1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715
|
#############################################################################
##
#W trans.grp GAP transitive groups library Alexander Hulpke
##
#H @(#)$Id: trans.grp,v 4.12 2000/01/11 22:42:14 ahulpke Exp $
##
#Y Copyright (C) 1997, Lehrstuhl D fuer Mathematik, RWTH Aachen, Germany
##
## This file contains the routines for the transitive groups library
##
Revision.trans_grp:=
"@(#)$Id: trans.grp,v 4.12 2000/01/11 22:42:14 ahulpke Exp $";
#############################################################################
##
## tell GAP about the component
##
DeclareComponent("trans","1.0");
Unbind(TRANSGRP);
Unbind(TRANSPROPERTIES);
#############################################################################
##
#V TRANSGRP . . . . . . . . . generators and names of the transitive groups
## List contains one list per degree. Entries are lists itself
## for each group,starting with generators,then the name.
TRANSGRP := [[[(),"1 = C(1)"]],
[[(1,2),"C(2) = S(2) = 2"]],
[[(1,2,3),"C(3) = A(3) = 3"],[(1,3),(1,2),"S(3)"]],
[[(1,2,3,4),"C(4) = 4"],
[(1,4)(2,3),(1,2)(3,4),"E(4) = 2[x]2"],
[(1,2,3,4),(1,3),"D(4)"],
[(1,3,4),(2,3,4),"A(4)"],
[(1,4),(1,2),(2,3),"S(4)"]],
[[(1,2,3,4,5),"C(5) = 5"],
[(1,2,3,4,5),(1,4)(2,3),"D(5) = 5:2"],
[(1,2,3,4,5),(1,2,4,3),"F(5) = 5:4"],
[(1,4,5),(2,4,5),(3,4,5),"A(5)"],
[(1,5),(1,2),(2,3),(3,4),"S(5)"]],
[[(1,2,3,4,5,6),"C(6) = 6 = 3[x]2"],
[(1,3,5)(2,4,6),(1,4)(2,3)(5,6),"D_6(6) = [3]2"],
[(1,2,3,4,5,6),(1,4)(2,3)(5,6),"D(6) = S(3)[x]2"],
[(1,4)(2,5),(1,3,5)(2,4,6),"A_4(6) = [2^2]3"],
[(2,4,6),(1,4)(2,5)(3,6),"F_18(6) = [3^2]2 = 3 wr 2"],
[(3,6),(1,3,5)(2,4,6),"2A_4(6) = [2^3]3 = 2 wr 3"],
[(1,4)(2,5),(1,3,5)(2,4,6),(1,5)(2,4),"S_4(6d) = [2^2]S(3)"],
[(1,4)(2,5),(1,3,5)(2,4,6),(1,5)(2,4)(3,6),
"S_4(6c) = 1/2[2^3]S(3)"],
[(2,4,6),(1,5)(2,4),(1,4)(2,5)(3,6),"F_18(6):2 = [1/2.S(3)^2]2"],
[(2,4,6),(1,5)(2,4),(1,4,5,2)(3,6),"F_36(6) = 1/2[S(3)^2]2"],
[(3,6),(1,3,5)(2,4,6),(1,5)(2,4),
"2S_4(6) = [2^3]S(3) = 2 wr S(3)"],
[(1,2,3,4,6),(1,4)(5,6),"L(6) = PSL(2,5) = A_5(6)"],
[(2,4,6),(2,4),(1,4)(2,5)(3,6),
"F_36(6):2 = [S(3)^2]2 = S(3) wr 2"],
[(1,2,3,4,6),(1,2)(3,4)(5,6),"L(6):2 = PGL(2,5) = S_5(6)"],
[(1,5,6),(2,5,6),(3,5,6),(4,5,6),"A(6)"],
[(1,6),(1,2),(2,3),(3,4),(4,5),"S(6)"]],
[[(1,2,3,4,5,6,7),"C(7) = 7"],
[(1,2,3,4,5,6,7),(1,6)(2,5)(3,4),"D(7) = 7:2"],
[(1,2,3,4,5,6,7),(1,2,4)(3,6,5),"F_21(7) = 7:3"],
[(1,2,3,4,5,6,7),(1,3,2,6,4,5),"F_42(7) = 7:6"],
[(1,2,3,4,5,6,7),(1,2)(3,6),"L(7) = L(3,2)"],
[(1,6,7),(2,6,7),(3,6,7),(4,6,7),(5,6,7),"A(7)"],
[(1,7),(1,2),(2,3),(3,4),(4,5),(5,6),"S(7)"]]];
