1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270
|
"""
Node classes and factories used in ADQL tree processing.
"""
#c Copyright 2008-2020, the GAVO project
#c
#c This program is free software, covered by the GNU GPL. See the
#c COPYING file in the source distribution.
import fnmatch
import re
import weakref
from functools import reduce
from gavo import stc
from gavo import utils
from gavo.adql import common
from gavo.adql import fieldinfo
from gavo.adql import fieldinfos
from gavo.stc import tapstc
from gavo.utils import parsetricks
################ Various helpers
class ReplaceNode(utils.ExecutiveAction):
"""can be raised by code in the constructor of an ADQLNode to replace
itself.
It is constructed with the (single) ADQLNode that should stand in its
stead.
This is intended as a special service for ufuncs that want to insert
complex, annotatable expressions. I doubt this is something
we should do under other circumstances.
"""
def __init__(self, replacingNode):
self.replacingNode = replacingNode
def symbolAction(*symbols):
"""is a decorator to mark functions as being a parseAction for symbol.
This is evaluated by getADQLGrammar below. Be careful not to alter
global state in such a handler.
"""
def deco(func):
for symbol in symbols:
if hasattr(func, "parseActionFor"):
# plan for double decoration (so don't worry about no coverage)
func.parseActionFor.append(symbol)
else:
func.parseActionFor = [symbol]
func.fromParseResult = func
return func
return deco
def getType(arg):
"""returns the type of an ADQL node or the value of str if arg is a string.
"""
if isinstance(arg, str):
return str
else:
return arg.type
def flatten(arg):
"""returns the SQL serialized representation of arg.
"""
if isinstance(arg, str):
return arg
elif isinstance(arg, (int, float)):
return repr(arg)
elif isinstance(arg, parsetricks.ParseResults):
return " ".join(flatten(c) for c in arg)
# elif arg is None: import pdb;pdb.Pdb(nosigint=True).set_trace()
else:
return arg.flatten()
def autocollapse(nodeBuilder, children):
"""inhibts the construction via nodeBuilder if children consists of
a single ADQLNode.
This function will automatically be inserted into the the constructor
chain if the node defines an attribute collapsible=True.
"""
if len(children)==1 and isinstance(children[0], ADQLNode):
return children[0]
return nodeBuilder.fromParseResult(children)
def collectUserData(infoChildren):
userData, tainted = (), False
for c in infoChildren:
userData = userData+c.fieldInfo.userData
tainted = tainted or c.fieldInfo.tainted
return userData, tainted
def flattenKWs(obj, *fmtTuples):
"""returns a string built from the obj according to format tuples.
A format tuple is consists of a literal string, and
an attribute name. If the corresponding attribute is
non-None, the plain string and the flattened attribute
value are inserted into the result string, otherwise
both are ignored.
Nonexisting attributes are taken to have None values.
To allow unconditional literals, the attribute name can
be None. The corresponding literal is always inserted.
All contributions are separated by single blanks.
This is a helper method for flatten methods of parsed-out
elements.
"""
res = []
for literal, attName in fmtTuples:
if attName is None:
res.append(literal)
else:
if getattr(obj, attName, None) is not None:
if literal:
res.append(literal)
res.append(flatten(getattr(obj, attName)))
return " ".join(res)
def cleanNamespace(ns):
"""removes all names starting with an underscore from the dict ns.
This is intended for _getInitKWs methods. ns is changed in place *and*
returned for convenience
"""
return dict((k,v) for k,v in ns.items() if not k.startswith("_")
and k!="cls")
def getChildrenOfType(nodeSeq, type):
"""returns a list of children of type typ in the sequence nodeSeq.
"""
return [c for c in nodeSeq if getType(c)==type]
def getChildrenOfClass(nodeSeq, cls):
return [c for c in nodeSeq if isinstance(c, cls)]
class BOMB_OUT(object): pass
def _uniquify(matches, default, exArgs):
# helper method for getChildOfX -- see there
if len(matches)==0:
if default is not BOMB_OUT:
return default
raise common.NoChild(*exArgs)
if len(matches)!=1:
raise common.MoreThanOneChild(*exArgs)
return matches[0]
def getChildOfType(nodeSeq, type, default=BOMB_OUT):
"""returns the unique node of type in nodeSeq.
If there is no such node in nodeSeq or more than one, a NoChild or
MoreThanOneChild exception is raised, Instead of raising NoChild,
default is returned if given.
"""
return _uniquify(getChildrenOfType(nodeSeq, type),
default, (type, nodeSeq))
def getChildOfClass(nodeSeq, cls, default=BOMB_OUT):
"""returns the unique node of class in nodeSeq.
See getChildOfType.
"""
return _uniquify(getChildrenOfClass(nodeSeq, cls),
default, (cls, nodeSeq))
def parseArgs(parseResult):
"""returns a sequence of ADQL nodes suitable as function arguments from
parseResult.
This is for cleaning up _parseResults["args"], i.e. stuff from the
Args symbol decorator in grammar.
"""
args = []
for _arg in parseResult:
# _arg is either another ParseResult, an ADQL identifier, or an ADQLNode
if isinstance(_arg, (ADQLNode, str, utils.QuotedName)):
args.append(_arg)
else:
args.append(autocollapse(GenericValueExpression, _arg))
return tuple(args)
######################### Misc helpers related to simple query planning
def _getDescendants(args):
"""returns the nodes in the sequence args and all their descendants.
This is a helper function for when you have to analyse what's contributing
to complex terms.
"""
descendants = list(args)
for arg in args:
if hasattr(arg, "iterTree"):
descendants.extend(c[1] for c in arg.iterTree())
return descendants
def iterFieldInfos(args):
"""returns fieldInfo objects found within the children of the node list
args.
"""
for desc in _getDescendants(args):
if getattr(desc, "fieldInfo", None) is not None:
yield desc.fieldInfo
def _isConstant(args):
"""returns true if no columnReference-s are found below the node list args.
"""
for desc in _getDescendants(args):
if getattr(desc, "type", None)=="columnReference":
return False
return True
def _estimateTableSize(args):
"""returns an estimate for the size of a table mentioned in the node list
args.
Actually, we wait for the first column in fieldInfo userdata that has
a reference to a table that knows its nrows. If that comes, that's
our estimate. If it doesn't come, we return None.
"""
for fi in iterFieldInfos(args):
for ud in fi.userData:
sizeEst = getattr(ud.parent, "nrows", None)
if sizeEst is not None:
return sizeEst
return None
def _sortLargeFirst(arg1, arg2):
"""returns arga, argb such that arga deals with the larger table
if we can figure that out.
This is for distance; postgres in general only uses an index for them if the
point stands alone (rather than in the circle). So, it normally pays to have
the larger table first in our expressions (which are point op geom where
applicable).
This will also swap constant arguments second (so, into the circle).
"""
if _isConstant([arg1]):
return arg2, arg1
if _isConstant([arg2]):
return arg1, arg2
size1, size2 = _estimateTableSize([arg1]), _estimateTableSize([arg2])
if size1 is None:
if size2 is None:
# we know nothing; don't change anything to keep the user in control
return arg1, arg2
else:
# we assume all large tables are nrows-annotated, so presumably
# arg1 isn't large. So, swap.
return arg2, arg1
else:
if size2 is None:
# see one comment up
return arg1, arg2
else:
if size1>size2:
return arg1, arg2
else:
return arg2, arg1
######################### Generic Node definitions
class ADQLNode(utils.AutoNode):
"""A node within an ADQL parse tree.
ADQL nodes may be parsed out; in that case, they have individual attributes
and are craftily flattened in special methods. We do this for nodes
that are morphed.
Other nodes basically just have a children attribute, and their flattening
is just a concatenation for their flattened children. This is convenient
as long as they are not morphed.
To derive actual classes, define
- the _a_<name> class attributes you need,
- the type (a nonterminal from the ADQL grammar)
- plus bindings if the class handles more than one symbol,
- a class method _getInitKWs(cls, parseResult); see below.
