File: project_planes.c

package info (click to toggle)
garlic 1.5-2
  • links: PTS
  • area: main
  • in suites: etch, etch-m68k
  • size: 4,324 kB
  • ctags: 1,378
  • sloc: ansic: 50,306; makefile: 1,088
file content (216 lines) | stat: -rw-r--r-- 6,917 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
/* Copyright (C) 2000, 2001 Damir Zucic */

/*=============================================================================

				project_planes.c

Purpose:
	For each macromolecular complex,  project plane to  the screen.
	The plane is represented  by a circle in space,  which projects
	into  an ellipse.  The plane  is projected always,  even if not
	visible.  This function prepares only parameters which are kept
	in  PlaneS structure,  associated with  a given  macromolecular
	complex.  Other parameters will be prepared in a function which
	draws plane to the screen.

Input:
	(1) Pointer to MolComplexS structure, with macromol. complexes.
	(2) Number of macromolecular complexes.
	(3) Pointer to ConfigS structure, with configuration data.
	    
Output:
	(1) Parameters which define plane projection to the screen will
	    be calculated for each macromolecular complex containing at
	    least one atom. 

Return value:
	No return value.

========includes:============================================================*/

#include <stdio.h>

#include <limits.h>
#include <math.h>

#include <X11/Xlib.h>
#include <X11/Xutil.h>
#include <X11/Xos.h>
#include <X11/Xatom.h>

#include "defines.h"
#include "typedefs.h"

/*======project planes:=======================================================*/

void ProjectPlanes_ (MolComplexS *mol_complexSP, int mol_complexesN,
		     ConfigS *configSP)
{
double			nominator_x, nominator_y, user_atomic_position;
int			center_screen_x[2], center_screen_y;
int			mol_complexI;
MolComplexS		*curr_mol_complexSP;
PlaneS			*curr_planeSP;
int			imagesN, imageI;
double			denominator, reciprocal_denominator;
double			normal_x, normal_y, normal_z;
double			rationalized_x, rationalized_y;
double			scalar_product, abs_value_squared, abs_value;
double			cos_theta, cos_phi, angle;
double			value1, value2;

/* The number of images (1 for mono, 2 for stereo): */
if (configSP->stereoF == 1) imagesN = 2;
else imagesN = 1;

/* Prepare the factors which are used to */
/* reduce the number of multiplications: */
nominator_x = configSP->user_screen_atomic_distance *
	      configSP->atomic_to_screen_scale_x;
nominator_y = configSP->user_screen_atomic_distance *
	      configSP->atomic_to_screen_scale_y;

/* Prepare the user position in atomic coordinates: */
user_atomic_position = configSP->user_atomic_position;

/* Position of the window free area center (stereo data): */
center_screen_x[0] = configSP->center_screen_x[0];
center_screen_x[1] = configSP->center_screen_x[1];
center_screen_y = configSP->center_screen_y;

/* Project plane for each macromolecular complex: */
for (mol_complexI = 0; mol_complexI < mol_complexesN; mol_complexI++)
	{
	/* Pointer to the current macromolecular complex: */
	curr_mol_complexSP = mol_complexSP + mol_complexI;

	/* If this complex contains no atoms, ignore it: */
	if (curr_mol_complexSP->atomsN == 0) continue;

	/* Projection is not necessary if the position is unchanged: */
	if (curr_mol_complexSP->position_changedF == 0) continue;

	/* Pointer to the current plane: */
	curr_planeSP = &curr_mol_complexSP->planeS;

	/* Stereo data should be prepared: */
	for (imageI = 0; imageI < imagesN; imageI++)
		{
		/*------prepare auxilliary parameters:-----------------------*/

		denominator = curr_planeSP->center_z[imageI] -
			      user_atomic_position;
		if (denominator == 0.0) reciprocal_denominator = 0.0;
		else reciprocal_denominator = 1.0 / denominator;
		normal_x = curr_planeSP->normal_x[imageI];
		normal_y = curr_planeSP->normal_y;
		normal_z = curr_planeSP->normal_z[imageI];

