1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890
|
.include "global.s"
; This is a set of routines for floating point handling for C
; The format of a floating point number is as follows:
;
; ------------
; * sign * 1 bit
; *----------*
; * exponent * 7 bits
; *----------*
; * mantissa * 24 bits, normalized
; ------------
;
; Note that the number is stored with the mantissa in the
; low order bytes, i.e. the sign is the most significant
; bit of the most significant byte.
.area _BSS
; Temporary registers
.ldivloopcount:
.scratch: .ds 1
; Working float
.res:
.ds 4
.mul:
.ds 4
.mulloops:
.fdiv32loops:
.faddscratch: .ds 1
.fmulcount: .ds 1
.fw: .ds 4
.q:
.ft:
.ds 4
fperr: .ds 1 ; floating over/underflow flag
.area _CODE
; Set the floating overflow flag and return zero. Floating execptions
; may be caught in which case the appropriate routine will be called.
fpovrflw:
ld a,#1
ld (fperr),a
fpzero:
ld hl,#0 ; Make HLDE = 0
ld e,l
ld d,h
ret
; Negate the mantissa in LDE.
negmant::
xor a ; Zero a, reset carry
sub e
ld e,a
ld a,#0
sbc d
ld d,a
ld a,#0
sbc l ;negate the hi byte
ld l,a ;put back
ret ;and return
; Change it to adding HLDE with BCfl1fl0
; Make HLDE equal ft
fladd_getother: ; Just return fl3fl2fl1fl0 in HLDE
ld a,(.fw+3)
ld h,a
ld a,(.fw+2)
ld l,a
ld a,(.fw+1)
ld d,a
ld a,(.fw+0)
ld e,a
ret
; Swap the two floating pt registers HLDE and ft3ft2ft1ft0
; Destroys BC
fladd_swap::
push af
push hl
push de
ld hl,#.fw
ld a,(hl+)
ld e,a
ld a,(hl+)
ld d,a
ld a,(hl+)
ld h,(hl)
ld l,a
pop bc
ld a,c
ld (.fw+0),a
ld a,b
ld (.fw+1),a
pop bc
ld a,c
ld (.fw+2),a
ld a,b
ld (.fw+3),a
pop af
ret
; Floating subtraction. The value on the stack is subtracted from the
; value in HLDE. To simplify matters, we do it thus:
;
; A-B == A+-B
.fsub32::
flsub:
push hl
lda hl,7(sp) ; HL points to exponent on stack
ld a,(hl)
xor #0x80 ; Toggle the sign bit
ld (hl),a
pop hl
;fall through to fladd
; Floating addition:
; Add the value in HLDE to the value on the stack, and
; return with the argument removed from the stack.
; Timings for adding 1976.0 and 10.0
; Initial version - 4080
; Removed .exxs, replaced with fadd_swap - 2500
; Removed swaps around actual add - 1860
; Optimised fpnorm - 1620
; Improved setup - 1184
; Improved neg mant detect code - 952
; Found bug in fpnorm - 1060
; Note that the speed depends on the order
; that the operands are in
; If HLDE is > stack, then the routine is faster
; Optimised so that fpnorm and round arnt - 816
; used unless the number overflows into
; H
; Analysis of routine
; fladd:
; Recover right operand
; If either operand is zero, return the other
; Make the smaller number current
; Comupte the number of bits difference (BD)
; If BD > 24, return the larger
; Adjust smaller until both have the same exponent
; Save the exponent of either (=exponent of result) (E)
; Fiddle with mag+sign on both
; Make H=0x0ff if num is negative
; Else H=0
; Add
; Rotate right once, saving LSB
; Increase exponent to make up for RR'ing number
; Restore sign and new exponent
; Negate mantissa if new is negative
; Round if LSB was one
; Normalise
.fadd32::
fladd:
ld a,l ;check 1st operand for zero
or d
or e ;only need to check mantissa
jr nz,5$ ; Mantissa is not zero
pop bc ; mantissa is zero - return other operand
pop de
pop hl
push bc
ret
5$:
ld a,e ; Store the current operand
ld (.fw+0),a
ld a,d
ld (.fw+1),a
ld a,l
ld (.fw+2),a
ld a,h
ld (.fw+3),a
pop bc ; return address
pop de ; low word of 2nd operand
pop hl ; hi word
push bc ; put return address back on stack
ld a,l ; check for zero 2nd arg
or d
or e ;if zero, just return the 1st operand
jr nz,6$ ; Not zero - so continue
jp fladd_getother ; Zero - return other operand
6$:
ld a,(.fw+3)
res 7,a ;clear sign
ld c,h ;get exponent
res 7,c ;and clear sign
a::
sub c ;find difference
jr nc,1$ ;if negative,
call fladd_swap ; switch operands
ld c,a ; Make the difference positive
xor a ; (A = 0)
sub c
1$:
cp #24 ; if less than 24 bits difference,
jr c,2$ ; we can do the add
jp fladd_getother ; otherwise just return the larger value
2$:
or a ; check for zero difference
call nz,fpadjust ; adjust till equal
ld a,h ; save exponent of result
ld (.faddscratch),a
bit 7,h ; test sign, do we need to negate?
ld h,#0 ; zero fill in case +ve
jr z,3$ ; no
call negmant ; yes
ld h,#0x0ff ; 1 fill top byte
3$:
ld a,(.fw+3)
bit 7,a ;test sign, do we need to negate?