#############################################################################
##
#V TRANSPROPERTIES . . . . . . . . . property list for the transitive groups
##
## This list is in the same order as the groups generators. For each group,
## properties are stored as follows:
##
## <size>: Size of the group
## <primitive>: 1 indicates, that the group operates primitive
## <transitivity>: Transitivity
## <sign>: Sign
## <shapes>: List of all occurring shapes (except ()), sorted
## according to the ordering of the Partitions command
## <2Seq>: Orbits on 2-Sequences
## <2Set>: Orbits on 2-Sets
## <3Set>: Orbits on 3-Sets
## <special>: following entries mark special properties, which
## ... are coded as [type,description1,description2,...] .
## The list starts with orbit lengths:
##
## Types:
## 1 1-Set=Pts.
## 2 2-Set
## 3 3-Set
## 4 4-Set
## 5 5-Sets
## 6 i/2-Diff (only possible with even number of points)
## 8 Blocks
## 9 2Seq
##
## 20+b derived Subgroup on b
##
## 100*a+b factor group by operation on the b cosets of a
## type a stabilizer; description field gives the
## number of this factor group as TransitiveGroup
## 1000*a+10*b+c factor group by operation on the b cosets of
## an type a stabilizer operates on c:
## description fields are a list for each of the
## possible stabilizers
## 10000*a+10*b+c type a stabilizer of index b operation on c:
## description fields are a list for each of the
## possible stabilizers, split again for the
## (raw-split) due to the Orbits of <G> itself.
##
## All Orbit information is coded as a list in which each entry has
## the form
## SignOperation*( 1000*(number of orbits with this description-1)
## +length)
##
## Group theoretic information that cannot be used by the Galois
## determination routines is indicated by a negative sign:
##
## -50 Size of the derived subgroup
## -60 Size of the Frattini subgroup
## -70 Number of normal subgroups
##
## some special cases are not discriminated completely by this
## list. The program will deal with them separately.
TRANSPROPERTIES := [
[[1,1,1,1,[],0,0,0]],
[[2,1,2,-1,[true],[1],[-2],0]],
[[3,1,1,1,[false,true],[3],[1003],0],
[6,1,3,-1,[true,true],[-3],[-6],0]],
[[4,0,1,-1,[false,true,false,true],[-4,-2],[-2004],0],
[4,0,1,1,[false,true,false,false],[-2002],[2004],0],
[8,0,1,-1,[true,true,false,true],[-4,-2],[-4,8],0],
[12,1,2,1,[false,true,true,false],[6],[12],0],
[24,1,4,-1,[true,true,true,true],[6],[-12],0]],
[[5,1,1,1,[false,false,false,false,false,true],[1005],[3005],[1005]],
[10,1,1,1,[false,true,false,false,false,true],[1005],[-1010],[1005]],
[20,1,2,-1,[false,true,false,false,true,true],[-10],[-20],[-10],[29,[-1010]]],
[60,1,3,1,[false,true,true,false,false,true],[10],[20],[10]],
