1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257
|
/* dfa.c - deterministic extended regexp routines for GNU
Copyright (C) 1988, 1998, 2000, 2002, 2004-2005, 2007-2016 Free Software
Foundation, Inc.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc.,
51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA */
/* Written June, 1988 by Mike Haertel
Modified July, 1988 by Arthur David Olson to assist BMG speedups */
#include <config.h>
#include <assert.h>
#include <ctype.h>
#include <stdio.h>
#ifndef VMS
#include <sys/types.h>
#else
#include <stddef.h>
#endif
#include <stdlib.h>
#include <limits.h>
#include <string.h>
#if HAVE_SETLOCALE
#include <locale.h>
#endif
/* Gawk doesn't use Gnulib, so don't assume that setlocale is present. */
#ifndef LC_ALL
# define setlocale(category, locale) NULL
#endif
#define STREQ(a, b) (strcmp (a, b) == 0)
/* ISASCIIDIGIT differs from isdigit, as follows:
- Its arg may be any int or unsigned int; it need not be an unsigned char.
- It's guaranteed to evaluate its argument exactly once.
- It's typically faster.
Posix 1003.2-1992 section 2.5.2.1 page 50 lines 1556-1558 says that
only '0' through '9' are digits. Prefer ISASCIIDIGIT to isdigit unless
it's important to use the locale's definition of "digit" even when the
host does not conform to Posix. */
#define ISASCIIDIGIT(c) ((unsigned) (c) - '0' <= 9)
#include "gettext.h"
#define _(str) gettext (str)
#include <wchar.h>
#include <wctype.h>
#include "xalloc.h"
#if defined(__DJGPP__)
#include "mbsupport.h"
#endif
#include "dfa.h"
#ifdef GAWK
static int
is_blank (int c)
{
return (c == ' ' || c == '\t');
}
#endif /* GAWK */
#ifdef LIBC_IS_BORKED
extern int gawk_mb_cur_max;
#undef MB_CUR_MAX
#define MB_CUR_MAX gawk_mb_cur_max
#undef mbrtowc
#define mbrtowc(a, b, c, d) (-1)
#endif
/* HPUX defines these as macros in sys/param.h. */
#ifdef setbit
# undef setbit
#endif
#ifdef clrbit
# undef clrbit
#endif
/* First integer value that is greater than any character code. */
enum { NOTCHAR = 1 << CHAR_BIT };
/* This represents part of a character class. It must be unsigned and
at least CHARCLASS_WORD_BITS wide. Any excess bits are zero. */
typedef unsigned long int charclass_word;
/* CHARCLASS_WORD_BITS is the number of bits used in a charclass word.
CHARCLASS_PAIR (LO, HI) is part of a charclass initializer, and
represents 64 bits' worth of a charclass, where LO and HI are the
low and high-order 32 bits of the 64-bit quantity. */
#if ULONG_MAX >> 31 >> 31 < 3
enum { CHARCLASS_WORD_BITS = 32 };
# define CHARCLASS_PAIR(lo, hi) lo, hi
#else
enum { CHARCLASS_WORD_BITS = 64 };
# define CHARCLASS_PAIR(lo, hi) (((charclass_word) (hi) << 32) + (lo))
#endif
/* An initializer for a charclass whose 32-bit words are A through H. */
#define CHARCLASS_INIT(a, b, c, d, e, f, g, h) \
{ \
CHARCLASS_PAIR (a, b), CHARCLASS_PAIR (c, d), \
CHARCLASS_PAIR (e, f), CHARCLASS_PAIR (g, h) \
}
/* The maximum useful value of a charclass_word; all used bits are 1. */
static charclass_word const CHARCLASS_WORD_MASK
= ((charclass_word) 1 << (CHARCLASS_WORD_BITS - 1) << 1) - 1;
/* Number of words required to hold a bit for every character. */
enum
{
CHARCLASS_WORDS = (NOTCHAR + CHARCLASS_WORD_BITS - 1) / CHARCLASS_WORD_BITS
};
/* Sets of unsigned characters are stored as bit vectors in arrays of ints. */
typedef charclass_word charclass[CHARCLASS_WORDS];
/* Convert a possibly-signed character to an unsigned character. This is
a bit safer than casting to unsigned char, since it catches some type
errors that the cast doesn't. */
static unsigned char
to_uchar (char ch)
{
return ch;
}
/* Contexts tell us whether a character is a newline or a word constituent.
Word-constituent characters are those that satisfy iswalnum, plus '_'.
Each character has a single CTX_* value; bitmasks of CTX_* values denote
a particular character class.
A state also stores a context value, which is a bitmask of CTX_* values.
A state's context represents a set of characters that the state's
predecessors must match. For example, a state whose context does not
include CTX_LETTER will never have transitions where the previous
character is a word constituent. A state whose context is CTX_ANY
might have transitions from any character. */
#define CTX_NONE 1
#define CTX_LETTER 2
#define CTX_NEWLINE 4
#define CTX_ANY 7
/* Sometimes characters can only be matched depending on the surrounding
context. Such context decisions depend on what the previous character
was, and the value of the current (lookahead) character. Context
dependent constraints are encoded as 12-bit integers. Each bit that
is set indicates that the constraint succeeds in the corresponding
context.
bit 8-11 - valid contexts when next character is CTX_NEWLINE
bit 4-7 - valid contexts when next character is CTX_LETTER
bit 0-3 - valid contexts when next character is CTX_NONE
The macro SUCCEEDS_IN_CONTEXT determines whether a given constraint
succeeds in a particular context. Prev is a bitmask of possible
context values for the previous character, curr is the (single-bit)
context value for the lookahead character. */
#define NEWLINE_CONSTRAINT(constraint) (((constraint) >> 8) & 0xf)
#define LETTER_CONSTRAINT(constraint) (((constraint) >> 4) & 0xf)
#define OTHER_CONSTRAINT(constraint) ((constraint) & 0xf)
#define SUCCEEDS_IN_CONTEXT(constraint, prev, curr) \
((((curr) & CTX_NONE ? OTHER_CONSTRAINT (constraint) : 0) \
| ((curr) & CTX_LETTER ? LETTER_CONSTRAINT (constraint) : 0) \
| ((curr) & CTX_NEWLINE ? NEWLINE_CONSTRAINT (constraint) : 0)) \
& (prev))
/* The following macros describe what a constraint depends on. */
#define PREV_NEWLINE_CONSTRAINT(constraint) (((constraint) >> 2) & 0x111)
#define PREV_LETTER_CONSTRAINT(constraint) (((constraint) >> 1) & 0x111)
#define PREV_OTHER_CONSTRAINT(constraint) ((constraint) & 0x111)
#define PREV_NEWLINE_DEPENDENT(constraint) \
(PREV_NEWLINE_CONSTRAINT (constraint) != PREV_OTHER_CONSTRAINT (constraint))
#define PREV_LETTER_DEPENDENT(constraint) \
(PREV_LETTER_CONSTRAINT (constraint) != PREV_OTHER_CONSTRAINT (constraint))
/* Tokens that match the empty string subject to some constraint actually
work by applying that constraint to determine what may follow them,
taking into account what has gone before. The following values are
the constraints corresponding to the special tokens previously defined. */
#define NO_CONSTRAINT 0x777
#define BEGLINE_CONSTRAINT 0x444
#define ENDLINE_CONSTRAINT 0x700
#define BEGWORD_CONSTRAINT 0x050
#define ENDWORD_CONSTRAINT 0x202
#define LIMWORD_CONSTRAINT 0x252
#define NOTLIMWORD_CONSTRAINT 0x525
/* The regexp is parsed into an array of tokens in postfix form. Some tokens
are operators and others are terminal symbols. Most (but not all) of these
codes are returned by the lexical analyzer. */
typedef ptrdiff_t token;
/* States are indexed by state_num values. These are normally
nonnegative but -1 is used as a special value. */
typedef ptrdiff_t state_num;
/* Predefined token values. */
enum
{
END = -1, /* END is a terminal symbol that matches the
end of input; any value of END or less in
the parse tree is such a symbol. Accepting
states of the DFA are those that would have
a transition on END. */
/* Ordinary character values are terminal symbols that match themselves. */
EMPTY = NOTCHAR, /* EMPTY is a terminal symbol that matches
the empty string. */
BACKREF, /* BACKREF is generated by \<digit>
or by any other construct that
is not completely handled. If the scanner
detects a transition on backref, it returns
a kind of "semi-success" indicating that
the match will have to be verified with
a backtracking matcher. */
BEGLINE, /* BEGLINE is a terminal symbol that matches
the empty string at the beginning of a
line. */
ENDLINE, /* ENDLINE is a terminal symbol that matches
the empty string at the end of a line. */
BEGWORD, /* BEGWORD is a terminal symbol that matches
the empty string at the beginning of a
word. */
ENDWORD, /* ENDWORD is a terminal symbol that matches
the empty string at the end of a word. */
LIMWORD, /* LIMWORD is a terminal symbol that matches
the empty string at the beginning or the
end of a word. */
NOTLIMWORD, /* NOTLIMWORD is a terminal symbol that
matches the empty string not at
the beginning or end of a word. */
QMARK, /* QMARK is an operator of one argument that
matches zero or one occurrences of its
argument. */
STAR, /* STAR is an operator of one argument that
matches the Kleene closure (zero or more
occurrences) of its argument. */
PLUS, /* PLUS is an operator of one argument that
matches the positive closure (one or more
occurrences) of its argument. */
REPMN, /* REPMN is a lexical token corresponding
to the {m,n} construct. REPMN never
appears in the compiled token vector. */
CAT, /* CAT is an operator of two arguments that
matches the concatenation of its
arguments. CAT is never returned by the
lexical analyzer. */
OR, /* OR is an operator of two arguments that
matches either of its arguments. */
LPAREN, /* LPAREN never appears in the parse tree,
it is only a lexeme. */
RPAREN, /* RPAREN never appears in the parse tree. */
ANYCHAR, /* ANYCHAR is a terminal symbol that matches
a valid multibyte (or single byte) character.
It is used only if MB_CUR_MAX > 1. */
MBCSET, /* MBCSET is similar to CSET, but for
multibyte characters. */
WCHAR, /* Only returned by lex. wctok contains
the wide character representation. */
CSET /* CSET and (and any value greater) is a
terminal symbol that matches any of a
class of characters. */
};
/* States of the recognizer correspond to sets of positions in the parse
tree, together with the constraints under which they may be matched.
So a position is encoded as an index into the parse tree together with
a constraint. */
typedef struct
{
size_t index; /* Index into the parse array. */
unsigned int constraint; /* Constraint for matching this position. */
} position;
/* Sets of positions are stored as arrays. */
typedef struct
{
position *elems; /* Elements of this position set. */
size_t nelem; /* Number of elements in this set. */
size_t alloc; /* Number of elements allocated in ELEMS. */
} position_set;
/* Sets of leaves are also stored as arrays. */
typedef struct
{
size_t *elems; /* Elements of this position set. */
size_t nelem; /* Number of elements in this set. */
} leaf_set;
/* A state of the dfa consists of a set of positions, some flags,
and the token value of the lowest-numbered position of the state that
contains an END token. */
typedef struct
{
size_t hash; /* Hash of the positions of this state. */
position_set elems; /* Positions this state could match. */
unsigned char context; /* Context from previous state. */
bool curr_dependent; /* True if the follows of any positions with
ANYCHAR depends on the next character's
context. */
unsigned short constraint; /* Constraint for this state to accept. */
token first_end; /* Token value of the first END in elems. */
position_set mbps; /* Positions which can match multibyte
characters or the follows, e.g., period.
Used only if MB_CUR_MAX > 1. */
state_num mb_trindex; /* Index of this state in MB_TRANS, or
negative if the state does not have
ANYCHAR. */
} dfa_state;
/* Maximum for any transition table count that exceeds min_trcount. */
enum { MAX_TRCOUNT = 1024 };
/* A bracket operator.
e.g., [a-c], [[:alpha:]], etc. */
struct mb_char_classes
{
ptrdiff_t cset;
bool invert;
wchar_t *chars; /* Normal characters. */
size_t nchars;
};
struct regex_syntax
{
/* Syntax bits controlling the behavior of the lexical analyzer. */
reg_syntax_t syntax_bits;
bool syntax_bits_set;
/* Flag for case-folding letters into sets. */
bool case_fold;
/* End-of-line byte in data. */
unsigned char eolbyte;
/* Cache of char-context values. */
int sbit[NOTCHAR];
/* If never_trail[B], the byte B cannot be a non-initial byte in a
multibyte character. */
bool never_trail[NOTCHAR];
/* Set of characters considered letters. */
charclass letters;
/* Set of characters that are newline. */
charclass newline;
};
/* Lexical analyzer. All the dross that deals with the obnoxious
GNU Regex syntax bits is located here. The poor, suffering
reader is referred to the GNU Regex documentation for the
meaning of the @#%!@#%^!@ syntax bits. */
struct lexer_state
{
char const *lexptr; /* Pointer to next input character. */
size_t lexleft; /* Number of characters remaining. */
token lasttok; /* Previous token returned; initially END. */
size_t parens; /* Count of outstanding left parens. */
int minrep, maxrep; /* Repeat counts for {m,n}. */
/* Wide character representation of the current multibyte character,
or WEOF if there was an encoding error. Used only if
MB_CUR_MAX > 1. */
wint_t wctok;
/* Length of the multibyte representation of wctok. */
int cur_mb_len;
/* We're separated from beginning or (, | only by zero-width characters. */
bool laststart;
};
/* Recursive descent parser for regular expressions. */
struct parser_state
{
token tok; /* Lookahead token. */
size_t depth; /* Current depth of a hypothetical stack
holding deferred productions. This is
used to determine the depth that will be
required of the real stack later on in
dfaanalyze. */
};
/* A compiled regular expression. */
struct dfa
{
/* Syntax configuration */
struct regex_syntax syntax;
/* Fields filled by the scanner. */
charclass *charclasses; /* Array of character sets for CSET tokens. */
size_t cindex; /* Index for adding new charclasses. */
size_t calloc; /* Number of charclasses allocated. */
/* Scanner state */
struct lexer_state lexstate;
/* Parser state */
struct parser_state parsestate;
/* Fields filled by the parser. */
token *tokens; /* Postfix parse array. */
size_t tindex; /* Index for adding new tokens. */
size_t talloc; /* Number of tokens currently allocated. */
size_t depth; /* Depth required of an evaluation stack
used for depth-first traversal of the
parse tree. */
size_t nleaves; /* Number of leaves on the parse tree. */
size_t nregexps; /* Count of parallel regexps being built
with dfaparse. */
bool fast; /* The DFA is fast. */
bool multibyte; /* MB_CUR_MAX > 1. */
token utf8_anychar_classes[5]; /* To lower ANYCHAR in UTF-8 locales. */
mbstate_t mbs; /* Multibyte conversion state. */
/* dfaexec implementation. */
char *(*dfaexec) (struct dfa *, char const *, char *,
bool, size_t *, bool *);
/* The following are valid only if MB_CUR_MAX > 1. */
/* The value of multibyte_prop[i] is defined by following rule.
if tokens[i] < NOTCHAR
bit 0 : tokens[i] is the first byte of a character, including
single-byte characters.
bit 1 : tokens[i] is the last byte of a character, including
single-byte characters.
if tokens[i] = MBCSET
("the index of mbcsets corresponding to this operator" << 2) + 3
e.g.
tokens
= 'single_byte_a', 'multi_byte_A', single_byte_b'
= 'sb_a', 'mb_A(1st byte)', 'mb_A(2nd byte)', 'mb_A(3rd byte)', 'sb_b'
multibyte_prop
= 3 , 1 , 0 , 2 , 3
*/
int *multibyte_prop;
/* Array of the bracket expression in the DFA. */
struct mb_char_classes *mbcsets;
size_t nmbcsets;
size_t mbcsets_alloc;
/* Fields filled by the superset. */
struct dfa *superset; /* Hint of the dfa. */
/* Fields filled by the state builder. */
dfa_state *states; /* States of the dfa. */
state_num sindex; /* Index for adding new states. */
size_t salloc; /* Number of states currently allocated. */
/* Fields filled by the parse tree->NFA conversion. */
position_set *follows; /* Array of follow sets, indexed by position
index. The follow of a position is the set
of positions containing characters that
could conceivably follow a character
matching the given position in a string
matching the regexp. Allocated to the
maximum possible position index. */
bool searchflag; /* We are supposed to build a searching
as opposed to an exact matcher. A searching
matcher finds the first and shortest string
matching a regexp anywhere in the buffer,
whereas an exact matcher finds the longest
string matching, but anchored to the
beginning of the buffer. */
/* Fields filled by dfaexec. */
state_num tralloc; /* Number of transition tables that have
slots so far, not counting trans[-1]. */
int trcount; /* Number of transition tables that have
actually been built. */
int min_trcount; /* Minimum of number of transition tables.
