1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615
|
/*************************************************************************
* *
* Open Dynamics Engine, Copyright (C) 2001,2002 Russell L. Smith. *
* All rights reserved. Email: russ@q12.org Web: www.q12.org *
* *
* This library is free software; you can redistribute it and/or *
* modify it under the terms of EITHER: *
* (1) The GNU Lesser General Public License as published by the Free *
* Software Foundation; either version 2.1 of the License, or (at *
* your option) any later version. The text of the GNU Lesser *
* General Public License is included with this library in the *
* file LICENSE.TXT. *
* (2) The BSD-style license that is included with this library in *
* the file LICENSE-BSD.TXT. *
* *
* This library is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the files *
* LICENSE.TXT and LICENSE-BSD.TXT for more details. *
* *
*************************************************************************/
/*
some useful collision utility stuff. this includes some API utility
functions that are defined in the public header files.
*/
#include <gazebo/ode/common.h>
#include <gazebo/ode/collision.h>
#include <gazebo/ode/odemath.h>
#include "config.h"
#include "collision_util.h"
//****************************************************************************
int dCollideSpheres (dVector3 p1, dReal r1,
dVector3 p2, dReal r2, dContactGeom *c)
{
// printf ("d=%.2f (%.2f %.2f %.2f) (%.2f %.2f %.2f) r1=%.2f r2=%.2f\n",
// d,p1[0],p1[1],p1[2],p2[0],p2[1],p2[2],r1,r2);
dReal d = dCalcPointsDistance3(p1,p2);
if (d > (r1 + r2)) return 0;
if (d <= 0) {
c->pos[0] = p1[0];
c->pos[1] = p1[1];
c->pos[2] = p1[2];
c->normal[0] = 1;
c->normal[1] = 0;
c->normal[2] = 0;
c->depth = r1 + r2;
}
else {
dReal d1 = dRecip (d);
c->normal[0] = (p1[0]-p2[0])*d1;
c->normal[1] = (p1[1]-p2[1])*d1;
c->normal[2] = (p1[2]-p2[2])*d1;
dReal k = REAL(0.5) * (r2 - r1 - d);
c->pos[0] = p1[0] + c->normal[0]*k;
c->pos[1] = p1[1] + c->normal[1]*k;
c->pos[2] = p1[2] + c->normal[2]*k;
c->depth = r1 + r2 - d;
}
return 1;
}
void dLineClosestApproach (const dVector3 pa, const dVector3 ua,
const dVector3 pb, const dVector3 ub,
dReal *alpha, dReal *beta)
{
dVector3 p;
p[0] = pb[0] - pa[0];
p[1] = pb[1] - pa[1];
p[2] = pb[2] - pa[2];
dReal uaub = dCalcVectorDot3(ua,ub);
dReal q1 = dCalcVectorDot3(ua,p);
dReal q2 = -dCalcVectorDot3(ub,p);
dReal d = 1-uaub*uaub;
if (d <= REAL(0.0001)) {
// @@@ this needs to be made more robust
*alpha = 0;
*beta = 0;
}
else {
d = dRecip(d);
*alpha = (q1 + uaub*q2)*d;
*beta = (uaub*q1 + q2)*d;
}
}
// given two line segments A and B with endpoints a1-a2 and b1-b2, return the
// points on A and B that are closest to each other (in cp1 and cp2).
// in the case of parallel lines where there are multiple solutions, a
// solution involving the endpoint of at least one line will be returned.
// this will work correctly for zero length lines, e.g. if a1==a2 and/or
// b1==b2.