- a method flatten() -> string if you define a parsed ADQLNode.
- a method _polish() that is called just before the constructor is
done and can be used to create more attributes. There is no need
to call _polish of superclasses.
The _getInitKWs methods must return a dictionary mapping constructor argument
names to values. You do not need to manually call superclass _getInitKWs,
since the fromParseResult classmethod figures out all _getInitKWs in the
inheritance tree itself. It calls all of them in the normal MRO and updates
the argument dictionary in reverse order.
The fromParseResult class method additionally filters out all names starting
with an underscore; this is to allow easy returning of locals().
"""
type = None
@classmethod
def fromParseResult(cls, parseResult):
initArgs = {}
for superclass in reversed(cls.mro()):
if hasattr(superclass, "_getInitKWs"):
initArgs.update(superclass._getInitKWs(parseResult))
try:
return cls(**cleanNamespace(initArgs))
except TypeError:
raise common.BadKeywords("%s, %s"%(cls, cleanNamespace(initArgs)))
except ReplaceNode as rn:
return rn.replacingNode
def _setupNode(self):
for cls in reversed(self.__class__.mro()):
if hasattr(cls, "_polish"):
cls._polish(self)
self._setupNodeNext(ADQLNode)
def __repr__(self):
return "<ADQL Node %s>"%(self.type)
def flatten(self):
"""returns a string representation of the text content of the tree.
This default implementation will only work if you returned all parsed
elements as children. This, in turn, is something you only want to
do if you are sure that the node is question will not be morphed.
Otherwise, override it to create an SQL fragment out of the parsed
attributes.
"""
return " ".join(flatten(c) for c in self.children)
def asTree(self):
res = []
for name, val in self.iterChildren():
if isinstance(val, ADQLNode):
res.append(val.asTree())
return self._treeRepr()+tuple(res)
def _treeRepr(self):
return (self.type,)
def iterTree(self):
for name, val in self.iterChildren():
if isinstance(val, ADQLNode):
for item in val.iterTree():
yield item
yield name, val
class TransparentMixin(object):
"""a mixin just pulling through the children and serializing them.
"""
_a_children = ()
@classmethod
def _getInitKWs(cls, _parseResult):
return {"children": list(_parseResult)}
class FieldInfoedNode(ADQLNode):
"""An ADQL node that carries a FieldInfo.
This is true for basically everything in the tree below a derived
column. This class is the basis for column annotation.
You'll usually have to override addFieldInfo. The default implementation
just looks in its immediate children for anything having a fieldInfo,
and if there's exactly one such child, it adopts that fieldInfo as
its own, not changing anything.
FieldInfoedNode, when change()d, keep their field info. This is usually
what you want when morphing, but sometimes you might need adjustments.
"""
fieldInfo = None
def _getInfoChildren(self):
return [c for c in self.iterNodeChildren() if hasattr(c, "fieldInfo")]
def addFieldInfo(self, context):
infoChildren = self._getInfoChildren()
if len(infoChildren)==1:
self.fieldInfo = infoChildren[0].fieldInfo
else:
if len(infoChildren):
msg = "More than one"
else:
msg = "No"
raise common.Error("%s child with fieldInfo with"
" no behaviour defined in %s, children %s"%(
msg,
self.__class__.__name__,
list(self.iterChildren())))
def change(self, **kwargs):
other = ADQLNode.change(self, **kwargs)
other.fieldInfo = self.fieldInfo
return other
class FunctionNode(FieldInfoedNode):
"""An ADQLNodes having a function name and arguments.
The rules having this as action must use the Arg "decorator" in
grammar.py around their arguments and must have a string-valued
result "fName".
FunctionNodes have attributes args (unflattened arguments),
and funName (a string containing the function name, all upper
case).
"""
_a_args = ()
_a_funName = None
@classmethod
def _getInitKWs(cls, _parseResult):
try:
args = parseArgs(_parseResult["args"]) #noflake: locals returned
except KeyError: # Zero-Arg function
pass
funName = _parseResult["fName"].upper() #noflake: locals returned
return locals()
def flatten(self):
return "%s(%s)"%(self.funName, ", ".join(flatten(a) for a in self.args))
class ColumnBearingNode(ADQLNode):
"""A Node types defining selectable columns.
These are tables, subqueries, etc. This class is the basis for the
annotation of tables and subqueries.
Their getFieldInfo(name)->fi method gives annotation.FieldInfos
objects for their columns, None for unknown columns.
These keep their fieldInfos on a change()
"""
fieldInfos = None
originalTable = None
def getFieldInfo(self, name):
if self.fieldInfos:
return self.fieldInfos.getFieldInfo(name)
def getAllNames(self): # pragma: no cover
"""yields all relation names mentioned in this node.
"""
raise TypeError("Override getAllNames for ColumnBearingNodes.")
def change(self, **kwargs):
other = ADQLNode.change(self, **kwargs)
other.fieldInfos = self.fieldInfos
return other
############# Toplevel query language node types (for query analysis)
class TableName(ADQLNode):
type = "tableName"
_a_cat = None
_a_schema = None
_a_name = None
def __eq__(self, other):
if hasattr(other, "qName"):
return self.qName.lower()==other.qName.lower()
try:
return self.qName.lower()==other.lower()
except AttributeError:
# other has no lower, so it's neither a string nor a table name;
# thus, fall through to non-equal case
pass
return False
def __ne__(self, other):
return not self==other
def __bool__(self):
return bool(self.name)
def __str__(self):
return "TableName(%s)"%self.qName
def _polish(self):
# Implementation detail: We map tap_upload to temporary tables
# here; therefore, we can just nil out anything called tap_upload.
# If we need more flexibility, this probably is the place to implement
# the mapping.
if self.schema and self.schema.lower()=="tap_upload":
self.schema = None
self.qName = ".".join(flatten(n)
for n in (self.cat, self.schema, self.name) if n)
@classmethod
def _getInitKWs(cls, _parseResult):
_parts = _parseResult[::2]
cat, schema, name = [None]*(3-len(_parts))+_parts
return locals()
def flatten(self):
return self.qName
def lower(self):
"""returns self's qualified name in lower case.
"""
return self.qName.lower()
@staticmethod
def _normalizePart(part):
if isinstance(part, utils.QuotedName):
return part.name
else:
return part.lower()
def getNormalized(self):
"""returns self's qualified name lowercased for regular identifiers,
in original capitalisation otherwise.
"""
return ".".join(self._normalizePart(p)
for p in [self.cat, self.schema, self.name]
if p is not None)
class PlainTableRef(ColumnBearingNode):
"""A reference to a simple table.
The tableName is the name this table can be referenced as from within
SQL, originalName is the name within the database; they are equal unless
a correlationSpecification has been given.