ld a,#0 ;zero fill in case +ve
ld (.fw+3),a
jr z,4$ ;no
call fladd_swap
call negmant ;yes
ld h,#0x0ff ;1 fill top byte
4$:
ld c,l
ld b,h
ld hl,#.fw
ld a,(hl+)
add e
ld e,a
ld a,(hl+)
adc d
ld d,a
ld a,(hl+)
adc c
ld c,a
ld a,(hl)
adc b
ld h,a
ld l,c
sra h ; now shift down 1 bit to compensate
rr l ; Rotate in the carry bit
rr d ; propogate the shift
rr e
push af ;save carry flag
ld a,(.faddscratch)
res 7,a ;clear sign from exponent
inc a ;increment to compensate for shift above
ld c,a ;save it
ld a,h
and #0x80 ;mask off low bits
or c ;or in exponent
ld h,a ;now have it!
bit 7,h
call nz,negmant
pop af ;restore carry flag
call c,round ;round up if necessary
;normalize and return!!
; fpnorm - passed a floating point number in HLDE (sign and exponent
; in H) - returns with it normalized.
;
; Points to note:
; Normalization consists of shifting the mantissa until there
; is a 1 bit in the MSB of the mantissa.
;
fpnorm::
bit 7,l ; If it's already normalised, then do nothing
ret nz
ld a,l ;check for zero mantissa
or d
or e
jp z,fpzero ;make it a clean zero
ld b,h ; Store the exponent in B
ld c,b ;copy into c
res 7,c ;reset the sign bit
; We know that bit 7 is zero due to test above
5$:
dec c ;decrement exponent
bit 7,c
jp nz,fpovrflw ; Exp is <0 - underflow
or a ; Clear carry
rl e ; Rotate LDE left
rl d
rl l
bit 7,l ; Is HLDE normalised?
jr z,5$ ; no - loop
3$:
bit 7,b ;test sign
jr z,4$ ;skip if clear
set 7,c ;set the new sign bit
4$:
ld h,c ;put exponent and sign back where it belongs
ret ;finished
; Round the number in HLDE up by one, because of a shift of bits out
; earlier
round:
inc e
ret nz
inc d
ret nz
inc l
ret nz
;
; ld a,#1 ; Add 1 to LDE
; add e
; ld e,a
; ld a,#0
; adc d
; ld d,a
;
; ld a,#0
; adc l
; ld l,a
; jr nc,2$ ; Carry is clear - dont need to increase
; exponent
; Shift the carry in
; ALT: LDE will equal 800000 - speedup?
rr l ; Carry is set - rr mantissa and increase
rr d ; exponent
rr e
ld a,h ; get exponent/sign
and #0x07f ; get exponent only
inc a ; add one
ld c,a
ld a,h
and #0x080
or c ;now exponent and sign again
ld h,a
2$:
ret
; Adjust the floating number in HLDE by increasing the exponent by the
; contents of A. The mantissa must be shifted right to compensate.
fpadjust:
and #0x01F ;mask of hi bits - irrelevant
1$:
srl l ; Rotate mantissa right
rr d
rr e
inc h ; increment exponent - it will not overflow
dec a
jr nz,1$ ; loop if more
ret
; Get the right operand into HLDE', leave the left operand
; where it is in HLDE, but make both of them +ve. The original
; exponents/signs are left in C and B, left and right operands
; respectively.
fsetup::
push hl
lda hl,6(sp)
ld a,(hl+)
ld (.fw+0),a ; lower word of right operand
ld a,(hl+)
ld (.fw+1),a
ld a,(hl+) ; high word of right operand
ld (.fw+2),a
ld a,(hl)
ld (.fw+3),a
pop hl
ld a,h ; Store HL
ld (.scratch),a
ld a,l
pop hl
pop bc
lda sp,4(sp) ; Unjunk stack
push bc
push hl
ld l,a ; Recover HL
ld a,(.scratch)
ld h,a
ld c,a ; Store the exponent
res 7,h ; Make the working copy positive
ld a,(.fw+3)
ld b,a
res 7,a
ld (.fw+3),a
ret
; Floating multiplication. The number in HLDE is multiplied by the
; number on the stack under the return address. The stack is cleaned
; up and the result returned in HLDE.
;
; Timings: multiply 1976.0 by 10.0
; Initial - ~60000
; Much hacking afterwards - 6268
; Added mulx0 = 8 shift hack - 5228
; Trimmed some old instruction - 5148
; Improved fsetup - 4436
.fmul32::
flmul:
call fsetup ;get operands, make them +ve.
push bc ;save exponents etc.
ld a,d ; Set DEDE' equal to HLDE
ld (.ft+1),a
ld a,e
ld (.ft+0),a
ld e,l ; D is zeroed later
xor a ; Zero product
ld (.fw+3),a
ld h,a
ld l,a
ld b,a
ld c,a
ld d,a
ld a,(.fw+0) ; get low 8 bits of multiplier
call mult26 ; do 8 bits of multiply
ld a,(.fw+1)
call mult8 ;next 8 bits
ld a,(.fw+2) ;next 8 bits
call mult8 ;do next chunk
ld d,b
ld e,c
ld a,h ;get hi byte
ld h,#0
ld c,h ;zero lower byte
jr 1$ ;skip forward 1f
2$: ; 2
srl a
rr l
rr d
rr e
rr c ;save carry bit in c
inc h
1$: ; 1
or a ;hi byte zero yet?
