1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471 9472 9473 9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484 9485 9486 9487 9488 9489 9490 9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503 9504 9505 9506 9507 9508 9509 9510 9511 9512 9513 9514 9515 9516 9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533 9534 9535 9536 9537 9538 9539 9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550 9551 9552 9553 9554 9555 9556 9557 9558 9559 9560 9561 9562 9563 9564 9565 9566 9567 9568 9569 9570 9571 9572 9573 9574 9575 9576 9577 9578 9579 9580 9581 9582 9583 9584 9585 9586 9587 9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601 9602 9603 9604 9605 9606 9607 9608 9609 9610 9611 9612 9613 9614 9615 9616 9617 9618 9619 9620 9621 9622 9623 9624 9625 9626 9627 9628 9629 9630 9631 9632 9633 9634 9635 9636 9637 9638 9639 9640 9641 9642 9643 9644 9645 9646 9647 9648 9649 9650 9651 9652 9653 9654 9655 9656 9657 9658 9659 9660 9661 9662 9663 9664 9665 9666 9667 9668 9669 9670 9671 9672 9673 9674 9675 9676 9677 9678 9679 9680 9681 9682 9683 9684 9685 9686 9687 9688 9689 9690 9691 9692 9693 9694 9695 9696 9697 9698 9699 9700 9701 9702 9703 9704 9705 9706 9707 9708 9709 9710 9711 9712 9713 9714 9715 9716 9717 9718 9719 9720 9721 9722 9723 9724 9725 9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 9755 9756 9757 9758 9759 9760 9761 9762 9763 9764 9765 9766 9767 9768 9769 9770 9771 9772 9773 9774 9775 9776 9777 9778 9779 9780 9781 9782 9783 9784 9785 9786 9787 9788 9789 9790 9791 9792 9793 9794 9795 9796 9797 9798 9799 9800 9801 9802 9803 9804 9805 9806 9807 9808 9809 9810 9811 9812 9813 9814 9815 9816 9817 9818 9819 9820 9821 9822 9823 9824 9825 9826 9827 9828 9829 9830 9831 9832 9833 9834 9835 9836 9837 9838 9839 9840 9841 9842 9843 9844 9845 9846 9847 9848 9849 9850 9851 9852 9853 9854 9855 9856 9857 9858 9859 9860 9861 9862 9863 9864 9865 9866 9867 9868 9869 9870 9871 9872 9873 9874 9875 9876 9877 9878 9879 9880 9881 9882 9883 9884 9885 9886 9887 9888 9889 9890 9891 9892 9893 9894 9895 9896 9897 9898 9899 9900 9901 9902 9903 9904 9905 9906 9907 9908 9909 9910 9911 9912 9913 9914 9915 9916 9917 9918 9919 9920 9921 9922 9923 9924 9925 9926 9927 9928 9929 9930 9931 9932 9933 9934 9935 9936 9937 9938 9939 9940 9941 9942 9943 9944 9945 9946 9947 9948 9949 9950 9951 9952 9953 9954 9955 9956 9957 9958 9959 9960 9961 9962 9963 9964 9965 9966 9967 9968 9969 9970 9971 9972 9973 9974 9975 9976 9977 9978 9979 9980 9981 9982 9983 9984 9985 9986 9987 9988 9989 9990 9991 9992 9993 9994 9995 9996 9997 9998 9999 10000 10001 10002 10003 10004 10005 10006 10007 10008 10009 10010 10011 10012 10013 10014 10015 10016 10017 10018 10019 10020 10021 10022 10023 10024 10025 10026 10027 10028 10029 10030 10031 10032 10033 10034 10035 10036 10037 10038 10039 10040 10041 10042 10043 10044 10045 10046 10047 10048 10049 10050 10051 10052 10053 10054 10055 10056 10057 10058 10059 10060 10061 10062 10063 10064 10065 10066 10067 10068 10069 10070 10071 10072 10073 10074 10075 10076 10077 10078 10079 10080 10081 10082 10083 10084 10085 10086 10087 10088 10089 10090 10091 10092 10093 10094 10095 10096 10097 10098 10099 10100 10101 10102 10103 10104 10105 10106 10107 10108 10109 10110 10111 10112 10113 10114 10115 10116 10117 10118 10119 10120 10121 10122 10123 10124 10125 10126 10127 10128 10129 10130 10131 10132 10133 10134 10135 10136 10137 10138 10139 