"""
type = "possiblyAliasedTable"
_a_tableName = None # a TableName instance
_a_originalTable = None # a TableName instance
_a_sampling = None
@classmethod
def _getInitKWs(cls, _parseResult):
if _parseResult.get("alias"):
tableName = TableName(name=_parseResult.get("alias"))
originalTable = _parseResult.get("tableName")
else:
tableName = getChildOfType(_parseResult, "tableName")
originalTable = tableName #noflake: locals returned
if _parseResult.get("tablesample"):
sampling = float(_parseResult.get("tablesample")[2])
return locals()
def addFieldInfos(self, context):
self.fieldInfos = fieldinfos.TableFieldInfos.makeForNode(self, context)
def _polish(self):
self.qName = flatten(self.tableName)
def flatten(self):
ot = flatten(self.originalTable)
if ot!=self.qName:
literal = "%s AS %s"%(ot, flatten(self.tableName))
else:
literal = self.qName
if self.sampling:
# TODO: Postgres dependency; this should be in morphpg
literal = "%s TABLESAMPLE SYSTEM (%s)"%(literal, self.sampling)
return literal
def getAllNames(self):
yield self.tableName.qName
def getAllTables(self):
yield self
def makeUpId(self):
# for suggestAName
n = self.tableName.name
if isinstance(n, utils.QuotedName):
return "_"+re.sub("[^A-Za-z0-9_]", "", n.name)
else:
return n
class DerivedTable(ColumnBearingNode):
type = "derivedTable"
_a_query = None
_a_tableName = None
def getFieldInfo(self, name):
return self.query.getFieldInfo(name)
def _get_fieldInfos(self):
return self.query.fieldInfos
def _set_fieldInfos(self, val):
self.query.fieldInfos = val
fieldInfos = property(_get_fieldInfos, _set_fieldInfos)
@classmethod
def _getInitKWs(cls, _parseResult):
tmp = {'tableName': TableName(name=str(_parseResult.get("alias"))),
'query': getChildOfClass(_parseResult, SelectQuery),
}
return tmp
def flatten(self):
return "(%s) AS %s"%(flatten(self.query), flatten(self.tableName))
def getAllNames(self):
yield self.tableName.qName
def getAllTables(self):
yield self
def makeUpId(self):
# for suggestAName
n = self.tableName.name
if isinstance(n, utils.QuotedName):
return "_"+re.sub("[^A-Za-z0-9_]", "", n.name)
else:
return n
class SetGeneratingFunction(ColumnBearingNode, TransparentMixin):
"""a function that can stand instead of a table.
For starters, we only do generate_series here. Let's see where this
leads.
"""
type = "setGeneratingFunction"
_a_functionName = None
_a_args = None
_a_name = None # name is both the name of the column and the "table"
# here. This will come from a correlationSpec where
# available. It's generate_series otherwise.
@classmethod
def _getInitKWs(cls, _parseResult):
functionName = _parseResult[0]
# TODO: We really should allow more than two arguments here
args = [_parseResult[2], _parseResult[4]]
name = _parseResult.get("alias")
if name is None:
name = functionName
return locals()
def _polish(self):
self.tableName = self.name
def getFieldInfo(self, name):
return self.fieldInfos.getFieldInfo(name)
def getAllTables(self):
yield self
def addFieldInfos(self, context):
# TODO: Infer types from argument types
fieldinfos.FieldInfos(self, context)
self.fieldInfos.addColumn(self.name,
fieldinfo.FieldInfo("integer", None, None, sqlName=self.name))
def getAllNames(self):
yield self.name
def makeUpId(self):
return self.name
class JoinSpecification(ADQLNode, TransparentMixin):
"""A join specification ("ON" or "USING").
"""
type = "joinSpecification"
_a_children = ()
_a_predicate = None
_a_usingColumns = ()
@classmethod
def _getInitKWs(cls, _parseResult):
predicate = _parseResult[0].upper()
if predicate=="USING":
usingColumns = [ #noflake: locals returned
n for n in _parseResult["columnNames"] if n!=',']
children = list(_parseResult) #noflake: locals returned
return locals()
class JoinOperator(ADQLNode, TransparentMixin):
"""the complete join operator (including all LEFT, RIGHT, ",", and whatever).
"""
type = "joinOperator"
def isCrossJoin(self):
return self.children[0] in (',', 'CROSS')
class JoinedTable(ColumnBearingNode):
"""A joined table.
These aren't made directly by the parser since parsing a join into
a binary structure is very hard using pyparsing. Instead, there's
the helper function makeJoinedTableTree handling the joinedTable
symbol that manually creates a binary tree.
"""
type = None
originalTable = None
tableName = TableName()
qName = None
_a_leftOperand = None
_a_operator = None
_a_rightOperand = None
_a_joinSpecification = None
@classmethod
def _getInitKWs(cls, _parseResult):
leftOperand = _parseResult[0] #noflake: locals returned
operator = _parseResult[1] #noflake: locals returned
rightOperand = _parseResult[2] #noflake: locals returned
if len(_parseResult)>3:
joinSpecification = _parseResult[3] #noflake: locals returned
return locals()
def flatten(self):
js = ""
if self.joinSpecification is not None:
js = flatten(self.joinSpecification)
return "%s %s %s %s"%(
self.leftOperand.flatten(),
self.operator.flatten(),
self.rightOperand.flatten(),
js)
def addFieldInfos(self, context):
self.fieldInfos = fieldinfos.TableFieldInfos.makeForNode(self, context)
def _polish(self):
self.joinedTables = [self.leftOperand, self.rightOperand]
def getAllNames(self):
"""iterates over all fully qualified table names mentioned in this
(possibly joined) table reference.
"""
for t in self.joinedTables:
yield t.tableName.qName
def getTableForName(self, name):
return self.fieldInfos.locateTable(name)
def makeUpId(self):
# for suggestAName
return "_".join(t.makeUpId() for t in self.joinedTables)
def getJoinType(self):
"""returns a keyword indicating how result rows are formed in this
join.
This can be NATURAL (all common columns are folded into one),
USING (check the joinSpecification what columns are folded),
CROSS (no columns are folded).
"""
if self.operator.isCrossJoin():
if self.joinSpecification is not None:
raise common.Error("Cannot use cross join with a join predicate.")
return "CROSS"
if self.joinSpecification is not None:
if self.joinSpecification.predicate=="USING":
return "USING"
if self.joinSpecification.predicate=="ON":
return "CROSS"
return "NATURAL"
def getAllTables(self):
"""returns all actual tables and subqueries (not sub-joins)
within this join.
"""
res = []
def collect(node):
if hasattr(node.leftOperand, "leftOperand"):
collect(node.leftOperand)
else:
res.append(node.leftOperand)
if hasattr(node.rightOperand, "leftOperand"):
collect(node.rightOperand)
else:
res.append(node.rightOperand)
collect(self)
return res
class SubJoin(ADQLNode):
"""A sub join (JoinedTable surrounded by parens).
The parse result is just the parens and a joinedTable; we need to
camouflage as that joinedTable.
"""
type = "subJoin"
_a_joinedTable = None
@classmethod
def _getInitKWs(cls, _parseResult):
return {"joinedTable": _parseResult[1]}
def flatten(self):
return "("+self.joinedTable.flatten()+")"
def __getattr__(self, attName):
return getattr(self.joinedTable, attName)
@symbolAction("joinedTable")
def makeBinaryJoinTree(children):
"""takes the parse result for a join and generates a binary tree of
JoinedTable nodes from it.
It's much easier to do this in a separate step than to force a
non-left-recursive grammar to spit out the right parse tree in the
first place.
"""
children = list(children)
while len(children)>1:
if len(children)>3 and isinstance(children[3], JoinSpecification):
exprLen = 4
else:
exprLen = 3
args = children[:exprLen]
children[:exprLen] = [JoinedTable.fromParseResult(args)]
return children[0]
class TransparentNode(ADQLNode, TransparentMixin):
"""An abstract base for Nodes that don't parse out anything.