//
// the algorithm works by applying the voronoi clipping rule to the features
// of the line segments. the three features of each line segment are the two
// endpoints and the line between them. the voronoi clipping rule states that,
// for feature X on line A and feature Y on line B, the closest points PA and
// PB between X and Y are globally the closest points if PA is in V(Y) and
// PB is in V(X), where V(X) is the voronoi region of X.
void dClosestLineSegmentPoints (const dVector3 a1, const dVector3 a2,
const dVector3 b1, const dVector3 b2,
dVector3 cp1, dVector3 cp2)
{
dVector3 a1a2,b1b2,a1b1,a1b2,a2b1,a2b2,n;
dReal la,lb,k,da1,da2,da3,da4,db1,db2,db3,db4,det;
#define SET2(a,b) a[0]=b[0]; a[1]=b[1]; a[2]=b[2];
#define SET3(a,b,op,c) a[0]=b[0] op c[0]; a[1]=b[1] op c[1]; a[2]=b[2] op c[2];
// check vertex-vertex features
SET3 (a1a2,a2,-,a1);
SET3 (b1b2,b2,-,b1);
SET3 (a1b1,b1,-,a1);
da1 = dCalcVectorDot3(a1a2,a1b1);
db1 = dCalcVectorDot3(b1b2,a1b1);
if (da1 <= 0 && db1 >= 0) {
SET2 (cp1,a1);
SET2 (cp2,b1);
return;
}
SET3 (a1b2,b2,-,a1);
da2 = dCalcVectorDot3(a1a2,a1b2);
db2 = dCalcVectorDot3(b1b2,a1b2);
if (da2 <= 0 && db2 <= 0) {
SET2 (cp1,a1);
SET2 (cp2,b2);
return;
}
SET3 (a2b1,b1,-,a2);
da3 = dCalcVectorDot3(a1a2,a2b1);
db3 = dCalcVectorDot3(b1b2,a2b1);
if (da3 >= 0 && db3 >= 0) {
SET2 (cp1,a2);
SET2 (cp2,b1);
return;
}
SET3 (a2b2,b2,-,a2);
da4 = dCalcVectorDot3(a1a2,a2b2);
db4 = dCalcVectorDot3(b1b2,a2b2);
if (da4 >= 0 && db4 <= 0) {
SET2 (cp1,a2);
SET2 (cp2,b2);
return;
}
// check edge-vertex features.
// if one or both of the lines has zero length, we will never get to here,
// so we do not have to worry about the following divisions by zero.
la = dCalcVectorDot3(a1a2,a1a2);
if (da1 >= 0 && da3 <= 0) {
k = da1 / la;
SET3 (n,a1b1,-,k*a1a2);
if (dCalcVectorDot3(b1b2,n) >= 0) {
SET3 (cp1,a1,+,k*a1a2);
SET2 (cp2,b1);
return;
}
}
if (da2 >= 0 && da4 <= 0) {
k = da2 / la;
SET3 (n,a1b2,-,k*a1a2);
if (dCalcVectorDot3(b1b2,n) <= 0) {
SET3 (cp1,a1,+,k*a1a2);
SET2 (cp2,b2);
return;
}
}
lb = dCalcVectorDot3(b1b2,b1b2);
if (db1 <= 0 && db2 >= 0) {
k = -db1 / lb;
SET3 (n,-a1b1,-,k*b1b2);
if (dCalcVectorDot3(a1a2,n) >= 0) {
SET2 (cp1,a1);
SET3 (cp2,b1,+,k*b1b2);
return;
}
}
if (db3 <= 0 && db4 >= 0) {
k = -db3 / lb;
SET3 (n,-a2b1,-,k*b1b2);
if (dCalcVectorDot3(a1a2,n) <= 0) {
SET2 (cp1,a2);
SET3 (cp2,b1,+,k*b1b2);
return;
}
}
// it must be edge-edge
k = dCalcVectorDot3(a1a2,b1b2);
det = la*lb - k*k;
if (det <= 0) {
// this should never happen, but just in case...
SET2(cp1,a1);
SET2(cp2,b1);
return;
}
det = dRecip (det);
dReal alpha = (lb*da1 - k*db1) * det;
dReal beta = ( k*da1 - la*db1) * det;
SET3 (cp1,a1,+,alpha*a1a2);
SET3 (cp2,b1,+,beta*b1b2);
# undef SET2
# undef SET3
}
// a simple root finding algorithm is used to find the value of 't' that
// satisfies:
// d|D(t)|^2/dt = 0
// where:
// |D(t)| = |p(t)-b(t)|
// where p(t) is a point on the line parameterized by t:
// p(t) = p1 + t*(p2-p1)
// and b(t) is that same point clipped to the boundary of the box. in box-
// relative coordinates d|D(t)|^2/dt is the sum of three x,y,z components
// each of which looks like this:
//
// t_lo /
// ______/ -->t
// / t_hi
// /
//
// t_lo and t_hi are the t values where the line passes through the planes
// corresponding to the sides of the box. the algorithm computes d|D(t)|^2/dt
// in a piecewise fashion from t=0 to t=1, stopping at the point where
// d|D(t)|^2/dt crosses from negative to positive.