		/*------project plane center to the screen:------------------*/

		/* Prepare rationalized coordinates: */
		rationalized_x = curr_planeSP->center_x[imageI] *
				 nominator_x * reciprocal_denominator;
		rationalized_y = curr_planeSP->center_y *
				 nominator_y * reciprocal_denominator;

		/* Keep them in a reasonable range: */
		if      (rationalized_x > (double) INT_MAX / 4)
			 rationalized_x = (double) INT_MAX / 4;
		else if (rationalized_x < (double) INT_MIN / 4)
			 rationalized_x = (double) INT_MIN / 4;
		if      (rationalized_y > (double) INT_MAX / 4)
			 rationalized_y = (double) INT_MAX / 4;
		else if (rationalized_y < (double) INT_MIN / 4)
			 rationalized_y = (double) INT_MIN / 4;

		/* Prepare screen coordinates of the plane center: */
		curr_planeSP->center_screen_x[imageI] =
				(int) rationalized_x + center_screen_x[imageI];
		curr_planeSP->center_screen_y =
				(int) rationalized_y + center_screen_y;

		/*------angle between normal vector and z axis:--------------*/

		scalar_product = normal_z;
		abs_value_squared = normal_x * normal_x +
				    normal_y * normal_y +
				    normal_z * normal_z;
		abs_value = sqrt (abs_value_squared);
		if (abs_value == 0.0)
			{
			cos_theta = 0.0;
			curr_planeSP->normal_theta[imageI] = 1.5707963;
			}
		else
			{
			cos_theta = scalar_product / abs_value;
			if (cos_theta <= -1.0) angle = 3.1415927;
			else if (cos_theta >= 1.0) angle = 0.0;
			else angle = acos (cos_theta);
			curr_planeSP->normal_theta[imageI] = angle;
			}

		/*------visible side index (0 = top, 1 = bottom):------------*/

		if (cos_theta <= 0.0) curr_planeSP->visible_sideI[imageI] = 0;
		else curr_planeSP->visible_sideI[imageI] = 1;

		/*------angle between x and project. of n. v. to xy plane:---*/

		/* Prepare and check the cosine of normal_phi: */
		abs_value = sqrt (normal_x * normal_x + normal_y * normal_y);
		cos_phi = normal_x / abs_value;
		if (cos_phi >  1.0) cos_phi =  1.0;
		if (cos_phi < -1.0) cos_phi = -1.0;

		/* The special case (undefined phi): */
		if ((normal_x == 0.0) && (normal_y == 0.0))
			{
			curr_planeSP->normal_phi[imageI] = 0.0;
			}

		/* If y component of the normal vector is positive: */
		else if (normal_y >= 0.0)
			{
			if (cos_phi <= -1.0) angle = 3.1415927;
			else if (cos_phi >= 1.0) angle = 0.0;
			else angle = acos (cos_phi);
			curr_planeSP->normal_phi[imageI] = angle;
			}

		/* If y component of the normal vector is negative: */
		else
			{
			if (cos_phi <= -1.0) angle = 3.1415927;
			else if (cos_phi >= 1.0) angle = 0.0;
			else angle = acos (cos_phi);
			curr_planeSP->normal_phi[imageI] = 6.2831853 - angle;
			}

		/*------large half axis of the ellipse in screen units:------*/

		value1 = curr_planeSP->circle_radius *
			 nominator_x *
			 reciprocal_denominator;
		value2 = curr_planeSP->circle_radius *
			 nominator_y *
			 reciprocal_denominator;
		if (value1 > value2) curr_planeSP->screen_a = value1;
		else curr_planeSP->screen_a = value2;

		/*------small half axis of the ellipse (stereo data):--------*/

		curr_planeSP->screen_b[imageI] = curr_planeSP->screen_a *
						 fabs (cos_theta);

		/* The minimal value should be one: */
		if (curr_planeSP->screen_b[imageI] < 1.0)
			curr_planeSP->screen_b[imageI] = 1.0;
		}
	}
}

/*===========================================================================*/