Always keep the number, even after freeing
the transition tables. It is also the
number of initial states. */
state_num **trans; /* Transition tables for states that can
never accept. If the transitions for a
state have not yet been computed, or the
state could possibly accept, its entry in
this table is NULL. This points to one
past the start of the allocated array,
and trans[-1] is always NULL. */
state_num **fails; /* Transition tables after failing to accept
on a state that potentially could do so. */
int *success; /* Table of acceptance conditions used in
dfaexec and computed in build_state. */
state_num *newlines; /* Transitions on newlines. The entry for a
newline in any transition table is always
-1 so we can count lines without wasting
too many cycles. The transition for a
newline is stored separately and handled
as a special case. Newline is also used
as a sentinel at the end of the buffer. */
state_num initstate_notbol; /* Initial state for CTX_LETTER and CTX_NONE
context in multibyte locales, in which we
do not distinguish between their contexts,
as not supported word. */
position_set mb_follows; /* Follow set added by ANYCHAR on demand. */
state_num **mb_trans; /* Transition tables for states with ANYCHAR. */
state_num mb_trcount; /* Number of transition tables for states with
ANYCHAR that have actually been built. */
};
/* Some macros for user access to dfa internals. */
/* S could possibly be an accepting state of R. */
#define ACCEPTING(s, r) ((r).states[s].constraint)
/* STATE accepts in the specified context. */
#define ACCEPTS_IN_CONTEXT(prev, curr, state, dfa) \
SUCCEEDS_IN_CONTEXT ((dfa).states[state].constraint, prev, curr)
static void regexp (struct dfa *dfa);
/* A table indexed by byte values that contains the corresponding wide
character (if any) for that byte. WEOF means the byte is not a
valid single-byte character. */
static wint_t mbrtowc_cache[NOTCHAR];
/* Store into *PWC the result of converting the leading bytes of the
multibyte buffer S of length N bytes, using the mbrtowc_cache in *D
and updating the conversion state in *D. On conversion error,
convert just a single byte, to WEOF. Return the number of bytes
converted.
This differs from mbrtowc (PWC, S, N, &D->mbs) as follows:
* PWC points to wint_t, not to wchar_t.
* The last arg is a dfa *D instead of merely a multibyte conversion
state D->mbs. D also contains an mbrtowc_cache for speed.
* N must be at least 1.
* S[N - 1] must be a sentinel byte.
* Shift encodings are not supported.
* The return value is always in the range 1..N.
* D->mbs is always valid afterwards.
* *PWC is always set to something. */
static size_t
mbs_to_wchar (wint_t *pwc, char const *s, size_t n, struct dfa *d)
{
unsigned char uc = s[0];
wint_t wc = mbrtowc_cache[uc];
if (wc == WEOF)
{
wchar_t wch;
size_t nbytes = mbrtowc (&wch, s, n, &d->mbs);
if (0 < nbytes && nbytes < (size_t) -2)
{
*pwc = wch;
return nbytes;
}
memset (&d->mbs, 0, sizeof d->mbs);
}
*pwc = wc;
return 1;
}
#ifdef DEBUG
static void
prtok (token t)
{
char const *s;
if (t < 0)
fprintf (stderr, "END");
else if (t < NOTCHAR)
{
unsigned int ch = t;
fprintf (stderr, "0x%02x", ch);
}
else
{
switch (t)
{
case EMPTY:
s = "EMPTY";
break;
case BACKREF:
s = "BACKREF";
break;
case BEGLINE:
s = "BEGLINE";
break;
case ENDLINE:
s = "ENDLINE";
break;
case BEGWORD:
s = "BEGWORD";
break;
case ENDWORD:
s = "ENDWORD";
break;
case LIMWORD:
s = "LIMWORD";
break;
case NOTLIMWORD:
s = "NOTLIMWORD";
break;
case QMARK:
s = "QMARK";
break;
case STAR:
s = "STAR";
break;
case PLUS:
s = "PLUS";
break;
case CAT:
s = "CAT";
break;
case OR:
s = "OR";
break;
case LPAREN:
s = "LPAREN";
break;
case RPAREN:
s = "RPAREN";
break;
case ANYCHAR:
s = "ANYCHAR";
break;
case MBCSET:
s = "MBCSET";
break;
default:
s = "CSET";
break;
}
fprintf (stderr, "%s", s);
}
}
#endif /* DEBUG */
/* Stuff pertaining to charclasses. */
static bool
tstbit (unsigned int b, charclass const c)
{
return c[b / CHARCLASS_WORD_BITS] >> b % CHARCLASS_WORD_BITS & 1;
}
static void
setbit (unsigned int b, charclass c)
{
c[b / CHARCLASS_WORD_BITS] |= (charclass_word) 1 << b % CHARCLASS_WORD_BITS;
}
static void
clrbit (unsigned int b, charclass c)
{
c[b / CHARCLASS_WORD_BITS] &= ~((charclass_word) 1
<< b % CHARCLASS_WORD_BITS);
}
static void
copyset (charclass const src, charclass dst)
{
memcpy (dst, src, sizeof (charclass));
}
static void
zeroset (charclass s)
{
memset (s, 0, sizeof (charclass));
}
static void
notset (charclass s)
{
int i;
for (i = 0; i < CHARCLASS_WORDS; ++i)
s[i] = CHARCLASS_WORD_MASK & ~s[i];
}
static bool
equal (charclass const s1, charclass const s2)
{
charclass_word w = 0;
int i;
for (i = 0; i < CHARCLASS_WORDS; i++)
w |= s1[i] ^ s2[i];
return w == 0;
}
static bool
emptyset (charclass const s)
{
charclass_word w = 0;
int i;
for (i = 0; i < CHARCLASS_WORDS; i++)
w |= s[i];
return w == 0;
}
/* Ensure that the array addressed by PTR holds at least NITEMS +
(PTR || !NITEMS) items. Either return PTR, or reallocate the array
and return its new address. Although PTR may be null, the returned
value is never null.
The array holds *NALLOC items; *NALLOC is updated on reallocation.
ITEMSIZE is the size of one item. Avoid O(N**2) behavior on arrays
growing linearly. */
static void *
maybe_realloc (void *ptr, size_t nitems, size_t *nalloc, size_t itemsize)
{
if (nitems < *nalloc)
return ptr;
*nalloc = nitems;
return x2nrealloc (ptr, nalloc, itemsize);
}
/* In DFA D, find the index of charclass S, or allocate a new one. */
static size_t
dfa_charclass_index (struct dfa *d, charclass const s)
{
size_t i;
for (i = 0; i < d->cindex; ++i)
if (equal (s, d->charclasses[i]))
return i;
d->charclasses = maybe_realloc (d->charclasses, d->cindex, &d->calloc,
sizeof *d->charclasses);
++d->cindex;
copyset (s, d->charclasses[i]);
return i;
}
static bool
unibyte_word_constituent (unsigned char c)
{
return mbrtowc_cache[c] != WEOF && (isalnum (c) || (c) == '_');
}
static int
char_context (struct dfa const *dfa, unsigned char c)
{
if (c == dfa->syntax.eolbyte)
return CTX_NEWLINE;
if (unibyte_word_constituent (c))
return CTX_LETTER;
return CTX_NONE;
}
/* UTF-8 encoding allows some optimizations that we can't otherwise
assume in a multibyte encoding. */
static bool using_utf8;
bool
dfa_using_utf8 (void)
{
return using_utf8;
}
static void
init_mbrtowc_cache (void)
{
int i;
for (i = CHAR_MIN; i <= CHAR_MAX; ++i)
{
char c = i;
unsigned char uc = i;
mbstate_t s = { 0 };
wchar_t wc;
mbrtowc_cache[uc] = mbrtowc (&wc, &c, 1, &s) <= 1 ? wc : WEOF;
}
}
/* Entry point to set syntax options. */
void
dfasyntax (struct dfa *dfa, reg_syntax_t bits, bool fold, unsigned char eol)
{
int i;
dfa->syntax.syntax_bits_set = true;
dfa->syntax.syntax_bits = bits;
dfa->syntax.case_fold = fold;
dfa->syntax.eolbyte = eol;
for (i = CHAR_MIN; i <= CHAR_MAX; ++i)
{
unsigned char uc = i;
/* Use mbrtowc_cache to calculate sbit. */
dfa->syntax.sbit[uc] = char_context (dfa, uc);
switch (dfa->syntax.sbit[uc])
{
case CTX_LETTER:
setbit (uc, dfa->syntax.letters);
break;
case CTX_NEWLINE:
setbit (uc, dfa->syntax.newline);
break;
}
/* POSIX requires that the five bytes in "\n\r./" (including the
terminating NUL) cannot occur inside a multibyte character. */
dfa->syntax.never_trail[uc] = (using_utf8 ? (uc & 0xc0) != 0x80
: strchr ("\n\r./", uc) != NULL);
}
}
/* Set a bit in the charclass for the given wchar_t. Do nothing if WC
is represented by a multi-byte sequence. Even for MB_CUR_MAX == 1,
this may happen when folding case in weird Turkish locales where
dotless i/dotted I are not included in the chosen character set.
Return whether a bit was set in the charclass. */
static bool
setbit_wc (wint_t wc, charclass c)
{
int b = wctob (wc);
if (b == EOF)
return false;
setbit (b, c);
return true;
}
/* Set a bit for B and its case variants in the charclass C.
MB_CUR_MAX must be 1. */
static void
setbit_case_fold_c (int b, charclass c)
{
int ub = toupper (b);
int i;
for (i = 0; i < NOTCHAR; i++)
if (toupper (i) == ub)
setbit (i, c);
}
static void check_utf8 (void)
{
wchar_t wc;
mbstate_t mbs = { 0 };
using_utf8 = mbrtowc (&wc, "\xc4\x80", 2, &mbs) == 2 && wc == 0x100;
}
static bool unibyte_c;
static void check_unibyte_c (void)
{
char const *locale = setlocale (LC_ALL, NULL);
unibyte_c = (!locale
|| STREQ (locale, "C")
|| STREQ (locale, "POSIX"));
}
/* The current locale is known to be a unibyte locale
without multicharacter collating sequences and where range
comparisons simply use the native encoding. These locales can be
processed more efficiently. */
static bool
using_simple_locale (struct dfa const *dfa)
{
/* The native character set is known to be compatible with
the C locale. The following test isn't perfect, but it's good
enough in practice, as only ASCII and EBCDIC are in common use
and this test correctly accepts ASCII and rejects EBCDIC. */
enum { native_c_charset =
('\b' == 8 && '\t' == 9 && '\n' == 10 && '\v' == 11 && '\f' == 12
&& '\r' == 13 && ' ' == 32 && '!' == 33 && '"' == 34 && '#' == 35
&& '%' == 37 && '&' == 38 && '\'' == 39 && '(' == 40 && ')' == 41
&& '*' == 42 && '+' == 43 && ',' == 44 && '-' == 45 && '.' == 46
&& '/' == 47 && '0' == 48 && '9' == 57 && ':' == 58 && ';' == 59
&& '<' == 60 && '=' == 61 && '>' == 62 && '?' == 63 && 'A' == 65
&& 'Z' == 90 && '[' == 91 && '\\' == 92 && ']' == 93 && '^' == 94
&& '_' == 95 && 'a' == 97 && 'z' == 122 && '{' == 123 && '|' == 124
&& '}' == 125 && '~' == 126)
};
return (!native_c_charset || dfa->multibyte) ? false : unibyte_c;
}
/* Fetch the next lexical input character. Set C (of type int) to the
next input byte, except set C to EOF if the input is a multibyte
character of length greater than 1. Set WC (of type wint_t) to the
value of the input if it is a valid multibyte character (possibly
of length 1); otherwise set WC to WEOF. If there is no more input,
report EOFERR if EOFERR is not null, and return lasttok = END
otherwise. */
# define FETCH_WC(dfa, c, wc, eoferr) \
do { \
if (! dfa->lexstate.lexleft) \
{ \
if ((eoferr) != 0) \
dfaerror (eoferr); \
else \
return dfa->lexstate.lasttok = END; \
} \
else \
{ \
wint_t _wc; \
size_t nbytes = mbs_to_wchar (&_wc, dfa->lexstate.lexptr, \
dfa->lexstate.lexleft, dfa); \
dfa->lexstate.cur_mb_len = nbytes; \
(wc) = _wc; \
(c) = nbytes == 1 ? to_uchar (*dfa->lexstate.lexptr) : EOF; \
dfa->lexstate.lexptr += nbytes; \
dfa->lexstate.lexleft -= nbytes; \
} \
} while (false)
#ifndef MIN
# define MIN(a,b) ((a) < (b) ? (a) : (b))
#endif
/* The set of wchar_t values C such that there's a useful locale
somewhere where C != towupper (C) && C != towlower (towupper (C)).
For example, 0x00B5 (U+00B5 MICRO SIGN) is in this table, because
towupper (0x00B5) == 0x039C (U+039C GREEK CAPITAL LETTER MU), and
towlower (0x039C) == 0x03BC (U+03BC GREEK SMALL LETTER MU). */
static short const lonesome_lower[] =
{
0x00B5, 0x0131, 0x017F, 0x01C5, 0x01C8, 0x01CB, 0x01F2, 0x0345,
0x03C2, 0x03D0, 0x03D1, 0x03D5, 0x03D6, 0x03F0, 0x03F1,
/* U+03F2 GREEK LUNATE SIGMA SYMBOL lacks a specific uppercase
counterpart in locales predating Unicode 4.0.0 (April 2003). */
0x03F2,
0x03F5, 0x1E9B, 0x1FBE,
};
/* Maximum number of characters that can be the case-folded
counterparts of a single character, not counting the character
itself. This is 1 for towupper, 1 for towlower, and 1 for each
entry in LONESOME_LOWER. */
enum
{ CASE_FOLDED_BUFSIZE = 2 + sizeof lonesome_lower / sizeof *lonesome_lower };
/* Find the characters equal to C after case-folding, other than C
itself, and store them into FOLDED. Return the number of characters
stored. */
static unsigned int
case_folded_counterparts (wchar_t c, wchar_t folded[CASE_FOLDED_BUFSIZE])
{
unsigned int i;
unsigned int n = 0;
wint_t uc = towupper (c);
wint_t lc = towlower (uc);
if (uc != c)
folded[n++] = uc;
if (lc != uc && lc != c && towupper (lc) == uc)
folded[n++] = lc;
for (i = 0; i < sizeof lonesome_lower / sizeof *lonesome_lower; i++)
{
wint_t li = lonesome_lower[i];
if (li != lc && li != uc && li != c && towupper (li) == uc)
folded[n++] = li;
}
return n;
}
typedef int predicate (int);
/* The following list maps the names of the Posix named character classes
to predicate functions that determine whether a given character is in
the class. The leading [ has already been eaten by the lexical
analyzer. */
struct dfa_ctype
{
const char *name;
predicate *func;
bool single_byte_only;
};
static const struct dfa_ctype prednames[] = {
{"alpha", isalpha, false},
{"upper", isupper, false},
{"lower", islower, false},
{"digit", isdigit, true},
{"xdigit", isxdigit, false},
{"space", isspace, false},
{"punct", ispunct, false},
{"alnum", isalnum, false},
{"print", isprint, false},
{"graph", isgraph, false},
{"cntrl", iscntrl, false},
{"blank", is_blank, false},
{NULL, NULL, false}
};
static const struct dfa_ctype *_GL_ATTRIBUTE_PURE
find_pred (const char *str)
{
unsigned int i;
for (i = 0; prednames[i].name; ++i)
if (STREQ (str, prednames[i].name))
return &prednames[i];
return NULL;
}
/* Multibyte character handling sub-routine for lex.
