File: unitconv.py

package info (click to toggle)
gavodachs 2.3%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 7,260 kB
  • sloc: python: 58,359; xml: 8,882; javascript: 3,453; ansic: 661; sh: 158; makefile: 22
file content (612 lines) | stat: -rw-r--r-- 17,311 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
"""
A python module to parse VOUnit strings and compute conversion factors.

We believe this implements the full VOUnit specification.

To use this, you must have the gavo utils package  installed.  For
details, see http://soft.g-vo.org.  The changes required to make this
work without gavo.utils are minute, though.  If you want that, talk to
the authors.

Unit tests for this are at

http://svn.ari.uni-heidelberg.de/svn/gavo/python/trunk/tests/unitconvtest.py
"""

#c Copyright 2008-2020, the GAVO project
#c
#c This program is free software, covered by the GNU GPL.  See the
#c COPYING file in the source distribution.


import math

from gavo import utils
from gavo.utils import parsetricks


class IncompatibleUnits(utils.Error):
	pass

class BadUnit(utils.Error):
	pass

PLANCK_H = 6.626070040e-34
LIGHT_C = 299792458.0


# We can't yet restructure the tree, so we don't do SI-base-casting for
# compound units.  Also, we don't change anything when a change of exponent
# would be necessary
PLAIN_UNITS = units = {
	"a": (3600*24*365.25, "s"), # This is the SI/julian year!
	"A": (1, "A"),				# *Ampere* not Angstrom 
	"adu": (1, "adu"),
	"\xc5": (1e-10, "m"),
	"Angstrom": (1e-10, "m"),
	"angstrom": (1e-10, "m"),
	"AU": (1.49598e11, "m"), 
	"arcmin": (math.pi/180./60., "rad"), 
	"arcsec": (math.pi/180./3600., "rad"), 
	"barn": (1, "barn"),  # 1e-28 m2
	"beam": (1, "beam"), 
	"bit": (1, "bit"), 
	"bin": (1, "bin"), 
	"byte": (1, "byte"),  # I don't think we ever want to unify bit and byte
	"C": (1, "C"),        # A.s
	"cd": (1, "cd"), 
	"ct": (1, "ct"), 
	"count": (1, "ct"), 
	"chan": (1, "chan"), 
	"D": (1e-19/3., "D"), # C.m
	"d": (3600*24, "s"), 
	"deg": (math.pi/180., "rad"), 
	"erg": (1e-7, "J"), 
	"eV": (1.6021766208e-19, "J"), 
	"F": (1, "F"),        # C/V
	"g": (1e-3, "kg"), 
	"G": (1e-4, "T"), 
	"h": (3600., "s"), 
	"H": (1, "H"),        # Wb/A
	"Hz": (1, "Hz"),      # s-1
	"J": (1, "J"), 				# kg m^2/s^2
	"Jy": (1, "Jy"),			# 1e-26 W/m2/Hz
	"K": (1, "K"), 
	"lm": (1, "lm"), 
	"lx": (1, "lx"), 
	"lyr": (2627980686828.0, "m"), 
	"m": (1, "m"), 
	"mag": (1, "mag"),    # correlate that with, erm, lux?
	"mas": (math.pi/180./3.6e6, "rad"), 
	"min": (60, "s"), 
	"mol": (1, "mol"), 
	"N": (1, "N"),        # kg.m/s2
	"Ohm": (1, "Ohm"),    # V/A
	"Pa": (1, "Pa"),      # N/m^2
	"pc": (3.0857e16, "m"), 
	"ph": (1, "ph"), 
	"photon": (1, "ph"), 
	"pix": (1, "pix"), 
	"pixel": (1, "pix"), 
	"R": (1, "R"),        # Rayleigh
	"rad": (1, "rad"), 
	"Ry": (2.17989e-18, "J"), 
	"s": (1, "s"), 
	"S": (1, "S"),        # A/V
	"solLum": (3.826e26, "W"),
	"solMass": (1.989e30, "kg"),
	"solRad": (6.9559e8, "m"), 
	"sr": (1, "sr"), 
	"T": (1, "T"),        # V.s/m2
	"u": (1.66053886e-27, "kg"),
	"V": (1, "V"), 
	"voxel": (1, "voxel"),
	"W": (1, "W"),        # kg.m2/s3 or A.V -- that's going to be a tough one
	"Wb": (1, "Wb"), 
	"yr": (3600*24*365.25, "s"), # This is the SI/julian year!
}


EXCEPTIONAL_CONVERSIONS = {
	# tuple-form of units: conversions that are still linear but
	# somehow ideosyncratic.

