File: project_membranes.c

package info (click to toggle)
garlic 1.6-3
  • links: PTS, VCS
  • area: main
  • in suites: bullseye, buster, sid
  • size: 4,516 kB
  • sloc: ansic: 52,465; makefile: 2,254
file content (402 lines) | stat: -rw-r--r-- 13,161 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
/* Copyright (C) 2001 Damir Zucic */

/*=============================================================================

				project_membranes.c

Purpose:
	For each macromolecular complex, project membrane to the screen.
	The membrane is represented by two circles in space. Each circle
	is represented by  an ellipse on the screen.  This function will
	project each membrane always,  even if it is not visible  on the
	screen.  The parameters prepared in  this function are stored in
	two PlaneS structures, which are members of MembraneS structure.
	Some  other parameters  will be prepared  in the function  which
	draw the membrane to the screen.

Input:
	(1) Pointer to MolComplexS structure,  with macromol. complexes.
	(2) The number of macromolecular complexes.
	(3) Pointer to ConfigS structure, with configuration data.
	    
Output:
	(1) Parameters which define the membrane projection  (i.e.,  the
	    projections of two constituent planes) to the screen will be
	    calculated  for each  macromolecular complex  containing  at
	    least one atom. 

Return value:
	No return value.

Notes:
	(1) If definedF  is zero for a given membrane,  the position and
	    orientation of that membrane are not defined properly.

========includes:============================================================*/

#include <stdio.h>

#include <limits.h>
#include <math.h>

#include <X11/Xlib.h>
#include <X11/Xutil.h>
#include <X11/Xos.h>
#include <X11/Xatom.h>

#include "defines.h"
#include "typedefs.h"

/*======project membranes:===================================================*/

void ProjectMembranes_ (MolComplexS *mol_complexSP, int mol_complexesN,
			ConfigS *configSP)
{
int			imagesN, imageI;
double			nominator_x, nominator_y, user_atomic_position;
int			center_screen_x[2], center_screen_y;
double			cos_stereo_angle, sin_stereo_angle;
int			mol_complexI;
MolComplexS		*curr_mol_complexSP;
MembraneS		*membraneSP;
double			half_thickness;
PlaneS			*plane1SP, *plane2SP;
double			x0, z0, x, z, x_new, z_new;
double			denominator, reciprocal_denominator;
double			normal_x, normal_y, normal_z;
double			rationalized_x, rationalized_y;
double			scalar_product, abs_value_squared, abs_value;
double			cos_theta, cos_phi, angle;
double			value1, value2;

/* The number of images (1 for mono, 2 for stereo): */
if (configSP->stereoF == 1) imagesN = 2;
else imagesN = 1;

/* Prepare the factors which are used to */
/* reduce the number of multiplications: */
nominator_x = configSP->user_screen_atomic_distance *
	      configSP->atomic_to_screen_scale_x;
nominator_y = configSP->user_screen_atomic_distance *
	      configSP->atomic_to_screen_scale_y;

/* Prepare the user position in atomic coordinates: */
user_atomic_position = configSP->user_atomic_position;

/* Position of the window free area center (stereo data): */
center_screen_x[0] = configSP->center_screen_x[0];
center_screen_x[1] = configSP->center_screen_x[1];
center_screen_y    = configSP->center_screen_y;

/* Calculate cosine and sine of the stereo angle: */
cos_stereo_angle = cos (configSP->stereo_angle);
sin_stereo_angle = sin (configSP->stereo_angle);

/* Project the membrane (two planes) for each macromolecular complex: */
for (mol_complexI = 0; mol_complexI < mol_complexesN; mol_complexI++)
	{
	/* Pointer to the current macromolecular complex: */
	curr_mol_complexSP = mol_complexSP + mol_complexI;

	/* If this complex contains no atoms, ignore it: */
	if (curr_mol_complexSP->atomsN == 0) continue;

	/* If the membrane associated with the current */
	/* complex is not defined,  skip this complex: */
	if (curr_mol_complexSP->membraneS.definedF == 0) continue;

	/* Prepare the pointer to the membrane: */
	membraneSP = &curr_mol_complexSP->membraneS;

	/* Half of the membrane thickness: */
	half_thickness = membraneSP->thickness / 2.0;

	/*------refresh the members of the first PlaneS structure:-----------*/

	/* Prepare the pointer to the first plane: */
	plane1SP = &membraneSP->plane1S;

	/* The center of the first plane: */
	plane1SP->center_x[0] = membraneSP->center_x +
				half_thickness * plane1SP->normal_x[0];
	plane1SP->center_y    = membraneSP->center_y +
				half_thickness * plane1SP->normal_y;
	plane1SP->center_z[0] = membraneSP->center_z +
				half_thickness * plane1SP->normal_z[0];

	/* The stereo data associated with the center of the first plane: */
	x0 = curr_mol_complexSP->geometric_center_vectorS.x;
	z0 = curr_mol_complexSP->geometric_center_vectorS.z;
	x = plane1SP->center_x[0] - x0;
	z = plane1SP->center_z[0] - z0;
	x_new =  x * cos_stereo_angle + z * sin_stereo_angle;
	z_new = -x * sin_stereo_angle + z * cos_stereo_angle;
	plane1SP->center_x[1] = x_new + x0;
	plane1SP->center_z[1] = z_new + z0;