"""
type = None
class WhereClause(TransparentNode):
type = "whereClause"
class Grouping(TransparentNode):
type = "groupByClause"
class Having(TransparentNode):
type = "havingClause"
class OrderBy(TransparentNode):
type = "sortSpecification"
class OffsetSpec(ADQLNode):
type = "offsetSpec"
_a_offset = None
@classmethod
def _getInitKWs(cls, _parseResult):
return {"offset": int(_parseResult[1])}
def flatten(self):
if self.offset is not None:
# for morphpg, this never happens because _PGQS deals with it
# (and sets self.offset to None).
return "OFFSET %d"%self.offset
return ""
class SelectNoParens(ColumnBearingNode):
type = "selectNoParens"
_a_setQuantifier = None
_a_setLimit = None
_a_selectList = None
_a_fromClause = None
_a_whereClause = None
_a_groupby = None
_a_having = None
_a_orderBy = None
def _polish(self):
self.query = weakref.proxy(self)
@classmethod
def _getInitKWs(cls, _parseResult):
res = {}
for name in ["setQuantifier", "setLimit", "fromClause",
"whereClause", "groupby", "having", "orderBy"]:
res[name] = _parseResult.get(name)
res["selectList"] = getChildOfType(_parseResult, "selectList")
return res
def _iterSelectList(self):
for f in self.selectList.selectFields:
if isinstance(f, DerivedColumn):
yield f
elif isinstance(f, QualifiedStar):
for sf in self.fromClause.getFieldsForTable(f.sourceTable):
yield sf
else:
raise common.Error("Unexpected %s in select list"%getType(f))
def getSelectFields(self):
if self.selectList.allFieldsQuery:
return self.fromClause.getAllFields()
else:
return self._iterSelectList()
def addFieldInfos(self, context):
self.fieldInfos = fieldinfos.QueryFieldInfos.makeForNode(self, context)
def resolveField(self, fieldName):
return self.fromClause.resolveField(fieldName)
def getAllNames(self):
return self.fromClause.getAllNames()
def flatten(self):
return flattenKWs(self, ("SELECT", None),
("", "setQuantifier"),
("TOP", "setLimit"),
("", "selectList"),
("", "fromClause"),
("", "whereClause"),
("", "groupby"),
("", "having"),
("", "orderBy"))
def suggestAName(self):
"""returns a string that may or may not be a nice name for a table
resulting from this query.
Whatever is being returned here, it's a regular SQL identifier.
"""
try:
sources = [tableRef.makeUpId()
for tableRef in self.fromClause.getAllTables()]
if sources:
return "_".join(sources)
else:
return "query_result"
except: # should not happen, but we don't want to bomb from here
import traceback;traceback.print_exc()
return "weird_table_report_this"
def getContributingNames(self):
"""returns a set of table names mentioned below this node.
"""
names = set()
for name, val in self.iterTree():
if isinstance(val, TableName):
names.add(val.flatten())
return names
class SetOperationNode(ColumnBearingNode, TransparentMixin):
"""A node containing a set expression.
This is UNION, INTERSECT, or EXCEPT. In all cases, we need to check
all contributing sub-expressions have compatible degree. For now,
in violation of SQL1992, we require identical names on all operands --
sql92 in 7.10 says
[if column names are unequal], the <column name> of the i-th column of TR
is implementation-dependent and different from the <column name> of any
column, other than itself, of any table referenced by any <table reference>
contained in the SQL-statement.
Yikes.
These collapse to keep things simple in the typical case.
"""
def _assertFieldInfosCompatible(self):
"""errors out if operands have incompatible signatures.
For convenience, if all are compatible, the common signature (ie,
fieldInfos) is returned.
"""
fieldInfos = None
for child in self.children:
# Skip WithQueries -- they're not part of set operations.
if hasattr(child, "fieldInfos") and not isinstance(child, WithQuery):
if fieldInfos is None:
fieldInfos = child.fieldInfos
else:
fieldInfos.assertIsCompatible(child.fieldInfos)
return fieldInfos
def addFieldInfos(self, context):
self.fieldInfos = self._assertFieldInfosCompatible()
def getAllNames(self):
for index, child in enumerate(self.children):
if hasattr(child, "getAllNames"):
for name in child.getAllNames():
yield name
elif hasattr(child, "suggestAName"):
yield child.suggestAName()
else: # pragma: no cover
assert False, "no name"
def getSelectClauses(self):
for child in self.children:
for sc in getattr(child, "getSelectClauses", lambda: [])():
yield sc
if hasattr(child, "setLimit"):
yield child
class SetTerm(SetOperationNode):
type = "setTerm"
collapsible = True
class WithQuery(SetOperationNode):
"""A query from a with clause.
This essentially does everything a table does.
"""
type = "withQuery"
def _polish(self):
self.name = self.children[0]
for c in self.children:
# this should be a selectQuery, but this we want to be sure
# we don't fail when morphers replace the main query node
# (as the pg morpher does)
if hasattr(c, "setLimit"):
self.select = c
break
else: # pragma: no cover
raise NotImplementedError("WithQuery without select?")
class SelectQuery(SetOperationNode):
"""A complete query excluding CTEs.
The main ugly thing here is the set limit; the querySpecification has
max of the limits of the children, if existing, otherwise to None.
Other than that, we hand through attribute access to our first child.
If there is a set expression on the top level, this will have a complex
structure; the first-child thing still ought to work since after
annotation we'll have errored out if set operator arguments aren't
reasonably congurent.
"""
type = "selectQuery"
_a_setLimit = None
_a_offset= None
def getSelectClauses(self):
for child in self.children:
for sc in getattr(child, "getSelectClauses", lambda: [])():
yield sc
if hasattr(child, "setLimit"):
yield child
def _polish(self):
if self.setLimit is None:
limits = [selectClause.setLimit
for selectClause in self.getSelectClauses()]
limits = [int(s) for s in limits if s]
if limits:
self.setLimit = max(limits)
for child in self.children:
if isinstance(child, OffsetSpec) and child.offset is not None:
self.offset = child.offset
child.offset = None
def __getattr__(self, attrName):
return getattr(self.children[0], attrName)
class QuerySpecification(TransparentNode):
"""The toplevel query objects including CTEs.
Apart from any CTEs, that's just a SelectQuery (which is always the last
child), and we hand through essentially all attribute access to it.
"""
type = "querySpecification"
def _polish(self):
self.withTables = []
for child in self.children:
if isinstance(child, WithQuery):
self.withTables.append(child)
def _setSetLimit(self, val):
self.children[-1].setLimit = val
def _getSetLimit(self):
return self.children[-1].setLimit
setLimit = property(_getSetLimit, _setSetLimit)
def __getattr__(self, attrName):
return getattr(self.children[-1], attrName)
class ColumnReference(FieldInfoedNode):
# normal column references will be handled by the dispatchColumnReference
# function below, hence the binding is missing here.
type = "columnReference"
bindings = ["geometryValue"]
_a_refName = None # if given, a TableName instance
_a_name = None
def _polish(self):
if not self.refName:
self.refName = None
self.colName = ".".join(
flatten(p) for p in (self.refName, self.name) if p)
@classmethod
def _getInitKWs(cls, _parseResult):
names = [_c for _c in _parseResult if _c!="."]
names = [None]*(4-len(names))+names
refName = TableName(cat=names[0],
schema=names[1],
name=names[2])
if not refName:
refName = None
return {
"name": names[-1],
"refName": refName}
def addFieldInfo(self, context):
self.fieldInfo = context.getFieldInfo(self.name, self.refName)
srcColumn = None
if self.fieldInfo.userData:
srcColumn = self.fieldInfo.userData[0]
if hasattr(srcColumn, "originalName"):
# This is a column from a VOTable upload we have renamed to avoid
# clashes with postgres-reserved column names. Update the name
# so the "bad" name doesn't apprear in the serialised query.
if not isinstance(self.name, utils.QuotedName):
self.name = srcColumn.name
self._polish()
def flatten(self):
if self.fieldInfo and self.fieldInfo.sqlName:
return ".".join(
flatten(p) for p in (self.refName, self.fieldInfo.sqlName) if p)
return self.colName
def _treeRepr(self):
return (self.type, self.name)
class ColumnReferenceByUCD(ColumnReference):
# these are tricky: As, when parsing, we don't know where the columns
# might come from, we have to
type = "columnReferenceByUCD"
bindings = ["columnReferenceByUCD"]
_a_ucdWanted = None
@classmethod
def _getInitKWs(cls, _parseResult):
return {
"ucdWanted": _parseResult[2].value,
"name": utils.Undefined,
"refName": utils.Undefined}
def addFieldInfo(self, context):
