-Diff (only possible with even number of points)
##      8               Blocks
##      9               2Seq
##
##           20+b       derived Subgroup on b
##
##        100*a+b       factor group by operation on the b cosets of a
##                      type a stabilizer; description field gives the
##                      number of this factor group as TransitiveGroup
##       1000*a+10*b+c  factor group by operation on the b cosets of
##                      an type a stabilizer operates on c:
##                      description fields are a list for each of the
##                      possible stabilizers
##      10000*a+10*b+c  type a stabilizer of index b operation on c:
##                      description fields are a list for each of the
##                      possible stabilizers, split again for the
##                      (raw-split) due to the Orbits of <G> itself.
##
##      All Orbit information is coded as a list in which each entry has
##      the form 
##      SignOperation*( 1000*(number of orbits with this description-1)
##                              +length)
##
##      Group theoretic information that cannot be used by the Galois
##      determination routines is indicated by a negative sign:
##
##      -50             Size of the derived subgroup
##      -60             Size of the Frattini subgroup
##      -70             Number of normal subgroups
##
##      some special cases are not discriminated completely by this
##      list. The program will deal with them separately.

TRANSPROPERTIES := [

[[1,1,1,1,[],0,0,0]],

[[2,1,2,-1,[true],[1],[-2],0]],

[[3,1,1,1,[false,true],[3],[1003],0],
[6,1,3,-1,[true,true],[-3],[-6],0]],

[[4,0,1,-1,[false,true,false,true],[-4,-2],[-2004],0],
[4,0,1,1,[false,true,false,false],[-2002],[2004],0],
[8,0,1,-1,[true,true,false,true],[-4,-2],[-4,8],0],
[12,1,2,1,[false,true,true,false],[6],[12],0],
[24,1,4,-1,[true,true,true,true],[6],[-12],0]],

[[5,1,1,1,[false,false,false,false,false,true],[1005],[3005],[1005]],
[10,1,1,1,[false,true,false,false,false,true],[1005],[-1010],[1005]],
[20,1,2,-1,[false,true,false,false,true,true],[-10],[-20],[-10],[29,[-1010]]],
[60,1,3,1,[false,true,true,false,false,true],[10],[20],[10]],
[120,1,5,-1,[true,true,true,true,true,true],[-10],[-20],[-10],[29,[20]]]],

[[6,0,1,-1,[false,false,true,false,false,true,false,false,false,true],
[-1006,3],[-4006],[-2006,-2]],
[6,0,1,-1,[false,false,true,false,false,true,false,false,false,false],
[-2003,-6],[-4006],[-2006,-2]],
[12,0,1,-1,[false,true,true,false,false,true,false,false,false,true],
[-1006,-3],[-6,1012],[-6,-2,12]],
[12,0,1,1,[false,true,false,false,false,true,false,false,false,false],
[3,12],[6,1012],[1004,1006]],
[18,0,1,-1,[false,false,true,true,false,true,false,false,false,true],
[-9,-6],[-1006,-18],[-18,-2]],
[24,0,1,-1,[true,true,true,false,false,true,false,false,false,true],
[3,12],[-6,1012],[-1006,8]],
[24,0,1,1,[false,true,false,false,false,true,false,true,false,false],
[-12,-3],[6,24],[-1004,12]],
[24,0,1,-1,[false,true,true,false,false,true,true,false,false,false],
[-12,-3],[-6,24],[8,12],[29,[6],[1012]]],
[36,0,1,-1,[false,true,true,true,false,true,false,false,false,true],
[-9,-6],[-18,12],[-18,-2]],
[36,0,1,1,[false,true,false,true,false,true,false,true,false,false],
[6,9],[-18,-12],[-18,-2]],
[48,0,1,-1,[true,true,true,false,false,true,true,true,false,true],
[-12,-3],[-6,24],[8,12],[29,[6],[24]]],
[60,1,2,1,[false,true,false,false,false,true,false,false,true,false],
[15],[30],[1010]],
[72,0,1,-1,[true,true,true,true,true,true,false,true,false,true],
[-9,-6],[-18,-12],[-18,-2]],
[120,1,3,-1,[false,true,true,false,false,true,true,false,true,true],
[15],[-30],[20],[23,[1010]]],
[360,1,4,1,[false,true,false,true,false,true,false,true,true,false],
[15],[30],[20]],
[720,1,6,-1,[true,true,true,true,true,true,true,true,true,true],
[15],[-30],[20],[23,[20]]]],