	/*------refresh the members of the second PlaneS structure:----------*/

	/* Prepare the pointer to the second plane: */
	plane2SP = &membraneSP->plane2S;

	/* The center of the second plane: */
	plane2SP->center_x[0] = membraneSP->center_x +
				half_thickness * plane2SP->normal_x[0];
	plane2SP->center_y    = membraneSP->center_y +
				half_thickness * plane2SP->normal_y;
	plane2SP->center_z[0] = membraneSP->center_z +
				half_thickness * plane2SP->normal_z[0];

	/* The stereo data associated with the center of the second plane: */
	x0 = curr_mol_complexSP->geometric_center_vectorS.x;
	z0 = curr_mol_complexSP->geometric_center_vectorS.z;
	x = plane2SP->center_x[0] - x0;
	z = plane2SP->center_z[0] - z0;
	x_new =  x * cos_stereo_angle + z * sin_stereo_angle;
	z_new = -x * sin_stereo_angle + z * cos_stereo_angle;
	plane2SP->center_x[1] = x_new + x0;
	plane2SP->center_z[1] = z_new + z0;

	/*------project the first plane:-------------------------------------*/

	/* Project the first plane: */

	/* Stereo data should be prepared: */
	for (imageI = 0; imageI < imagesN; imageI++)
		{
		/*------prepare auxilliary parameters:-----------------------*/

		denominator = plane1SP->center_z[imageI] -
			      user_atomic_position;
		if (denominator == 0.0) reciprocal_denominator = 0.0;
		else reciprocal_denominator = 1.0 / denominator;
		normal_x = plane1SP->normal_x[imageI];
		normal_y = plane1SP->normal_y;
		normal_z = plane1SP->normal_z[imageI];

		/*------project plane center to the screen:------------------*/

		/* Prepare rationalized coordinates: */
		rationalized_x = plane1SP->center_x[imageI] *
				 nominator_x * reciprocal_denominator;
		rationalized_y = plane1SP->center_y *
				 nominator_y * reciprocal_denominator;

		/* Keep them in a reasonable range: */
		if      (rationalized_x > (double) INT_MAX / 4)
			 rationalized_x = (double) INT_MAX / 4;
		else if (rationalized_x < (double) INT_MIN / 4)
			 rationalized_x = (double) INT_MIN / 4;
		if      (rationalized_y > (double) INT_MAX / 4)
			 rationalized_y = (double) INT_MAX / 4;
		else if (rationalized_y < (double) INT_MIN / 4)
			 rationalized_y = (double) INT_MIN / 4;

		/* Prepare screen coordinates of the plane center: */
		plane1SP->center_screen_x[imageI] =
				(int) rationalized_x + center_screen_x[imageI];
		plane1SP->center_screen_y =
				(int) rationalized_y + center_screen_y;

		/*------angle between normal vector and z axis:--------------*/

		scalar_product = normal_z;
		abs_value_squared = normal_x * normal_x +
				    normal_y * normal_y +
				    normal_z * normal_z;
		abs_value = sqrt (abs_value_squared);
		if (abs_value == 0.0)
			{
			cos_theta = 0.0;
			plane1SP->normal_theta[imageI] = 1.5707963;
			}
		else
			{
			cos_theta = scalar_product / abs_value;
			if (cos_theta <= -1.0) angle = 3.1415927;
			else if (cos_theta >= 1.0) angle = 0.0;
			else angle = acos (cos_theta);
			plane1SP->normal_theta[imageI] = angle;
			}

		/*------visible side index (0 = top, 1 = bottom):------------*/

		if (cos_theta <= 0.0) plane1SP->visible_sideI[imageI] = 0;
		else plane1SP->visible_sideI[imageI] = 1;

		/*------angle between x and project. of n. v. to xy plane:---*/

		/* Prepare and check the cosine of normal_phi: */
		abs_value = sqrt (normal_x * normal_x + normal_y * normal_y);
		cos_phi = normal_x / abs_value;
		if (cos_phi >  1.0) cos_phi =  1.0;
		if (cos_phi < -1.0) cos_phi = -1.0;

		/* The special case (undefined phi): */
		if ((normal_x == 0.0) && (normal_y == 0.0))
			{
			plane1SP->normal_phi[imageI] = 0.0;
			}

		/* If y component of the normal vector is positive: */
		else if (normal_y >= 0.0)
			{
			if (cos_phi <= -1.0) angle = 3.1415927;
			else if (cos_phi >= 1.0) angle = 0.0;
			else angle = acos (cos_phi);
			plane1SP->normal_phi[imageI] = angle;
			}

		/* If y component of the normal vector is negative: */
		else
			{
			if (cos_phi <= -1.0) angle = 3.1415927;
			else if (cos_phi >= 1.0) angle = 0.0;
			else angle = acos (cos_phi);
			plane1SP->normal_phi[imageI] = 6.2831853 - angle;
			}