[120,1,5,-1,[true,true,true,true,true,true],[-10],[-20],[-10],[29,[20]]]],
[[6,0,1,-1,[false,false,true,false,false,true,false,false,false,true],
[-1006,3],[-4006],[-2006,-2]],
[6,0,1,-1,[false,false,true,false,false,true,false,false,false,false],
[-2003,-6],[-4006],[-2006,-2]],
[12,0,1,-1,[false,true,true,false,false,true,false,false,false,true],
[-1006,-3],[-6,1012],[-6,-2,12]],
[12,0,1,1,[false,true,false,false,false,true,false,false,false,false],
[3,12],[6,1012],[1004,1006]],
[18,0,1,-1,[false,false,true,true,false,true,false,false,false,true],
[-9,-6],[-1006,-18],[-18,-2]],
[24,0,1,-1,[true,true,true,false,false,true,false,false,false,true],
[3,12],[-6,1012],[-1006,8]],
[24,0,1,1,[false,true,false,false,false,true,false,true,false,false],
[-12,-3],[6,24],[-1004,12]],
[24,0,1,-1,[false,true,true,false,false,true,true,false,false,false],
[-12,-3],[-6,24],[8,12],[29,[6],[1012]]],
[36,0,1,-1,[false,true,true,true,false,true,false,false,false,true],
[-9,-6],[-18,12],[-18,-2]],
[36,0,1,1,[false,true,false,true,false,true,false,true,false,false],
[6,9],[-18,-12],[-18,-2]],
[48,0,1,-1,[true,true,true,false,false,true,true,true,false,true],
[-12,-3],[-6,24],[8,12],[29,[6],[24]]],
[60,1,2,1,[false,true,false,false,false,true,false,false,true,false],
[15],[30],[1010]],
[72,0,1,-1,[true,true,true,true,true,true,false,true,false,true],
[-9,-6],[-18,-12],[-18,-2]],
[120,1,3,-1,[false,true,true,false,false,true,true,false,true,true],
[15],[-30],[20],[23,[1010]]],
[360,1,4,1,[false,true,false,true,false,true,false,true,true,false],
[15],[30],[20]],
[720,1,6,-1,[true,true,true,true,true,true,true,true,true,true],
[15],[-30],[20],[23,[20]]]],
[[7,1,1,1,[false,false,false,false,false,false,false,false,false,false,
false,false,false,true],[2007],[5007],[4007]],
[14,1,1,-1,[false,false,true,false,false,false,false,false,false,false,
false,false,false,true],[-2007],[-2014],[-2007,-14]],
[21,1,1,1,[false,false,false,false,false,false,true,false,false,false,
false,false,false,true],[21],[1021],[21,1007]],
[42,1,2,-1,[false,false,true,false,false,false,true,false,false,false,
false,false,true,true],[-21],[-42],[-21,-14]],
[168,1,2,1,[false,true,false,false,false,false,true,false,true,false,
false,false,false,true],[21],[42],[7,28]],
[2520,1,5,1,[false,true,false,true,false,true,true,false,true,false,
true,false,false,true],[21],[42],[35]],
[5040,1,7,-1,[true,true,true,true,true,true,true,true,true,true,true,
true,
true,true],[-21],[-42],[35]]]];
# The following command converts the shape lists into Blists (binary
# lists), which allows for about 2/3 of memory saved
List([1..7],i->ForAll(TRANSPROPERTIES[i],j->IsBlist(j[5])));