[[7,1,1,1,[false,false,false,false,false,false,false,false,false,false,
false,false,false,true],[2007],[5007],[4007]],
[14,1,1,-1,[false,false,true,false,false,false,false,false,false,false,
false,false,false,true],[-2007],[-2014],[-2007,-14]],
[21,1,1,1,[false,false,false,false,false,false,true,false,false,false,
false,false,false,true],[21],[1021],[21,1007]],
[42,1,2,-1,[false,false,true,false,false,false,true,false,false,false,
false,false,true,true],[-21],[-42],[-21,-14]],
[168,1,2,1,[false,true,false,false,false,false,true,false,true,false,
false,false,false,true],[21],[42],[7,28]],

[2520,1,5,1,[false,true,false,true,false,true,true,false,true,false,
true,false,false,true],[21],[42],[35]],
[5040,1,7,-1,[true,true,true,true,true,true,true,true,true,true,true,
true,
true,true],[-21],[-42],[35]]]];

#  The following command converts the shape lists into Blists (binary
#  lists), which allows for about 2/3 of memory saved

List([1..7],i->ForAll(TRANSPROPERTIES[i],j->IsBlist(j[5])));

# number of groups within each degree (stored up to 15)
TRANSLENGTHS := [ 1, 1, 2, 5, 5, 16, 7, 50, 34, 45, 8, 301, 9, 63, 104 ];

TRANSNONDISCRIM := [[],[],[],[],[],[],[],[],[],[],[],[[273,292]],[],
[[42,51]],[[37,58],[38,59],[57,67],[65,74],[66,74]]];

TRANSSELECT := [];
TRANSSIZES  := [];

if not IsBound(TRANSDEGREES) then
  TRANSDEGREES :=7;
  HideGlobalVariables("dir","fnam");
  dir:= DirectoriesLibrary( "trans" );
  fnam:=Filename( dir, Concatenation("trans",String(TRANSDEGREES+1),".grp"));
  while fnam<>fail and IsReadableFile(fnam) do
    TRANSDEGREES:=TRANSDEGREES+1;
    fnam:=Filename( dir, Concatenation("trans",String(TRANSDEGREES+1),".grp"));
  od;
  UnhideGlobalVariables("dir","fnam");
fi;

BIND_GLOBAL("TransGrpLoad",function(deg,nr)
local Tbak,Fbak,flg,sel,i,fname;
  if IsBound(TRANSGRP[deg]) and (nr=0 or IsBound(TRANSGRP[deg][nr])) then
    return;
  fi;
  if deg>TRANSDEGREES then
    Error("transitive groups are known only of degree up to ",
	  TRANSDEGREES);
  else
    HideGlobalVariables("T","F");
    BIND_GLOBAL("T",true);
    BIND_GLOBAL("F",false);
    fname:=Concatenation("trans",String(deg));
    if deg>15 and not IsPrime(deg) then
      if not IsBound(TRANSGRP[deg]) then
	ReadGapRoot( Concatenation( "trans/", fname, ".grp" ) );
        if nr=0 then 
	  return;
	fi;
      else
	# the groups to be thrown away
	sel:=Difference(Filtered([1..Length(TRANSGRP[deg])],
	                  i->IsBound(TRANSGRP[deg])),TRANSSELECT[deg]);
	if Length(TRANSSELECT[deg])>300 then
	  flg:=TRANSSELECT[deg]{[1..Length(TRANSSELECT[deg])-150]};
	  sel:=Union(flg,sel);
	  TRANSSELECT[deg]:=Difference(TRANSSELECT[deg],flg);
	fi;
        for i in sel do
	  Unbind(TRANSGRP[deg][i]);
	  Unbind(TRANSPROPERTIES[deg][i]);
	od;
      fi;
      Append(fname,WordAlp("abcdefghijklmnopqrstuvwxyz",Int((nr-1)/300)+1));
    fi;