jr nz,2$ ;no, keep shifting down 2b
ld a,c ;copy shifted-out bits
ld (.scratch),a
pop bc ;get exponents
bit 7,l ;check for zero mantissa
jp z,fpzero ;return a clean zero if so
ld a,c
res 7,a ;mask off sign
sub #0x41 ;remove bias, allow one bit shift
add a,h ;add in shift count
sub #6 ;compensate for shift up earlier
ld h,b ;the other
res 7,h ;mask off signs
add a,h ;add them together
ld h,a ;put exponent in
ld a,c ;now check signs
xor b
bit 7,a
ret z ;return if +ve
set 7,h ;set sign flag
ld a,(.scratch)
rla ;shift top bit out
ret nc ;return if no carry
jp round ;round it
; Register useage
; HL 1
; HL' 1
; DE 11
; DE' 11
mult26::
push af
ld a,#6
ld (.fmulcount),a
3$: ; 3
pop af
srl a ;shift LSB of multiplier into carry
jr nc,1$ ; 1f
push af
ld a,(.ft+0)
add c
ld c,a
ld a,(.ft+1)
adc b
ld b,a
jr nc,2$
inc hl
2$:
add hl,de
pop af
1$: ; 1
push af
or a
push hl
ld hl,#.ft
rl (hl)
inc hl
rl (hl)
pop hl
rl e
rl d
ld a,(.fmulcount)
dec a
ld (.fmulcount),a
jr nz,3$
ld a,#2
ld (.fmulcount),a
pop af
jr mul8_4 ; 4f
; Register useage count
; HL 11
; HL' 11
; DE 1
; DE' 1
mult8::
; Encapsulate it
cp #0 ; Simple hack to speed up mul if A = 0
jr nz,mul8_normal
; If A = 0, then it's just rr HLBC 8 times
ld c,b
ld b,l
ld h,a ; (A=0)
ret
mul8_normal:
push af
ld a,#8
ld (.fmulcount),a
mul8_3:
pop af
srl h
rr l
rr b
rr c
mul8_4: ; 4
srl a ;shift LSB into carry
jr nc,1$ ; 1f
push af
ld a,(.ft+0)
add c
ld c,a
ld a,(.ft+1)
adc b
ld b,a
jr nc,2$
inc hl
2$:
add hl,de
pop af
1$:
push af
ld a,(.fmulcount)
dec a
ld (.fmulcount),a
jr nz,mul8_3 ;more? 3b
; De-encapsulate
pop af
ret ;no, return as is
; Floating division. The number in HLDE is divided by the
; number on the stack under the return address. The stack is cleaned
; up and the result returned in HLDE.
;
; Timings Divide 1976.0 by 10.0 giving 197.600006-ish
; Initial - 111272
; Removed .exx's around 3$ - 72512
; Removed all .exx's up to 5$ - 20192
; Swapped BCBC' for q4..q0 - 19708
; Swapped HL' for BC - 14428
; Removed .exafaf's - 14120
; Found a redundant scf - 14060
; Found that D was free - removed q1 - 13060
; Better shift of q - 9856
; Profile counts
; Useage of HL 11(.5)1
; HL' 11(.5)1
; DE 1
; DE' 1
; Useage of q3 11
; q1 11
.fdiv32::
fldiv:
call fsetup ; get operands, make them +ve.
; NOTE returns with them in HLDE, HLDE' =12 34
; and orig exponents in BC = 5
; fsetup takes 1044 cycles
; Time from here
push bc ; save exponents etc. TOS=5
; Swap DE and HL'
ld b,d ; HL=1,DE=2,HL'=3,DE'=4
; Then HL=1,HL'=2,DE=3,DE'=4
ld c,e ; Ignore D as it's zeroed later
ld a,(.fw+2)
ld e,a
xor a ; Zero a
ld (.q+0),a ; ...and the quotient
ld d,a ; D is free
ld (.q+2),a
ld (.q+3),a
ld h,a ; Zero top byte of divisor
; Dividend is taken care of later
; Ends with HL=1,HL'=2,DE=3,DE'=4
ld a,#24+6 ;number of bits in dividend and then some
ld (.fdiv32loops),a
3$:
ld a,h
cp d
jr c,5$
jr nz,8$
ld a,l
cp e
jr c,5$
8$:
push bc
push hl ;save dividend - hl is now free
ld hl,#.fw
; Subtract DEfw1fw0 from HLBC
ld a,c ; Subtract fw1fw0 from BC
sub (hl)
ld c,a
inc hl
ld a,b
sbc (hl)
ld b,a
pop hl ; Recover HL
push hl
ld a,l ; Subtract high words
sbc e ; (Subtract DE from HL)
ld l,a
ld a,h
sbc #0
ld h,a
jr nc,4$
pop hl ; DEfw1fw0 is greater than HLBC
pop bc ; restore dividend
jr 5$
4$:
lda sp,4(sp) ;unjunk stack
5$:
ccf ; complement carry bit
push hl
ld hl,#.q
rl (hl)
inc hl
rl d
inc hl
rl (hl)
inc hl
rl (hl)
pop hl
or a ; clear carry flag
rl c ; Shift HLBC left
rl b
rl l
rl h
ld a,(.fdiv32loops)
dec a ;decrement loop count
ld (.fdiv32loops),a
jr nz,3$
ld hl,#.q
ld a,(hl+)
ld e,a
inc hl ; D is taken care of above
ld l,(hl)
ld a,(.q+3)
ld h,#0
ld c,h ;zero lower byte
jr 1$ ;skip forward
2$:
srl a
rr l
rr d
rr e
rr c ;save carry bit in c
inc h
1$:
or a ;hi byte zero yet?