Parse a bracket expression and build a struct mb_char_classes. */
static token
parse_bracket_exp (struct dfa *dfa)
{
bool invert;
int c, c1, c2;
charclass ccl;
/* This is a bracket expression that dfaexec is known to
process correctly. */
bool known_bracket_exp = true;
/* Used to warn about [:space:].
Bit 0 = first character is a colon.
Bit 1 = last character is a colon.
Bit 2 = includes any other character but a colon.
Bit 3 = includes ranges, char/equiv classes or collation elements. */
int colon_warning_state;
wint_t wc;
wint_t wc2;
wint_t wc1 = 0;
/* Work area to build a mb_char_classes. */
struct mb_char_classes *work_mbc;
size_t chars_al;
chars_al = 0;
if (dfa->multibyte)
{
dfa->mbcsets = maybe_realloc (dfa->mbcsets, dfa->nmbcsets,
&dfa->mbcsets_alloc,
sizeof *dfa->mbcsets);
/* dfa->multibyte_prop[] hold the index of dfa->mbcsets.
We will update dfa->multibyte_prop[] in addtok, because we can't
decide the index in dfa->tokens[]. */
/* Initialize work area. */
work_mbc = &dfa->mbcsets[dfa->nmbcsets++];
memset (work_mbc, 0, sizeof *work_mbc);
}
else
work_mbc = NULL;
memset (ccl, 0, sizeof ccl);
FETCH_WC (dfa, c, wc, _("unbalanced ["));
if (c == '^')
{
FETCH_WC (dfa, c, wc, _("unbalanced ["));
invert = true;
known_bracket_exp = using_simple_locale (dfa);
}
else
invert = false;
colon_warning_state = (c == ':');
do
{
c1 = NOTCHAR; /* Mark c1 as not initialized. */
colon_warning_state &= ~2;
/* Note that if we're looking at some other [:...:] construct,
we just treat it as a bunch of ordinary characters. We can do
this because we assume regex has checked for syntax errors before
dfa is ever called. */
if (c == '[')
{
FETCH_WC (dfa, c1, wc1, _("unbalanced ["));
if ((c1 == ':' && (dfa->syntax.syntax_bits & RE_CHAR_CLASSES))
|| c1 == '.' || c1 == '=')
{
enum { MAX_BRACKET_STRING_LEN = 32 };
char str[MAX_BRACKET_STRING_LEN + 1];
size_t len = 0;
for (;;)
{
FETCH_WC (dfa, c, wc, _("unbalanced ["));
if ((c == c1 && *dfa->lexstate.lexptr == ']')
|| dfa->lexstate.lexleft == 0)
break;
if (len < MAX_BRACKET_STRING_LEN)
str[len++] = c;
else
/* This is in any case an invalid class name. */
str[0] = '\0';
}
str[len] = '\0';
/* Fetch bracket. */
FETCH_WC (dfa, c, wc, _("unbalanced ["));
if (c1 == ':')
/* Build character class. POSIX allows character
classes to match multicharacter collating elements,
but the regex code does not support that, so do not
worry about that possibility. */
{
char const *class
= (dfa->syntax.case_fold && (STREQ (str, "upper")
|| STREQ (str, "lower")) ?
"alpha" : str);
const struct dfa_ctype *pred = find_pred (class);
if (!pred)
dfaerror (_("invalid character class"));
if (dfa->multibyte && !pred->single_byte_only)
known_bracket_exp = false;
else
for (c2 = 0; c2 < NOTCHAR; ++c2)
if (pred->func (c2))
setbit (c2, ccl);
}
else
known_bracket_exp = false;
colon_warning_state |= 8;
/* Fetch new lookahead character. */
FETCH_WC (dfa, c1, wc1, _("unbalanced ["));
continue;
}
/* We treat '[' as a normal character here. c/c1/wc/wc1
are already set up. */
}
if (c == '\\' && (dfa->syntax.syntax_bits & RE_BACKSLASH_ESCAPE_IN_LISTS))
FETCH_WC (dfa, c, wc, _("unbalanced ["));
if (c1 == NOTCHAR)
FETCH_WC (dfa, c1, wc1, _("unbalanced ["));
if (c1 == '-')
/* build range characters. */
{
FETCH_WC (dfa, c2, wc2, _("unbalanced ["));
/* A bracket expression like [a-[.aa.]] matches an unknown set.
Treat it like [-a[.aa.]] while parsing it, and
remember that the set is unknown. */
if (c2 == '[' && *dfa->lexstate.lexptr == '.')
{
known_bracket_exp = false;
c2 = ']';
}
if (c2 == ']')
{
/* In the case [x-], the - is an ordinary hyphen,
which is left in c1, the lookahead character. */
dfa->lexstate.lexptr -= dfa->lexstate.cur_mb_len;
dfa->lexstate.lexleft += dfa->lexstate.cur_mb_len;
}
else
{
if (c2 == '\\' && (dfa->syntax.syntax_bits
& RE_BACKSLASH_ESCAPE_IN_LISTS))
FETCH_WC (dfa, c2, wc2, _("unbalanced ["));
colon_warning_state |= 8;
FETCH_WC (dfa, c1, wc1, _("unbalanced ["));
/* Treat [x-y] as a range if x != y. */
if (wc != wc2 || wc == WEOF)
{
if (dfa->multibyte)
known_bracket_exp = false;
else if (using_simple_locale (dfa))
{
int ci;
for (ci = c; ci <= c2; ci++)
setbit (ci, ccl);
if (dfa->syntax.case_fold)
{
int uc = toupper (c);
int uc2 = toupper (c2);
for (ci = 0; ci < NOTCHAR; ci++)
{
int uci = toupper (ci);
if (uc <= uci && uci <= uc2)
setbit (ci, ccl);
}
}
}
else
known_bracket_exp = false;
continue;
}
}
}
colon_warning_state |= (c == ':') ? 2 : 4;
if (!dfa->multibyte)
{
if (dfa->syntax.case_fold)
setbit_case_fold_c (c, ccl);
else
setbit (c, ccl);
continue;
}
if (wc == WEOF)
known_bracket_exp = false;
else
{
wchar_t folded[CASE_FOLDED_BUFSIZE + 1];
unsigned int i;
unsigned int n = (dfa->syntax.case_fold
? case_folded_counterparts (wc, folded + 1) + 1
: 1);
folded[0] = wc;
for (i = 0; i < n; i++)
if (!setbit_wc (folded[i], ccl))
{
work_mbc->chars
= maybe_realloc (work_mbc->chars, work_mbc->nchars,
&chars_al, sizeof *work_mbc->chars);
work_mbc->chars[work_mbc->nchars++] = folded[i];
}
}
}
while ((wc = wc1, (c = c1) != ']'));
if (colon_warning_state == 7)
dfawarn (_("character class syntax is [[:space:]], not [:space:]"));
if (! known_bracket_exp)
return BACKREF;
if (dfa->multibyte)
{
work_mbc->invert = invert;
work_mbc->cset = emptyset (ccl) ? -1 : dfa_charclass_index (dfa, ccl);
return MBCSET;
}
if (invert)
{
assert (!dfa->multibyte);
notset (ccl);
if (dfa->syntax.syntax_bits & RE_HAT_LISTS_NOT_NEWLINE)
clrbit ('\n', ccl);
}
return CSET + dfa_charclass_index (dfa, ccl);
}
#define PUSH_LEX_STATE(s) \
do \
{ \
char const *lexptr_saved = dfa->lexstate.lexptr; \
size_t lexleft_saved = dfa->lexstate.lexleft; \
dfa->lexstate.lexptr = (s); \
dfa->lexstate.lexleft = strlen (dfa->lexstate.lexptr)
#define POP_LEX_STATE() \
dfa->lexstate.lexptr = lexptr_saved; \
dfa->lexstate.lexleft = lexleft_saved; \
} \
while (false)
static token
lex (struct dfa *dfa)
{
int c, c2;
bool backslash = false;
charclass ccl;
int i;
/* Basic plan: We fetch a character. If it's a backslash,
we set the backslash flag and go through the loop again.
On the plus side, this avoids having a duplicate of the
main switch inside the backslash case. On the minus side,
it means that just about every case begins with
"if (backslash) ...". */
for (i = 0; i < 2; ++i)
{
FETCH_WC (dfa, c, dfa->lexstate.wctok, NULL);
switch (c)
{
case '\\':
if (backslash)
goto normal_char;
if (dfa->lexstate.lexleft == 0)
dfaerror (_("unfinished \\ escape"));
backslash = true;
break;
case '^':
if (backslash)
goto normal_char;
if (dfa->syntax.syntax_bits & RE_CONTEXT_INDEP_ANCHORS
|| dfa->lexstate.lasttok == END || dfa->lexstate.lasttok == LPAREN
|| dfa->lexstate.lasttok == OR)
return dfa->lexstate.lasttok = BEGLINE;
goto normal_char;
case '$':
if (backslash)
goto normal_char;
if (dfa->syntax.syntax_bits & RE_CONTEXT_INDEP_ANCHORS
|| dfa->lexstate.lexleft == 0
|| (dfa->syntax.syntax_bits & RE_NO_BK_PARENS
? dfa->lexstate.lexleft > 0 && *dfa->lexstate.lexptr == ')'
: dfa->lexstate.lexleft > 1 && dfa->lexstate.lexptr[0] == '\\'
&& dfa->lexstate.lexptr[1] == ')')
|| (dfa->syntax.syntax_bits & RE_NO_BK_VBAR
? dfa->lexstate.lexleft > 0 && *dfa->lexstate.lexptr == '|'
: dfa->lexstate.lexleft > 1 && dfa->lexstate.lexptr[0] == '\\'
&& dfa->lexstate.lexptr[1] == '|')
|| ((dfa->syntax.syntax_bits & RE_NEWLINE_ALT)
&& dfa->lexstate.lexleft > 0
&& *dfa->lexstate.lexptr == '\n'))
return dfa->lexstate.lasttok = ENDLINE;
goto normal_char;
case '1':
case '2':
case '3':
case '4':
case '5':
case '6':
case '7':
case '8':
case '9':
if (backslash && !(dfa->syntax.syntax_bits & RE_NO_BK_REFS))
{
dfa->lexstate.laststart = false;
return dfa->lexstate.lasttok = BACKREF;
}
goto normal_char;
case '`':
if (backslash && !(dfa->syntax.syntax_bits & RE_NO_GNU_OPS))
{
/* FIXME: should be beginning of string */
return dfa->lexstate.lasttok = BEGLINE;
}
goto normal_char;
case '\'':
if (backslash && !(dfa->syntax.syntax_bits & RE_NO_GNU_OPS))
{
/* FIXME: should be end of string */
return dfa->lexstate.lasttok = ENDLINE;
}
goto normal_char;
case '<':
if (backslash && !(dfa->syntax.syntax_bits & RE_NO_GNU_OPS))
return dfa->lexstate.lasttok = BEGWORD;
goto normal_char;
case '>':
if (backslash && !(dfa->syntax.syntax_bits & RE_NO_GNU_OPS))
return dfa->lexstate.lasttok = ENDWORD;
goto normal_char;
case 'b':
if (backslash && !(dfa->syntax.syntax_bits & RE_NO_GNU_OPS))
return dfa->lexstate.lasttok = LIMWORD;
goto normal_char;
case 'B':
if (backslash && !(dfa->syntax.syntax_bits & RE_NO_GNU_OPS))
return dfa->lexstate.lasttok = NOTLIMWORD;
goto normal_char;
case '?':
if (dfa->syntax.syntax_bits & RE_LIMITED_OPS)
goto normal_char;
if (backslash != ((dfa->syntax.syntax_bits & RE_BK_PLUS_QM) != 0))
goto normal_char;
if (!(dfa->syntax.syntax_bits & RE_CONTEXT_INDEP_OPS)
&& dfa->lexstate.laststart)
goto normal_char;
return dfa->lexstate.lasttok = QMARK;
case '*':
if (backslash)
goto normal_char;
if (!(dfa->syntax.syntax_bits & RE_CONTEXT_INDEP_OPS)
&& dfa->lexstate.laststart)
goto normal_char;
return dfa->lexstate.lasttok = STAR;
case '+':
if (dfa->syntax.syntax_bits & RE_LIMITED_OPS)
goto normal_char;
if (backslash != ((dfa->syntax.syntax_bits & RE_BK_PLUS_QM) != 0))
goto normal_char;
if (!(dfa->syntax.syntax_bits & RE_CONTEXT_INDEP_OPS)
&& dfa->lexstate.laststart)
goto normal_char;
return dfa->lexstate.lasttok = PLUS;
case '{':
if (!(dfa->syntax.syntax_bits & RE_INTERVALS))
goto normal_char;
if (backslash != ((dfa->syntax.syntax_bits & RE_NO_BK_BRACES) == 0))
goto normal_char;
if (!(dfa->syntax.syntax_bits & RE_CONTEXT_INDEP_OPS)
&& dfa->lexstate.laststart)
goto normal_char;
/* Cases:
{M} - exact count
{M,} - minimum count, maximum is infinity
{,N} - 0 through N
{,} - 0 to infinity (same as '*')
{M,N} - M through N */
{
char const *p = dfa->lexstate.lexptr;
char const *lim = p + dfa->lexstate.lexleft;
dfa->lexstate.minrep = dfa->lexstate.maxrep = -1;
for (; p != lim && ISASCIIDIGIT (*p); p++)
{
if (dfa->lexstate.minrep < 0)
dfa->lexstate.minrep = *p - '0';
else
dfa->lexstate.minrep = MIN (RE_DUP_MAX + 1,
(dfa->lexstate.minrep
* 10 + *p - '0'));
}
if (p != lim)
{
if (*p != ',')
dfa->lexstate.maxrep = dfa->lexstate.minrep;
else
{
if (dfa->lexstate.minrep < 0)
dfa->lexstate.minrep = 0;
while (++p != lim && ISASCIIDIGIT (*p))
{
if (dfa->lexstate.maxrep < 0)
dfa->lexstate.maxrep = *p - '0';
else
dfa->lexstate.maxrep = MIN (RE_DUP_MAX + 1,
(dfa->lexstate.maxrep
* 10 + *p - '0'));
}
}
}
if (! ((! backslash || (p != lim && *p++ == '\\'))
&& p != lim && *p++ == '}'
&& 0 <= dfa->lexstate.minrep
&& (dfa->lexstate.maxrep < 0
|| dfa->lexstate.minrep <= dfa->lexstate.maxrep)))
{
if (dfa->syntax.syntax_bits & RE_INVALID_INTERVAL_ORD)
goto normal_char;
dfaerror (_("invalid content of \\{\\}"));
}
if (RE_DUP_MAX < dfa->lexstate.maxrep)
dfaerror (_("regular expression too big"));
dfa->lexstate.lexptr = p;
dfa->lexstate.lexleft = lim - p;
}
dfa->lexstate.laststart = false;
return dfa->lexstate.lasttok = REPMN;
case '|':
if (dfa->syntax.syntax_bits & RE_LIMITED_OPS)
goto normal_char;
if (backslash != ((dfa->syntax.syntax_bits & RE_NO_BK_VBAR) == 0))
goto normal_char;
dfa->lexstate.laststart = true;
return dfa->lexstate.lasttok = OR;
case '\n':
if (dfa->syntax.syntax_bits & RE_LIMITED_OPS
|| backslash || !(dfa->syntax.syntax_bits & RE_NEWLINE_ALT))
goto normal_char;
dfa->lexstate.laststart = true;
return dfa->lexstate.lasttok = OR;
case '(':
if (backslash != ((dfa->syntax.syntax_bits & RE_NO_BK_PARENS) == 0))
goto normal_char;
++dfa->lexstate.parens;
dfa->lexstate.laststart = true;
return dfa->lexstate.lasttok = LPAREN;
case ')':
if (backslash != ((dfa->syntax.syntax_bits & RE_NO_BK_PARENS) == 0))
goto normal_char;
if (dfa->lexstate.parens == 0
&& dfa->syntax.syntax_bits & RE_UNMATCHED_RIGHT_PAREN_ORD)
goto normal_char;
--dfa->lexstate.parens;
dfa->lexstate.laststart = false;
return dfa->lexstate.lasttok = RPAREN;
case '.':
if (backslash)
goto normal_char;
if (dfa->multibyte)
{
/* In multibyte environment period must match with a single
character not a byte. So we use ANYCHAR. */
dfa->lexstate.laststart = false;
return dfa->lexstate.lasttok = ANYCHAR;
}
zeroset (ccl);
notset (ccl);
if (!(dfa->syntax.syntax_bits & RE_DOT_NEWLINE))