# number of groups within each degree (stored up to 15)
TRANSLENGTHS := [ 1, 1, 2, 5, 5, 16, 7, 50, 34, 45, 8, 301, 9, 63, 104 ];
TRANSNONDISCRIM := [[],[],[],[],[],[],[],[],[],[],[],[[273,292]],[],
[[42,51]],[[37,58],[38,59],[57,67],[65,74],[66,74]]];
TRANSSELECT := [];
TRANSSIZES := [];
if not IsBound(TRANSDEGREES) then
TRANSDEGREES :=7;
HideGlobalVariables("dir","fnam");
dir:= DirectoriesLibrary( "trans" );
fnam:=Filename( dir, Concatenation("trans",String(TRANSDEGREES+1),".grp"));
while fnam<>fail and IsReadableFile(fnam) do
TRANSDEGREES:=TRANSDEGREES+1;
fnam:=Filename( dir, Concatenation("trans",String(TRANSDEGREES+1),".grp"));
od;
UnhideGlobalVariables("dir","fnam");
fi;
BIND_GLOBAL("TransGrpLoad",function(deg,nr)
local Tbak,Fbak,flg,sel,i,fname;
if IsBound(TRANSGRP[deg]) and (nr=0 or IsBound(TRANSGRP[deg][nr])) then
return;
fi;
if deg>TRANSDEGREES then
Error("transitive groups are known only of degree up to ",
TRANSDEGREES);
else
HideGlobalVariables("T","F");
BIND_GLOBAL("T",true);
BIND_GLOBAL("F",false);
fname:=Concatenation("trans",String(deg));
if deg>15 and not IsPrime(deg) then
if not IsBound(TRANSGRP[deg]) then
ReadGapRoot( Concatenation( "trans/", fname, ".grp" ) );
if nr=0 then
return;
fi;
else
# the groups to be thrown away
sel:=Difference(Filtered([1..Length(TRANSGRP[deg])],
i->IsBound(TRANSGRP[deg])),TRANSSELECT[deg]);
if Length(TRANSSELECT[deg])>300 then
flg:=TRANSSELECT[deg]{[1..Length(TRANSSELECT[deg])-150]};
sel:=Union(flg,sel);
TRANSSELECT[deg]:=Difference(TRANSSELECT[deg],flg);
fi;
for i in sel do
Unbind(TRANSGRP[deg][i]);
Unbind(TRANSPROPERTIES[deg][i]);
od;
fi;
Append(fname,WordAlp("abcdefghijklmnopqrstuvwxyz",Int((nr-1)/300)+1));
fi;
IsString(fname);
ReadGapRoot( Concatenation( "trans/", fname, ".grp" ));
UnhideGlobalVariables("T","F");
if deg>15 and not IsPrime(deg) then
sel:=Difference(Filtered([1..Length(TRANSGRP[deg])],
i->IsBound(TRANSGRP[deg][i])),TRANSSELECT[deg]);
else
TRANSLENGTHS[deg]:=Length(TRANSGRP[deg]);
TRANSSIZES[deg]:=List(TRANSPROPERTIES[deg],i->i[1]);
sel:=[1..TRANSLENGTHS[deg]];
fi;
ForAll(TRANSPROPERTIES[deg]{sel},i->IsBound(i[5]) and IsBlist(i[5]));
fi;
end);
BIND_GLOBAL("TRANSGrp",function(deg,nr)
if not IsBound(TRANSGRP[deg]) or not IsBound(TRANSGRP[deg][nr]) then
TransGrpLoad(deg,nr);
fi;
if deg>15 and not IsPrime(deg) then
AddSet(TRANSSELECT[deg],nr);
fi;
if nr>TRANSLENGTHS[deg] then
return "fail";
fi;
return TRANSGRP[deg][nr];
end);
BIND_GLOBAL("TRANSProperties",function(deg,nr)
if not IsBound(TRANSPROPERTIES[deg]) or
not IsBound(TRANSPROPERTIES[deg][nr]) then
TransGrpLoad(deg,nr);
fi;
if deg>15 and not IsPrime(deg) then
AddSet(TRANSSELECT[deg],nr);
fi;
if nr>TRANSLENGTHS[deg] then
return "fail";
fi;
return TRANSPROPERTIES[deg][nr];
end);