jr nz,2$ ;no, keep shifting down
push af
ld a,c ;copy shifted-out bits
ld (.scratch),a
pop af
pop bc ;restore exponents
push bc ;save signs
ld a,c
res 7,a
res 7,b
sub b
add #0x041-6 ;compensate
add a,h
ld h,a
pop bc
ld a,c
xor b ; get sign
bit 7,a ; Jump if a is positive
jr z,6$
set 7,h
6$:
ld a,(.scratch)
rla
call c,round ; round if necessary
jp fpnorm ; normalize it and return
; .add32 - add HLDE and stack
; Add HLDE to the 4 byte long on the stack, returning the result in HLDE
; Note that the stack grows downwards fro the top, so SP+0 is the return address,
; SP+2 is the least significant byte and SP+5 is the most significant
; So push hl; push de
.add32::
LD B,H ; BC = temporary registers
LD C,L
LDA HL,2(SP) ; HL = LSB of operand
LD A,E
ADD (HL)
LD E,A
INC HL
LD A,D
ADC (HL)
LD D,A
INC HL
LD A,C
ADC (HL)
LD C,A
INC HL
LD A,B
ADC (HL)
LD H,A
LD L,C
POP BC ; Return address
LDA SP,4(SP) ; Remove the operand from the stack
PUSH BC ; Put return address back on stack
RET
; .sub32 - subtract stack from HLDE
; Subtract the 4 byte long on the stack at SP+2 from HLDE
.sub32::
LD B,H
LD C,L
LDA HL,2(SP) ; HL points to the operand
LD A,E
SUB (HL)
LD E,A
INC HL
LD A,D
SBC (HL)
LD D,A
INC HL
LD A,C
SBC (HL)
LD C,A
INC HL
LD A,B
SBC (HL)
LD H,A
LD L,C
POP BC ; Return address
LDA SP,4(SP) ; Remove the operand from the stack
PUSH BC ; Put return address back on stack
RET
; .neg32 - negate HLDE
; Note that HLDE is a in two's complement form
; The order of the complementing the registers is unimportant
.neg32::
LD A,E
CPL ; Take 2's complement of A
LD E,A
LD A,D
CPL
LD D,A
LD A,L
CPL
LD L,A
LD A,H
CPL
LD H,A
RET
; .cpl32 - complement HLDE
; Confused - dosnt this do the same as .neg32?
.cpl32::
XOR A ; Zero A, clear flags
SUB E
LD E,A
LD A,#0x00
SBC D
LD D,A
LD A,#0x00
SBC L
LD L,A
LD A,#0x00
SBC H
LD H,A
RET
; .xor32 - logical XOR of HLDE with the stack
.xor32::
LD B,H ; Temporarialy store HL in BC
LD C,L
LDA HL,2(SP) ; HL points to the operand
LD A,E
XOR (HL)
LD E,A
INC HL
LD A,D
XOR (HL)
LD D,A
INC HL
LD A,C
XOR (HL)
LD C,A
INC HL
LD A,B
XOR (HL)
LD H,A
LD L,C
POP BC ; Return address
LDA SP,4(SP) ; Remove the operand
PUSH BC ; Put return address back on stack
RET
; .or32 - logical OR of HLDE with the stack
.or32::
LD B,H
LD C,L
LDA HL,2(SP)
LD A,E
OR (HL)
LD E,A
INC HL
LD A,D
OR (HL)
LD D,A
INC HL
LD A,C
OR (HL)
LD C,A
INC HL
LD A,B
OR (HL)
LD H,A
LD L,C
POP BC ; Return address
LDA SP,4(SP)
PUSH BC ; Put return address back on stack
RET
; .and32 - logical AND of HLDE with the stack
.and32::
LD B,H
LD C,L
LDA HL,2(SP)
LD A,E
AND (HL)
LD E,A
INC HL
LD A,D
AND (HL)
LD D,A
INC HL
LD A,C
AND (HL)
LD C,A
INC HL
LD A,B
AND (HL)
LD H,A
LD L,C
POP BC ; Return address
LDA SP,4(SP)
PUSH BC ; Put return address back on stack
RET
; .asl32 - arithmitic shift left of HLDE 'A' times
.asl32::
1$:
SLA E
RL D
RL L
RL H
DEC A
JR NZ,1$
RET
; .asr32 - arithmitic shift right of HLDE 'A' times
.asr32::
1$:
SRA H
RR L
RR D
RR E
DEC A
JR NZ,1$
RET
; .lsl32 - logical shift left of HLDE 'A' times
.lsl32::
1$:
; SLL E
RL D
RL L
RL H
DEC A
JR NZ,1$
RET
; .lsr32 - logical shift right of HLDE 'A' times
.lsr32::
1$:
SRL H
RR L
RR D
RR E
DEC A
JR NZ,1$
RET
; .cmp32 - check if HLDE is negative, positive or zero
; Can be used with a subtraction to compare numbers
; If ( A-B > 0 ) A > B
; If ( A-B = 0 ) B = A
; If ( A-B < 0 ) A < B
; Returns Z = 1 if HLDE = 0, C = 1 if HLDE < 0
;; Long comparison Sets C if HLDE is negative, and Z if HLDE is zero.