void dClosestLineBoxPoints (const dVector3 p1, const dVector3 p2,
const dVector3 c, const dMatrix3 R,
const dVector3 side,
dVector3 lret, dVector3 bret)
{
int i;
// compute the start and delta of the line p1-p2 relative to the box.
// we will do all subsequent computations in this box-relative coordinate
// system. we have to do a translation and rotation for each point.
dVector3 tmp,s,v;
tmp[0] = p1[0] - c[0];
tmp[1] = p1[1] - c[1];
tmp[2] = p1[2] - c[2];
dMultiply1_331 (s,R,tmp);
tmp[0] = p2[0] - p1[0];
tmp[1] = p2[1] - p1[1];
tmp[2] = p2[2] - p1[2];
dMultiply1_331 (v,R,tmp);
// mirror the line so that v has all components >= 0
dVector3 sign;
for (i=0; i<3; i++) {
if (v[i] < 0) {
s[i] = -s[i];
v[i] = -v[i];
sign[i] = -1;
}
else sign[i] = 1;
}
// compute v^2
dVector3 v2;
v2[0] = v[0]*v[0];
v2[1] = v[1]*v[1];
v2[2] = v[2]*v[2];
// compute the half-sides of the box
dReal h[3];
h[0] = REAL(0.5) * side[0];
h[1] = REAL(0.5) * side[1];
h[2] = REAL(0.5) * side[2];
// region is -1,0,+1 depending on which side of the box planes each
// coordinate is on. tanchor is the next t value at which there is a
// transition, or the last one if there are no more.
int region[3];
dReal tanchor[3];
// Denormals are a problem, because we divide by v[i], and then
// multiply that by 0. Alas, infinity times 0 is infinity (!)
// We also use v2[i], which is v[i] squared. Here's how the epsilons
// are chosen:
// float epsilon = 1.175494e-038 (smallest non-denormal number)
// double epsilon = 2.225074e-308 (smallest non-denormal number)
// For single precision, choose an epsilon such that v[i] squared is
// not a denormal; this is for performance.
// For double precision, choose an epsilon such that v[i] is not a
// denormal; this is for correctness. (Jon Watte on mailinglist)
#if defined( dSINGLE )
const dReal tanchor_eps = REAL(1e-19);
#else
const dReal tanchor_eps = REAL(1e-307);
#endif
// find the region and tanchor values for p1
for (i=0; i<3; i++) {
if (v[i] > tanchor_eps) {
if (s[i] < -h[i]) {
region[i] = -1;
tanchor[i] = (-h[i]-s[i])/v[i];
}
else {
region[i] = (s[i] > h[i]);
tanchor[i] = (h[i]-s[i])/v[i];
}
}
else {
region[i] = 0;
tanchor[i] = 2; // this will never be a valid tanchor
}
}
// compute d|d|^2/dt for t=0. if it's >= 0 then p1 is the closest point
dReal t=0;
dReal dd2dt = 0;
for (i=0; i<3; i++) dd2dt -= (region[i] ? v2[i] : 0) * tanchor[i];
if (dd2dt >= 0) goto got_answer;
do {
// find the point on the line that is at the next clip plane boundary
dReal next_t = 1;
for (i=0; i<3; i++) {
if (tanchor[i] > t && tanchor[i] < 1 && tanchor[i] < next_t)
next_t = tanchor[i];
}
// compute d|d|^2/dt for the next t
dReal next_dd2dt = 0;
for (i=0; i<3; i++) {
next_dd2dt += (region[i] ? v2[i] : 0) * (next_t - tanchor[i]);
}
// if the sign of d|d|^2/dt has changed, solution = the crossover point
if (next_dd2dt >= 0) {
dReal m = (next_dd2dt-dd2dt)/(next_t - t);
t -= dd2dt/m;
goto got_answer;
}
// advance to the next anchor point / region
for (i=0; i<3; i++)
{
if (_dequal(tanchor[i], next_t))
{
tanchor[i] = (h[i]-s[i])/v[i];
region[i]++;
}
}
t = next_t;
dd2dt = next_dd2dt;
}
while (t < 1);
t = 1;
got_answer:
// compute closest point on the line
for (i=0; i<3; i++) lret[i] = p1[i] + t*tmp[i]; // note: tmp=p2-p1
// compute closest point on the box
for (i=0; i<3; i++) {
tmp[i] = sign[i] * (s[i] + t*v[i]);
if (tmp[i] < -h[i]) tmp[i] = -h[i];
else if (tmp[i] > h[i]) tmp[i] = h[i];
}
dMultiply0_331 (s,R,tmp);
for (i=0; i<3; i++) bret[i] = s[i] + c[i];
}
// given boxes (p1,R1,side1) and (p1,R1,side1), return 1 if they intersect
// or 0 if not.