clrbit ('\n', ccl);
if (dfa->syntax.syntax_bits & RE_DOT_NOT_NULL)
clrbit ('\0', ccl);
dfa->lexstate.laststart = false;
return dfa->lexstate.lasttok = CSET + dfa_charclass_index (dfa, ccl);
case 's':
case 'S':
if (!backslash || (dfa->syntax.syntax_bits & RE_NO_GNU_OPS))
goto normal_char;
if (!dfa->multibyte)
{
zeroset (ccl);
for (c2 = 0; c2 < NOTCHAR; ++c2)
if (isspace (c2))
setbit (c2, ccl);
if (c == 'S')
notset (ccl);
dfa->lexstate.laststart = false;
return dfa->lexstate.lasttok = CSET + dfa_charclass_index (dfa,
ccl);
}
/* FIXME: see if optimizing this, as is done with ANYCHAR and
add_utf8_anychar, makes sense. */
/* \s and \S are documented to be equivalent to [[:space:]] and
[^[:space:]] respectively, so tell the lexer to process those
strings, each minus its "already processed" '['. */
PUSH_LEX_STATE (c == 's' ? "[:space:]]" : "^[:space:]]");
dfa->lexstate.lasttok = parse_bracket_exp (dfa);
POP_LEX_STATE ();
dfa->lexstate.laststart = false;
return dfa->lexstate.lasttok;
case 'w':
case 'W':
if (!backslash || (dfa->syntax.syntax_bits & RE_NO_GNU_OPS))
goto normal_char;
if (!dfa->multibyte)
{
zeroset (ccl);
for (c2 = 0; c2 < NOTCHAR; ++c2)
if (unibyte_word_constituent (c2))
setbit (c2, ccl);
if (c == 'W')
notset (ccl);
dfa->lexstate.laststart = false;
return dfa->lexstate.lasttok = CSET + dfa_charclass_index (dfa,
ccl);
}
/* FIXME: see if optimizing this, as is done with ANYCHAR and
add_utf8_anychar, makes sense. */
/* \w and \W are documented to be equivalent to [_[:alnum:]] and
[^_[:alnum:]] respectively, so tell the lexer to process those
strings, each minus its "already processed" '['. */
PUSH_LEX_STATE (c == 'w' ? "_[:alnum:]]" : "^_[:alnum:]]");
dfa->lexstate.lasttok = parse_bracket_exp (dfa);
POP_LEX_STATE ();
dfa->lexstate.laststart = false;
return dfa->lexstate.lasttok;
case '[':
if (backslash)
goto normal_char;
dfa->lexstate.laststart = false;
return dfa->lexstate.lasttok = parse_bracket_exp (dfa);
default:
normal_char:
dfa->lexstate.laststart = false;
/* For multibyte character sets, folding is done in atom. Always
return WCHAR. */
if (dfa->multibyte)
return dfa->lexstate.lasttok = WCHAR;
if (dfa->syntax.case_fold && isalpha (c))
{
zeroset (ccl);
setbit_case_fold_c (c, ccl);
return dfa->lexstate.lasttok = CSET + dfa_charclass_index (dfa,
ccl);
}
return dfa->lexstate.lasttok = c;
}
}
/* The above loop should consume at most a backslash
and some other character. */
abort ();
return END; /* keeps pedantic compilers happy. */
}
static void
addtok_mb (struct dfa *dfa, token t, int mbprop)
{
if (dfa->talloc == dfa->tindex)
{
dfa->tokens = x2nrealloc (dfa->tokens, &dfa->talloc,
sizeof *dfa->tokens);
if (dfa->multibyte)
dfa->multibyte_prop = xnrealloc (dfa->multibyte_prop, dfa->talloc,
sizeof *dfa->multibyte_prop);
}
if (dfa->multibyte)
dfa->multibyte_prop[dfa->tindex] = mbprop;
dfa->tokens[dfa->tindex++] = t;
switch (t)
{
case QMARK:
case STAR:
case PLUS:
break;
case CAT:
case OR:
--dfa->parsestate.depth;
break;
case BACKREF:
dfa->fast = false;
/* fallthrough */
default:
++dfa->nleaves;
/* fallthrough */
case EMPTY:
++dfa->parsestate.depth;
break;
}
if (dfa->parsestate.depth > dfa->depth)
dfa->depth = dfa->parsestate.depth;
}
static void addtok_wc (struct dfa *dfa, wint_t wc);
/* Add the given token to the parse tree, maintaining the depth count and
updating the maximum depth if necessary. */
static void
addtok (struct dfa *dfa, token t)
{
if (dfa->multibyte && t == MBCSET)
{
bool need_or = false;
struct mb_char_classes *work_mbc = &dfa->mbcsets[dfa->nmbcsets - 1];
size_t i;
/* Extract wide characters into alternations for better performance.
This does not require UTF-8. */
for (i = 0; i < work_mbc->nchars; i++)
{
addtok_wc (dfa, work_mbc->chars[i]);
if (need_or)
addtok (dfa, OR);
need_or = true;
}
work_mbc->nchars = 0;
/* Characters have been handled above, so it is possible
that the mbcset is empty now. Do nothing in that case. */
if (work_mbc->cset != -1)
{
addtok (dfa, CSET + work_mbc->cset);
if (need_or)
addtok (dfa, OR);
}
}
else
{
addtok_mb (dfa, t, 3);
}
}
/* We treat a multibyte character as a single atom, so that DFA
can treat a multibyte character as a single expression.
e.g., we construct the following tree from "<mb1><mb2>".
<mb1(1st-byte)><mb1(2nd-byte)><CAT><mb1(3rd-byte)><CAT>
<mb2(1st-byte)><mb2(2nd-byte)><CAT><mb2(3rd-byte)><CAT><CAT> */
static void
addtok_wc (struct dfa *dfa, wint_t wc)
{
unsigned char buf[MB_LEN_MAX];
mbstate_t s = { 0 };
int i;
size_t stored_bytes = wcrtomb ((char *) buf, wc, &s);
if (stored_bytes != (size_t) -1)
dfa->lexstate.cur_mb_len = stored_bytes;
else
{
/* This is merely stop-gap. buf[0] is undefined, yet skipping
the addtok_mb call altogether can corrupt the heap. */
dfa->lexstate.cur_mb_len = 1;
buf[0] = 0;
}
addtok_mb (dfa, buf[0], dfa->lexstate.cur_mb_len == 1 ? 3 : 1);
for (i = 1; i < dfa->lexstate.cur_mb_len; i++)
{
addtok_mb (dfa, buf[i], i == dfa->lexstate.cur_mb_len - 1 ? 2 : 0);
addtok (dfa, CAT);
}
}
static void
add_utf8_anychar (struct dfa *dfa)
{
static charclass const utf8_classes[5] = {
/* 80-bf: non-leading bytes. */
CHARCLASS_INIT (0, 0, 0, 0, 0xffffffff, 0xffffffff, 0, 0),
/* 00-7f: 1-byte sequence. */
CHARCLASS_INIT (0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0, 0, 0, 0),
/* c2-df: 2-byte sequence. */
CHARCLASS_INIT (0, 0, 0, 0, 0, 0, 0xfffffffc, 0),
/* e0-ef: 3-byte sequence. */
CHARCLASS_INIT (0, 0, 0, 0, 0, 0, 0, 0xffff),
/* f0-f7: 4-byte sequence. */
CHARCLASS_INIT (0, 0, 0, 0, 0, 0, 0, 0xff0000)
};
const unsigned int n = sizeof (utf8_classes) / sizeof (utf8_classes[0]);
unsigned int i;
/* Define the five character classes that are needed below. */
if (dfa->utf8_anychar_classes[0] == 0)
for (i = 0; i < n; i++)
{
charclass c;
copyset (utf8_classes[i], c);
if (i == 1)
{
if (!(dfa->syntax.syntax_bits & RE_DOT_NEWLINE))
clrbit ('\n', c);
if (dfa->syntax.syntax_bits & RE_DOT_NOT_NULL)
clrbit ('\0', c);
}
dfa->utf8_anychar_classes[i] = CSET + dfa_charclass_index (dfa, c);
}
/* A valid UTF-8 character is
([0x00-0x7f]
|[0xc2-0xdf][0x80-0xbf]
|[0xe0-0xef[0x80-0xbf][0x80-0xbf]
|[0xf0-f7][0x80-0xbf][0x80-0xbf][0x80-0xbf])
which I'll write more concisely "B|CA|DAA|EAAA". Factor the [0x00-0x7f]
and you get "B|(C|(D|EA)A)A". And since the token buffer is in reverse
Polish notation, you get "B C D E A CAT OR A CAT OR A CAT OR". */
for (i = 1; i < n; i++)
addtok (dfa, dfa->utf8_anychar_classes[i]);
while (--i > 1)
{
addtok (dfa, dfa->utf8_anychar_classes[0]);
addtok (dfa, CAT);
addtok (dfa, OR);
}
}
/* The grammar understood by the parser is as follows.
regexp:
regexp OR branch
branch
branch:
branch closure
closure
closure:
closure QMARK
closure STAR
closure PLUS
closure REPMN
atom
atom:
<normal character>
<multibyte character>
ANYCHAR
MBCSET
CSET
BACKREF
BEGLINE
ENDLINE
BEGWORD
ENDWORD
LIMWORD
NOTLIMWORD
LPAREN regexp RPAREN
<empty>
The parser builds a parse tree in postfix form in an array of tokens. */
static void
atom (struct dfa *dfa)
{
if (dfa->parsestate.tok == WCHAR)
{
if (dfa->lexstate.wctok == WEOF)
addtok (dfa, BACKREF);
else
{
addtok_wc (dfa, dfa->lexstate.wctok);
if (dfa->syntax.case_fold)
{
wchar_t folded[CASE_FOLDED_BUFSIZE];
unsigned int i, n = case_folded_counterparts (dfa->lexstate.wctok,
folded);
for (i = 0; i < n; i++)
{
addtok_wc (dfa, folded[i]);
addtok (dfa, OR);
}
}
}
dfa->parsestate.tok = lex (dfa);
}
else if (dfa->parsestate.tok == ANYCHAR && using_utf8)
{
/* For UTF-8 expand the period to a series of CSETs that define a valid
UTF-8 character. This avoids using the slow multibyte path. I'm
pretty sure it would be both profitable and correct to do it for
any encoding; however, the optimization must be done manually as
it is done above in add_utf8_anychar. So, let's start with
UTF-8: it is the most used, and the structure of the encoding
makes the correctness more obvious. */
add_utf8_anychar (dfa);
dfa->parsestate.tok = lex (dfa);
}
else if ((dfa->parsestate.tok >= 0 && dfa->parsestate.tok < NOTCHAR)
|| dfa->parsestate.tok >= CSET || dfa->parsestate.tok == BACKREF
|| dfa->parsestate.tok == BEGLINE || dfa->parsestate.tok == ENDLINE
|| dfa->parsestate.tok == BEGWORD || dfa->parsestate.tok == ANYCHAR
|| dfa->parsestate.tok == MBCSET || dfa->parsestate.tok == ENDWORD
|| dfa->parsestate.tok == LIMWORD
|| dfa->parsestate.tok == NOTLIMWORD)
{
addtok (dfa, dfa->parsestate.tok);
dfa->parsestate.tok = lex (dfa);
}
else if (dfa->parsestate.tok == LPAREN)
{
dfa->parsestate.tok = lex (dfa);
regexp (dfa);
if (dfa->parsestate.tok != RPAREN)
dfaerror (_("unbalanced ("));
dfa->parsestate.tok = lex (dfa);
}
else
addtok (dfa, EMPTY);
}
/* Return the number of tokens in the given subexpression. */
static size_t _GL_ATTRIBUTE_PURE
nsubtoks (struct dfa const *dfa, size_t tindex)
{
size_t ntoks1;
switch (dfa->tokens[tindex - 1])
{
default:
return 1;
case QMARK:
case STAR:
case PLUS:
return 1 + nsubtoks (dfa, tindex - 1);
case CAT:
case OR:
ntoks1 = nsubtoks (dfa, tindex - 1);
return 1 + ntoks1 + nsubtoks (dfa, tindex - 1 - ntoks1);
}
}
/* Copy the given subexpression to the top of the tree. */
static void
copytoks (struct dfa *dfa, size_t tindex, size_t ntokens)
{
size_t i;
if (dfa->multibyte)
for (i = 0; i < ntokens; ++i)
addtok_mb (dfa, dfa->tokens[tindex + i], dfa->multibyte_prop[tindex + i]);
else
for (i = 0; i < ntokens; ++i)
addtok_mb (dfa, dfa->tokens[tindex + i], 3);
}
static void
closure (struct dfa *dfa)
{
int i;
size_t tindex, ntokens;
atom (dfa);
while (dfa->parsestate.tok == QMARK || dfa->parsestate.tok == STAR
|| dfa->parsestate.tok == PLUS || dfa->parsestate.tok == REPMN)
if (dfa->parsestate.tok == REPMN
&& (dfa->lexstate.minrep || dfa->lexstate.maxrep))
{
ntokens = nsubtoks (dfa, dfa->tindex);
tindex = dfa->tindex - ntokens;
if (dfa->lexstate.maxrep < 0)
addtok (dfa, PLUS);
if (dfa->lexstate.minrep == 0)
addtok (dfa, QMARK);
for (i = 1; i < dfa->lexstate.minrep; ++i)
{
copytoks (dfa, tindex, ntokens);
addtok (dfa, CAT);
}
for (; i < dfa->lexstate.maxrep; ++i)
{
copytoks (dfa, tindex, ntokens);
addtok (dfa, QMARK);
addtok (dfa, CAT);
}
dfa->parsestate.tok = lex (dfa);
}
else if (dfa->parsestate.tok == REPMN)
{
dfa->tindex -= nsubtoks (dfa, dfa->tindex);
dfa->parsestate.tok = lex (dfa);
closure (dfa);
}
else
{
addtok (dfa, dfa->parsestate.tok);
dfa->parsestate.tok = lex (dfa);
}
}
static void
branch (struct dfa* dfa)
{
closure (dfa);
while (dfa->parsestate.tok != RPAREN && dfa->parsestate.tok != OR
&& dfa->parsestate.tok >= 0)
{
closure (dfa);
addtok (dfa, CAT);
}
}
static void
regexp (struct dfa *dfa)
{
branch (dfa);
while (dfa->parsestate.tok == OR)
{
dfa->parsestate.tok = lex (dfa);
branch (dfa);
addtok (dfa, OR);
}
}
/* Main entry point for the parser. S is a string to be parsed, len is the
length of the string, so s can include NUL characters. D is a pointer to
the struct dfa to parse into. */
static void
dfaparse (char const *s, size_t len, struct dfa *d)
{
d->lexstate.lexptr = s;
d->lexstate.lexleft = len;
d->lexstate.lasttok = END;
d->lexstate.laststart = true;
d->lexstate.parens = 0;
if (d->multibyte)
{
d->lexstate.cur_mb_len = 0;
memset (&d->mbs, 0, sizeof d->mbs);
}
if (!d->syntax.syntax_bits_set)
dfaerror (_("no syntax specified"));
d->parsestate.tok = lex (d);
d->parsestate.depth = d->depth;
regexp (d);
if (d->parsestate.tok != END)
dfaerror (_("unbalanced )"));
addtok (d, END - d->nregexps);
addtok (d, CAT);
if (d->nregexps)
addtok (d, OR);
++d->nregexps;
}
/* Some primitives for operating on sets of positions. */
/* Copy one set to another. */
static void
copy (position_set const *src, position_set *dst)
{
if (dst->alloc < src->nelem)
{
free (dst->elems);
dst->alloc = src->nelem;
dst->elems = x2nrealloc (NULL, &dst->alloc, sizeof *dst->elems);
}
memcpy (dst->elems, src->elems, src->nelem * sizeof *dst->elems);
dst->nelem = src->nelem;
}
static void
alloc_position_set (position_set *s, size_t size)
{
s->elems = xnmalloc (size, sizeof *s->elems);
s->alloc = size;
s->nelem = 0;
}
/* Insert position P in set S. S is maintained in sorted order on
decreasing index. If there is already an entry in S with P.index
then merge (logically-OR) P's constraints into the one in S.