	# wave number to energy
	((('m', -1.0),), (('J', 1),)): PLANCK_H*LIGHT_C,
}

# These are the keys from PLAIN_UNITS that cannot take SI prefixes
NON_PREFIXABLE = frozenset([
	"AU", "au", "D", "Ry", "arcmin", "beam", "bin", "chan", "d", "h", "mas",
	"min", "ph", "photon", "pix", "pixel", "solLum", "solMass", "solRad",
	"voxel"])


PREFIXES = prefixes = {"d": 1e-1, "c": 1e-2, "m":1e-3, "u":1e-6, 
	"n":1e-9, "p":1e-12, "f":1e-15, "a":1e-18, "z":1e-21, "y":1e-24,
	"da": 10., "h":1e2, "k":1e3, "M":1e6, "G":1e9, "T":1e12, "P":1e15, 
	"E":1e18, "Z":1e21, "Y":1e24, "": 1}


# these map VOUnit Table 5 "magic" units to UnitNode constructor arguments
AMBIGUOUS_STRINGS = {
	'Pa': ('Pa', ''),
	'ha': ('yr', 'h'),
	'cd': ('cd', ''),
	'dB': ('Bel', 'd'),
	'B': ('Byte', ''),
	'au': ('AU', ''),
	'dadu': ('adu', 'd'),
}


def formatScaleFactor(aFloat):
	"""returns a reasonable decorative but python-readable representation
	of aFloat.

	Floats looking good as simple decimals (modulus between 0.01 and 1000)
	are returned without exponent.
	"""
	if 0.01<=abs(aFloat)<=1000:
		return ("%f"%aFloat).rstrip("0")

	exponent = int(math.log10(aFloat))
	mantissa = ("%f"%(aFloat/10**exponent)).rstrip("0")
	return "%se%+d"%(mantissa, exponent)


class _Node(object):
	"""the abstract base for a node in a Unit tree.

	All these must implement fromToks methods that can be called
	as pyparsing callbacks.
	"""
	@classmethod 
	def fromToks(cls, s, p, toks):
		raise NotImplementedError("%s objects have no implementation of"
			" fromToks (i.e., they are broken)."%cls.__name__)


class UnitNode(_Node):
	"""a terminal node containing a unit, possibly with a prefix

	This is normally constructed through the fromToks constructor.

	Check out the unit, prefix, and isUnknown attributes.  The prefix
	can be turned to a factor using the PREFIXES dictionary.  An empty
	prefix (factor 1) is represented by an empty string.
	"""
	def __init__(self, unit, prefix=""):
		self.unit = unit
		self.isUnknown = self.unit not in PLAIN_UNITS
		self.prefix = prefix

	@classmethod
	def fromToks(cls, s, p, toks):
		assert len(toks)==1
		unitString = toks[0]
	
		if unitString in AMBIGUOUS_STRINGS:
			return cls(*AMBIGUOUS_STRINGS[unitString])

		elif unitString in PLAIN_UNITS:
			return cls(unitString)

		elif len(unitString)>2 and unitString[:2]=="da":
			return cls(unitString[2:], "da")

		elif len(unitString)>1 and unitString[0] in PREFIXES:
			if unitString[1:] in NON_PREFIXABLE:
				raise BadUnit("No Prefixes allowed on %s"%unitString[1:])
			return cls(unitString[1:], unitString[0])

		else:
			return cls(unitString, '')

	def __str__(self):
		return "%s%s"%(self.prefix, self.unit)

	def __repr__(self):
		if self.isUnknown:
			return "U?(%s ; %s)"%(self.prefix, repr(self.unit))
		else:
			return "U(%s ; %s)"%(self.prefix, repr(self.unit))

	def getSI(self):
		"""returns a pair of factor and basic unit.