# I've not really thought about where these might turn up.
# Hence, I just heuristically walk up the ancestor stack
# until I find a from clause. TODO: think about if that's valid.
for ancestor in reversed(context.ancestors):
if hasattr(ancestor, "fromClause"):
break
else:
raise common.Error("UCDCOL outside of query specification with FROM")
for field in ancestor.fromClause.getAllFields():
if fnmatch.fnmatch(field.fieldInfo.ucd, self.ucdWanted):
self.fieldInfo = field.fieldInfo
self.name = self.colName = field.name
self.refName = None
break
else:
raise utils.NotFoundError(self.ucdWanted, "column matching ucd",
"from clause")
@symbolAction("columnReference")
def dispatchColumnReference(parseResult):
# this dispatch is there so ColumnReference is not bothered
# by the by-UCD hack in the normal case. It should go if we
# punt UCDCOL, and the columnReference binding should then go
# back to ColumnReference
if len(parseResult)==1 and isinstance(parseResult[0], ColumnReferenceByUCD):
return parseResult[0]
else:
return ColumnReference.fromParseResult(parseResult)
class FromClause(ADQLNode):
type = "fromClause"
_a_tableReference = ()
_a_tables = ()
@classmethod
def _getInitKWs(cls, parseResult):
parseResult = list(parseResult)
if len(parseResult)==1:
tableReference = parseResult[0]
else:
# it's a cross join; to save repeating the logic, we'll
# just build an artificial join as the table reference
tableReference = reduce(lambda left, right:
JoinedTable(
leftOperand=left,
operator=JoinOperator(children=[","]),
rightOperand=right), parseResult)
return {
"tableReference": tableReference,
"tables": parseResult}
def flatten(self):
return "FROM %s"%(' , '.join(t.flatten() for t in self.tables))
def getAllNames(self):
"""returns the names of all tables taking part in this from clause.
"""
return self.tableReference.getAllNames()
def resolveField(self, name):
return self.tableReference.getFieldInfo(name)
def _makeColumnReference(self, sourceTableName, colPair):
"""returns a ColumnReference object for a name, colInfo pair from a
table's fieldInfos.
"""
cr = ColumnReference(name=colPair[0], refName=sourceTableName)
cr.fieldInfo = colPair[1]
return cr
def getAllFields(self):
"""returns all fields from all tables in this FROM.
These will be qualified names. Columns taking part in joins are
resolved here.
This will only work for annotated tables.
"""
res = []
commonColumns = common.computeCommonColumns(self.tableReference)
commonColumnsMade = set()
for table in self.getAllTables():
for label, fi in table.fieldInfos.seq:
if label in commonColumns:
if label not in commonColumnsMade:
res.append(self._makeColumnReference(
None, (label, fi)))
commonColumnsMade.add(label)
else:
res.append(self._makeColumnReference(
table.tableName, (label, fi)))
return res
def getFieldsForTable(self, srcTableName):
"""returns the fields in srcTable.
srcTableName is a TableName.
"""
if fieldinfos.tableNamesMatch(self.tableReference, srcTableName):
table = self.tableReference
else:
table = self.tableReference.fieldInfos.locateTable(srcTableName)
return [self._makeColumnReference(table.tableName, ci)
for ci in table.fieldInfos.seq]
def getAllTables(self):
return self.tableReference.getAllTables()
class DerivedColumn(FieldInfoedNode):
"""A column within a select list.
"""
type = "derivedColumn"
_a_expr = None
_a_alias = None
_a_tainted = True
def _polish(self):
if getType(self.expr)=="columnReference":
self.tainted = False
@property
def name(self):
# todo: be a bit more careful here to come up with meaningful
# names (users don't like the funny names). Also: do
# we make sure somewhere we're getting unique names?
if self.alias is not None:
return self.alias
elif hasattr(self.expr, "name"):
return self.expr.name
else:
return utils.intToFunnyWord(id(self))
@classmethod
def _getInitKWs(cls, _parseResult):
expr = _parseResult["expr"] #noflake: locals returned
alias = _parseResult.get("alias") #noflake: locals returned
return locals()
def flatten(self):
return flattenKWs(self,
("", "expr"),
("AS", "alias"))
def _treeRepr(self):
return (self.type, self.name)
class QualifiedStar(ADQLNode):
type = "qualifiedStar"
_a_sourceTable = None # A TableName for the column source
@classmethod
def _getInitKWs(cls, _parseResult):
parts = _parseResult[:-2:2] # kill dots and star
cat, schema, name = [None]*(3-len(parts))+parts
return {"sourceTable": TableName(cat=cat, schema=schema, name=name)}
def flatten(self):
return "%s.*"%flatten(self.sourceTable)
class SelectList(ADQLNode):
type = "selectList"
_a_selectFields = ()
_a_allFieldsQuery = False
@classmethod
def _getInitKWs(cls, _parseResult):
allFieldsQuery = _parseResult.get("starSel", False)
if allFieldsQuery:
# Will be filled in by query, we don't have the from clause here.
selectFields = None #noflake: locals returned
else:
selectFields = list(_parseResult.get("fieldSel")) #noflake: locals returned
return locals()
def flatten(self):
if self.allFieldsQuery:
return self.allFieldsQuery
else:
return ", ".join(flatten(sf) for sf in self.selectFields)
######## all expression parts we need to consider when inferring units and such
class Comparison(ADQLNode):
"""is required when we want to morph the braindead contains(...)=1 into
a true boolean function call.
"""
type = "comparisonPredicate"
_a_op1 = None
_a_opr = None
_a_op2 = None
@classmethod
def _getInitKWs(cls, _parseResult):
op1, opr, op2 = _parseResult #noflake: locals returned
return locals()
def flatten(self):
return "%s %s %s"%(flatten(self.op1), self.opr, flatten(self.op2))
def _guessNumericType(literal):
"""returns a guess for a type suitable to hold a numeric value given in
literal.
I don't want to pull through the literal symbol that matched
from grammar in all cases. Thus, at times I simply guess the type
(and yes, I'm aware that -32768 still is a smallint).
"""
try:
val = int(literal)
if abs(val)<32767:
type = "smallint"
elif abs(val)<2147483648:
type = "integer"
else:
type = "bigint"
except ValueError:
type = "double precision"
return type
class Factor(FieldInfoedNode, TransparentMixin):
"""is a factor within an SQL expression.
factors may have only one (direct) child with a field info and copy
this. They can have no child with a field info, in which case they're
simply numeric (about the weakest assumption: They're doubles).
"""
type = "factor"
collapsible = True
def addFieldInfo(self, context):
infoChildren = self._getInfoChildren()
if infoChildren:
assert len(infoChildren)==1
self.fieldInfo = infoChildren[0].fieldInfo
else:
self.fieldInfo = fieldinfo.FieldInfo(
_guessNumericType("".join(self.children)), "", "")
class ArrayReference(FieldInfoedNode, TransparentMixin):
type = "arrayReference"
collapsible = False
def addFieldInfo(self, context):
infoChild = self.children[0]
childInfo = infoChild.fieldInfo
if childInfo.type is None:
raise common.Error("Cannot subscript a typeless thing in %s"%(
self.flatten()))
lastSubscript = re.search("\[[0-9]*\]$", childInfo.type)
if lastSubscript is None:
raise common.Error("Cannot subscript a non-array in %s"%(
self.flatten()))
self.fieldInfo = fieldinfo.FieldInfo(
childInfo.type[:lastSubscript.start()],
childInfo.unit,
childInfo.ucd,
childInfo.userData,
tainted=True # array might actually have semantics
)
class CombiningFINode(FieldInfoedNode):
def addFieldInfo(self, context):
infoChildren = self._getInfoChildren()
if not infoChildren:
if len(self.children)==1:
# probably a naked numeric literal in the grammar, e.g.,
# in mathFunction
self.fieldInfo = fieldinfo.FieldInfo(
_guessNumericType(self.children[0]), "", "")
else:
raise common.Error("Oops -- did not expect '%s' when annotating %s"%(
"".join(self.children), self))
elif len(infoChildren)==1:
self.fieldInfo = infoChildren[0].fieldInfo
else:
self.fieldInfo = self._combineFieldInfos()
class Term(CombiningFINode, TransparentMixin):
type = "term"
collapsible = True
def _combineFieldInfos(self):
# These are either multiplication or division
toDo = self.children[:]
opd1 = toDo.pop(0)
fi1 = opd1.fieldInfo
while toDo:
opr = toDo.pop(0)
fi1 = fieldinfo.FieldInfo.fromMulExpression(opr, fi1,
toDo.pop(0).fieldInfo)
return fi1
class NumericValueExpression(CombiningFINode, TransparentMixin):
type = "numericValueExpression"
collapsible = True
def _combineFieldInfos(self):
# These are either addition or subtraction
toDo = self.children[:]
fi1 = toDo.pop(0).fieldInfo
while toDo:
opr = toDo.pop(0)
fi1 = fieldinfo.FieldInfo.fromAddExpression(
opr, fi1, toDo.pop(0).fieldInfo)
return fi1
class StringValueExpression(FieldInfoedNode, TransparentMixin):
type = "stringValueExpression"
collapsible = True
def addFieldInfo(self, context):
# This is concatenation; we treat is as if we'd be adding numbers
infoChildren = self._getInfoChildren()
if infoChildren:
fi1 = infoChildren.pop(0).fieldInfo
if fi1.type=="unicode":
baseType = "unicode"
else:
baseType = "text"
while infoChildren:
if infoChildren[0].fieldInfo.type=="unicode":
baseType = "unicode"
fi1 = fieldinfo.FieldInfo.fromAddExpression(
"+", fi1, infoChildren.pop(0).fieldInfo, forceType=baseType)
self.fieldInfo = fi1
else:
self.fieldInfo = fieldinfo.FieldInfo(
"text", "", "")
class GenericValueExpression(CombiningFINode, TransparentMixin):
"""A container for value expressions that we don't want to look at
closer.