    IsString(fname);

    ReadGapRoot( Concatenation( "trans/", fname, ".grp" ));

    UnhideGlobalVariables("T","F");

    if deg>15 and not IsPrime(deg) then
      sel:=Difference(Filtered([1..Length(TRANSGRP[deg])],
			 i->IsBound(TRANSGRP[deg][i])),TRANSSELECT[deg]);
    else
      TRANSLENGTHS[deg]:=Length(TRANSGRP[deg]);
      TRANSSIZES[deg]:=List(TRANSPROPERTIES[deg],i->i[1]);
      sel:=[1..TRANSLENGTHS[deg]];
    fi;
    ForAll(TRANSPROPERTIES[deg]{sel},i->IsBound(i[5]) and IsBlist(i[5]));
  fi;
end);

BIND_GLOBAL("TRANSGrp",function(deg,nr)
  if not IsBound(TRANSGRP[deg]) or not IsBound(TRANSGRP[deg][nr]) then
    TransGrpLoad(deg,nr);
  fi;
  if deg>15 and not IsPrime(deg) then
    AddSet(TRANSSELECT[deg],nr);
  fi;
  if nr>TRANSLENGTHS[deg] then
    return "fail";
  fi;
  return TRANSGRP[deg][nr];
end);

BIND_GLOBAL("TRANSProperties",function(deg,nr)
  if not IsBound(TRANSPROPERTIES[deg]) or
    not IsBound(TRANSPROPERTIES[deg][nr]) then
    TransGrpLoad(deg,nr);
  fi;
  if deg>15 and not IsPrime(deg) then
    AddSet(TRANSSELECT[deg],nr);
  fi;
  if nr>TRANSLENGTHS[deg] then
    return "fail";
  fi;
  return TRANSPROPERTIES[deg][nr];
end);

InstallGlobalFunction(NrTransitiveGroups, function(deg)
  if not(deg in [1..TRANSDEGREES]) then
    return fail;
  fi;
  if not IsBound(TRANSLENGTHS[deg]) then
    TransGrpLoad(deg,0);
  fi;
  return TRANSLENGTHS[deg];
end);

InstallGlobalFunction( TransitiveGroup, function(deg,num)
  local gens,i,l,g,s;
  if not(deg in [1..TRANSDEGREES]) then
    Error("degree must be in [1..",TRANSDEGREES,"]");
  fi;
  if not IsBound(TRANSLENGTHS[deg]) then
    TransGrpLoad(deg,num);
  fi;
  if not (num in [1..TRANSLENGTHS[deg]]) then
    Error("maximal number of groups of degree ",deg," is ",
           TRANSLENGTHS[deg]);
  fi;

  # special case: Symmetric and Alternating Group
  s:=Factorial(deg);
  if TRANSProperties(deg,num)[1]=s then
    if deg=1 then
      g:=GroupByGenerators( [], () );
    else
      g:=SymmetricGroup(deg);
    fi;
    SetName(g,Concatenation("S",String(deg)));
  elif TRANSProperties(deg,num)[1]*2=s then
    g:=AlternatingGroup(deg);
    SetName(g,Concatenation("A",String(deg)));
  else
    l:=TRANSGrp(deg,num);
    s:=Length(l);
    gens:=[];
    for i in l{[1..s-1]} do
      if IsPerm(i) then
        Add(gens,i);
      else
        if Length(i)=2 then
          Add(gens,TRANSGrp(i[1],i[2])[1]);
        else
          Add(gens,TRANSGrp(i[1],i[2])[i[3]]);
        fi;
      fi;
    od;
    g:= GroupByGenerators( gens, () );
    if l[s]<>"" then
      SetName(g,l[s]);
    else
      SetName(g,Concatenation("t",String(deg),"n",String(num)));
    fi;
  fi;
  SetTransitiveIdentification(g,num);
  return g;
end );
 