S->elems must point to an array large enough to hold the resulting set. */
static void
insert (position p, position_set *s)
{
size_t count = s->nelem;
size_t lo = 0, hi = count;
size_t i;
while (lo < hi)
{
size_t mid = (lo + hi) >> 1;
if (s->elems[mid].index > p.index)
lo = mid + 1;
else
hi = mid;
}
if (lo < count && p.index == s->elems[lo].index)
{
s->elems[lo].constraint |= p.constraint;
return;
}
s->elems = maybe_realloc (s->elems, count, &s->alloc, sizeof *s->elems);
for (i = count; i > lo; i--)
s->elems[i] = s->elems[i - 1];
s->elems[lo] = p;
++s->nelem;
}
/* Merge two sets of positions into a third. The result is exactly as if
the positions of both sets were inserted into an initially empty set. */
static void
merge (position_set const *s1, position_set const *s2, position_set *m)
{
size_t i = 0, j = 0;
if (m->alloc < s1->nelem + s2->nelem)
{
free (m->elems);
m->elems = maybe_realloc (NULL, s1->nelem + s2->nelem, &m->alloc,
sizeof *m->elems);
}
m->nelem = 0;
while (i < s1->nelem && j < s2->nelem)
if (s1->elems[i].index > s2->elems[j].index)
m->elems[m->nelem++] = s1->elems[i++];
else if (s1->elems[i].index < s2->elems[j].index)
m->elems[m->nelem++] = s2->elems[j++];
else
{
m->elems[m->nelem] = s1->elems[i++];
m->elems[m->nelem++].constraint |= s2->elems[j++].constraint;
}
while (i < s1->nelem)
m->elems[m->nelem++] = s1->elems[i++];
while (j < s2->nelem)
m->elems[m->nelem++] = s2->elems[j++];
}
/* Delete a position from a set. */
static void
delete (position p, position_set *s)
{
size_t i;
for (i = 0; i < s->nelem; ++i)
if (p.index == s->elems[i].index)
break;
if (i < s->nelem)
for (--s->nelem; i < s->nelem; ++i)
s->elems[i] = s->elems[i + 1];
}
/* Find the index of the state corresponding to the given position set with
the given preceding context, or create a new state if there is no such
state. Context tells whether we got here on a newline or letter. */
static state_num
state_index (struct dfa *d, position_set const *s, int context)
{
size_t hash = 0;
int constraint = 0;
state_num i, j;
bool curr_dependent = false;
token first_end = 0;
for (i = 0; i < s->nelem; ++i)
hash ^= s->elems[i].index + s->elems[i].constraint;
/* Try to find a state that exactly matches the proposed one. */
for (i = 0; i < d->sindex; ++i)
{
if (hash != d->states[i].hash || s->nelem != d->states[i].elems.nelem
|| context != d->states[i].context)
continue;
for (j = 0; j < s->nelem; ++j)
if (s->elems[j].constraint != d->states[i].elems.elems[j].constraint
|| s->elems[j].index != d->states[i].elems.elems[j].index)
break;
if (j == s->nelem)
return i;
}
#ifdef DEBUG
fprintf (stderr, "new state %zd\n nextpos:", i);
for (j = 0; j < s->nelem; ++j)
{
fprintf (stderr, " %zu:", s->elems[j].index);
prtok (d->tokens[s->elems[j].index]);
}
fprintf (stderr, "\n context:");
if (context ^ CTX_ANY)
{
if (context & CTX_NONE)
fprintf (stderr, " CTX_NONE");
if (context & CTX_LETTER)
fprintf (stderr, " CTX_LETTER");
if (context & CTX_NEWLINE)
fprintf (stderr, " CTX_NEWLINE");
}
else
fprintf (stderr, " CTX_ANY");
fprintf (stderr, "\n");
#endif
for (j = 0; j < s->nelem; ++j)
{
int c = s->elems[j].constraint;
if (d->tokens[s->elems[j].index] < 0)
{
if (SUCCEEDS_IN_CONTEXT (c, context, CTX_ANY))
constraint |= c;
if (!first_end)
first_end = d->tokens[s->elems[j].index];
}
else if (d->tokens[s->elems[j].index] == BACKREF)
constraint = NO_CONSTRAINT;
if (d->multibyte && d->tokens[s->elems[j].index] == ANYCHAR)
{
int acceptable
= ((SUCCEEDS_IN_CONTEXT (c, context, CTX_NEWLINE)
? CTX_NEWLINE : 0)
| (SUCCEEDS_IN_CONTEXT (c, context, CTX_LETTER)
? CTX_LETTER : 0)
| (SUCCEEDS_IN_CONTEXT (c, context, CTX_NONE)
? CTX_NONE : 0));
curr_dependent |= acceptable && (context & ~acceptable);
}
}
/* Create a new state. */
d->states = maybe_realloc (d->states, d->sindex, &d->salloc,
sizeof *d->states);
d->states[i].hash = hash;
alloc_position_set (&d->states[i].elems, s->nelem);
copy (s, &d->states[i].elems);
d->states[i].context = context;
d->states[i].curr_dependent = curr_dependent;
d->states[i].constraint = constraint;
d->states[i].first_end = first_end;
d->states[i].mbps.nelem = 0;
d->states[i].mbps.elems = NULL;
d->states[i].mb_trindex = -1;
++d->sindex;
return i;
}
/* Find the epsilon closure of a set of positions. If any position of the set
contains a symbol that matches the empty string in some context, replace
that position with the elements of its follow labeled with an appropriate
constraint. Repeat exhaustively until no funny positions are left.
S->elems must be large enough to hold the result. */
static void
epsclosure (position_set *s, struct dfa const *d, char *visited)
{
size_t i, j;
position p, old;
bool initialized = false;
for (i = 0; i < s->nelem; ++i)
if (d->tokens[s->elems[i].index] >= NOTCHAR
&& d->tokens[s->elems[i].index] != BACKREF
&& d->tokens[s->elems[i].index] != ANYCHAR
&& d->tokens[s->elems[i].index] != MBCSET
&& d->tokens[s->elems[i].index] < CSET)
{
if (!initialized)
{
memset (visited, 0, d->tindex * sizeof (*visited));
initialized = true;
}
old = s->elems[i];
p.constraint = old.constraint;
delete (s->elems[i], s);
if (visited[old.index])
{
--i;
continue;
}
visited[old.index] = 1;
switch (d->tokens[old.index])
{
case BEGLINE:
p.constraint &= BEGLINE_CONSTRAINT;
break;
case ENDLINE:
p.constraint &= ENDLINE_CONSTRAINT;
break;
case BEGWORD:
p.constraint &= BEGWORD_CONSTRAINT;
break;
case ENDWORD:
p.constraint &= ENDWORD_CONSTRAINT;
break;
case LIMWORD:
p.constraint &= LIMWORD_CONSTRAINT;
break;
case NOTLIMWORD:
p.constraint &= NOTLIMWORD_CONSTRAINT;
break;
default:
break;
}
for (j = 0; j < d->follows[old.index].nelem; ++j)
{
p.index = d->follows[old.index].elems[j].index;
insert (p, s);
}
/* Force rescan to start at the beginning. */
i = -1;
}
}
/* Returns the set of contexts for which there is at least one
character included in C. */
static int
charclass_context (struct dfa const *dfa, charclass c)
{
int context = 0;
unsigned int j;
if (tstbit (dfa->syntax.eolbyte, c))
context |= CTX_NEWLINE;
for (j = 0; j < CHARCLASS_WORDS; ++j)
{
if (c[j] & dfa->syntax.letters[j])
context |= CTX_LETTER;
if (c[j] & ~(dfa->syntax.letters[j] | dfa->syntax.newline[j]))
context |= CTX_NONE;
}
return context;
}
/* Returns the contexts on which the position set S depends. Each context
in the set of returned contexts (let's call it SC) may have a different
follow set than other contexts in SC, and also different from the
follow set of the complement set (sc ^ CTX_ANY). However, all contexts
in the complement set will have the same follow set. */
static int _GL_ATTRIBUTE_PURE
state_separate_contexts (position_set const *s)
{
int separate_contexts = 0;
size_t j;
for (j = 0; j < s->nelem; ++j)
{
if (PREV_NEWLINE_DEPENDENT (s->elems[j].constraint))
separate_contexts |= CTX_NEWLINE;
if (PREV_LETTER_DEPENDENT (s->elems[j].constraint))
separate_contexts |= CTX_LETTER;
}
return separate_contexts;
}
/* Perform bottom-up analysis on the parse tree, computing various functions.
Note that at this point, we're pretending constructs like \< are real
characters rather than constraints on what can follow them.
Nullable: A node is nullable if it is at the root of a regexp that can
match the empty string.
* EMPTY leaves are nullable.
* No other leaf is nullable.
* A QMARK or STAR node is nullable.
* A PLUS node is nullable if its argument is nullable.
* A CAT node is nullable if both its arguments are nullable.
* An OR node is nullable if either argument is nullable.
Firstpos: The firstpos of a node is the set of positions (nonempty leaves)
that could correspond to the first character of a string matching the
regexp rooted at the given node.
* EMPTY leaves have empty firstpos.
* The firstpos of a nonempty leaf is that leaf itself.
* The firstpos of a QMARK, STAR, or PLUS node is the firstpos of its
argument.
* The firstpos of a CAT node is the firstpos of the left argument, union
the firstpos of the right if the left argument is nullable.
* The firstpos of an OR node is the union of firstpos of each argument.
Lastpos: The lastpos of a node is the set of positions that could
correspond to the last character of a string matching the regexp at
the given node.
* EMPTY leaves have empty lastpos.
* The lastpos of a nonempty leaf is that leaf itself.
* The lastpos of a QMARK, STAR, or PLUS node is the lastpos of its
argument.
* The lastpos of a CAT node is the lastpos of its right argument, union
the lastpos of the left if the right argument is nullable.
* The lastpos of an OR node is the union of the lastpos of each argument.
Follow: The follow of a position is the set of positions that could
correspond to the character following a character matching the node in
a string matching the regexp. At this point we consider special symbols
that match the empty string in some context to be just normal characters.
Later, if we find that a special symbol is in a follow set, we will
replace it with the elements of its follow, labeled with an appropriate
constraint.
* Every node in the firstpos of the argument of a STAR or PLUS node is in
the follow of every node in the lastpos.
* Every node in the firstpos of the second argument of a CAT node is in
the follow of every node in the lastpos of the first argument.
Because of the postfix representation of the parse tree, the depth-first
analysis is conveniently done by a linear scan with the aid of a stack.
Sets are stored as arrays of the elements, obeying a stack-like allocation
scheme; the number of elements in each set deeper in the stack can be
used to determine the address of a particular set's array. */
static void
dfaanalyze (struct dfa *d, bool searchflag)
{
/* Array allocated to hold position sets. */
position *posalloc = xnmalloc (d->nleaves, 2 * sizeof *posalloc);
/* Firstpos and lastpos elements. */
position *firstpos = posalloc + d->nleaves;
position *lastpos = firstpos + d->nleaves;
/* Stack for element counts and nullable flags. */
struct
{
/* Whether the entry is nullable. */
bool nullable;
/* Counts of firstpos and lastpos sets. */
size_t nfirstpos;
size_t nlastpos;
} *stkalloc = xnmalloc (d->depth, sizeof *stkalloc), *stk = stkalloc;
position_set tmp; /* Temporary set for merging sets. */
position_set merged; /* Result of merging sets. */
int separate_contexts; /* Context wanted by some position. */
size_t i, j;
position *pos;
char *visited = xnmalloc (d->tindex, sizeof *visited);
#ifdef DEBUG
fprintf (stderr, "dfaanalyze:\n");
for (i = 0; i < d->tindex; ++i)
{
fprintf (stderr, " %zu:", i);
prtok (d->tokens[i]);
}
putc ('\n', stderr);
#endif
d->searchflag = searchflag;
alloc_position_set (&merged, d->nleaves);
d->follows = xcalloc (d->tindex, sizeof *d->follows);
for (i = 0; i < d->tindex; ++i)
{
switch (d->tokens[i])
{
case EMPTY:
/* The empty set is nullable. */
stk->nullable = true;
/* The firstpos and lastpos of the empty leaf are both empty. */
stk->nfirstpos = stk->nlastpos = 0;
stk++;
break;
case STAR:
case PLUS:
/* Every element in the firstpos of the argument is in the follow
of every element in the lastpos. */
tmp.nelem = stk[-1].nfirstpos;
tmp.elems = firstpos;
pos = lastpos;
for (j = 0; j < stk[-1].nlastpos; ++j)
{
merge (&tmp, &d->follows[pos[j].index], &merged);
copy (&merged, &d->follows[pos[j].index]);
}
/* fallthrough */
case QMARK:
/* A QMARK or STAR node is automatically nullable. */
if (d->tokens[i] != PLUS)
stk[-1].nullable = true;
break;
case CAT:
/* Every element in the firstpos of the second argument is in the
follow of every element in the lastpos of the first argument. */
tmp.nelem = stk[-1].nfirstpos;
tmp.elems = firstpos;
pos = lastpos + stk[-1].nlastpos;
for (j = 0; j < stk[-2].nlastpos; ++j)
{
merge (&tmp, &d->follows[pos[j].index], &merged);
copy (&merged, &d->follows[pos[j].index]);
}
/* The firstpos of a CAT node is the firstpos of the first argument,
union that of the second argument if the first is nullable. */
if (stk[-2].nullable)
stk[-2].nfirstpos += stk[-1].nfirstpos;
else
firstpos += stk[-1].nfirstpos;
/* The lastpos of a CAT node is the lastpos of the second argument,
union that of the first argument if the second is nullable. */
if (stk[-1].nullable)
stk[-2].nlastpos += stk[-1].nlastpos;
else
{
pos = lastpos + stk[-2].nlastpos;
for (j = stk[-1].nlastpos; j-- > 0;)
pos[j] = lastpos[j];
lastpos += stk[-2].nlastpos;
stk[-2].nlastpos = stk[-1].nlastpos;
}
/* A CAT node is nullable if both arguments are nullable. */
stk[-2].nullable &= stk[-1].nullable;
stk--;
break;
case OR:
/* The firstpos is the union of the firstpos of each argument. */
stk[-2].nfirstpos += stk[-1].nfirstpos;
/* The lastpos is the union of the lastpos of each argument. */
stk[-2].nlastpos += stk[-1].nlastpos;
/* An OR node is nullable if either argument is nullable. */
stk[-2].nullable |= stk[-1].nullable;
stk--;
break;
default:
/* Anything else is a nonempty position. (Note that special
constructs like \< are treated as nonempty strings here;
an "epsilon closure" effectively makes them nullable later.