		Basic units are what's in the defining pairs in the PLAIN_UNITS dict.
		"""
		if self.isUnknown:
			# these don't hurt if they're on both sides of an equation
			return PREFIXES[self.prefix], {self.unit: 1}
			return 
		factor, basic = PLAIN_UNITS[self.unit]
		return PREFIXES[self.prefix]*factor, {basic: 1}


class FunctionApplication(_Node):
	"""A function applied to a term.
	"""
	_pythonFunc = {
		"ln": math.log,
		"log": math.log10,
		"exp": math.exp,
		"sqrt": math.sqrt,
	}

	def __init__(self, funcName, term):
		self.funcName = funcName
		self.term = term
		self.isUnknown = (self.funcName not in self._pythonFunc
			) or self.term.isUnknown

	@classmethod
	def fromToks(cls, s, p, toks):
		assert len(toks)==2
		return cls(toks[0], toks[1])

	def __str__(self):
		return "%s(%s)"%(self.funcName, self.term)

	def __repr__(self):
		return "A(%s ; %s)"%(repr(self.funcName), repr(self.term))
	
	def getSI(self):
		factor, powers = self.term.getSI()
		if self.funcName=="sqrt":
			powers = dict((key, value/2.) 
				for key, value in powers.items())
		else:
			powers = dict(((self.funcName, key), value) 
				for key, value in powers.items())
		return self._pythonFunc[self.funcName](factor), powers


class QuotedUnitNode(_Node):
	"""a quoted ("defined unknown") unit.
	"""
	def __init__(self, unit):
		self.unit = unit
		self.isUnknown = True

	@classmethod
	def fromToks(cls, s, p, toks):
		return cls(toks[1])

	def __str__(self):
		return "'%s'"%(self.unit)

	def __repr__(self):
		return "U?('%s')"%(repr(self.unit))

	def getSI(self):
		# These units stand for themselves.  They don't really hurt if
		# they're in both terms of a conversion
		return 1, {self.unit: 1}


class Factor(_Node):
	"""A UnitNode with a power.
	"""
	def __init__(self, unit, power):
		self.unit, self.power = unit, power
		self.isUnknown = self.unit.isUnknown
	
	@classmethod
	def fromToks(cls, s, p, toks):
		if len(toks)==2:
			return cls(toks[0], toks[1])
		elif len(toks)==1:
			return cls(toks[0], 1)
		else:
			raise Exception("This cannot happen")

	def __str__(self):
		powerLit = repr(self.power).rstrip("0").rstrip(".")
		if "." in powerLit:
			# see if we can come up with a nice fraction
			for denom in range(2, 8):
				if abs(int(self.power*denom)-self.power*denom)<1e-13:
					powerLit = "(%d/%d)"%(round(self.power*denom), denom)
					break

		if powerLit=="1":
			powerLit = ""
		else:
			powerLit = "**"+powerLit

		return "%s%s"%(self.unit, powerLit)

	def __repr__(self):
		return "F(%s ; %s)"%(repr(self.unit), repr(self.power))
	
	def getSI(self):
		factor, powers = self.unit.getSI()
		powers[list(powers.keys())[0]] = self.power
		return factor**self.power, powers


class Term(_Node):
	"""A Node containing two factors and an operator.

	The operator here is either . (product) or / (division).
	"""
	def __init__(self, op1, operator, op2):
		self.op1, self.operator, self.op2 = op1, operator, op2
		self.isUnknown = self.op1.isUnknown or self.op2.isUnknown
	
	@classmethod
	def fromToks(cls, s, p, toks):
		if len(toks)==1:
			# avoid to many internal nodes: a 1-operand expression is the operand
			return toks[0]
		return cls(toks[0], toks[1], toks[2])

	def __str__(self):
		op1Lit, op2Lit = str(self.op1), str(self.op2)
		if self.operator=='/' and isinstance(self.op2, Term):
			op2Lit = "(%s)"%op2Lit
		return "%s%s%s"%(op1Lit, self.operator, op2Lit)

	def __repr__(self):
		return "T(%s ; %s ; %s)"%(repr(self.op1), 
			repr(self.operator), repr(self.op2))

	def getSI(self):
		factor1, powers1 = self.op1.getSI()
		factor2, powers2 = self.op2.getSI()
		newPowers = powers1
		if self.operator==".":
			for si, power in powers2.items():
				newPowers[si] = newPowers.get(si, 0)+power
			return factor1*factor2, newPowers
		elif self.operator=="/":
			for si, power in powers2.items():
				newPowers[si] = newPowers.get(si, 0)-power
			return factor1/factor2, newPowers
		else:
			raise Exception("This can't happen")


class Expression(_Node):
	"""The root node of an expression tree. 
	