It is returned by the makeValueExpression factory below to collect
stray children.
"""
type = "valueExpression"
collapsible = True
def _combineFieldInfos(self):
# we don't really know what these children are. Let's just give up
# unless all child fieldInfos are more or less equal (which of course
# is a wild guess).
childUnits, childUCDs = set(), set()
infoChildren = self._getInfoChildren()
for c in infoChildren:
childUnits.add(c.fieldInfo.unit)
childUCDs.add(c.fieldInfo.ucd)
if len(childUnits)==1 and len(childUCDs)==1:
# let's taint the first info and be done with it
return infoChildren[0].fieldInfo.change(tainted=True)
else:
# if all else fails: let's hope someone can make a string from it
return fieldinfo.FieldInfo("text", "", "")
@symbolAction("valueExpression")
def makeValueExpression(children):
if len(children)!=1:
res = GenericValueExpression.fromParseResult(children)
res.type = "valueExpression"
return res
else:
return children[0]
class SetFunction(TransparentMixin, FieldInfoedNode):
"""An aggregate function.
These typically amend the ucd by a word from the stat family and copy
over the unit. There are exceptions, however, see table in class def.
"""
type = "setFunctionSpecification"
funcDefs = {
'AVG': ('%s;stat.mean', None, "double precision"),
'MAX': ('%s;stat.max', None, None),
'MIN': ('%s;stat.min', None, None),
'SUM': (None, None, None),
'COUNT': ('meta.number;%s', '', "integer"),}
def addFieldInfo(self, context):
funcName = self.children[0].upper()
ucdPref, newUnit, newType = self.funcDefs[funcName]
# try to find out about our child
infoChildren = self._getInfoChildren()
if infoChildren:
assert len(infoChildren)==1
fi = infoChildren[0].fieldInfo
else:
fi = fieldinfo.FieldInfo("double precision", "", "")
if ucdPref is None:
# ucd of a sum is the ucd of the summands?
ucd = fi.ucd
elif fi.ucd:
ucd = ucdPref%(fi.ucd)
else:
# no UCD given; if we're count, we're meta.number, otherwise we
# don't know
if funcName=="COUNT":
ucd = "meta.number"
else:
ucd = None
# most of these keep the unit of what they're working on
if newUnit is None:
newUnit = fi.unit
# most of these keep the type of what they're working on
if newType is None:
newType = fi.type
self.fieldInfo = fieldinfo.FieldInfo(
newType, unit=newUnit, ucd=ucd, userData=fi.userData, tainted=fi.tainted)
class NumericValueFunction(FunctionNode):
"""A numeric function.
This is really a mixed bag. We work through handlers here. See table
in class def. Unknown functions result in dimlesses.
"""
type = "numericValueFunction"
collapsible = True # if it's a real function call, it has at least
# a name, parens and an argument and thus won't be collapsed.
funcDefs = {
"ACOS": ('rad', '', None),
"ASIN": ('rad', '', None),
"ATAN": ('rad', '', None),
"ATAN2": ('rad', '', None),
"PI": ('', '', None),
"RAND": ('', '', None),
"EXP": ('', '', None),
"LOG": ('', '', None),
"LOG10": ('', '', None),
"SQRT": ('', '', None),
"SQUARE": ('', '', None),
"POWER": ('', '', None),
"ABS": (None, None, "keepMeta"),
"CEILING": (None, None, "keepMeta"),
"FLOOR": (None, None, "keepMeta"),
"ROUND": (None, None, "keepMeta"),
"TRUNCATE": (None, None, "keepMeta"),
"DEGREES": ('deg', None, "keepMeta"),
"RADIANS": ('rad', None, "keepMeta"),
# bitwise operators: hopeless
}
def _handle_keepMeta(self, infoChildren):
fi = infoChildren[0].fieldInfo
return fi.unit, fi.ucd
def addFieldInfo(self, context):
infoChildren = self._getInfoChildren()
unit, ucd = '', ''
overrideUnit, overrideUCD, handlerName = self.funcDefs.get(
self.funName, ('', '', None))
if handlerName:
unit, ucd = getattr(self, "_handle_"+handlerName)(infoChildren)
if overrideUnit:
unit = overrideUnit
if overrideUCD:
ucd = overrideUCD
self.fieldInfo = fieldinfo.FieldInfo("double precision",
unit, ucd, *collectUserData(infoChildren))
self.fieldInfo.tainted = True
class StringValueFunction(FunctionNode):
type = "stringValueFunction"
def addFieldInfo(self, context):
self.fieldInfo = fieldinfo.FieldInfo("text", "", "",
userData=collectUserData(self._getInfoChildren())[0])
class TimestampFunction(FunctionNode):
type = "timestampFunction"
def addFieldInfo(self, context):
subordinates = self._getInfoChildren()
if subordinates:
ucd, stc = subordinates[0].fieldInfo.ucd, subordinates[0].fieldInfo.stc
else:
ucd, stc = None, None
self.fieldInfo = fieldinfo.FieldInfo("timestamp", "",
ucd=ucd, stc=stc, userData=subordinates)
class InUnitFunction(FieldInfoedNode):
type = "inUnitFunction"
_a_expr = None
_a_unit = None
conversionFactor = None
@classmethod
def _getInitKWs(cls, _parseResult):
return {
'expr': _parseResult[2],
'unit': _parseResult[4].value,
}
def addFieldInfo(self, context):
try:
from gavo.base import computeConversionFactor, IncompatibleUnits, BadUnit
except ImportError: # pragma: no cover
raise utils.ReportableError("in_unit only available with gavo.base"
" installed")
try:
self.conversionFactor = computeConversionFactor(
self.expr.fieldInfo.unit, self.unit)
self.fieldInfo = self.expr.fieldInfo.change(unit=self.unit)
except IncompatibleUnits as msg:
raise common.Error("in_unit error: %s"%msg)
except BadUnit as msg:
raise common.Error("Bad unit passed to in_unit: %s"%msg)
def flatten(self):
if self.conversionFactor is None: # pragma: no cover
raise common.Error("in_unit can only be flattened in annotated"
" trees")
if isinstance(self.expr, ColumnReference):
exprPat = "%s"
else:
exprPat = "(%s)"
return "(%s * %.16g)"%(exprPat%flatten(self.expr), self.conversionFactor)
def change(self, **kwargs):
copy = FieldInfoedNode.change(self, **kwargs)
copy.conversionFactor = self.conversionFactor
return copy
class CharacterStringLiteral(FieldInfoedNode):
"""according to the current grammar, these are always sequences of
quoted strings.