Backreferences have to get a real position so we can detect
transitions on them later. But they are nullable. */
stk->nullable = d->tokens[i] == BACKREF;
/* This position is in its own firstpos and lastpos. */
stk->nfirstpos = stk->nlastpos = 1;
stk++;
--firstpos, --lastpos;
firstpos->index = lastpos->index = i;
firstpos->constraint = lastpos->constraint = NO_CONSTRAINT;
/* Allocate the follow set for this position. */
alloc_position_set (&d->follows[i], 1);
break;
}
#ifdef DEBUG
/* ... balance the above nonsyntactic #ifdef goo... */
fprintf (stderr, "node %zu:", i);
prtok (d->tokens[i]);
putc ('\n', stderr);
fprintf (stderr,
stk[-1].nullable ? " nullable: yes\n" : " nullable: no\n");
fprintf (stderr, " firstpos:");
for (j = stk[-1].nfirstpos; j-- > 0;)
{
fprintf (stderr, " %zu:", firstpos[j].index);
prtok (d->tokens[firstpos[j].index]);
}
fprintf (stderr, "\n lastpos:");
for (j = stk[-1].nlastpos; j-- > 0;)
{
fprintf (stderr, " %zu:", lastpos[j].index);
prtok (d->tokens[lastpos[j].index]);
}
putc ('\n', stderr);
#endif
}
/* For each follow set that is the follow set of a real position, replace
it with its epsilon closure. */
for (i = 0; i < d->tindex; ++i)
if (d->tokens[i] < NOTCHAR || d->tokens[i] == BACKREF
|| d->tokens[i] == ANYCHAR || d->tokens[i] == MBCSET
|| d->tokens[i] >= CSET)
{
#ifdef DEBUG
fprintf (stderr, "follows(%zu:", i);
prtok (d->tokens[i]);
fprintf (stderr, "):");
for (j = d->follows[i].nelem; j-- > 0;)
{
fprintf (stderr, " %zu:", d->follows[i].elems[j].index);
prtok (d->tokens[d->follows[i].elems[j].index]);
}
putc ('\n', stderr);
#endif
copy (&d->follows[i], &merged);
epsclosure (&merged, d, visited);
copy (&merged, &d->follows[i]);
}
/* Get the epsilon closure of the firstpos of the regexp. The result will
be the set of positions of state 0. */
merged.nelem = 0;
for (i = 0; i < stk[-1].nfirstpos; ++i)
insert (firstpos[i], &merged);
epsclosure (&merged, d, visited);
/* Build the initial state. */
separate_contexts = state_separate_contexts (&merged);
if (separate_contexts & CTX_NEWLINE)
state_index (d, &merged, CTX_NEWLINE);
d->initstate_notbol = d->min_trcount
= state_index (d, &merged, separate_contexts ^ CTX_ANY);
if (separate_contexts & CTX_LETTER)
d->min_trcount = state_index (d, &merged, CTX_LETTER);
d->min_trcount++;
free (posalloc);
free (stkalloc);
free (merged.elems);
free (visited);
}
/* Find, for each character, the transition out of state s of d, and store
it in the appropriate slot of trans.
We divide the positions of s into groups (positions can appear in more
than one group). Each group is labeled with a set of characters that
every position in the group matches (taking into account, if necessary,
preceding context information of s). For each group, find the union
of the its elements' follows. This set is the set of positions of the
new state. For each character in the group's label, set the transition
on this character to be to a state corresponding to the set's positions,
and its associated backward context information, if necessary.
If we are building a searching matcher, we include the positions of state
0 in every state.
The collection of groups is constructed by building an equivalence-class
partition of the positions of s.
For each position, find the set of characters C that it matches. Eliminate
any characters from C that fail on grounds of backward context.
Search through the groups, looking for a group whose label L has nonempty
intersection with C. If L - C is nonempty, create a new group labeled
L - C and having the same positions as the current group, and set L to
the intersection of L and C. Insert the position in this group, set
C = C - L, and resume scanning.
If after comparing with every group there are characters remaining in C,
create a new group labeled with the characters of C and insert this
position in that group. */
static void
dfastate (state_num s, struct dfa *d, state_num trans[])
{
leaf_set grps[NOTCHAR]; /* As many as will ever be needed. */
charclass labels[NOTCHAR]; /* Labels corresponding to the groups. */
size_t ngrps = 0; /* Number of groups actually used. */
position pos; /* Current position being considered. */
charclass matches; /* Set of matching characters. */
charclass_word matchesf; /* Nonzero if matches is nonempty. */
charclass intersect; /* Intersection with some label set. */
charclass_word intersectf; /* Nonzero if intersect is nonempty. */
charclass leftovers; /* Stuff in the label that didn't match. */
charclass_word leftoversf; /* Nonzero if leftovers is nonempty. */
position_set follows; /* Union of the follows of some group. */
position_set tmp; /* Temporary space for merging sets. */
int possible_contexts; /* Contexts that this group can match. */
int separate_contexts; /* Context that new state wants to know. */
state_num state; /* New state. */
state_num state_newline; /* New state on a newline transition. */
state_num state_letter; /* New state on a letter transition. */
bool next_isnt_1st_byte = false; /* We can't add state0. */
size_t i, j, k;
#ifdef DEBUG
fprintf (stderr, "build state %td\n", s);
#endif
zeroset (matches);
for (i = 0; i < d->states[s].elems.nelem; ++i)
{
pos = d->states[s].elems.elems[i];
if (d->tokens[pos.index] >= 0 && d->tokens[pos.index] < NOTCHAR)
setbit (d->tokens[pos.index], matches);
else if (d->tokens[pos.index] >= CSET)
copyset (d->charclasses[d->tokens[pos.index] - CSET], matches);
else if (d->multibyte && d->tokens[pos.index] == ANYCHAR)
{
/* ANYCHAR must match a single character, so put it to
D->states[s].mbps which contains the positions which can
match with a single character not a byte. If all
positions with ANYCHAR do not depend on the context of
the next character, put its follows instead to
D->states[s].mbps to optimize. */
if (d->states[s].curr_dependent)
{
if (d->states[s].mbps.nelem == 0)
alloc_position_set (&d->states[s].mbps, 1);
insert (pos, &d->states[s].mbps);
}
else if (SUCCEEDS_IN_CONTEXT (pos.constraint,
d->states[s].context, CTX_ANY))
{
if (d->states[s].mbps.nelem == 0)
alloc_position_set (&d->states[s].mbps, 1);
for (j = 0; j < d->follows[pos.index].nelem; j++)
insert (d->follows[pos.index].elems[j], &d->states[s].mbps);
}
}
else
continue;
/* Some characters may need to be eliminated from matches because
they fail in the current context. */
if (pos.constraint != NO_CONSTRAINT)
{
if (!SUCCEEDS_IN_CONTEXT (pos.constraint,
d->states[s].context, CTX_NEWLINE))
for (j = 0; j < CHARCLASS_WORDS; ++j)
matches[j] &= ~d->syntax.newline[j];
if (!SUCCEEDS_IN_CONTEXT (pos.constraint,
d->states[s].context, CTX_LETTER))
for (j = 0; j < CHARCLASS_WORDS; ++j)
matches[j] &= ~d->syntax.letters[j];
if (!SUCCEEDS_IN_CONTEXT (pos.constraint,
d->states[s].context, CTX_NONE))
for (j = 0; j < CHARCLASS_WORDS; ++j)
matches[j] &= d->syntax.letters[j] | d->syntax.newline[j];
/* If there are no characters left, there's no point in going on. */
for (j = 0; j < CHARCLASS_WORDS && !matches[j]; ++j)
continue;
if (j == CHARCLASS_WORDS)
continue;
}
#ifdef DEBUG
fprintf (stderr, " nextpos %zu:", pos.index);
prtok (d->tokens[pos.index]);
fprintf (stderr, " of");
for (j = 0; j < NOTCHAR; j++)
if (tstbit (j, matches))
fprintf (stderr, " 0x%02zx", j);
fprintf (stderr, "\n");
#endif
for (j = 0; j < ngrps; ++j)
{
/* If matches contains a single character only, and the current
group's label doesn't contain that character, go on to the
next group. */
if (d->tokens[pos.index] >= 0 && d->tokens[pos.index] < NOTCHAR
&& !tstbit (d->tokens[pos.index], labels[j]))
continue;
/* Check if this group's label has a nonempty intersection with
matches. */
intersectf = 0;
for (k = 0; k < CHARCLASS_WORDS; ++k)
intersectf |= intersect[k] = matches[k] & labels[j][k];
if (!intersectf)
continue;
/* It does; now find the set differences both ways. */
leftoversf = matchesf = 0;
for (k = 0; k < CHARCLASS_WORDS; ++k)
{
/* Even an optimizing compiler can't know this for sure. */
charclass_word match = matches[k], label = labels[j][k];
leftoversf |= leftovers[k] = label & ~match;
matchesf |= matches[k] = match & ~label;
}
/* If there were leftovers, create a new group labeled with them. */
if (leftoversf)
{
copyset (leftovers, labels[ngrps]);
copyset (intersect, labels[j]);
grps[ngrps].elems = xnmalloc (d->nleaves,
sizeof *grps[ngrps].elems);
memcpy (grps[ngrps].elems, grps[j].elems,
sizeof (grps[j].elems[0]) * grps[j].nelem);
grps[ngrps].nelem = grps[j].nelem;
++ngrps;
}
/* Put the position in the current group. The constraint is
irrelevant here. */
grps[j].elems[grps[j].nelem++] = pos.index;
/* If every character matching the current position has been
accounted for, we're done. */
if (!matchesf)
break;
}
/* If we've passed the last group, and there are still characters
unaccounted for, then we'll have to create a new group. */
if (j == ngrps)
{
copyset (matches, labels[ngrps]);
zeroset (matches);
grps[ngrps].elems = xnmalloc (d->nleaves, sizeof *grps[ngrps].elems);
grps[ngrps].nelem = 1;
grps[ngrps].elems[0] = pos.index;
++ngrps;
}
}
alloc_position_set (&follows, d->nleaves);
alloc_position_set (&tmp, d->nleaves);
/* If we are a searching matcher, the default transition is to a state
containing the positions of state 0, otherwise the default transition
is to fail miserably. */
if (d->searchflag)
{
/* Find the state(s) corresponding to the positions of state 0. */
copy (&d->states[0].elems, &follows);
separate_contexts = state_separate_contexts (&follows);
state = state_index (d, &follows, separate_contexts ^ CTX_ANY);
if (separate_contexts & CTX_NEWLINE)
state_newline = state_index (d, &follows, CTX_NEWLINE);
else
state_newline = state;
if (separate_contexts & CTX_LETTER)
state_letter = state_index (d, &follows, CTX_LETTER);
else
state_letter = state;
for (i = 0; i < NOTCHAR; ++i)
trans[i] = unibyte_word_constituent (i) ? state_letter : state;
trans[d->syntax.eolbyte] = state_newline;
}
else
for (i = 0; i < NOTCHAR; ++i)
trans[i] = -1;
for (i = 0; i < ngrps; ++i)
{
follows.nelem = 0;
/* Find the union of the follows of the positions of the group.
This is a hideously inefficient loop. Fix it someday. */
for (j = 0; j < grps[i].nelem; ++j)
for (k = 0; k < d->follows[grps[i].elems[j]].nelem; ++k)
insert (d->follows[grps[i].elems[j]].elems[k], &follows);
if (d->multibyte)
{
/* If a token in follows.elems is not 1st byte of a multibyte
character, or the states of follows must accept the bytes
which are not 1st byte of the multibyte character.
Then, if a state of follows encounter a byte, it must not be
a 1st byte of a multibyte character nor single byte character.
We cansel to add state[0].follows to next state, because
state[0] must accept 1st-byte
For example, we assume <sb a> is a certain single byte
character, <mb A> is a certain multibyte character, and the
codepoint of <sb a> equals the 2nd byte of the codepoint of
<mb A>.
When state[0] accepts <sb a>, state[i] transit to state[i+1]
by accepting accepts 1st byte of <mb A>, and state[i+1]
accepts 2nd byte of <mb A>, if state[i+1] encounter the
codepoint of <sb a>, it must not be <sb a> but 2nd byte of
<mb A>, so we cannot add state[0]. */
next_isnt_1st_byte = false;
for (j = 0; j < follows.nelem; ++j)
{
if (!(d->multibyte_prop[follows.elems[j].index] & 1))
{
next_isnt_1st_byte = true;
break;
}
}
}
/* If we are building a searching matcher, throw in the positions
of state 0 as well. */
if (d->searchflag && (!d->multibyte || !next_isnt_1st_byte))
{
merge (&d->states[0].elems, &follows, &tmp);
copy (&tmp, &follows);
}
/* Find out if the new state will want any context information. */
possible_contexts = charclass_context (d, labels[i]);
separate_contexts = state_separate_contexts (&follows);
/* Find the state(s) corresponding to the union of the follows. */
if (possible_contexts & ~separate_contexts)
state = state_index (d, &follows, separate_contexts ^ CTX_ANY);
else
state = -1;
if (separate_contexts & possible_contexts & CTX_NEWLINE)
state_newline = state_index (d, &follows, CTX_NEWLINE);
else
state_newline = state;
if (separate_contexts & possible_contexts & CTX_LETTER)
state_letter = state_index (d, &follows, CTX_LETTER);
else
state_letter = state;
#ifdef DEBUG
fprintf (stderr, "group %zu\n nextpos:", i);
for (j = 0; j < grps[i].nelem; ++j)
{
fprintf (stderr, " %zu:", grps[i].elems[j]);
prtok (d->tokens[grps[i].elems[j]]);
}
fprintf (stderr, "\n follows:");
for (j = 0; j < follows.nelem; ++j)
{
fprintf (stderr, " %zu:", follows.elems[j].index);
prtok (d->tokens[follows.elems[j].index]);
}
fprintf (stderr, "\n states:");
if (possible_contexts & CTX_NEWLINE)
fprintf (stderr, " CTX_NEWLINE:%td", state_newline);
if (possible_contexts & CTX_LETTER)
fprintf (stderr, " CTX_LETTER:%td", state_letter);
if (possible_contexts & CTX_NONE)
fprintf (stderr, " CTX_NONE:%td", state);
fprintf (stderr, "\n");
#endif
/* Set the transitions for each character in the current label. */
for (j = 0; j < CHARCLASS_WORDS; ++j)
for (k = 0; k < CHARCLASS_WORD_BITS; ++k)
if (labels[i][j] >> k & 1)
{
int c = j * CHARCLASS_WORD_BITS + k;
if (c == d->syntax.eolbyte)
trans[c] = state_newline;
else if (unibyte_word_constituent (c))
trans[c] = state_letter;
else if (c < NOTCHAR)
trans[c] = state;
}
}
#ifdef DEBUG
fprintf (stderr, "trans table %td", s);
for (i = 0; i < NOTCHAR; ++i)
{
if (!(i & 0xf))
fprintf (stderr, "\n");
fprintf (stderr, " %2td", trans[i]);
}
fprintf (stderr, "\n");
#endif
for (i = 0; i < ngrps; ++i)
free (grps[i].elems);
free (follows.elems);
free (tmp.elems);
}
/* Make sure D's state arrays are large enough to hold NEW_STATE. */
static void
realloc_trans_if_necessary (struct dfa *d, state_num new_state)
{
state_num oldalloc = d->tralloc;
if (oldalloc <= new_state)
{
state_num **realtrans = d->trans ? d->trans - 1 : NULL;
size_t newalloc, newalloc1;
newalloc1 = new_state + 1;
realtrans = x2nrealloc (realtrans, &newalloc1, sizeof *realtrans);
realtrans[0] = NULL;
d->trans = realtrans + 1;
d->tralloc = newalloc = newalloc1 - 1;
d->fails = xnrealloc (d->fails, newalloc, sizeof *d->fails);
d->success = xnrealloc (d->success, newalloc, sizeof *d->success);
d->newlines = xnrealloc (d->newlines, newalloc, sizeof *d->newlines);
if (d->multibyte)
{
realtrans = d->mb_trans ? d->mb_trans - 1 : NULL;
realtrans = xnrealloc (realtrans, newalloc1, sizeof *realtrans);
if (oldalloc == 0)
realtrans[0] = NULL;
d->mb_trans = realtrans + 1;
}
for (; oldalloc < newalloc; oldalloc++)
{
d->trans[oldalloc] = NULL;
d->fails[oldalloc] = NULL;
if (d->multibyte)
d->mb_trans[oldalloc] = NULL;
}
}
}
/* Some routines for manipulating a compiled dfa's transition tables.
Each state may or may not have a transition table; if it does, and it
is a non-accepting state, then d->trans[state] points to its table.