.cmp32::
BIT 7,H ; Test sign
JR Z,1$
LD A,E ; Set Z flag
OR D ; xxx confused
OR L
OR H
SCF ; Negative: set carry flag
RET
1$:
LD A,E ; Set Z flag
OR D
OR L
OR H
SCF ; Positive: clear carry flag
CCF
RET
;; Long multiplication for Z80.
;;
;; Called with 1st arg in HLDE, 2nd arg on stack. Returns with
;; result in HLDE, other argument removed from stack.
; Long multiplication for Z80
; Called with 1st arg in HLDE, 2nd arg on stack. Returns with
; result in HLDE, other argument removed from stack
; global almul, llmul
; psect text
;almul:
;llmul:
;
; Tests:
; Square 27A3, giving 62311C9
; Initial: 6796
; Change final exx for simple moves - 6360
; Change middle exx to simple moves - 6040
; Changed to mul DEBC, adding to HLHL' - 5672
; Cleaned up afterwards - 5460
; Tried changing push af to ld (.scratch),a in mul8 - 5540
; Changed so that mul by 256 (0) is simple swap - 3476
; Fixed 32 cycle offset in timer - 3444
.mul32:: ; hl=1,de=2,sp+4=3,sp+2=4
; None of this mucking about...
; HLDE to mul3 mul2 mul1 mul0
; Begin profiling
ld a,h
ld (.mul+3),a ; mulB
ld a,l
ld (.mul+2),a ; mulC
ld a,d
ld (.mul+1),a ; .Bp
ld a,e
ld (.mul+0),a ; - 80 cycles .Cp
pop hl ; HL is ret address
pop de
pop bc
push hl ; Put ret address back
; - 132 cycles
xor a ; Zero HLHL'
ld h,a ; (the result)
ld l,a
ld (.res+1),a
ld (.res+0),a ; - 176 cycles
ld a,(.mul+0) ; Do the actual multiply
call .mul8b ; - 1704 cycles
ld a,(.mul+1)
call .mul8b ; - 3232 cycles
ld a,(.mul+2)
call .mul8b ; - 3304 cycles
ld a,(.mul+3)
call .mul8b ; - 3376 cycles
ld d,h
ld e,l
ld a,(.res+1)
ld h,a
ld a,(.res+0)
ld l,a ; - 3424 cycles
ret
.mul8b:
cp a,#0
jr nz,.realmul8b
; Simple hack so that if we're multipling by zero then just
; the shift is performed
ld e,d
ld d,c
ld c,b
ld b,#0
ret
.realmul8b:
push af
ld a,#8
ld (.mulloops),a
1$:
pop af
SRL A ; Shift A left, LSB into carry
JP NC,2$ ; LSB of A was zero, so continue
ADD HL,DE ; Add low words
; Originally 149 cycles, now 100
PUSH AF
LD A,(.res+0) ; Add DE' to HL'
ADC c
LD (.res+0),A
LD A,(.res+1)
ADC b
LD (.res+1),A
; Hee hee - these two were around the wrong way
POP AF
; To here
2$:
SLA E ; Rotate the multiplier left (DE)
RL D
; This section took 90 cycles, now 16
rl c
rl b
push af
ld a,(.mulloops)
DEC a ; Loop until all 8 bits are done
ld (.mulloops),a
JR NZ,1$
pop af
RET
; Long division routines for Z80.
;
; Called with dividend in HLDE, divisor on stack under 2 return
; addresses. Returns with dividend in HL/HL', divisor in DE/DE'
; on return the HIGH words are selected.
; Interface between C type HLDE/stack operands and that required for divide
; In divide,
; dividend is HLHL'
; divisor is DEBC
; divisor is removed from stack
;
; Notes:
; +0 HL
; +2 ret outer
; +4 ret inner
; +6 div.l
; +8 div.h
.mod32::
call .lregset
call divide
ld a,(.div+0)
ld e,a
ld a,(.div+1)
ld d,a
ret
.div32::
call .lregset
call divide
ld a,(.q+3)
ld h,a
ld a,(.q+2)
ld l,a
ld a,(.q+1)
ld d,a
ld a,(.q+0)
ld e,a
ret
.lregset:
; SP = +2
ld a,e ; Low word of dividend into HL'
ld (.div+0),a
ld a,d
ld (.div+1),a ; DE is now free
push hl ; HL is free
; SP = 0
lda sp,2(sp) ; (+2)
pop de ; First return address
; SP = +4
pop hl ; Second return address
; SP = +6
; Points to divisor.L
pop bc ; Get divisor.L
; SP = +8
push de ; Restore return address
; SP = +6
lda sp,2(sp) ; Points to divisor.H
; SP = +8
pop de
; SP = +10
push hl ; Restore inner return address
; SP = +8
lda sp,-8(sp) ; Recover HL
; SP = 0
pop hl
lda sp,4(sp)
ret
; .lregset:
; POP BC ; Get top return address
; CALL .exx ; Select other bank
; POP BC ; Return address of call to this module
; POP DE ; Get low word of divisor
; CALL .exx ; Select hi bank
; EX DE,HL ; Dividend.low -> HL
; EX (SP),HL ; Divisor.high -> HL
; EX DE,HL ; Dividend.high -> HL
; CALL .exx ; Back to low bank
; PUSH BC ; Put outer r.a. back on stack
; POP HL ; Return address
; EX (SP),HL ; Dividend.low -> HL
; CALL .exx
; PUSH BC ; Top return address
; RET
; ; Much the same as lregset, except that on entry the dividend
; ; is pointed to by HL.