	This contains a term and optionally a scale factor.
	"""
	def __init__(self, term, scaleFactor):
		self.term, self.scaleFactor = term, scaleFactor
		self.isUnknown = self.term.isUnknown

	@classmethod
	def fromToks(cls, s, p, toks):
		if len(toks)==2:
			return cls(toks[1], float(toks[0]))

		elif len(toks)==1:
			return cls(toks[0], 1)

		else:
			raise Exception("This can't happen")

	def __str__(self):
		if self.scaleFactor==1:
			return str(self.term)
		else:
			return "%s %s"%(formatScaleFactor(self.scaleFactor), self.term)

	def __repr__(self):
		return "R(%s ; %s)"%(repr(self.scaleFactor), repr(self.term))

	def getSI(self):
		"""returns a pair of a numeric factor and a dict mapping SI units to
		their powers.
		"""
		factor, siPowers = self.term.getSI()
		return factor*self.scaleFactor, siPowers


def _buildTerm(s, pos, toks):
	"""a parseAction for terms, making trees out of parse lists 
	left-associatively.
	"""
	toks = list(toks)
	curOperand = toks.pop(0)
	while len(toks)>1:
		curOperand = Term.fromToks(s, pos, [curOperand, toks[0], toks[1]])
		del toks[:2]
	return curOperand


def evalAll(s, p, toks):
	"""a parse action evaluating the whole match as a python expression.

	Obviously, this should only be applied to carefully screened nonterminals.
	"""
	return eval("".join(str(tok) for tok in toks))


class getUnitGrammar(utils.CachedResource):
	"""the grammar to parse VOUnits.

	After initialization, the class has a "symbols" dictionary containing
	the individual nonterminals.
	"""
	@classmethod
	def impl(cls):
		from gavo.utils.parsetricks import (Word, Literal, Regex, 
			Optional, ZeroOrMore, alphas,
			Suppress, Forward, White, pyparsingWhitechars)

		with pyparsingWhitechars(''):
			unit_atom = Word(alphas).addParseAction(UnitNode.fromToks)
			unit_atom.setName("atomic unit")
			quoted_unit_atom = ("'" + Word(alphas) + "'"
				).addParseAction(QuotedUnitNode.fromToks)
			quoted_unit_atom.setName("quoted atomic unit")

			OPEN_P = Literal('(')
			CLOSE_P = Literal(')')
			SIGN = Literal('+') | Literal('-')
			FUNCTION_NAME = Word(alphas)
			UNSIGNED_INTEGER = Word("01234567890")
			SIGNED_INTEGER = SIGN + UNSIGNED_INTEGER
			FLOAT = Regex(r"[+-]?([0-9]+(\.[0-9]*)?)")
			VOFLOAT = Regex(r"0.[0-9]+([eE][+-]?[0-9]+)?"
				"|[1-9][0-9]*(\.[0-9]+)?([eE][+-]?[0-9]+)?")

			integer = (SIGNED_INTEGER | UNSIGNED_INTEGER).setName("integer")
			power_operator = Literal('**')
			multiplication_operator = Literal(".")
			division_operator = Literal("/")
			numeric_power = (integer 
				| OPEN_P + integer + CLOSE_P 
				| OPEN_P + FLOAT + CLOSE_P 
				| OPEN_P + integer + '/'
					+ UNSIGNED_INTEGER.addParseAction(lambda s, p, t: t[0]+".") 
					+ CLOSE_P)
			numeric_power.setParseAction(evalAll)

			pow_10 = Literal("10") + power_operator + numeric_power
			scale_factor = (pow_10 | VOFLOAT
				).setName("scale_factor"
				).setParseAction(evalAll)

			any_unit_atom = unit_atom | quoted_unit_atom 
			factor = (any_unit_atom 
				+ Optional( Suppress(power_operator) + numeric_power )
				).setName("factor"
				).addParseAction(Factor.fromToks)

			complete_expression = Forward()
			function_application = (FUNCTION_NAME +
					Suppress(OPEN_P) + complete_expression + Suppress(CLOSE_P)
				).setName("function application")
			function_application.addParseAction(FunctionApplication.fromToks)

			unit_expression = (
				Suppress(OPEN_P) + complete_expression + Suppress(CLOSE_P)
				| ( factor 
					^ function_application )).setName("unit expression")