If it is an accepting state then d->fails[state] points to its table.
If it has no table at all, then d->trans[state] is NULL.
TODO: Improve this comment, get rid of the unnecessary redundancy. */
static void
build_state (state_num s, struct dfa *d)
{
state_num *trans; /* The new transition table. */
state_num i, maxstate;
/* Set an upper limit on the number of transition tables that will ever
exist at once. MAX_TRCOUNT is arbitrary. The idea is that the frequently
used transition tables will be quickly rebuilt, whereas the ones that
were only needed once or twice will be cleared away. However, do not
clear the initial D->min_trcount states, since they are always used. */
if (MAX_TRCOUNT <= d->trcount)
{
for (i = d->min_trcount; i < d->tralloc; ++i)
{
free (d->trans[i]);
free (d->fails[i]);
d->trans[i] = d->fails[i] = NULL;
}
d->trcount = d->min_trcount;
if (d->multibyte)
{
for (i = d->min_trcount; i < d->tralloc; i++)
{
free (d->mb_trans[i]);
d->mb_trans[i] = NULL;
}
free (d->mb_trans[-1]);
d->mb_trans[-1] = NULL;
}
}
++d->trcount;
/* Set up the success bits for this state. */
d->success[s] = 0;
if (ACCEPTS_IN_CONTEXT (d->states[s].context, CTX_NEWLINE, s, *d))
d->success[s] |= CTX_NEWLINE;
if (ACCEPTS_IN_CONTEXT (d->states[s].context, CTX_LETTER, s, *d))
d->success[s] |= CTX_LETTER;
if (ACCEPTS_IN_CONTEXT (d->states[s].context, CTX_NONE, s, *d))
d->success[s] |= CTX_NONE;
trans = xmalloc (NOTCHAR * sizeof *trans);
dfastate (s, d, trans);
/* Now go through the new transition table, and make sure that the trans
and fail arrays are allocated large enough to hold a pointer for the
largest state mentioned in the table. */
maxstate = -1;
for (i = 0; i < NOTCHAR; ++i)
if (maxstate < trans[i])
maxstate = trans[i];
realloc_trans_if_necessary (d, maxstate);
/* Keep the newline transition in a special place so we can use it as
a sentinel. */
d->newlines[s] = trans[d->syntax.eolbyte];
trans[d->syntax.eolbyte] = -1;
if (ACCEPTING (s, *d))
d->fails[s] = trans;
else
d->trans[s] = trans;
}
/* Multibyte character handling sub-routines for dfaexec. */
/* Consume a single byte and transit state from 's' to '*next_state'.
This function is almost same as the state transition routin in dfaexec.
But state transition is done just once, otherwise matching succeed or
reach the end of the buffer. */
static state_num
transit_state_singlebyte (struct dfa *d, state_num s, unsigned char const **pp)
{
state_num *t;
if (**pp == d->syntax.eolbyte)
{
/* S is always an initial state in transit_state, so the
transition table for the state must have been built already. */
assert (d->trans[s] || d->fails[s]);
++*pp;
return d->newlines[s];
}
if (d->trans[s])
t = d->trans[s];
else if (d->fails[s])
t = d->fails[s];
else
{
build_state (s, d);
if (d->trans[s])
t = d->trans[s];
else
{
t = d->fails[s];
assert (t);
}
}
return t[*(*pp)++];
}
/* Transit state from s, then return new state and update the pointer of
the buffer. This function is for a period operator which can match a
multi-byte character. */
static state_num
transit_state (struct dfa *d, state_num s, unsigned char const **pp,
unsigned char const *end)
{
state_num s1;
wint_t wc;
int separate_contexts;
state_num state, state_newline, mb_index;
size_t i, j;
int mbclen = mbs_to_wchar (&wc, (char const *) *pp, end - *pp, d);
int context = wc == d->syntax.eolbyte ? CTX_NEWLINE : CTX_NONE;
bool context_newline = context == CTX_NEWLINE;
/* This state has some operators which can match a multibyte character. */
d->mb_follows.nelem = 0;
/* Calculate the state which can be reached from the state 's' by
consuming 'mbclen' single bytes from the buffer. */
s1 = s;
for (i = 0; i < mbclen && 0 <= s; i++)
s = transit_state_singlebyte (d, s, pp);
*pp += mbclen - i;
if (d->states[s1].curr_dependent)
{
if (s < 0)
d->mb_follows.nelem = 0;
else
copy (&d->states[s].elems, &d->mb_follows);
for (i = 0; i < d->states[s1].mbps.nelem; i++)
{
if (!SUCCEEDS_IN_CONTEXT (d->states[s1].mbps.elems[i].constraint,
d->states[s1].context, context))
continue;
for (j = 0; j < d->follows[d->states[s1].mbps.elems[i].index].nelem;
j++)
insert (d->follows[d->states[s1].mbps.elems[i].index].elems[j],
&d->mb_follows);
}
separate_contexts = state_separate_contexts (&d->mb_follows);
if (context_newline && separate_contexts & CTX_NEWLINE)
s = state_index (d, &d->mb_follows, CTX_NEWLINE);
else
s = state_index (d, &d->mb_follows, separate_contexts ^ CTX_ANY);
realloc_trans_if_necessary (d, s);
return s;
}
/* If all positions which have ANYCHAR do not depend on the context
of the next character, calculate the next state with
pre-calculated follows and cache the result. */
if (d->states[s1].mb_trindex < 0)
{
if (MAX_TRCOUNT <= d->mb_trcount)
{
state_num s2;
for (s2 = -1; s2 < d->tralloc; s2++)
{
free (d->mb_trans[s2]);
d->mb_trans[s2] = NULL;
}
for (i = 0; i < d->sindex; i++)
d->states[i].mb_trindex = -1;
d->mb_trcount = 0;
}
d->states[s1].mb_trindex = d->mb_trcount++;
}
mb_index = d->states[s1].mb_trindex * 2;
if (! d->mb_trans[s])
{
enum { TRANSPTR_SIZE = sizeof *d->mb_trans[s] };
enum { TRANSALLOC_SIZE = 2 * MAX_TRCOUNT * TRANSPTR_SIZE };
d->mb_trans[s] = xmalloc (TRANSALLOC_SIZE);
for (i = 0; i < 2 * MAX_TRCOUNT; i++)
d->mb_trans[s][i] = -1;
}
else
{
state = d->mb_trans[s][mb_index + context_newline];
if (0 <= state)
return state;
}
if (s < 0)
copy (&d->states[s1].mbps, &d->mb_follows);
else
merge (&d->states[s1].mbps, &d->states[s].elems, &d->mb_follows);
separate_contexts = state_separate_contexts (&d->mb_follows);
state = state_index (d, &d->mb_follows, separate_contexts ^ CTX_ANY);
if (separate_contexts & CTX_NEWLINE)
state_newline = state_index (d, &d->mb_follows, CTX_NEWLINE);
else
state_newline = state;
realloc_trans_if_necessary (d, state_newline);
d->mb_trans[s][mb_index] = state;
d->mb_trans[s][mb_index + 1] = state_newline;
return context_newline ? state_newline : state;
}
/* The initial state may encounter a byte which is not a single byte character
nor the first byte of a multibyte character. But it is incorrect for the
initial state to accept such a byte. For example, in Shift JIS the regular
expression "\\" accepts the codepoint 0x5c, but should not accept the second
byte of the codepoint 0x815c. Then the initial state must skip the bytes
that are not a single byte character nor the first byte of a multibyte
character.
Given DFA state d, use mbs_to_wchar to advance MBP until it reaches
or exceeds P, and return the advanced MBP. If WCP is non-NULL and
the result is greater than P, set *WCP to the final wide character
processed, or to WEOF if no wide character is processed. Otherwise,
if WCP is non-NULL, *WCP may or may not be updated.
Both P and MBP must be no larger than END. */
static unsigned char const *
skip_remains_mb (struct dfa *d, unsigned char const *p,
unsigned char const *mbp, char const *end, wint_t *wcp)
{
wint_t wc = WEOF;
if (d->syntax.never_trail[*p])
return p;
while (mbp < p)
mbp += mbs_to_wchar (&wc, (char const *) mbp,
end - (char const *) mbp, d);
if (wcp != NULL)
*wcp = wc;
return mbp;
}
/* Search through a buffer looking for a match to the struct dfa *D.
Find the first occurrence of a string matching the regexp in the
buffer, and the shortest possible version thereof. Return a pointer to
the first character after the match, or NULL if none is found. BEGIN
points to the beginning of the buffer, and END points to the first byte
after its end. Note however that we store a sentinel byte (usually
newline) in *END, so the actual buffer must be one byte longer.
When ALLOW_NL, newlines may appear in the matching string.
If COUNT is non-NULL, increment *COUNT once for each newline processed.
If MULTIBYTE, the input consists of multibyte characters and/or
encoding-error bytes. Otherwise, it consists of single-byte characters.
Here is the list of features that make this DFA matcher punt:
- [M-N] range in non-simple locale: regex is up to 25% faster on [a-z]
- [^...] in non-simple locale
- [[=foo=]] or [[.foo.]]
- [[:alpha:]] etc. in multibyte locale (except [[:digit:]] works OK)
- back-reference: (.)\1
- word-delimiter in multibyte locale: \<, \>, \b, \B
See using_simple_locale for the definition of "simple locale". */
static inline char *
dfaexec_main (struct dfa *d, char const *begin, char *end, bool allow_nl,
size_t *count, bool multibyte)
{
state_num s, s1; /* Current state. */
unsigned char const *p, *mbp; /* Current input character. */
state_num **trans, *t; /* Copy of d->trans so it can be optimized
into a register. */
unsigned char eol = d->syntax.eolbyte; /* Likewise for eolbyte. */
unsigned char saved_end;
size_t nlcount = 0;
if (!d->tralloc)
{
realloc_trans_if_necessary (d, 1);
build_state (0, d);
}
s = s1 = 0;
p = mbp = (unsigned char const *) begin;
trans = d->trans;
saved_end = *(unsigned char *) end;
*end = eol;
if (multibyte)
{
memset (&d->mbs, 0, sizeof d->mbs);
if (d->mb_follows.alloc == 0)
alloc_position_set (&d->mb_follows, d->nleaves);
}
for (;;)
{
if (multibyte)
{
while ((t = trans[s]) != NULL)
{
s1 = s;
if (s < d->min_trcount)
{
if (d->min_trcount == 1)
{
if (d->states[s].mbps.nelem == 0)
{
do
{
while (t[*p] == 0)
p++;
p = mbp = skip_remains_mb (d, p, mbp, end, NULL);
}
while (t[*p] == 0);
}
else
p = mbp = skip_remains_mb (d, p, mbp, end, NULL);
}
else
{
wint_t wc;
mbp = skip_remains_mb (d, p, mbp, end, &wc);
/* If d->min_trcount is greater than 1, maybe
transit to another initial state after skip. */
if (p < mbp)
{
/* It's CTX_LETTER or CTX_NONE. CTX_NEWLINE
cannot happen, as we assume that a newline
is always a single byte character. */
s1 = s = d->initstate_notbol;
p = mbp;
}
}
}
if (d->states[s].mbps.nelem == 0 || (*p == eol && !allow_nl)
|| (*p == '\n' && !(d->syntax.syntax_bits & RE_DOT_NEWLINE))
|| (*p == '\0' && (d->syntax.syntax_bits & RE_DOT_NOT_NULL))
|| (char *) p >= end)
{
/* If an input character does not match ANYCHAR, do it
like a single-byte character. */
s = t[*p++];
}
else
{
s = transit_state (d, s, &p, (unsigned char *) end);
if (s >= 0 && p[-1] == eol)
nlcount++;
mbp = p;
trans = d->trans;
}
}
}
else
{
if (s == 0)
{
t = trans[s];
if (t)
{
while (t[*p] == 0)
p++;
s1 = 0;
s = t[*p++];
}
}
while ((t = trans[s]) != NULL)
{
s1 = t[*p++];
t = trans[s1];
if (! t)
{
state_num tmp = s;
s = s1;
s1 = tmp; /* swap */
break;
}
s = t[*p++];
}
}
if (s < 0)
{
if ((char *) p > end || p[-1] != eol || d->newlines[s1] < 0)
{
p = NULL;
goto done;
}
/* The previous character was a newline, count it, and skip
checking of multibyte character boundary until here. */
nlcount++;
mbp = p;
s = allow_nl ? d->newlines[s1] : 0;
}
else if (d->fails[s])
{
if (d->success[s] & d->syntax.sbit[*p])
goto done;
s1 = s;
if (!multibyte || d->states[s].mbps.nelem == 0
|| (*p == eol && !allow_nl)
|| (*p == '\n' && !(d->syntax.syntax_bits & RE_DOT_NEWLINE))
|| (*p == '\0' && (d->syntax.syntax_bits & RE_DOT_NOT_NULL))
|| (char *) p >= end)
{
/* If a input character does not match ANYCHAR, do it
like a single-byte character. */
s = d->fails[s][*p++];
}
else
{
s = transit_state (d, s, &p, (unsigned char *) end);
if (s >= 0 && p[-1] == eol)
nlcount++;
mbp = p;
trans = d->trans;
}
}
else
{
build_state (s, d);
trans = d->trans;
}
}
done:
if (count)
*count += nlcount;
*end = saved_end;
return (char *) p;
}
/* Specialized versions of dfaexec for multibyte and single-byte cases.
This is for performance, as dfaexec_main is an inline function. */
static char *
dfaexec_mb (struct dfa *d, char const *begin, char *end,
bool allow_nl, size_t *count, bool *backref)
{
return dfaexec_main (d, begin, end, allow_nl, count, true);
}
static char *
dfaexec_sb (struct dfa *d, char const *begin, char *end,
bool allow_nl, size_t *count, bool *backref)
{
return dfaexec_main (d, begin, end, allow_nl, count, false);
}
/* Always set *BACKREF and return BEGIN. Use this wrapper for
any regexp that uses a construct not supported by this code. */
static char *
dfaexec_noop (struct dfa *d, char const *begin, char *end,
bool allow_nl, size_t *count, bool *backref)
{
*backref = true;
return (char *) begin;
}
/* Like dfaexec_main (D, BEGIN, END, ALLOW_NL, COUNT, D->multibyte),
but faster and set *BACKREF if the DFA code does not support this
regexp usage. */
char *
dfaexec (struct dfa *d, char const *begin, char *end,
bool allow_nl, size_t *count, bool *backref)
{
return d->dfaexec (d, begin, end, allow_nl, count, backref);
}
struct dfa *
dfasuperset (struct dfa const *d)
{
return d->superset;
}
bool
dfaisfast (struct dfa const *d)
{
return d->fast;
}
static void
free_mbdata (struct dfa *d)
{
size_t i;
free (d->multibyte_prop);
for (i = 0; i < d->nmbcsets; ++i)
free (d->mbcsets[i].chars);
free (d->mbcsets);
free (d->mb_follows.elems);
if (d->mb_trans)
{
state_num s;
for (s = -1; s < d->tralloc; s++)
free (d->mb_trans[s]);
free (d->mb_trans - 1);
}
}
/* Return true if every construct in D is supported by this DFA matcher. */
static bool _GL_ATTRIBUTE_PURE
dfa_supported (struct dfa const *d)
{
size_t i;
for (i = 0; i < d->tindex; i++)
{
switch (d->tokens[i])
{
case BEGWORD:
case ENDWORD:
case LIMWORD:
case NOTLIMWORD:
if (!d->multibyte)
continue;
/* fallthrough */
case BACKREF:
case MBCSET:
return false;
}
}
return true;
}
static void
dfaoptimize (struct dfa *d)
{
size_t i;
bool have_backref = false;
if (!using_utf8)
return;
for (i = 0; i < d->tindex; ++i)
{
switch (d->tokens[i])
{
case ANYCHAR:
/* Lowered. */
abort ();
case BACKREF:
have_backref = true;
break;
case MBCSET:
/* Requires multi-byte algorithm. */
return;
default:
break;
}
}
if (!have_backref && d->superset)
{
/* The superset DFA is not likely to be much faster, so remove it. */
dfafree (d->superset);
free (d->superset);
d->superset = NULL;
}
free_mbdata (d);
d->multibyte = false;
d->dfaexec = dfaexec_sb;
d->fast = true;
}
static void
dfassbuild (struct dfa *d)
{
size_t i, j;
charclass ccl;
bool have_achar = false;
bool have_nchar = false;
struct dfa *sup = dfaalloc ();
*sup = *d;
sup->multibyte = false;
sup->dfaexec = dfaexec_sb;
sup->multibyte_prop = NULL;
sup->mbcsets = NULL;
sup->superset = NULL;
sup->states = NULL;
sup->sindex = 0;
sup->follows = NULL;
sup->tralloc = 0;
sup->trans = NULL;
sup->fails = NULL;
sup->success = NULL;
sup->newlines = NULL;
sup->charclasses = xnmalloc (sup->calloc, sizeof *sup->charclasses);
if (d->cindex)
{
memcpy (sup->charclasses, d->charclasses,
d->cindex * sizeof *sup->charclasses);
}
sup->tokens = xnmalloc (d->tindex, 2 * sizeof *sup->tokens);
sup->talloc = d->tindex * 2;
for (i = j = 0; i < d->tindex; i++)
{
switch (d->tokens[i])
{
case ANYCHAR:
case MBCSET:
case BACKREF:
zeroset (ccl);
notset (ccl);
sup->tokens[j++] = CSET + dfa_charclass_index (sup, ccl);
sup->tokens[j++] = STAR;
if (d->tokens[i + 1] == QMARK || d->tokens[i + 1] == STAR
|| d->tokens[i + 1] == PLUS)
i++;
have_achar = true;
break;
case BEGWORD:
case ENDWORD:
case LIMWORD:
case NOTLIMWORD:
if (d->multibyte)
{
/* These constraints aren't supported in a multibyte locale.