		/*------large half axis of the ellipse in screen units:------*/

		value1 = plane1SP->circle_radius *
			 nominator_x *
			 reciprocal_denominator;
		value2 = plane1SP->circle_radius *
			 nominator_y *
			 reciprocal_denominator;
		if (value1 > value2) plane1SP->screen_a = value1;
		else plane1SP->screen_a = value2;

		/*------small half axis of the ellipse (stereo data):--------*/

		plane1SP->screen_b[imageI] = plane1SP->screen_a *
						 fabs (cos_theta);

		/* The minimal value should be one: */
		if (plane1SP->screen_b[imageI] < 1.0)
			plane1SP->screen_b[imageI] = 1.0;
		}

	/*------project the second plane:------------------------------------*/

	/* Stereo data should be prepared: */
	for (imageI = 0; imageI < imagesN; imageI++)
		{
		/*------prepare auxilliary parameters:-----------------------*/

		denominator = plane2SP->center_z[imageI] -
			      user_atomic_position;
		if (denominator == 0.0) reciprocal_denominator = 0.0;
		else reciprocal_denominator = 1.0 / denominator;
		normal_x = plane2SP->normal_x[imageI];
		normal_y = plane2SP->normal_y;
		normal_z = plane2SP->normal_z[imageI];

		/*------project plane center to the screen:------------------*/

		/* Prepare rationalized coordinates: */
		rationalized_x = plane2SP->center_x[imageI] *
				 nominator_x * reciprocal_denominator;
		rationalized_y = plane2SP->center_y *
				 nominator_y * reciprocal_denominator;

		/* Keep them in a reasonable range: */
		if      (rationalized_x > (double) INT_MAX / 4)
			 rationalized_x = (double) INT_MAX / 4;
		else if (rationalized_x < (double) INT_MIN / 4)
			 rationalized_x = (double) INT_MIN / 4;
		if      (rationalized_y > (double) INT_MAX / 4)
			 rationalized_y = (double) INT_MAX / 4;
		else if (rationalized_y < (double) INT_MIN / 4)
			 rationalized_y = (double) INT_MIN / 4;

		/* Prepare screen coordinates of the plane center: */
		plane2SP->center_screen_x[imageI] =
				(int) rationalized_x + center_screen_x[imageI];
		plane2SP->center_screen_y =
				(int) rationalized_y + center_screen_y;

		/*------angle between normal vector and z axis:--------------*/

		scalar_product = normal_z;
		abs_value_squared = normal_x * normal_x +
				    normal_y * normal_y +
				    normal_z * normal_z;
		abs_value = sqrt (abs_value_squared);
		if (abs_value == 0.0)
			{
			cos_theta = 0.0;
			plane2SP->normal_theta[imageI] = 1.5707963;
			}
		else
			{
			cos_theta = scalar_product / abs_value;
			if (cos_theta <= -1.0) angle = 3.1415927;
			else if (cos_theta >= 1.0) angle = 0.0;
			else angle = acos (cos_theta);
			plane2SP->normal_theta[imageI] = angle;
			}

		/*------visible side index (0 = top, 1 = bottom):------------*/

		if (cos_theta <= 0.0) plane2SP->visible_sideI[imageI] = 0;
		else plane2SP->visible_sideI[imageI] = 1;

		/*------angle between x and project. of n. v. to xy plane:---*/

		/* Prepare and check the cosine of normal_phi: */
		abs_value = sqrt (normal_x * normal_x + normal_y * normal_y);
		cos_phi = normal_x / abs_value;
		if (cos_phi >  1.0) cos_phi =  1.0;
		if (cos_phi < -1.0) cos_phi = -1.0;

		/* The special case (undefined phi): */
		if ((normal_x == 0.0) && (normal_y == 0.0))
			{
			plane2SP->normal_phi[imageI] = 0.0;
			}

		/* If y component of the normal vector is positive: */
		else if (normal_y >= 0.0)
			{
			if (cos_phi <= -1.0) angle = 3.1415927;
			else if (cos_phi >= 1.0) angle = 0.0;
			else angle = acos (cos_phi);
			plane2SP->normal_phi[imageI] = angle;
			}

		/* If y component of the normal vector is negative: */
		else
			{
			if (cos_phi <= -1.0) angle = 3.1415927;
			else if (cos_phi >= 1.0) angle = 0.0;
			else angle = acos (cos_phi);
			plane2SP->normal_phi[imageI] = 6.2831853 - angle;
			}

		/*------large half axis of the ellipse in screen units:------*/

		value1 = plane2SP->circle_radius *
			 nominator_x *
			 reciprocal_denominator;
		value2 = plane2SP->circle_radius *
			 nominator_y *
			 reciprocal_denominator;
		if (value1 > value2) plane2SP->screen_a = value1;
		else plane2SP->screen_a = value2;

		/*------small half axis of the ellipse (stereo data):--------*/

		plane2SP->screen_b[imageI] = plane2SP->screen_a *
						 fabs (cos_theta);

		/* The minimal value should be one: */
		if (plane2SP->screen_b[imageI] < 1.0)
			plane2SP->screen_b[imageI] = 1.0;
		}
	}
}

/*===========================================================================*/