File: chi3_from_cbcgcdoe1.c

package info (click to toggle)
garlic 1.5-2
  • links: PTS
  • area: main
  • in suites: etch, etch-m68k
  • size: 4,324 kB
  • ctags: 1,378
  • sloc: ansic: 50,306; makefile: 1,088
file content (117 lines) | stat: -rw-r--r-- 3,789 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
/* Copyright (C) 2001 Damir Zucic */

/*=============================================================================

				chi3_from_cbcgcdoe1.c

Purpose:
	Calculate dihedral angle chi3, using CB, CG, CD and OE1 coordinates.

Input:
	(1) Pointer to AtomS structure, pointing to the first atom of the
	    current macromolecular complex.
	(2) Index of the first atom of the current residue.
        (3) Index of the last atom of the currrent residue.

Output:
	Return value.

Return value:
	(1) Dihedral angle chi3, on success.
	(2) BADDIHEDANGLE on failure.

========includes:============================================================*/

#include <stdio.h>

#include <math.h>

#include <X11/Xlib.h>
#include <X11/Xutil.h>
#include <X11/Xos.h>
#include <X11/Xatom.h>

#include "defines.h"
#include "typedefs.h"

/*======function prototypes:=================================================*/

int		ExtractFourAtoms_ (VectorS *, VectorS *, VectorS *, VectorS *,
				   char *, char *, char *, char *,
				   AtomS *, size_t, size_t);
void		VectorProduct_ (VectorS *, VectorS *, VectorS *);
double		AbsoluteValue_ (VectorS *);
double		ScalarProduct_ (VectorS *, VectorS *);

/*======calculate chi3 from CB, CG, CD and OE1:===============================*/

double Chi3FromCBCGCDOE1_ (AtomS *atomSP, size_t atom_startI, size_t atom_endI)
{
static VectorS		CB_vectorS, CG_vectorS, CD_vectorS, OE1_vectorS;
int			n;
VectorS			CG_CB_vectorS, CG_CD_vectorS;
VectorS			CD_CG_vectorS, CD_OE1_vectorS;
VectorS			u1S, u2S;
VectorS			v1S, v2S;
double			denom, ratio, alpha;
double			chi3;

/* Extract CB, CG, CD and OE1 coordinates: */
n = ExtractFourAtoms_ (&CB_vectorS, &CG_vectorS, &CD_vectorS, &OE1_vectorS,
		       "CB", "CG", "CD", "OE1",
		       atomSP, atom_startI, atom_endI);

/* All four atoms are required to calculate the angle chi3: */
if (n < 4) return BADDIHEDANGLE;

/* The first pair of auxiliary vectors: */
CG_CB_vectorS.x = CB_vectorS.x - CG_vectorS.x;
CG_CB_vectorS.y = CB_vectorS.y - CG_vectorS.y;
CG_CB_vectorS.z = CB_vectorS.z - CG_vectorS.z;
CG_CD_vectorS.x = CD_vectorS.x - CG_vectorS.x;
CG_CD_vectorS.y = CD_vectorS.y - CG_vectorS.y;
CG_CD_vectorS.z = CD_vectorS.z - CG_vectorS.z;

/* The second pair of auxiliary vectors: */
CD_CG_vectorS.x = CG_vectorS.x - CD_vectorS.x;
CD_CG_vectorS.y = CG_vectorS.y - CD_vectorS.y;
CD_CG_vectorS.z = CG_vectorS.z - CD_vectorS.z;
CD_OE1_vectorS.x = OE1_vectorS.x - CD_vectorS.x;
CD_OE1_vectorS.y = OE1_vectorS.y - CD_vectorS.y;
CD_OE1_vectorS.z = OE1_vectorS.z - CD_vectorS.z;

/* Two vectors  perpendicular to  CG_CD_vectorS,  mutually orthogonal, */
/* the second in the plane defined by CG_CB_vectorS and CG_CD_vectorS: */
VectorProduct_ (&u1S, &CG_CB_vectorS, &CG_CD_vectorS);
VectorProduct_ (&u2S, &u1S, &CG_CD_vectorS);

/* Two vectors  perpendicular to  CD_CG_vectorS,  mutually  orthogonal, */
/* the second in the plane defined by CD_CG_vectorS and CD_OE1_vectorS: */
VectorProduct_ (&v1S, &CD_CG_vectorS, &CD_OE1_vectorS);
VectorProduct_ (&v2S, &CD_CG_vectorS, &v1S);

/* Calculate the angle alpha, which will be used to calculate chi3: */

/* Avoid division by zero: */
denom = AbsoluteValue_ (&u1S) * AbsoluteValue_ (&v1S);
if (denom == 0.0) return BADDIHEDANGLE;

/* Use the scalar product to calculate the cosine of the angle: */
ratio = ScalarProduct_ (&u1S, &v1S) / denom;

/* Arc cosine is very sensitive to floating point errors: */
if (ratio <= -1.0) alpha = 3.1415927;
else if (ratio >= 1.0) alpha = 0.0;
else alpha = acos (ratio);

/* There are two possible solutions; the right one is resolved here: */
if (ScalarProduct_ (&v2S, &u1S) >= 0) chi3 = alpha;
else chi3 = -alpha;

/* Return the angle (in radians): */
return chi3;
}

/*===========================================================================*/