InstallGlobalFunction(NrTransitiveGroups, function(deg)
if not(deg in [1..TRANSDEGREES]) then
return fail;
fi;
if not IsBound(TRANSLENGTHS[deg]) then
TransGrpLoad(deg,0);
fi;
return TRANSLENGTHS[deg];
end);
InstallGlobalFunction( TransitiveGroup, function(deg,num)
local gens,i,l,g,s;
if not(deg in [1..TRANSDEGREES]) then
Error("degree must be in [1..",TRANSDEGREES,"]");
fi;
if not IsBound(TRANSLENGTHS[deg]) then
TransGrpLoad(deg,num);
fi;
if not (num in [1..TRANSLENGTHS[deg]]) then
Error("maximal number of groups of degree ",deg," is ",
TRANSLENGTHS[deg]);
fi;
# special case: Symmetric and Alternating Group
s:=Factorial(deg);
if TRANSProperties(deg,num)[1]=s then
if deg=1 then
g:=GroupByGenerators( [], () );
else
g:=SymmetricGroup(deg);
fi;
SetName(g,Concatenation("S",String(deg)));
elif TRANSProperties(deg,num)[1]*2=s then
g:=AlternatingGroup(deg);
SetName(g,Concatenation("A",String(deg)));
else
l:=TRANSGrp(deg,num);
s:=Length(l);
gens:=[];
for i in l{[1..s-1]} do
if IsPerm(i) then
Add(gens,i);
else
if Length(i)=2 then
Add(gens,TRANSGrp(i[1],i[2])[1]);
else
Add(gens,TRANSGrp(i[1],i[2])[i[3]]);
fi;
fi;
od;
g:= GroupByGenerators( gens, () );
if l[s]<>"" then
SetName(g,l[s]);
else
SetName(g,Concatenation("t",String(deg),"n",String(num)));
fi;
fi;
SetTransitiveIdentification(g,num);
return g;
end );
CntOp := function(grp,orb,op)
local l,i;
l:=[];
for i in orb do
Add(l,SignPermGroup(Action(grp,i,op))*Length(i));
od;
l:=Collected(l);
for i in [1..Length(l)] do
l[i]:=SignInt(l[i][1])*(1000*(l[i][2]-1)+AbsInt(l[i][1]));
od;
Sort(l);
return l;
end;
NumBol := function(b)
if b then return 1;
else return 0;
fi;
end;
SetsOrbits := function(g,n)
return Orbits(g,Combinations(MovedPoints(g),n),
OnSets);
end;
SeqsOrbits := function(g,n)
return Orbits(g,Arrangements(MovedPoints(g),n),
OnTuples);
end;
InstallMethod(TransitiveIdentification,"generic",true,[IsPermGroup],0,
function(ogrp)
local dom,p,s,t,a,cand,i,grp,deg,aiso,piso;
grp:=ogrp;
dom:=MovedPoints(grp);
if not IsTransitive(grp,dom) then
Error("Group must operate transitive");
fi;
deg:=Length(dom);
if not IsBound(TRANSLENGTHS[deg]) then
TransGrpLoad(deg,0);
fi;
s:=Size(grp);
if deg>15 then
cand:=Filtered([1..TRANSLENGTHS[deg]],i->TRANSSIZES[deg][i]=s);
else
cand:=Filtered([1..TRANSLENGTHS[deg]],i->TRANSProperties(deg,i)[1]=s);
fi;
if Length(cand)>1 and deg>4 then
cand:=Filtered(cand,
i->TRANSProperties(deg,i)[6]
=CntOp(grp,Orbits(grp,Combinations(dom,2),OnSets),OnSets)
and TRANSProperties(deg,i)[7]
=CntOp(grp,Orbits(grp,Arrangements(dom,2),OnTuples),OnTuples)
and TRANSProperties(deg,i)[8]
=CntOp(grp,Orbits(grp,Combinations(dom,3),OnSets),OnSets) );
fi;
Pcgs(grp); # try to enforce solvable calculations further on.