; ; The pointer is saved in iy for subsequent updating of memory
; iregset:
; pop de ;immediate return address
; call lregset ;returns with hi words selected
; push hl ;save a copy for 'ron
; ex (sp),iy ;get it in iy, saving old iy
; ld h,(iy+3) ;high order byte
; ld l,(iy+2) ;byte 2
; exx ;back to low bank
; push hl ;return address
; ld h,(iy+1) ;byte 1
; ld l,(iy+0) ;and LSB
; exx ;restore hi words
; ret ;now return
; ; Called with hi words selected, performs division on the absolute
; ; values of the dividend and divisor. Quotient is positive
; sgndiv:
; call negif ;make dividend positive
; exx
; ex de,hl ;put divisor in HL/HL'
; exx
; ex de,hl
; call negif ;make divisor positive
; ex de,hl ;restore divisor to DE/DE'
; exx
; ex de,hl
; exx ;select high words again
; jp divide ;do division
; asaldiv:
; call iregset
; call dosdiv
; store:
; ld (iy+0),e
; ld (iy+1),d
; ld (iy+2),l
; ld (iy+3),h
; pop iy ;restore old iy
; ret
; aldiv:
; call lregset ;get args
; ; Called with high words selected, performs signed division by
; ; the rule that the quotient is negative iff the signs of the dividend
; ; and divisor differ
; ; returns quotient in HL/DE
; dosdiv:
; ld a,h
; xor d
; ex af,af' ;sign bit is now sign of quotient
; call sgndiv ;do signed division
; ex af,af' ;get sign flag back
; push bc ;high word
; exx
; pop hl
; ld e,c ;low word of quotient
; ld d,b
; jp m,negat ;negate quotient if necessary
; ret
; lldiv: call lregset
; ; Called with high words selected, performs unsigned division
; ; returns with quotient in HL/DE
; doudiv:
; call divide ;unsigned division
; push bc ;high word of quotien
; exx
; pop hl
; ld e,c ;low word
; ld d,b
; ret
; aslldiv:
; call iregset
; call doudiv
; jp store
; almod:
; call lregset
; ; Called with high words selected, performs signed modulus - the rule
; ; is that the sign of the remainder is the sign of the dividend
; dosrem:
; ld a,h ;get sign of dividend
; ex af,af' ;save it
; call sgndiv ;do signed division
; push hl ;high word
; exx
; pop de
; ex de,hl ;put high word in hl
; ex af,af' ;get sign bit back
; or a
; jp m,negat ;negate if necessary
; ret
; asalmod:
; call iregset
; call dosrem
; jp store
; llmod:
; call lregset
; ; Called with high words selected, perform unsigned modulus
; dourem:
; call divide
; push hl ;high word of remainder
; exx
; pop de
; ex de,hl ;high word in hl
; ret
; asllmod:
; call iregset
; call dourem
; jp store
; ; Negate the long in HL/DE
; negat: push hl ;save high word
; ld hl,0
; or a
; sbc hl,de
; ex de,hl
; pop bc ;get high word back
; ld hl,0
; sbc hl,bc
; ret ;finito
; negif: ;called with high word in HL, low word in HL'
; ;returns with positive value
; bit 7,h ;check sign
; ret z ;already positive
; exx ;select low word
; ld c,l
; ld b,h
; ld hl,0
; or a
; sbc hl,bc
; exx
; ld c,l
; ld b,h
; ld hl,0
; sbc hl,bc
; ret ;finito
; Called with dividend in HLHL', divisor in DEBC, high words in
; selected register set
; returns with quotient in q3q2q1q0 and DEBC, remainder in HLHL',
; high words selected
; Tests on div 62311C9 by 27A3 = 27A3
; Initial conversion - 102096
; Replaced exx and shift at end - 90688
; Shifted loop counter from AF to - 87216
; mem, freeing AF
; Removed need for exx's aroung $1- 81068
; Changed shift right DEDE' to - 62708
; something simpler
; Much cleaning and removing of - 20904
; exx's
; From the analysis, S is the most used register. I'll make S DEBC and
; Q .q0,.q1,.q2,.q3
; New time - 16024
; Further triming and the quick - 8548
; rotate optimization
; Algorithim
; Given dividend A and divisor S, return quotient Q and
; remainder R such that
; A = ( S * Q ) + R
; HLHL' is A
; DEDE' is S
; Returns Q in BCBC'
; R in HLHL'
;
; Simplified
; Init
; Set Q=0
; Set loops=1
; Make S bigger than A by rotating
; If S > A, continue
; Rotate S right
; Increase loops
; If MSB(S)==1, continue
; else loop
; One step of the divide
; If S > A, then LSB(Q)=0
; else
; LSB(Q)=1
; Subtract S from A
; Rotate Q left
; Rotate S right
; Decrease loop counter
; Loop while loop counter>0
;----------------------------------------------------
; Every time
; Parts:
; divide -
; Init Q (BCBC')=0
; Return if S (DEDE')=0
; Set loops left to 1
; 1$ -
; Check to see if S is greater than A
; If yes,
; Goto 2 with C set
; If no,
; Rotate S (DEDE') right
; Increase the number of loops left
; If MSB S !=1, goto 1$ (at 3$)
; 2$ -
; 6$ -
; Subtract S from A
; If S is less than A, then goto 5$ (C=0)
; Else, restore value of A (C=1), goto 5$
; 5$ -
; Complement the carry flag
; Rotate BCBC' left, shifting in C
; Rotate DEDE' right
; Decrease loop count
; Loop to 6$ while loop count > 0
;
divide:
; rst 0x08
; .asciz "divide "
xor a ; Set quotient to zero
ld (.q+0),a
ld (.q+1),a
ld (.q+2),a
ld (.q+3),a
ld a,e ;check for zero divisor
or d
or c
or b
ret z ;return with quotient == 0
ld a,#1 ;loop count
ld (.ldivloopcount),a
; Simple optmisation
; If H <> 0 and E == 0, then DEBC is at least 8 bits smaller than
; HLHL', so do a simple swap instead of rotate
xor a ; Is H<>0 ?