Ignore them in the superset DFA. */
sup->tokens[j++] = EMPTY;
break;
}
default:
sup->tokens[j++] = d->tokens[i];
if ((0 <= d->tokens[i] && d->tokens[i] < NOTCHAR)
|| d->tokens[i] >= CSET)
have_nchar = true;
break;
}
}
sup->tindex = j;
if (have_nchar && (have_achar || d->multibyte))
d->superset = sup;
else
{
dfafree (sup);
free (sup);
}
}
/* Parse and analyze a single string of the given length. */
void
dfacomp (char const *s, size_t len, struct dfa *d, bool searchflag)
{
dfaparse (s, len, d);
dfassbuild (d);
if (dfa_supported (d))
{
dfaoptimize (d);
dfaanalyze (d, searchflag);
}
else
{
d->dfaexec = dfaexec_noop;
}
if (d->superset)
{
d->fast = true;
dfaanalyze (d->superset, searchflag);
}
}
/* Free the storage held by the components of a dfa. */
void
dfafree (struct dfa *d)
{
size_t i;
free (d->charclasses);
free (d->tokens);
if (d->multibyte)
free_mbdata (d);
for (i = 0; i < d->sindex; ++i)
{
free (d->states[i].elems.elems);
free (d->states[i].mbps.elems);
}
free (d->states);
if (d->follows)
{
for (i = 0; i < d->tindex; ++i)
free (d->follows[i].elems);
free (d->follows);
}
if (d->trans)
{
for (i = 0; i < d->tralloc; ++i)
{
free (d->trans[i]);
free (d->fails[i]);
}
free (d->trans - 1);
free (d->fails);
free (d->newlines);
free (d->success);
}
if (d->superset)
dfafree (d->superset);
}
/* Having found the postfix representation of the regular expression,
try to find a long sequence of characters that must appear in any line
containing the r.e.
Finding a "longest" sequence is beyond the scope here;
we take an easy way out and hope for the best.
(Take "(ab|a)b"--please.)
We do a bottom-up calculation of sequences of characters that must appear
in matches of r.e.'s represented by trees rooted at the nodes of the postfix
representation:
sequences that must appear at the left of the match ("left")
sequences that must appear at the right of the match ("right")
lists of sequences that must appear somewhere in the match ("in")
sequences that must constitute the match ("is")
When we get to the root of the tree, we use one of the longest of its
calculated "in" sequences as our answer.
The sequences calculated for the various types of node (in pseudo ANSI c)
are shown below. "p" is the operand of unary operators (and the left-hand
operand of binary operators); "q" is the right-hand operand of binary
operators.
"ZERO" means "a zero-length sequence" below.
Type left right is in
---- ---- ----- -- --
char c # c # c # c # c
ANYCHAR ZERO ZERO ZERO ZERO
MBCSET ZERO ZERO ZERO ZERO
CSET ZERO ZERO ZERO ZERO
STAR ZERO ZERO ZERO ZERO
QMARK ZERO ZERO ZERO ZERO
PLUS p->left p->right ZERO p->in
CAT (p->is==ZERO)? (q->is==ZERO)? (p->is!=ZERO && p->in plus
p->left : q->right : q->is!=ZERO) ? q->in plus
p->is##q->left p->right##q->is p->is##q->is : p->right##q->left
ZERO
OR longest common longest common (do p->is and substrings common
leading trailing to q->is have same p->in and
(sub)sequence (sub)sequence q->in length and content) ?
of p->left of p->right
and q->left and q->right p->is : NULL
If there's anything else we recognize in the tree, all four sequences get set
to zero-length sequences. If there's something we don't recognize in the
tree, we just return a zero-length sequence.
Break ties in favor of infrequent letters (choosing 'zzz' in preference to
'aaa')?
And ... is it here or someplace that we might ponder "optimizations" such as
egrep 'psi|epsilon' -> egrep 'psi'
egrep 'pepsi|epsilon' -> egrep 'epsi'
(Yes, we now find "epsi" as a "string
that must occur", but we might also
simplify the *entire* r.e. being sought)
grep '[c]' -> grep 'c'
grep '(ab|a)b' -> grep 'ab'
grep 'ab*' -> grep 'a'
grep 'a*b' -> grep 'b'
There are several issues:
Is optimization easy (enough)?
Does optimization actually accomplish anything,
or is the automaton you get from "psi|epsilon" (for example)
the same as the one you get from "psi" (for example)?
Are optimizable r.e.'s likely to be used in real-life situations
(something like 'ab*' is probably unlikely; something like is
'psi|epsilon' is likelier)? */
static char *
icatalloc (char *old, char const *new)
{
char *result;
size_t oldsize;
size_t newsize = strlen (new);
if (newsize == 0)
return old;
oldsize = strlen (old);
result = xrealloc (old, oldsize + newsize + 1);
memcpy (result + oldsize, new, newsize + 1);
return result;
}
static void
freelist (char **cpp)
{
while (*cpp)
free (*cpp++);
}
static char **
enlist (char **cpp, char *new, size_t len)
{
size_t i, j;
new = memcpy (xmalloc (len + 1), new, len);
new[len] = '\0';
/* Is there already something in the list that's new (or longer)? */
for (i = 0; cpp[i] != NULL; ++i)
if (strstr (cpp[i], new) != NULL)
{
free (new);
return cpp;
}
/* Eliminate any obsoleted strings. */
j = 0;
while (cpp[j] != NULL)
if (strstr (new, cpp[j]) == NULL)
++j;
else
{
free (cpp[j]);
if (--i == j)
break;
cpp[j] = cpp[i];
cpp[i] = NULL;
}
/* Add the new string. */
cpp = xnrealloc (cpp, i + 2, sizeof *cpp);
cpp[i] = new;
cpp[i + 1] = NULL;
return cpp;
}
/* Given pointers to two strings, return a pointer to an allocated
list of their distinct common substrings. */
static char **
comsubs (char *left, char const *right)
{
char **cpp = xzalloc (sizeof *cpp);
char *lcp;
for (lcp = left; *lcp != '\0'; ++lcp)
{
size_t len = 0;
char *rcp = strchr (right, *lcp);
while (rcp != NULL)
{
size_t i;
for (i = 1; lcp[i] != '\0' && lcp[i] == rcp[i]; ++i)
continue;
if (i > len)
len = i;
rcp = strchr (rcp + 1, *lcp);
}
if (len != 0)
cpp = enlist (cpp, lcp, len);
}
return cpp;
}
static char **
addlists (char **old, char **new)
{
for (; *new; new++)
old = enlist (old, *new, strlen (*new));
return old;
}
/* Given two lists of substrings, return a new list giving substrings
common to both. */
static char **
inboth (char **left, char **right)
{
char **both = xzalloc (sizeof *both);
size_t lnum, rnum;
for (lnum = 0; left[lnum] != NULL; ++lnum)
{
for (rnum = 0; right[rnum] != NULL; ++rnum)
{
char **temp = comsubs (left[lnum], right[rnum]);
both = addlists (both, temp);
freelist (temp);
free (temp);
}
}
return both;
}
typedef struct must must;
struct must
{
char **in;
char *left;
char *right;
char *is;
bool begline;
bool endline;
must *prev;
};
static must *
allocmust (must *mp, size_t size)
{
must *new_mp = xmalloc (sizeof *new_mp);
new_mp->in = xzalloc (sizeof *new_mp->in);
new_mp->left = xzalloc (size);
new_mp->right = xzalloc (size);
new_mp->is = xzalloc (size);
new_mp->begline = false;
new_mp->endline = false;
new_mp->prev = mp;
return new_mp;
}
static void
resetmust (must *mp)
{
freelist (mp->in);
mp->in[0] = NULL;
mp->left[0] = mp->right[0] = mp->is[0] = '\0';
mp->begline = false;
mp->endline = false;
}
static void
freemust (must *mp)
{
freelist (mp->in);
free (mp->in);
free (mp->left);
free (mp->right);
free (mp->is);
free (mp);
}
struct dfamust *
dfamust (struct dfa const *d)
{
must *mp = NULL;
char const *result = "";
size_t i, ri;
bool exact = false;
bool begline = false;
bool endline = false;
size_t rj;
bool need_begline = false;
bool need_endline = false;
bool case_fold_unibyte = d->syntax.case_fold && MB_CUR_MAX == 1;
struct dfamust *dm;
for (ri = 0; ri < d->tindex; ++ri)
{
token t = d->tokens[ri];
switch (t)
{
case BEGLINE:
mp = allocmust (mp, 2);
mp->begline = true;
need_begline = true;
break;
case ENDLINE:
mp = allocmust (mp, 2);
mp->endline = true;
need_endline = true;
break;
case LPAREN:
case RPAREN:
assert (!"neither LPAREN nor RPAREN may appear here");
case EMPTY:
case BEGWORD:
case ENDWORD:
case LIMWORD:
case NOTLIMWORD:
case BACKREF:
case ANYCHAR:
case MBCSET:
mp = allocmust (mp, 2);
break;
case STAR:
case QMARK:
resetmust (mp);
break;
case OR:
{
char **new;
must *rmp = mp;
must *lmp = mp = mp->prev;
size_t j, ln, rn, n;
/* Guaranteed to be. Unlikely, but ... */
if (STREQ (lmp->is, rmp->is))
{
lmp->begline &= rmp->begline;
lmp->endline &= rmp->endline;
}
else
{
lmp->is[0] = '\0';
lmp->begline = false;
lmp->endline = false;
}
/* Left side--easy */
i = 0;
while (lmp->left[i] != '\0' && lmp->left[i] == rmp->left[i])
++i;
lmp->left[i] = '\0';
/* Right side */
ln = strlen (lmp->right);
rn = strlen (rmp->right);
n = ln;
if (n > rn)
n = rn;
for (i = 0; i < n; ++i)
if (lmp->right[ln - i - 1] != rmp->right[rn - i - 1])
break;
for (j = 0; j < i; ++j)
lmp->right[j] = lmp->right[(ln - i) + j];
lmp->right[j] = '\0';
new = inboth (lmp->in, rmp->in);
freelist (lmp->in);
free (lmp->in);
lmp->in = new;
freemust (rmp);
}
break;
case PLUS:
mp->is[0] = '\0';
break;
case END:
assert (!mp->prev);
for (i = 0; mp->in[i] != NULL; ++i)
if (strlen (mp->in[i]) > strlen (result))
result = mp->in[i];
if (STREQ (result, mp->is))
{
if ((!need_begline || mp->begline) && (!need_endline
|| mp->endline))
exact = true;
begline = mp->begline;
endline = mp->endline;
}
goto done;
case CAT:
{
must *rmp = mp;
must *lmp = mp = mp->prev;
/* In. Everything in left, plus everything in
right, plus concatenation of
left's right and right's left. */
lmp->in = addlists (lmp->in, rmp->in);
if (lmp->right[0] != '\0' && rmp->left[0] != '\0')
{
size_t lrlen = strlen (lmp->right);
size_t rllen = strlen (rmp->left);
char *tp = xmalloc (lrlen + rllen);
memcpy (tp, lmp->right, lrlen);
memcpy (tp + lrlen, rmp->left, rllen);
lmp->in = enlist (lmp->in, tp, lrlen + rllen);
free (tp);
}
/* Left-hand */
if (lmp->is[0] != '\0')
lmp->left = icatalloc (lmp->left, rmp->left);
/* Right-hand */
if (rmp->is[0] == '\0')
lmp->right[0] = '\0';
lmp->right = icatalloc (lmp->right, rmp->right);
/* Guaranteed to be */
if ((lmp->is[0] != '\0' || lmp->begline)
&& (rmp->is[0] != '\0' || rmp->endline))
{
lmp->is = icatalloc (lmp->is, rmp->is);
lmp->endline = rmp->endline;
}
else
{
lmp->is[0] = '\0';
lmp->begline = false;
lmp->endline = false;
}
freemust (rmp);
}
break;
case '\0':
/* Not on *my* shift. */
goto done;
default:
if (CSET <= t)
{
/* If T is a singleton, or if case-folding in a unibyte
locale and T's members all case-fold to the same char,
convert T to one of its members. Otherwise, do
nothing further with T. */
charclass *ccl = &d->charclasses[t - CSET];
int j;
for (j = 0; j < NOTCHAR; j++)
if (tstbit (j, *ccl))
break;
if (! (j < NOTCHAR))
{
mp = allocmust (mp, 2);
break;
}
t = j;
while (++j < NOTCHAR)
if (tstbit (j, *ccl)
&& ! (case_fold_unibyte
&& toupper (j) == toupper (t)))
break;
if (j < NOTCHAR)
{
mp = allocmust (mp, 2);
break;
}
}
rj = ri + 2;
if (d->tokens[ri + 1] == CAT)
{
for (; rj < d->tindex - 1; rj += 2)
{
if ((rj != ri && (d->tokens[rj] <= 0
|| NOTCHAR <= d->tokens[rj]))
|| d->tokens[rj + 1] != CAT)
break;
}
}
mp = allocmust (mp, ((rj - ri) >> 1) + 1);
mp->is[0] = mp->left[0] = mp->right[0]
= case_fold_unibyte ? toupper (t) : t;
for (i = 1; ri + 2 < rj; i++)
{
ri += 2;
t = d->tokens[ri];
mp->is[i] = mp->left[i] = mp->right[i]
= case_fold_unibyte ? toupper (t) : t;
}
mp->is[i] = mp->left[i] = mp->right[i] = '\0';
mp->in = enlist (mp->in, mp->is, i);
break;
}
}
done:;
dm = NULL;
if (*result)
{
dm = xmalloc (sizeof *dm);
dm->exact = exact;
dm->begline = begline;
dm->endline = endline;
dm->must = xstrdup (result);
}
while (mp)
{
must *prev = mp->prev;
freemust (mp);
mp = prev;
}
return dm;
}
void
dfamustfree (struct dfamust *dm)
{
free (dm->must);
free (dm);
}
struct dfa *
dfaalloc (void)
{
struct dfa *d = xcalloc (1, sizeof (struct dfa));
d->multibyte = MB_CUR_MAX > 1;
d->dfaexec = d->multibyte ? dfaexec_mb : dfaexec_sb;
d->fast = !d->multibyte;
d->lexstate.cur_mb_len = 1;
return d;
}
void
dfa_init (void)
{
check_utf8 ();
check_unibyte_c ();
init_mbrtowc_cache ();
}
/* vim:set shiftwidth=2: */
|