# if Length(cand)>1 and IsSolvableGroup(grp)
# and not HasConjugacyClasses(grp) then
# t:=[];
# aiso:=IsomorphismPcGroup(grp);
# a:=Image(aiso,grp);
# for i in ConjugacyClasses(a) do
# s:=ConjugacyClass(grp,PreImagesRepresentative(aiso,Representative(i)));
# SetStabilizerOfExternalSet(s,PreImage(aiso,Centralizer(i)));
# Add(t,s);
# od;
# SetConjugacyClasses(grp,t);
# fi;
if Length(cand)>1 then
s:=List(CycleStructuresGroup(grp),i->i=1);
cand:=Filtered(cand,i->TRANSProperties(deg,i)[5]=s);
fi;
if Length(cand)>1 then
p:=List(cand,i->TransitiveGroup(deg,i));
# DerivedSubgroups + Frattini Subgroups
s:=Filtered([1..Length(cand)],i->
Size(DerivedSubgroup(p[i]))=Size(DerivedSubgroup(grp)));
if Length(Factors(Size(grp)))=1 then
s:=Filtered(s,i->
Size(FrattiniSubgroup(p[i]))=Size(FrattiniSubgroup(grp)));
fi;
cand:=cand{s};
p:=p{s};
fi;
if Length(cand)>1 then
# Blockl"angen
t:=List(p,i->Collected(List(AllBlocks(i),Length)));
s:=Collected(List(AllBlocks(grp),Length));
s:=Filtered([1..Length(cand)],i->s=t[i]);
cand:=cand{s};
p:=p{s};
fi;
if Length(cand)>1 then
# 4-sets
t:=[4,CntOp(grp,SetsOrbits(grp,4),OnSets)];
s:=Filtered([1..Length(cand)],i->t in TRANSProperties(deg,cand[i])
or ForAll(TRANSProperties(deg,cand[i]){
[9..Length(TRANSProperties(deg,cand[i]))]},j->j[1]<>4));
cand:=cand{s};
p:=p{s};
fi;
if Length(cand)>1 then
# As all computations, which follow involve only the groups, convert
# them to PcGroups if possible
if IsSolvableGroup(grp) then
s:=Filtered([1..Length(cand)],i->IsSolvableGroup(p[i]));
cand:=cand{s};
# aiso:=IsomorphismPcGroup(grp);
# grp:=Image(aiso,grp);
#
# piso:=List(p{s},IsomorphismPcGroup);
# p:=List([1..Length(s)],i->Image(piso[i],p[s[i]]));
p:=p{s};
List(p,Pcgs); # enforce Pcgs use
# else
# aiso:=IdentityMapping(grp);
# piso:=List(p,IdentityMapping);
fi;
# Klassen
t:=Collected(List(ConjugacyClasses(grp),
i->[CycleStructurePerm(Representative(i)),Size(i)]));
s:=Filtered([1..Length(cand)],i->Collected(List(
ConjugacyClasses(p[i]),
j->[CycleStructurePerm(Representative(j)),Size(j)]))=t);
cand:=cand{s};
p:=p{s};
fi;
# maximal subgroups
if IsSolvableGroup(grp) and Length(cand)>1 then
t:=Collected(List(Filtered(MaximalSubgroupClassReps(grp),
i->Length(Orbits(i,MovedPoints(grp)))=1),
TransitiveIdentification));
s:=Filtered([1..Length(cand)],
k->Collected(List(Filtered(MaximalSubgroupClassReps(p[k]),
i->Length(Orbits(i,MovedPoints(p[k])))=1),
TransitiveIdentification))=t);
cand:=cand{s};
p:=p{s};
fi;
if Length(cand)>1 then
# NormalSubgroups
t:=Collected(List(NormalSubgroups(grp),Size));
s:=Filtered([1..Length(cand)],
i->Collected(List(NormalSubgroups(p[i]),Size))=t);
cand:=cand{s};
p:=p{s};
fi;
if Length(cand)>1 and Size(grp)<3000 then
# Subgroups
Print("#I Subgroups ",cand,"\n");
t:=Collected(List(ConjugacyClassesSubgroups(Group(GeneratorsOfGroup(grp))),
i->[Size(Representative(i)),Size(i)]));
s:=Filtered([1..Length(cand)],i->Collected(List(
ConjugacyClassesSubgroups(Group(GeneratorsOfGroup(p[i]))),
i->[Size(Representative(i)),Size(i)]))=t);
cand:=cand{s};
p:=p{s};
fi;
if Length(cand)>1 then
# now finally the hard test: Test for conjugacy
Print("#I Conjugacy Test",cand,"\n");
s:=SymmetricGroup(Maximum(dom));
# if IsSolvableGroup(grp) then
# grp:=PreImage(aiso,grp);
# p:=List([1..Length(p)],i->PreImage(piso[i],p[i]));
# fi;
grp:=AsSubgroup(s,grp);
p:=List(p,i->AsSubgroup(s,i));
s:=Filtered([1..Length(cand)],i->IsConjugate(s,grp,p[i]));
cand:=cand{s};
p:=p{s};
fi;
if Length(cand)=1 then
return cand[1];
else
Error("Uh-Oh, this should never happen ",cand);
fi;
end);
#############################################################################
##
#F SelectTransitiveGroups(arglis,alle) . . . . . selection function
##
BIND_GLOBAL("SelectTransitiveGroups",function(arglis,alle)
local i,j,a,b,l,p,deg,gut,g,grp,nr,f;
l:=Length(arglis)/2;
if not IsInt(l) then
Error("wrong arguments");
fi;
deg:=[1..TRANSDEGREES];
p:=Position(arglis,NrMovedPoints);
if p<>fail then
p:=arglis[p+1];
if IsInt(p) then
p:=[p];
fi;
if IsList(p) then
f:=not IsSubset(deg,p);
deg:=Intersection(deg,p);
else
f:=true;
deg:=Filtered(deg,p);
fi;
else
f:=true; #warnung weil kein Degree angegeben ?