"""
type = "characterStringLiteral"
bindings = ["characterStringLiteral", "generalLiteral"]
_a_value = None
@classmethod
def _getInitKWs(cls, _parseResult):
value = "".join(_c[1:-1] for _c in _parseResult) #noflake: locals returned
return locals()
def flatten(self):
return "'%s'"%self.value
def addFieldInfo(self, context):
self.fieldInfo = fieldinfo.FieldInfo("text", "", "")
class CastSpecification(FieldInfoedNode, TransparentMixin):
type = "castSpecification"
_a_value = None
_a_newType = None
@classmethod
def _getInitKWs(cls, _parseResult):
value = _parseResult["value"]
newType = _parseResult["newType"].lower()
if newType.startswith("char ("):
newType = "text"
elif newType.startswith("national char"):
newType = "unicode"
return locals()
def addFieldInfo(self, context):
# We copy units and UCDs from the subordinate value (if it's there;
# NULLs have nothing, of course). That has the somewhat unfortunate
# effect that we may be declaring units on strings. Ah well.
if hasattr(self.value, "fieldInfo"):
self.fieldInfo = self.value.fieldInfo.change(
type=self.newType, tainted=True)
else:
self.fieldInfo = fieldinfo.FieldInfo(self.newType, "", "")
###################### Geometry and stuff that needs morphing into real SQL
class CoosysMixin(object):
"""is a mixin that works cooSys into FieldInfos for ADQL geometries.
"""
_a_cooSys = None
@classmethod
def _getInitKWs(cls, _parseResult):
refFrame = _parseResult.get("coordSys", "")
if isinstance(refFrame, ColumnReference): # pragma: no cover
raise NotImplementedError("References frames must not be column"
" references.")
return {"cooSys": refFrame}
class GeometryNode(CoosysMixin, FieldInfoedNode):
"""Nodes for geometry constructors.
In ADQL 2.1, most of these became polymorphous. For instance, circles
can be constructed with a point as the first (or second, if a coosys
is present) argument; that point can also be a column reference.
Also, these will always get morphed in some way (as the database
certainly doesn't understand ADQL geometries). So, we're
trying to give the morphers a fair chance of not getting confused
despite the wild variety of argument forms and types.
stcArgs is a list of symbolic names that *might* contain stc (or similar)
information. Some of the actual attributes will be None.
Flatten is only there for debugging; it'll return invalid SQL.
OrigArgs is not for client consumption; clients must go through the
symbolic names.
"""
_a_origArgs = None
def flatten(self):
return "%s%s"%(self.type.upper(),
"".join(flatten(arg) for arg in self.origArgs))
@classmethod
def _getInitKWs(cls, _parseResult):
return {"origArgs": list(_parseResult[1:])}
def addFieldInfo(self, context):
fis = [attr.fieldInfo
for attr in
(getattr(self, arg) for arg in self.stcArgs if getattr(self, arg))
if attr and attr.fieldInfo]
childUserData, childUnits = [], []
thisSystem = tapstc.getSTCForTAP(self.cooSys)
# get reference frame from first child if not given in node and
# one is defined there.
if thisSystem.astroSystem.spaceFrame.refFrame is None:
if fis and fis[0].stc:
thisSystem = fis[0].stc
for index, fi in enumerate(fis):
childUserData.extend(fi.userData)
childUnits.append(fi.unit)
if not context.policy.match(fi.stc, thisSystem):
context.errors.append("When constructing %s: Argument %d has"
" incompatible STC"%(self.type, index+1))
self.fieldInfo = fieldinfo.FieldInfo(
type=self.sqlType,
unit=",".join(childUnits),
ucd="",
userData=tuple(childUserData),
stc=thisSystem)
self.fieldInfo.properties["xtype"] = self.xtype
class Point(GeometryNode):
type = "point"
_a_x = _a_y = None
xtype = "point"
sqlType = "spoint"
stcArgs = ("x", "y")
def flatten(self):
return "%s(%s)"%(self.type.upper(),
", ".join(flatten(arg) for arg in [self.x, self.y]))
@classmethod
def _getInitKWs(cls, _parseResult):
x, y = parseArgs(_parseResult["args"]) #noflake: locals returned
return locals()
class Circle(GeometryNode):
"""A circle parsed from ADQL.
There are two ways a circle is specified: either with (x, y, radius)
or as (center, radius). In the second case, center is an spoint-valued
column reference. Cases with a point-valued literal are turned into
the first variant during parsing.
"""
type = "circle"
_a_radius = None
_a_center = None
stcArgs = ("center", "radius")
xtype = "circle"
sqlType = "scircle"
@classmethod
def _getInitKWs(cls, _parseResult):
args = parseArgs(_parseResult["args"])
res = {a: None for a in cls.stcArgs}
if len(args)==2:
res["center"], res["radius"] = args[0], args[1]
elif len(args)==3:
res["center"] = Point(cooSys=_parseResult.get("coordSys", ""),
x=args[0], y=args[1])
res["radius"] = args[2]
else: # pragma: no cover
assert False, "Grammar let through invalid args to Circle"
return res
class MOC(GeometryNode):
"""a MOC in an ADQL syntax tree.
This can be constructed from an ASCII-MOC string or from an order
and a geometry value expression.
"""
type = "moc"
_a_literal = None
_a_order = None
_a_geometry = None
stcArgs = ()
xtype = "moc"
sqlType = "smoc"
@classmethod
def _getInitKWs(cls, _parseResult):
_args = parseArgs(_parseResult["args"])
if len(_args)==1:
literal = _args[0]
elif len(_args)==2:
order, geometry = _args[0], _args[1]
else:
raise common.Error("MOC() takes either one literal or order, geo")
return locals()
def flatten(self):
# there's no point morphing this; when people put this into db
# engines, they can just as well use the ADQL signature.
if self.literal is None:
return "smoc(%s, %s)"%(flatten(self.order), flatten(self.geometry))
else:
return "smoc(%s)"%flatten(self.literal)
class Box(GeometryNode):
type = "box"
_a_x = _a_y = _a_width = _a_height = None
stcArgs = ("x", "y", "width", "height")
xtype = "polygon"
sqlType = "sbox"
@classmethod
def _getInitKWs(cls, _parseResult):
x, y, width, height = parseArgs( #noflake: locals returned
_parseResult["args"])
return locals()
class PolygonCoos(FieldInfoedNode):
"""a base class for the various argument forms of polygons.
We want to tell them apart to let the grammar tell the tree builder
what it thinks the arguments were. Polygon may have to reconsider
this when it learns the types of its arguments, but we don't want
to discard the information coming from the grammar.