CntOp := function(grp,orb,op)
local l,i;
  l:=[];
  for i in orb do
    Add(l,SignPermGroup(Action(grp,i,op))*Length(i));
  od;
  l:=Collected(l);
  for i in [1..Length(l)] do
    l[i]:=SignInt(l[i][1])*(1000*(l[i][2]-1)+AbsInt(l[i][1])); 
  od;
  Sort(l);
  return l;
end;

NumBol := function(b)
  if b then return 1;
       else return 0;
  fi;
end;

SetsOrbits := function(g,n)
  return Orbits(g,Combinations(MovedPoints(g),n),
                OnSets);
end; 

SeqsOrbits := function(g,n)
  return Orbits(g,Arrangements(MovedPoints(g),n),
                OnTuples);
end; 

InstallMethod(TransitiveIdentification,"generic",true,[IsPermGroup],0,
function(ogrp)
local dom,p,s,t,a,cand,i,grp,deg,aiso,piso;
  grp:=ogrp;
  dom:=MovedPoints(grp);
  if not IsTransitive(grp,dom) then
    Error("Group must operate transitive");
  fi;
  deg:=Length(dom);
  if not IsBound(TRANSLENGTHS[deg]) then
    TransGrpLoad(deg,0);
  fi;

  s:=Size(grp);
  if deg>15 then
    cand:=Filtered([1..TRANSLENGTHS[deg]],i->TRANSSIZES[deg][i]=s);
  else
    cand:=Filtered([1..TRANSLENGTHS[deg]],i->TRANSProperties(deg,i)[1]=s);
  fi;
  if Length(cand)>1 and deg>4 then
    cand:=Filtered(cand,
     i->TRANSProperties(deg,i)[6]
        =CntOp(grp,Orbits(grp,Combinations(dom,2),OnSets),OnSets)
     and TRANSProperties(deg,i)[7]
        =CntOp(grp,Orbits(grp,Arrangements(dom,2),OnTuples),OnTuples)
     and TRANSProperties(deg,i)[8]
        =CntOp(grp,Orbits(grp,Combinations(dom,3),OnSets),OnSets) );
  fi;

  Pcgs(grp); # try to enforce solvable calculations further on.
#  if Length(cand)>1 and IsSolvableGroup(grp)
#     and not HasConjugacyClasses(grp) then
#    t:=[];
#    aiso:=IsomorphismPcGroup(grp);
#    a:=Image(aiso,grp);
#    for i in ConjugacyClasses(a) do
#      s:=ConjugacyClass(grp,PreImagesRepresentative(aiso,Representative(i)));
#      SetStabilizerOfExternalSet(s,PreImage(aiso,Centralizer(i)));
#      Add(t,s);
#    od;
#    SetConjugacyClasses(grp,t);
#  fi;

  if Length(cand)>1 then
    s:=List(CycleStructuresGroup(grp),i->i=1);
    cand:=Filtered(cand,i->TRANSProperties(deg,i)[5]=s);
  fi;
  if Length(cand)>1 then
    p:=List(cand,i->TransitiveGroup(deg,i));

    # DerivedSubgroups + Frattini Subgroups
    s:=Filtered([1..Length(cand)],i->
	Size(DerivedSubgroup(p[i]))=Size(DerivedSubgroup(grp)));
    if Length(Factors(Size(grp)))=1 then
      s:=Filtered(s,i->
	  Size(FrattiniSubgroup(p[i]))=Size(FrattiniSubgroup(grp)));
    fi;
    cand:=cand{s};
    p:=p{s};
  fi;

  if Length(cand)>1 then
    # Blockl"angen
    t:=List(p,i->Collected(List(AllBlocks(i),Length)));
    s:=Collected(List(AllBlocks(grp),Length));
    s:=Filtered([1..Length(cand)],i->s=t[i]);
    cand:=cand{s};
    p:=p{s};
  fi;