cp h
jp z,3$ ; Cant hack
ld a,d
or e
jp nz,3$ ; Cant hack
ld d,e ; DE=0 and H!=0
ld e,b ; 'Rotate' DEBC 8 to the right
ld b,c
ld c,a ; A is zero
ld a,#9 ; Increase loop counter by 8
ld (.ldivloopcount),a
jp 3$ ;enter loop in middle
1$:
or a ; clear carry
ld a,(.div+0) ; Subtract DEBC from HLHL'
sub c ; to compare them
ld a,(.div+1) ; C=1 - DEBC > HLHL'
sbc b
ld a,l
sbc e
ld a,h
sbc d
jr c,2$ ;finished - divisor is big enough
ld a,(.ldivloopcount)
inc a ;increment count
ld (.ldivloopcount),a
or a ;Shift DEBC left
rl c
rl b
rl e
rl d
3$:
bit 7,d ;test for max divisor
jp z,1$ ;loop if msb not set
2$: ; arrive here with shifted divisor, loop count in a, and low words
;selected
6$:
push hl ;save dividend
ld a,(.div+0)
push af
ld a,(.div+1)
push af
or a ;clear carry
ld a,(.div+0) ; Subtract DEBC from HLHL'
sbc c
ld (.div+0),a
ld a,(.div+1)
sbc b
ld (.div+1),a
ld a,l
sbc e
ld l,a
ld a,h
sbc d
ld h,a
jp nc,4$ ; HLHL' is bigger than DEBC
pop af
ld (.div+1),a
pop af
ld (.div+0),a
pop hl ;hi word
scf ; C junked by POP AF
jr 5$
4$:
lda sp,6(sp) ;unjunk stack
5$:
ccf ;complement carry bit
ld a,(.q+0) ; Rotate quotient Q left
rl a ; Rotate in C flag
ld (.q+0),a
ld a,(.q+1)
rl a
ld (.q+1),a
ld a,(.q+2)
rl a
ld (.q+2),a
ld a,(.q+3)
rl a
ld (.q+3),a
srl d ; Shift divisor right
rr e
rr b
rr c
ld a,(.ldivloopcount)
dec a ;decrement loop count
ld (.ldivloopcount),a
jr nz,6$
; Setup the expected return values
; ld a,(.q3)
; ld d,a
; ld a,(.q2)
; ld e,a
; ld a,(.q1)
; ld b,a
; ld a,(.q0)
; ld c,a
ret ;finished
; Conversion of integer type things to floating. Uses routines out
; of float.as.
; psect text
; global altof, lltof, aitof, litof, abtof, lbtof
; global fpnorm
lbtof:
ld e,a
ld d,#0
litof:
push hl
pop de
; ex de,hl ;put arg in de
ld l,#0 ;zero top byte
b3tof:
ld h,#64+24
jp fpnorm
abtof:
ld e,a
rla
sbc a,a
ld d,a
aitof:
bit 7,h ;negative?
jp z,litof ;no, treat as unsigned
; Negate HL
xor a
sub l
ld l,a
ld a,#0
sbc h
ld h,a
call litof
set 7,h ;set sign flag
ret
lltof:
ld a,h ;anything in top byte?
or a
jr z,b3tof ;no, just do 3 bytes
ld e,d ;shift down 8 bits
ld d,l
ld l,h
ld h,#64+24+8 ;the 8 compensates for the shift
jp fpnorm ;and normalize it
altof:
bit 7,h ; negative?
jr z,lltof ; no, treat as unsigned
xor a ; Negate HLDE
sub e
ld e,a
ld a,#0
sbc d
ld d,a
ld a,#0
sbc l
ld l,a
ld a,#0
sbc h
ld h,a
call lltof
set 7,h ;set sign flag
ret
; ftol - convert floating to long, by using lower bits can also
; be used to convert from float to int or char
; psect text
; global ftol
; global alrsh, allsh, negmant
ftol:
bit 7,h ;test sign
call nz,negmant ;negate mantissa if required
ld a,h ;get exponent
res 7,a ;mask sign off
sub #64+24 ;remove offset
ld b,a ;save shift count
ld a,h ;get exponent, sign
rla
sbc a,a ;sign extend
ld h,a ;put back
bit 7,b ;test sign
; jp z,allsh ;shift it left
ld a,#0 ; Get the count
sub b
; neg ;make +ve
dec a ;and reduce it one
ld b,a ;put back in b
; call nz,alrsh ;shift right
; add one for rounding
ld a,#1
add e
ld e,a
ld a,#0
add d
ld d,a
; jp nc,alrsh ;and shift down one more
inc hl ;add in carry first
; jp alrsh
; LWORD _fbcd(float x, WORD *exp, char *buf)
;
; Split x into mantissa and decimal exponent parts.
; Return value is the (long) mantissa part, exponent part is
; stored in *exp as two's complement. Mantissa is stored into buf
; as an ascii string.