10140 10141 10142 10143 10144 10145 10146 10147 10148 10149 10150 10151 10152 10153 10154 10155 10156 10157 10158 10159 10160 10161 10162 10163 10164 10165 10166 10167 10168 10169 10170 10171 10172 10173 10174 10175 10176 10177 10178 10179 10180 10181 10182 10183 10184 10185 10186 10187 10188 10189 10190 10191 10192 10193 10194 10195 10196 10197 10198 10199 10200 10201 10202 10203 10204 10205 10206 10207 10208 10209 10210 10211 10212 10213 10214 10215 10216 10217 10218 10219 10220 10221 10222 10223 10224 10225 10226 10227 10228 10229 10230 10231 10232 10233 10234 10235 10236 10237 10238 10239 10240 10241 10242 10243 10244 10245 10246 10247 10248 10249 10250 10251 10252 10253 10254 10255 10256 10257 10258 10259 10260 10261 10262 10263 10264 10265 10266 10267 10268 10269 10270 10271 10272 10273 10274 10275 10276 10277 10278 10279 10280 10281 10282 10283 10284 10285 10286 10287 10288 10289 10290 10291 10292 10293 10294 10295 10296 10297 10298 10299 10300 10301 10302 10303 10304 10305 10306 10307 10308 10309 10310 10311 10312 10313 10314 10315 10316 10317 10318 10319 10320 10321 10322 10323 10324 10325 10326 10327 10328 10329 10330 10331 10332 10333 10334 10335 10336 10337 10338 10339 10340 10341 10342 10343 10344 10345 10346 10347 10348 10349 10350 10351 10352 10353 10354 10355 10356 10357 10358 10359 10360 10361 10362 10363 10364 10365 10366 10367 10368 10369 10370 10371 10372 10373 10374 10375 10376 10377 10378 10379 10380 10381 10382 10383 10384 10385 10386 10387 10388 10389 10390 10391 10392 10393 10394 10395 10396 10397 10398 10399 10400 10401 10402 10403 10404 10405 10406 10407 10408 10409 10410 10411 10412 10413 10414 10415 10416 10417 10418 10419 10420 10421 10422 10423 10424 10425 10426 10427 10428 10429 10430 10431 10432 10433 10434 10435 10436 10437 10438 10439 10440 10441 10442 10443 10444 10445 10446 10447 10448 10449 10450 10451 10452 10453 10454 10455 10456 10457 10458 10459 10460 10461 10462 10463 10464 10465 10466 10467 10468 10469 10470 10471 10472 10473 10474 10475 10476 10477 10478 10479 10480 10481 10482 10483 10484 10485 10486 10487 10488 10489 10490 10491 10492 10493 10494 10495 10496 10497 10498 10499 10500 10501 10502 10503 10504 10505 10506 10507 10508 10509 10510 10511 10512 10513 10514 10515 10516 10517 10518 10519 10520 10521 10522 10523 10524 10525 10526 10527 10528 10529 10530 10531 10532 10533 10534 10535 10536 10537 10538 10539 10540 10541 10542 10543 10544 10545 10546 10547 10548 10549 10550 10551 10552 10553 10554 10555 10556 10557 10558 10559 10560 10561 10562 10563 10564 10565 10566 10567 10568 10569 10570 10571 10572 10573 10574 10575 10576 10577 10578 10579 10580 10581 10582 10583 10584 10585 10586 10587 10588 10589 10590 10591 10592 10593 10594 10595 10596 10597 10598 10599 10600 10601 10602 10603 10604 10605 10606 10607 10608 10609 10610 10611 10612 10613 10614 10615 10616 10617 10618 10619 10620 10621 10622 10623 10624 10625 10626 10627 10628 10629 10630 10631 10632 10633 10634 10635 10636 10637 10638 10639 10640 10641 10642 10643 10644 10645 10646 10647 10648 10649 10650 10651 10652 10653 10654 10655 10656 10657 10658 10659 10660 10661 10662 10663 10664 10665 10666 10667 10668 10669 10670 10671 10672 10673 10674 10675 10676 10677 10678 10679 10680 10681 10682 10683 10684 10685 10686 10687 10688 10689 10690 10691 10692 10693 10694 10695 10696 10697 10698 10699 10700 10701 10702 10703 10704 10705 10706 10707 