  if Length(cand)>1 then
    # 4-sets
    t:=[4,CntOp(grp,SetsOrbits(grp,4),OnSets)]; 
    s:=Filtered([1..Length(cand)],i->t in TRANSProperties(deg,cand[i])
	or ForAll(TRANSProperties(deg,cand[i]){
	      [9..Length(TRANSProperties(deg,cand[i]))]},j->j[1]<>4));
    cand:=cand{s};
    p:=p{s};
  fi;

  if Length(cand)>1 then
    # As all computations, which follow involve only the groups, convert
    # them to PcGroups if possible
    if IsSolvableGroup(grp) then
      s:=Filtered([1..Length(cand)],i->IsSolvableGroup(p[i]));
      cand:=cand{s};
#      aiso:=IsomorphismPcGroup(grp);
#      grp:=Image(aiso,grp);
#
#      piso:=List(p{s},IsomorphismPcGroup);
#      p:=List([1..Length(s)],i->Image(piso[i],p[s[i]]));
      p:=p{s}; 
      List(p,Pcgs); # enforce Pcgs use
#    else
#      aiso:=IdentityMapping(grp);
#      piso:=List(p,IdentityMapping);
    fi;

    # Klassen
    t:=Collected(List(ConjugacyClasses(grp),
                      i->[CycleStructurePerm(Representative(i)),Size(i)]));
    s:=Filtered([1..Length(cand)],i->Collected(List(
           ConjugacyClasses(p[i]),
           j->[CycleStructurePerm(Representative(j)),Size(j)]))=t);
    cand:=cand{s};
    p:=p{s};
  fi;  

  # maximal subgroups
  if IsSolvableGroup(grp) and Length(cand)>1 then
    t:=Collected(List(Filtered(MaximalSubgroupClassReps(grp),
                i->Length(Orbits(i,MovedPoints(grp)))=1),
		TransitiveIdentification));
    s:=Filtered([1..Length(cand)],
        k->Collected(List(Filtered(MaximalSubgroupClassReps(p[k]),
                i->Length(Orbits(i,MovedPoints(p[k])))=1),
		TransitiveIdentification))=t);
    cand:=cand{s};
    p:=p{s};
  fi;

  if Length(cand)>1 then
    # NormalSubgroups
    t:=Collected(List(NormalSubgroups(grp),Size));
    s:=Filtered([1..Length(cand)],
                i->Collected(List(NormalSubgroups(p[i]),Size))=t);
    cand:=cand{s};
    p:=p{s};
  fi;  

  if Length(cand)>1 and Size(grp)<3000 then
    # Subgroups
    Print("#I  Subgroups ",cand,"\n");
    t:=Collected(List(ConjugacyClassesSubgroups(Group(GeneratorsOfGroup(grp))),
                      i->[Size(Representative(i)),Size(i)]));
    s:=Filtered([1..Length(cand)],i->Collected(List(
           ConjugacyClassesSubgroups(Group(GeneratorsOfGroup(p[i]))),
           i->[Size(Representative(i)),Size(i)]))=t);
    cand:=cand{s};
    p:=p{s};
  fi;  

  if Length(cand)>1 then
    # now finally the hard test: Test for conjugacy
    Print("#I  Conjugacy Test",cand,"\n");
    s:=SymmetricGroup(Maximum(dom));
#    if IsSolvableGroup(grp) then
#      grp:=PreImage(aiso,grp);
#      p:=List([1..Length(p)],i->PreImage(piso[i],p[i]));
#    fi; 
    grp:=AsSubgroup(s,grp);
    p:=List(p,i->AsSubgroup(s,i));
    s:=Filtered([1..Length(cand)],i->IsConjugate(s,grp,p[i]));
    cand:=cand{s};
    p:=p{s};
  fi;

  if Length(cand)=1 then
    return cand[1];
  else
    Error("Uh-Oh, this should never happen ",cand);
  fi;
end);