.NDIG = 8 ; Number of decimal digits
.globl .lldiv,.llmod
.hasfrac:
LD C,#0x00 ; Zero number
LD A,E ; Check low 8 bits
OR A
JR NZ,1$ ; Non zero bit in low 8 bits
LD C,#8 ; Bump count
LD A,D ; Check next 8 bits
OR A ; Is there a bit there?
JR NZ,1$ ; Yup
LD C,#16
LD A,H ; Now check next 8 bits
1$:
RRA ; Shift bottom bit out
JR C,2$ ; Found a bit!
INC C ; Increment count
JR 1$ ; And loop
2$:
LD A,H ; Get exponent
RES 7,A ; Clear sign bit - should be zero anyway
SUB #64+24 ; Normalize - remove bias
ADD A,C ; Add in bit position
RET ; Return with value in a and flags set
.area _BSS
.fexp:
.ds 0x01 ; Floating exponent temporary
.fsgn:
.ds 0x01 ; Floating sign temporary
.area _DATA
.ftenth:
;; 0.1
.db 0xcc
.db 0xcc
.db 0xcc
.db 0x3d
.ften:
;; 10.0
.db 0x0
.db 0x0
.db 0xa0
.db 0x44
.area _CODE
__fbcd::
PUSH BC
LDA HL,9(SP) ; Skip return address and registers
LD B,(HL) ; BC = exp
DEC HL
LD C,(HL)
LDA HL,4(SP)
LD E,(HL) ; HLDE = x
INC HL
LD D,(HL)
INC HL
LD A,(HL+)
LD L,(HL)
LD H,A
XOR A
LD (.fexp),A ; Zero it
LD (.fsgn),A
LD (BC),A ; And the returned exp value
LD A,H ; Check for zero exponent
AND #0x7F ; Zero exponent means 0.0
JP NZ,1$ ; Return if x == 0.0
LD L,A ; Zero mantissa just in case
LD E,A
LD D,A
LD H,A ; And sign/exponent
JP .sbcd ; Return with mantissa = 0, exponent = 0
1$:
RES 7,H ; Test mantissa sign
2$:
CALL .hasfrac ; Any fractional part?
BIT 7,A
JP NZ,3$ ; Negative if there is fractional part
PUSH HL ; Put x on stack
PUSH DE
LD A,(.ftenth+3)
LD H,A
LD A,(.ftenth+2)
LD L,A
LD A,(.ftenth+1)
LD D,A
LD A,(.ftenth)
LD E,A
CALL .fmul32 ; Returns with value in HLDE
LD A,(.fexp)
INC A ; Increment exponent
LD (.fexp),A
JR 2$ ; Now check again
3$:
PUSH HL
PUSH DE ; Pass x as argument
LD A,(.ften+3)
LD H,A
LD A,(.ften+2)
LD L,A
LD A,(.ften+1)
LD D,A
LD A,(.ften)
LD E,A
CALL .fmul32 ; Multiply it
LD A,(.fexp)
DEC A ; And decrement exponent
LD (.fexp),A
CALL .hasfrac ; Check for fractional part
BIT 7,A
JP NZ,3$ ; Loop if still fractional
LD A,H ; Get exponent
LD H,#0x00 ; Zero top byte
SUB #64+24 ; Offset exponent
4$:
OR A ; Check for zero
JR Z,6$ ; Return if finished
BIT 7,A
JP Z,5$
SRL L ; Shift L down
RR D ; Rotate the rest
RR E
INC A ; Increment count
JR 4$
5$:
SLA E
RL D
RL L
RL H
DEC A
JR 4$
6$:
LD A,(.fexp)
PUSH HL
LD B,(HL) ; BC = exp
DEC HL
LD C,(HL)
POP HL
LD (BC),A ; Store exponent
INC BC
RLA
SBC A
LD (BC),A ; Sign extend it
LD A,(.fsgn)
BIT 0,A ; Test sign
JP Z,.sbcd ; Return if no negation needed
XOR A ; Negate low word
SUB E
LD E,A
LD A,#0x00
SBC D
LD D,A
LD A,#0x00 ; Negate the hi word
SBC L
LD L,A
LD A,#0x00
SBC H
LD H,A
.sbcd: ; Now store as ascii
PUSH HL
PUSH DE ; Save return value
PUSH HL
LDA HL,11(SP)
LD B,(HL) ; BC = buf
DEC HL
LD C,(HL)
LD HL,#.NDIG
ADD HL,BC ; Point to end of buffer
LD (HL),#0x00 ; Null terminate
LD B,H ; BC = pointer
LD C,L
POP HL
LD A,#.NDIG
1$:
PUSH AF ; Save count
PUSH BC ; Save pointer
PUSH HL ; Save value
PUSH DE
LD BC,#0x0000
PUSH BC ; Pass 10 on stack
LD BC,#0x000A
PUSH BC
CALL .llmod
LD A,E ; Get remainder
ADD A,#'0 ; Asciize
POP DE
POP HL ; Restore value
POP BC ; Restore pointer
DEC BC
LD (BC),A
PUSH BC ; Save pointer
LD BC,#0x0000 ; Now divide by 10
PUSH BC
LD BC,#0x000A
PUSH BC
CALL .lldiv
POP BC ; Restore pointer
POP AF ; Restore count
DEC A
JR NZ,1$ ; Loop if more to do
POP DE ; Restore return value
POP HL
POP BC
RET ; All done
|