10708 10709 10710 10711 10712 10713 10714 10715 10716 10717 10718 10719 10720 10721 10722 10723 10724 10725 10726 10727 10728 10729 10730 10731 10732 10733 10734 10735 10736 10737 10738 10739 10740 10741 10742 10743 10744 10745 10746 10747 10748 10749 10750 10751 10752 10753 10754 10755 10756 10757 10758 10759 10760 10761 10762 10763 10764 10765 10766 10767 10768 10769 10770 10771 10772 10773 10774 10775 10776 10777 10778 10779 10780 10781 10782 10783 10784 10785 10786 10787 10788 10789 10790 10791 10792 10793 10794 10795 10796 10797 10798 10799 10800 10801 10802 10803 10804 10805 10806 10807 10808 10809 10810 10811 10812 10813 10814 10815 10816 10817 10818 10819 10820 10821 10822 10823 10824 10825 10826 10827 10828 10829 10830 10831 10832 10833 10834 10835 10836 10837 10838 10839 10840 10841 10842 10843 10844 10845 10846 10847 10848 10849 10850 10851 10852 10853 10854 10855 10856 10857 10858 10859 10860 10861 10862 10863 10864 10865 10866 10867 10868 10869 10870 10871 10872 10873 10874 10875 10876 10877 10878 10879 10880 10881 10882 10883 10884 10885 10886 10887 10888 10889 10890 10891 10892 10893 10894 10895 10896 10897 10898 10899 10900 10901 10902 10903 10904 10905 10906 10907 10908 10909 10910 10911 10912 10913 10914 10915 10916 10917 10918 10919 10920 10921 10922 10923 10924 10925 10926 10927 10928 10929 10930 10931 10932 10933 10934 10935 10936 10937 10938 10939 10940 10941 10942 10943 10944 10945 10946 10947 10948 10949 10950 10951 10952 10953 10954 10955 10956 10957 10958 10959 10960 10961 10962 10963 10964 10965 10966 10967 10968 10969 10970 10971 10972 10973 10974 10975 10976 10977 10978 10979 10980 10981 10982 10983 10984 10985 10986 10987 10988 10989 10990 10991 10992 10993 10994 10995 10996 10997 10998 10999 11000 11001 11002 11003 11004 11005 11006 11007 11008 11009 11010 11011 11012 11013 11014 11015 11016 11017 11018 11019 11020 11021 11022 11023 11024 11025 11026 11027 11028 11029 11030 11031 11032 11033 11034 11035 11036 11037 11038 11039 11040 11041 11042 11043 11044 11045 11046 11047 11048 11049 11050 11051 11052 11053 11054 11055 11056 11057 11058 11059 11060 11061 11062 11063 11064 11065 11066 11067 11068 11069 11070 11071 11072 11073 11074 11075 11076 11077 11078 11079 11080 11081 11082 11083 11084 11085 11086 11087 11088 11089 11090 11091 11092 11093 11094 11095 11096 11097 11098 11099 11100 11101 11102 11103 11104 11105 11106 11107 11108 11109 11110 11111 11112 11113 11114 11115 11116 11117 11118 11119 11120 11121 11122 11123 11124 11125 11126 11127 11128 11129 11130 11131 11132 11133 11134 11135 11136 11137 11138 11139 11140 11141 11142 11143 11144 11145 11146 11147 11148 11149 11150 11151 11152 11153 11154 11155 11156 11157 11158 11159 11160 11161 11162 11163 11164 11165 11166 11167 11168 11169 11170 11171 11172 11173 11174 11175 11176 11177 11178 11179 11180 11181 11182 11183 11184 11185 11186 11187 11188 11189 11190 11191 11192 11193 11194 11195 11196 11197 11198 11199 11200 11201 11202 11203 11204 11205 11206 11207 11208 11209 11210 11211 11212 11213 11214 11215 11216 11217 11218 11219 11220 11221 11222 11223 11224 11225 11226 11227 11228 11229 11230 11231 11232 11233 11234 11235 11236 11237 11238 11239 11240 11241 11242 11243 11244 11245 11246 11247 11248 11249 11250 11251 11252 11253 11254 11255 11256 11257 11258 11259 11260 11261 11262 11263 11264 11265 11266 11267 11268 11269 11270 11271 11272 11273 11274 