#############################################################################
##
#F  SelectTransitiveGroups(arglis,alle)  . . . . . selection function
##
BIND_GLOBAL("SelectTransitiveGroups",function(arglis,alle)
local i,j,a,b,l,p,deg,gut,g,grp,nr,f;
  l:=Length(arglis)/2;
  if not IsInt(l) then
    Error("wrong arguments");
  fi;
  deg:=[1..TRANSDEGREES];
  p:=Position(arglis,NrMovedPoints);
  if p<>fail then
    p:=arglis[p+1];
    if IsInt(p) then
      p:=[p];
    fi;
    if IsList(p) then
      f:=not IsSubset(deg,p);
      deg:=Intersection(deg,p);
    else
      f:=true;
      deg:=Filtered(deg,p); 
    fi;
  else
    f:=true; #warnung weil kein Degree angegeben ?
  fi;
  gut:=[];
  for i in deg do
    if not IsBound(TRANSLENGTHS[i]) then
      TransGrpLoad(i,0);
    fi;
    gut[i]:=[1..TRANSLENGTHS[i]];
  od;

  # special treatment for Size for degrees larger than 15
  a:=Position(arglis,Size);
  if a<>fail then
    a:=arglis[a+1];
    for i in Filtered(deg,i->i>15 and not IsPrime(i)) do
      if IsFunction(a) then
        gut[i]:=Filtered(gut[i],j->a(TRANSSIZES[i][j]));
      elif IsList(a) then
        gut[i]:=Filtered(gut[i],j->TRANSSIZES[i][j] in a);
      else
        gut[i]:=Filtered(gut[i],j->TRANSSIZES[i][j]=a);
      fi;
    od;
  fi;

  # find the properties we have not stored
  p:=[];
  for i in [1..l] do
    if not arglis[2*i-1] in
      [NrMovedPoints,Size,Transitivity,SignPermGroup,IsPrimitive] then
      Add(p,arglis{[2*i-1,2*i]}); 
    fi;
  od;

  for i in [1..l] do
    a:=arglis[2*i-1];
    b:=arglis[2*i];

    # get all cheap properties first
    if a=NrMovedPoints then
      f:=false;
      if IsInt(b) then
        b:=[b];
      fi;
      if IsList(b) then
        b:=Set(b);
        if not IsSubset(deg,b) then
          f:=true;
        fi;
        deg:=Intersection(deg,b);
      else
        # b is a function (wondering, whether anyone will ever use it...)
        f:=true;
        deg:=Filtered(deg,b);
      fi;
    elif a=Size or a=Transitivity or a=SignPermGroup then
      if a=Size then
        nr:=1;
      elif a=Transitivity then
        nr:=3;
      else
        nr:=4;
      fi;
      for i in deg do
	gut[i]:=Filtered(gut[i],j->STGSelFunc(TRANSProperties(i,j)[nr],b));
      od;
    elif a=IsPrimitive then
      b:=NumBol(b);
      for i in deg do
        gut[i]:=Filtered(gut[i],j->TRANSProperties(i,j)[2]=b);
      od;
    fi;
  od;

  if f then
    Print("#W  AllTransitiveGroups: Degree restricted to [1..",
          TRANSDEGREES,"]\n");
  fi;

  # the rest is hard:  
  grp:=[];
  for i in deg do
    for nr in gut[i] do
      g:=TransitiveGroup(i,nr);
      if ForAll(p,i->STGSelFunc(i[1](g),i[2])) then
        if alle then
          Add(grp,g);
        else
          return g;
        fi;
      fi;
    od;
  od;

  return grp;
end);

#############################################################################
##
#F  AllTransitiveGroups( <fun>, <res>, ... ) . . . . . . . selection function
##
BIND_GLOBAL("AllTransitiveGroups",function ( arg )
  return SelectTransitiveGroups(arg,true);
end);

#############################################################################
##
#F  OneTransitiveGroup( <fun>, <res>, ... ) . . . . . . . selection function
##
BIND_GLOBAL("OneTransitiveGroup",function ( arg )
local sel;
  sel:=SelectTransitiveGroups(arg,false);
  if sel=[] then
    return fail;
  else
    return sel;
  fi;
end);

#############################################################################
##
#E