fi;
gut:=[];
for i in deg do
if not IsBound(TRANSLENGTHS[i]) then
TransGrpLoad(i,0);
fi;
gut[i]:=[1..TRANSLENGTHS[i]];
od;
# special treatment for Size for degrees larger than 15
a:=Position(arglis,Size);
if a<>fail then
a:=arglis[a+1];
for i in Filtered(deg,i->i>15 and not IsPrime(i)) do
if IsFunction(a) then
gut[i]:=Filtered(gut[i],j->a(TRANSSIZES[i][j]));
elif IsList(a) then
gut[i]:=Filtered(gut[i],j->TRANSSIZES[i][j] in a);
else
gut[i]:=Filtered(gut[i],j->TRANSSIZES[i][j]=a);
fi;
od;
fi;
# find the properties we have not stored
p:=[];
for i in [1..l] do
if not arglis[2*i-1] in
[NrMovedPoints,Size,Transitivity,SignPermGroup,IsPrimitive] then
Add(p,arglis{[2*i-1,2*i]});
fi;
od;
for i in [1..l] do
a:=arglis[2*i-1];
b:=arglis[2*i];
# get all cheap properties first
if a=NrMovedPoints then
f:=false;
if IsInt(b) then
b:=[b];
fi;
if IsList(b) then
b:=Set(b);
if not IsSubset(deg,b) then
f:=true;
fi;
deg:=Intersection(deg,b);
else
# b is a function (wondering, whether anyone will ever use it...)
f:=true;
deg:=Filtered(deg,b);
fi;
elif a=Size or a=Transitivity or a=SignPermGroup then
if a=Size then
nr:=1;
elif a=Transitivity then
nr:=3;
else
nr:=4;
fi;
for i in deg do
gut[i]:=Filtered(gut[i],j->STGSelFunc(TRANSProperties(i,j)[nr],b));
od;
elif a=IsPrimitive then
b:=NumBol(b);
for i in deg do
gut[i]:=Filtered(gut[i],j->TRANSProperties(i,j)[2]=b);
od;
fi;
od;
if f then
Print("#W AllTransitiveGroups: Degree restricted to [1..",
TRANSDEGREES,"]\n");
fi;
# the rest is hard:
grp:=[];
for i in deg do
for nr in gut[i] do
g:=TransitiveGroup(i,nr);
if ForAll(p,i->STGSelFunc(i[1](g),i[2])) then
if alle then
Add(grp,g);
else
return g;
fi;
fi;
od;
od;
return grp;
end);
#############################################################################
##
#F AllTransitiveGroups( <fun>, <res>, ... ) . . . . . . . selection function
##
BIND_GLOBAL("AllTransitiveGroups",function ( arg )
return SelectTransitiveGroups(arg,true);
end);
#############################################################################
##
#F OneTransitiveGroup( <fun>, <res>, ... ) . . . . . . . selection function
##
BIND_GLOBAL("OneTransitiveGroup",function ( arg )
local sel;
sel:=SelectTransitiveGroups(arg,false);
if sel=[] then
return fail;
else
return sel;
fi;
end);
#############################################################################
##
#E
|