int dBoxTouchesBox (const dVector3 p1, const dMatrix3 R1,
const dVector3 side1, const dVector3 p2,
const dMatrix3 R2, const dVector3 side2)
{
// two boxes are disjoint if (and only if) there is a separating axis
// perpendicular to a face from one box or perpendicular to an edge from
// either box. the following tests are derived from:
// "OBB Tree: A Hierarchical Structure for Rapid Interference Detection",
// S.Gottschalk, M.C.Lin, D.Manocha., Proc of ACM Siggraph 1996.
// Rij is R1'*R2, i.e. the relative rotation between R1 and R2.
// Qij is abs(Rij)
dVector3 p,pp;
dReal A1,A2,A3,B1,B2,B3,R11,R12,R13,R21,R22,R23,R31,R32,R33,
Q11,Q12,Q13,Q21,Q22,Q23,Q31,Q32,Q33;
// get vector from centers of box 1 to box 2, relative to box 1
p[0] = p2[0] - p1[0];
p[1] = p2[1] - p1[1];
p[2] = p2[2] - p1[2];
dMultiply1_331 (pp,R1,p); // get pp = p relative to body 1
// get side lengths / 2
A1 = side1[0]*REAL(0.5); A2 = side1[1]*REAL(0.5); A3 = side1[2]*REAL(0.5);
B1 = side2[0]*REAL(0.5); B2 = side2[1]*REAL(0.5); B3 = side2[2]*REAL(0.5);
// for the following tests, excluding computation of Rij, in the worst case,
// 15 compares, 60 adds, 81 multiplies, and 24 absolutes.
// notation: R1=[u1 u2 u3], R2=[v1 v2 v3]
// separating axis = u1,u2,u3
R11 = dCalcVectorDot3_44(R1+0,R2+0); R12 = dCalcVectorDot3_44(R1+0,R2+1); R13 = dCalcVectorDot3_44(R1+0,R2+2);
Q11 = dFabs(R11); Q12 = dFabs(R12); Q13 = dFabs(R13);
if (dFabs(pp[0]) > (A1 + B1*Q11 + B2*Q12 + B3*Q13)) return 0;
R21 = dCalcVectorDot3_44(R1+1,R2+0); R22 = dCalcVectorDot3_44(R1+1,R2+1); R23 = dCalcVectorDot3_44(R1+1,R2+2);
Q21 = dFabs(R21); Q22 = dFabs(R22); Q23 = dFabs(R23);
if (dFabs(pp[1]) > (A2 + B1*Q21 + B2*Q22 + B3*Q23)) return 0;
R31 = dCalcVectorDot3_44(R1+2,R2+0); R32 = dCalcVectorDot3_44(R1+2,R2+1); R33 = dCalcVectorDot3_44(R1+2,R2+2);
Q31 = dFabs(R31); Q32 = dFabs(R32); Q33 = dFabs(R33);
if (dFabs(pp[2]) > (A3 + B1*Q31 + B2*Q32 + B3*Q33)) return 0;
// separating axis = v1,v2,v3
if (dFabs(dCalcVectorDot3_41(R2+0,p)) > (A1*Q11 + A2*Q21 + A3*Q31 + B1)) return 0;
if (dFabs(dCalcVectorDot3_41(R2+1,p)) > (A1*Q12 + A2*Q22 + A3*Q32 + B2)) return 0;
if (dFabs(dCalcVectorDot3_41(R2+2,p)) > (A1*Q13 + A2*Q23 + A3*Q33 + B3)) return 0;
// separating axis = u1 x (v1,v2,v3)
if (dFabs(pp[2]*R21-pp[1]*R31) > A2*Q31 + A3*Q21 + B2*Q13 + B3*Q12) return 0;
if (dFabs(pp[2]*R22-pp[1]*R32) > A2*Q32 + A3*Q22 + B1*Q13 + B3*Q11) return 0;
if (dFabs(pp[2]*R23-pp[1]*R33) > A2*Q33 + A3*Q23 + B1*Q12 + B2*Q11) return 0;
// separating axis = u2 x (v1,v2,v3)