"""
_a_args = None
@classmethod
def _getInitKWs(cls, _parseResult):
return {"args": parseArgs(_parseResult["args"])}
def addFieldInfo(self, context):
# these fieldInfos are never used because Polygon doesn't ask us.
pass
def flatten(self):
return ", ".join(flatten(a) for a in self.args)
class PolygonSplitCooArgs(PolygonCoos):
type = "polygonSplitCooArgs"
class PolygonPointCooArgs(PolygonCoos):
type = "polygonPointCooArgs"
class Polygon(GeometryNode):
type = "polygon"
_a_coos = None
_a_points = None
stcArgs = ("coos", "points")
xtype = "polygon"
sqlType = "spoly"
@classmethod
def _getInitKWs(cls, _parseResult):
# XXX TODO: The grammar will parse even-numbered arguments >=6 into
# splitCooArgs. We can't fix that here as we don't have reliable
# type information at this point. Fix coos/points confusion
# in addFieldInfo, I'd say
arg = parseArgs(_parseResult["args"])[0]
if arg.type=="polygonPointCooArgs":
# geometry-typed arguments
res = {"points": tuple(parseArgs(arg.args))}
# See if they're all literal points, which which case we fall
# back to the split args
for item in res["points"]:
if item.type!="point":
return res
# all points: mutate args to let us fall through to the split coo
# case
arg.type = "polygonSplitCooArgs"
newArgs = []
for item in res["points"]:
newArgs.extend([item.x, item.y])
arg.args = newArgs
if arg.type=="polygonSplitCooArgs":
# turn numeric expressions into pairs
coos, toDo = [], list(arg.args)
while toDo:
coos.append(tuple(toDo[:2]))
del toDo[:2]
res = {"coos": coos}
else: # pragma: no cover
assert False, "Invalid arguments to polygon"
return res
def addFieldInfo(self, name):
if self.points is not None:
systemSource = self.points
elif self.coos is not None:
systemSource = (c[0] for c in self.coos)
else: # pragma: no cover
assert False
if self.cooSys and self.cooSys!="UNKNOWN":
thisSystem = tapstc.getSTCForTAP(self.cooSys)
for geo in systemSource:
if geo.fieldInfo.stc and geo.fieldInfo.stc.astroSystem.spaceFrame.refFrame:
thisSystem = geo.fieldInfo.stc
break
else:
thisSystem = tapstc.getSTCForTAP("UNKNOWN")
userData, tainted = collectUserData(
self.points or [c[0] for c in self.coos]+[c[1] for c in self.coos])
self.fieldInfo = fieldinfo.FieldInfo(
type=self.sqlType, unit="deg", ucd="phys.angArea",
userData=userData, tainted=tainted,
stc=thisSystem)
_regionMakers = []
def registerRegionMaker(fun):
"""adds a region maker to the region resolution chain.
region makers are functions taking the argument to REGION and
trying to do something with it. They should return either some
kind of FieldInfoedNode that will then replace the REGION or None,
in which case the next function will be tried.
As a convention, region specifiers here should always start with
an identifier (like simbad, siapBbox, etc, basically [A-Za-z]+).
The rest is up to the region maker, but whitespace should separate
this rest from the identifier.
The entire region functionality will probably disappear with TAP 1.1.
Don't do anything with it any more. Use ufuncs instead.
"""
_regionMakers.append(fun)
@symbolAction("region")
def makeRegion(children):
if len(children)!=4 or not isinstance(children[2], CharacterStringLiteral):
raise common.RegionError("Invalid argument to REGION: '%s'."%
"".join(flatten(c) for c in children[2:-1]),
hint="Here, regions must be simple strings; concatenations or"
" non-constant parts are forbidden. Use ADQL geometry expressions"
" instead.")
arg = children[2].value
for r in _regionMakers:
res = r(arg)
if res is not None:
return res
raise common.RegionError("Invalid argument to REGION: '%s'."%
arg, hint="None of the region parsers known to this service could"
" make anything of your string. While STC-S should in general"
" be comprehendable to TAP services, it's probably better to"
" use ADQL geometry functions.")
class STCSRegion(FieldInfoedNode):
bindings = [] # we're constructed by makeSTCSRegion, not by the parser
type = "stcsRegion"
xtype = "adql:REGION"
_a_tapstcObj = None # from tapstc -- STCSRegion or a utils.pgshere object
def _polish(self):
self.cooSys = self.tapstcObj.cooSys
def addFieldInfo(self, context):
# XXX TODO: take type and unit from tapstcObj
self.fieldInfo = fieldinfo.FieldInfo("spoly", unit="deg", ucd=None,
stc=tapstc.getSTCForTAP(self.cooSys))
def flatten(self): # pragma: no cover
raise common.FlattenError("STCRegion objectcs cannot be flattened, they"
" must be morphed.")
def makeSTCSRegion(spec):
try:
return STCSRegion(stc.parseSimpleSTCS(spec))
except stc.STCSParseError: #Not a valid STC spec, try next region parser
return None
registerRegionMaker(makeSTCSRegion)
class Centroid(FunctionNode):
type = "centroid"
def addFieldInfo(self, context):
self.fieldInfo = fieldinfo.FieldInfo(type="spoint",
unit="", ucd="",
userData=collectUserData(self._getInfoChildren())[0])
class Distance(FunctionNode):
type = "distanceFunction"
def addFieldInfo(self, context):
self.fieldInfo = fieldinfo.FieldInfo(type="double precision",
unit="deg", ucd="pos.angDistance",
userData=collectUserData(self._getInfoChildren())[0])
def optimize(self, stack):
assert len(self.args)==2, "unexpected arguments in distance"
self.args = list(self.args)
self.args[0], self.args[1] = _sortLargeFirst(self.args[0], self.args[1])
@classmethod
def _getInitKWs(cls, _parseResult):
args = parseArgs(_parseResult["args"])
if len(args)==4:
# always normalise to (point, point)
args = [
Point(cooSys="", x=args[0], y=args[1]),
Point(cooSys="", x=args[2], y=args[3])]
return locals()
class PredicateGeometryFunction(FunctionNode):
type = "predicateGeometryFunction"
_pgFieldInfo = fieldinfo.FieldInfo("integer", "", "")
def optimize(self, stack):
if len(self.args)!=2:
assert False, "Grammar let through bad arguments to pgf"
self.args = list(self.args)
# by ADQL, an INTERSECTS with a point has to become a CONTAINS
if self.funName=="INTERSECTS":
ltype = getattr(self.args[0].fieldInfo, "type", None)
rtype = getattr(self.args[1].fieldInfo, "type", None)
if ltype=='spoint':
self.funName = "CONTAINS"
elif rtype=='spoint':
self.funName = "CONTAINS"
self.args[0], self.args[1] = self.args[1], self.args[0]
leftInd, rightInd = 0, 1
# optimise the common case of contains(point, circle); both
# q3c and pgsphere won't use an index (properly) if the sequence
# of the arguments is "wrong".
if (self.args[leftInd].type=="point"
and self.args[rightInd].type=="circle"):
if _isConstant([self.args[leftInd]]):
self.args[leftInd], self.args[rightInd].center = \
self.args[rightInd].center, self.args[leftInd]
else:
self.args[leftInd], self.args[rightInd].center = _sortLargeFirst(
self.args[leftInd], self.args[rightInd].center)
# in case we swapped, coosys meta might be out of whack, so
# fix that:
self.args[rightInd].cooSys = self.args[rightInd].center.cooSys
def addFieldInfo(self, context):
# swallow all upstream info, it really doesn't help here
self.fieldInfo = self._pgFieldInfo
def flatten(self):
return "%s(%s)"%(self.funName, ", ".join(flatten(a) for a in self.args))
class PointFunction(FunctionNode):
type = "pointFunction"
def _makeCoordsysFieldInfo(self):
return fieldinfo.FieldInfo("text", unit="", ucd="meta.ref;pos.frame")
def _makeCoordFieldInfo(self):
# this should pull in the metadata from the 1st or 2nd component
# of the argument. However, given the way geometries are constructed
# in ADQL, what comes back here is in degrees in the frame of the
# child always. We're a bit pickier with the user data -- if there's
# exactly two user data fields in the child, we assume the child
# has been built from individual columns, and we try to retrieve the
# one pulled out.
childFieldInfo = self.args[0].fieldInfo
if len(childFieldInfo.userData)==2:
userData = (childFieldInfo.userData[int(self.funName[-1])-1],)
else:
userData = childFieldInfo.userData
return fieldinfo.FieldInfo("double precision",
ucd=None, unit="deg", userData=userData)
def addFieldInfo(self, context):
if self.funName=="COORDSYS":
makeFieldInfo = self._makeCoordsysFieldInfo
else: # it's coordN
makeFieldInfo = self._makeCoordFieldInfo
self.fieldInfo = makeFieldInfo()
class Area(FunctionNode):
type = "area"
def addFieldInfo(self, context):
self.fieldInfo = fieldinfo.FieldInfo(type="double precision",
unit="deg**2", ucd="phys.angSize",
userData=collectUserData(self._getInfoChildren())[0])
|