			product_of_units = (unit_expression 
					+ ZeroOrMore(multiplication_operator + unit_expression)
				).setName("units term"
				).setParseAction(_buildTerm)

			complete_expression << (
				product_of_units + Optional(division_operator + unit_expression) )
			complete_expression.setParseAction(Term.fromToks)

			input = (Optional(scale_factor) 
				+ Optional(Suppress(White()))
				+ complete_expression
				).setName("unit expression"
				).setParseAction(Expression.fromToks)

			cls.symbols = locals()
			return input

	@classmethod
	def enableDebuggingOutput(cls):
		"""(not user-servicable)
		"""
		from gavo.utils.parsetricks import ParserElement
		for name, sym in cls.symbols.items():
			if isinstance(sym, ParserElement):
				sym.setDebug(True)
				sym.setName(name)


def asSequence(unitDict):
	"""returns a sorted tuple of (si, power) for a result of getSI().

	These should be more suitable for dimensional analysis.
	"""
	return tuple(sorted(unitDict.items()))


def parseUnit(unitStr, unitGrammar=getUnitGrammar()):
	try:
		return utils.pyparseString(unitGrammar, unitStr, parseAll=True)[0]
	except parsetricks.ParseException as msg:
		raise utils.logOldExc(
			BadUnit("%s at col. %d"%(repr(unitStr), msg.column)))


def computeConversionFactor(unitStr1, unitStr2):
	"""returns the factor needed to get from quantities given in unitStr1
	to unitStr2.

	Both must be given in VOUnits form.

	This function may raise a BadUnit if one of the strings are
	malformed, or an IncompatibleUnit exception if the units don't have
	the same SI base.

	If the function is successful, unitStr1 = result*unitStr2
	"""
	if unitStr1==unitStr2:
		return 1
	factor1, powers1 = parseUnit(unitStr1).getSI()
	factor2, powers2 = parseUnit(unitStr2).getSI()
	powers1, powers2 = asSequence(powers1), asSequence(powers2)

	if (powers1, powers2) in EXCEPTIONAL_CONVERSIONS:
		return factor1/factor2*EXCEPTIONAL_CONVERSIONS[powers1, powers2]
	if (powers2, powers1) in EXCEPTIONAL_CONVERSIONS:
		return factor1/factor2/EXCEPTIONAL_CONVERSIONS[powers2, powers1]

	if powers1!=powers2:
		raise IncompatibleUnits("%s and %s do not have the same SI base"%(
			unitStr1, unitStr2))
	
	# tuples as keys in powers come from non-polynomial function
	# applications; in such cases, multiplication is not good enough
	# for conversions, and thus we give up.
	for u, _ in powers1:
		if isinstance(u, tuple):
			raise IncompatibleUnits("%s has a non-polynomial function. No"
				" conversion by multiplication possible"%(unitStr1))
	for u, _ in powers2:
		if isinstance(u, tuple):
			raise IncompatibleUnits("%s has a non-polynomial function. No"
				" conversion by multiplication possible"%(unitStr2))

	return factor1/factor2


def computeColumnConversions(newColumns, oldColumns):
	"""returns a dict of conversion factors between newColumns and oldColumns.
	
	Both arguments are iterables of columns.

	For every column in newColumn, the function sees if the units of
	newColumn and oldColumn match.  If they don't, compute a conversion
	factor to be multiplied to oldColumns values to make them newColumns
	values and add it to the result dict.

	The function raises a DataError if a column in newColumns has no
	match in oldColumns.
	"""
	res = {}
	for newCol in newColumns:
		if not newCol.name in oldColumns:
			raise utils.DataError(
				"Request for column %s from %s cannot be satisfied in %s"%(
					newCol.name, newColumns, oldColumns))
		oldCol = oldColumns.getColumnByName(newCol.name)
		try:
			if newCol.unit!=oldCol.unit:
				res[newCol.name] = computeConversionFactor(oldCol.unit, newCol.unit)
		except BadUnit:  # we ignore bad units, assume they'll be handled by
			# valuemappers.
			pass
	return res


if __name__=="__main__":
	getUnitGrammar.enableDebuggingOutput()
	g = getUnitGrammar()
	res = g.parseString("10**28 s", parseAll=True)[0]
	print(res)