if (dFabs(pp[0]*R31-pp[2]*R11) > A1*Q31 + A3*Q11 + B2*Q23 + B3*Q22) return 0;
if (dFabs(pp[0]*R32-pp[2]*R12) > A1*Q32 + A3*Q12 + B1*Q23 + B3*Q21) return 0;
if (dFabs(pp[0]*R33-pp[2]*R13) > A1*Q33 + A3*Q13 + B1*Q22 + B2*Q21) return 0;
// separating axis = u3 x (v1,v2,v3)
if (dFabs(pp[1]*R11-pp[0]*R21) > A1*Q21 + A2*Q11 + B2*Q33 + B3*Q32) return 0;
if (dFabs(pp[1]*R12-pp[0]*R22) > A1*Q22 + A2*Q12 + B1*Q33 + B3*Q31) return 0;
if (dFabs(pp[1]*R13-pp[0]*R23) > A1*Q23 + A2*Q13 + B1*Q32 + B2*Q31) return 0;
return 1;
}
//****************************************************************************
// other utility functions
void dInfiniteAABB (dxGeom * /*geom*/, dReal aabb[6])
{
aabb[0] = -dInfinity;
aabb[1] = dInfinity;
aabb[2] = -dInfinity;
aabb[3] = dInfinity;
aabb[4] = -dInfinity;
aabb[5] = dInfinity;
}
//****************************************************************************
// Helpers for Croteam's collider - by Nguyen Binh
int dClipEdgeToPlane( dVector3 &vEpnt0, dVector3 &vEpnt1, const dVector4& plPlane)
{
// calculate distance of edge points to plane
dReal fDistance0 = dPointPlaneDistance( vEpnt0 ,plPlane );
dReal fDistance1 = dPointPlaneDistance( vEpnt1 ,plPlane );
// if both points are behind the plane
if ( fDistance0 < 0 && fDistance1 < 0 )
{
// do nothing
return 0;
// if both points in front of the plane
}
else if ( fDistance0 > 0 && fDistance1 > 0 )
{
// accept them
return 1;
// if we have edge/plane intersection
} else if ((fDistance0 > 0 && fDistance1 < 0) || ( fDistance0 < 0 && fDistance1 > 0))
{
// find intersection point of edge and plane
dVector3 vIntersectionPoint;
vIntersectionPoint[0]= vEpnt0[0]-(vEpnt0[0]-vEpnt1[0])*fDistance0/(fDistance0-fDistance1);
vIntersectionPoint[1]= vEpnt0[1]-(vEpnt0[1]-vEpnt1[1])*fDistance0/(fDistance0-fDistance1);
vIntersectionPoint[2]= vEpnt0[2]-(vEpnt0[2]-vEpnt1[2])*fDistance0/(fDistance0-fDistance1);
// clamp correct edge to intersection point
if ( fDistance0 < 0 )
{
dVector3Copy(vIntersectionPoint,vEpnt0);
} else
{
dVector3Copy(vIntersectionPoint,vEpnt1);
}
return 1;
}
return 1;
}
// clip polygon with plane and generate new polygon points
void dClipPolyToPlane( const dVector3 avArrayIn[], const int ctIn,
dVector3 avArrayOut[], int &ctOut,
const dVector4 &plPlane )
{
// start with no output points
ctOut = 0;
int i0 = ctIn-1;
// for each edge in input polygon
for (int i1=0; i1<ctIn; i0=i1, i1++) {
// calculate distance of edge points to plane
dReal fDistance0 = dPointPlaneDistance( avArrayIn[i0],plPlane );
