File: lesson7.html

package info (click to toggle)
garlic-doc 1.6-2
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 2,196 kB
  • sloc: makefile: 2
file content (360 lines) | stat: -rw-r--r-- 3,980 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
<html>

<head>
<title>
Lesson 7
</title>
</head>

<h1 align=center>

Garlic Tutorial

</h1>

<h2 align=center>

Lesson 7 - Draw Helical Wheel

</h2>

<hr size="3">


In this lesson, you will learn how to prepare the helical wheel plot. This
plot may be used to identify amphipatic segments in a protein sequence, i.e.
the amphipatic helices. In this lesson, the solved structure will be used
for demonstration. For more details, read
<a href="../commands/whe.html">
this
</a>
(WHEEL command description).
<br><br>

You can use any protein structure for this lesson. In this example 1HUC.pdb is
used, though you can use any protein structure.
<br><br>



Step 1 - start garlic (if not started already):
<br><br>


<font color=RED>

garlic
<br><br>

</font>


Step 2 - load the structure. You should have your PDB file (here 1HUC.pdb)
somewhere in the search path (if you defined the environment variable
MOL_PATH), or in your current working directory.
<br><br>


<font color=RED>

loa 1HUC.pdb
<br><br>

</font>


Step 3 - select all atoms except hetero atoms. If this is not done the
hetero "residues" (i.e., solvent molecules) will corrupt the helical
wheel plot. The trick is to select hetero residues, and then to select
complement. You don't have to hide hetero residues, so you can skip
the command hide.
<br><br>


<font color=RED>

sel het
<br>
hide
<br>
sel com
<br><br>

</font>


Step 4 - check the number of chains in human cathepsin B. If there are two
or more chains, the residue serial number should not be used as unique
residue identifier.
<br><br>


<font color=RED>

color chain
<br><br>

</font>


Step 5 - there are obviously four chains. Hide all chains except B.
Hide everything, after that select only the chain B and make it visible.
Hetero residues will not be included into selection, so the step 3 was in
fact unnecessary.
<br><br>


<font color=RED>

sel all
<br>
hide
<br>
sel b/*/*/*
<br>
show
<br><br>

</font>


Step 6 - try to find one helix at the chain B surface. Helices may
be easily recognized if using backbone representation of the protein.
It is also practical to use the geometric center of the chain B as the
rotation center, and to move it to the screen center.
<br><br>


<font color=RED>

bac
<br>
cen
<br>
pos 0 0 0
<br><br>

</font>


Step 7 - play with the chain B to find this helix:
<br>


<table border=0 cellspacing=2 cellpading=0>

<td align="center">

76

</td>

<td align="center">

77

</td>

<td align="center">

78

</td>

<td align="center">

79

</td>

<td align="center">

80

</td>

<td align="center">

81

</td>

<td align="center">

82

</td>

<td align="center">

83

</td>

<td align="center">

84

</td>

<td align="center">

85

</td>

<td align="center">

86

</td>

<tr>

<td align="center">

PRO

</td>

<td align="center">

ALA

</td>

<td align="center">

GLU

</td>

<td align="center">

ALA

</td>

<td align="center">

TRP

</td>

<td align="center">

ASN

</td>

<td align="center">

PHE

</td>

<td align="center">

TRP

</td>

<td align="center">

THR

</td>

<td align="center">

ARG

</td>

<td align="center">

LYS

</td>

</table>


<br>



Step 8 - copy the sequence of the chain B to the main sequence buffer.
Note that the helical wheel plot uses the sequence which is stored in the
main sequence buffer. Right now this buffer is empty!
<br><br>


<font color=RED>

seq from 1
<br><br>

</font>


Step 9 - draw helical wheel for residues from 76 to 86:
<br><br>


<font color=RED>

wheel 76-86
<br><br>

</font>


Step 10 - return to the main drawing mode. Hit the escape key or type the
following command:
<br><br>


<font color=RED>

whe off
<br><br>

</font>


Step 11 - discard loaded structure:
<br><br>


<font color=RED>

dis all
<br><br>

</font>


Step 12 - clear the main sequence buffer:
<br><br>


<font color=RED>

seq reset
<br><br>

</font>

<hr size="3">


Do not forget that for helical wheel plot, the main sequence buffer should
be initialized!


<hr size="3">

</html>