dReal fDistance1 = dPointPlaneDistance( avArrayIn[i1],plPlane );
// if first point is in front of plane
if( fDistance0 >= 0 ) {
// emit point
avArrayOut[ctOut][0] = avArrayIn[i0][0];
avArrayOut[ctOut][1] = avArrayIn[i0][1];
avArrayOut[ctOut][2] = avArrayIn[i0][2];
ctOut++;
}
// if points are on different sides
if( (fDistance0 > 0 && fDistance1 < 0) || ( fDistance0 < 0 && fDistance1 > 0) ) {
// find intersection point of edge and plane
dVector3 vIntersectionPoint;
vIntersectionPoint[0]= avArrayIn[i0][0] -
(avArrayIn[i0][0]-avArrayIn[i1][0])*fDistance0/(fDistance0-fDistance1);
vIntersectionPoint[1]= avArrayIn[i0][1] -
(avArrayIn[i0][1]-avArrayIn[i1][1])*fDistance0/(fDistance0-fDistance1);
vIntersectionPoint[2]= avArrayIn[i0][2] -
(avArrayIn[i0][2]-avArrayIn[i1][2])*fDistance0/(fDistance0-fDistance1);
// emit intersection point
avArrayOut[ctOut][0] = vIntersectionPoint[0];
avArrayOut[ctOut][1] = vIntersectionPoint[1];
avArrayOut[ctOut][2] = vIntersectionPoint[2];
ctOut++;
}
}
}
void dClipPolyToCircle(const dVector3 avArrayIn[], const int ctIn,
dVector3 avArrayOut[], int &ctOut,
const dVector4 &plPlane ,dReal fRadius)
{
// start with no output points
ctOut = 0;
int i0 = ctIn-1;
// for each edge in input polygon
for (int i1=0; i1<ctIn; i0=i1, i1++)
{
// calculate distance of edge points to plane
dReal fDistance0 = dPointPlaneDistance( avArrayIn[i0],plPlane );
dReal fDistance1 = dPointPlaneDistance( avArrayIn[i1],plPlane );
// if first point is in front of plane
if( fDistance0 >= 0 )
{
// emit point
if (dVector3LengthSquare(avArrayIn[i0]) <= fRadius*fRadius)
{
avArrayOut[ctOut][0] = avArrayIn[i0][0];
avArrayOut[ctOut][1] = avArrayIn[i0][1];
avArrayOut[ctOut][2] = avArrayIn[i0][2];
ctOut++;
}
}
// if points are on different sides
if( (fDistance0 > 0 && fDistance1 < 0) || ( fDistance0 < 0 && fDistance1 > 0) )
{
// find intersection point of edge and plane
dVector3 vIntersectionPoint;
vIntersectionPoint[0]= avArrayIn[i0][0] -
(avArrayIn[i0][0]-avArrayIn[i1][0])*fDistance0/(fDistance0-fDistance1);
vIntersectionPoint[1]= avArrayIn[i0][1] -
(avArrayIn[i0][1]-avArrayIn[i1][1])*fDistance0/(fDistance0-fDistance1);
vIntersectionPoint[2]= avArrayIn[i0][2] -
(avArrayIn[i0][2]-avArrayIn[i1][2])*fDistance0/(fDistance0-fDistance1);
// emit intersection point
if (dVector3LengthSquare(avArrayIn[i0]) <= fRadius*fRadius)
{
avArrayOut[ctOut][0] = vIntersectionPoint[0];
avArrayOut[ctOut][1] = vIntersectionPoint[1];
avArrayOut[ctOut][2] = vIntersectionPoint[2];
ctOut++;
}
}
}
}
|