11275 11276 11277 11278 11279 11280 11281 11282 11283 11284 11285 11286 11287 11288 11289 11290 11291 11292 11293 11294 11295 11296 11297 11298 11299 11300 11301 11302 11303 11304 11305 11306 11307 11308 11309 11310 11311 11312 11313 11314 11315 11316 11317 11318 11319 11320 11321 11322 11323 11324 11325 11326 11327 11328 11329 11330 11331 11332 11333 11334 11335 11336 11337 11338 11339 11340 11341 11342 11343 11344 11345 11346 11347 11348 11349 11350 11351 11352 11353 11354 11355 11356 11357 11358 11359 11360 11361 11362 11363 11364 11365 11366 11367 11368 11369 11370 11371 11372 11373 11374 11375 11376 11377 11378 11379 11380 11381 11382 11383 11384 11385 11386 11387 11388 11389 11390 11391 11392 11393 11394 11395 11396 11397 11398 11399 11400 11401 11402 11403 11404 11405 11406 11407 11408 11409 11410 11411 11412 11413 11414 11415 11416 11417 11418 11419 11420 11421 11422 11423 11424 11425 11426 11427 11428 11429 11430 11431 11432 11433 11434 11435 11436 11437 11438 11439 11440 11441 11442 11443 11444 11445 11446 11447 11448 11449 11450 11451 11452 11453 11454 11455 11456 11457 11458 11459 11460 11461 11462 11463 11464 11465 11466 11467 11468 11469 11470 11471 11472 11473 11474 11475 11476 11477 11478 11479 11480 11481 11482 11483 11484 11485 11486 11487 11488 11489 11490 11491 11492 11493 11494 11495 11496 11497 11498 11499 11500 11501 11502 11503 11504 11505 11506 11507 11508 11509 11510 11511 11512 11513 11514 11515 11516 11517 11518 11519 11520 11521 11522 11523 11524 11525 11526 11527 11528 11529 11530 11531 11532 11533 11534 11535 11536 11537 11538 11539 11540 11541 11542 11543 11544 11545 11546 11547 11548 11549 11550 11551 11552 11553 11554 11555 11556 11557 11558 11559 11560 11561 11562 11563 11564 11565 11566 11567 11568 11569 11570 11571 11572 11573 11574 11575 11576 11577 11578 11579 11580 11581 11582 11583 11584 11585 11586 11587 11588 11589 11590 11591 11592 11593 11594 11595 11596 11597 11598 11599 11600 11601 11602 11603 11604 11605 11606 11607 11608 11609 11610 11611 11612 11613 11614 11615 11616 11617 11618 11619 11620 11621 11622 11623 11624 11625 11626 11627 11628 11629 11630 11631 11632 11633 11634 11635 11636 11637 11638 11639 11640 11641 11642 11643 11644 11645 11646 11647 11648 11649 11650 11651 11652 11653 11654 11655 11656 11657 11658 11659 11660 11661 11662 11663 11664 11665 11666 11667 11668 11669 11670 11671 11672 11673 11674 11675 11676 11677 11678 11679 11680 11681 11682 11683 11684 11685 11686 11687 11688 11689 11690 11691 11692 11693 11694 11695 11696 11697 11698 11699 11700 11701 11702 11703 11704 11705 11706 11707 11708 11709 11710 11711 11712 11713 11714 11715 11716 11717 11718 11719 11720 11721 11722 11723 11724 11725 11726 11727 11728 11729 11730 11731 11732 11733 11734 11735 11736 11737 11738 11739 11740 11741 11742 11743 11744 11745 11746 11747 11748 11749 11750 11751 11752 11753 11754 11755 11756 11757 11758 11759 11760 11761 11762 11763 11764 11765 11766 11767 11768 11769 11770 11771 11772 11773 11774 11775 11776 11777 11778 11779 11780 11781 11782 11783 11784 11785 11786 11787 11788 11789 11790 11791 11792 11793 11794 11795 11796 11797 11798 11799 11800 11801 11802 11803 11804 11805 11806 11807 11808 11809 11810 11811 11812 11813 11814 11815 11816 11817 11818 11819 11820 11821 11822 11823 11824 11825 11826 11827 11828 11829 11830 11831 11832 11833 11834 11835 11836 11837 11838 11839 11840 11841 11842 11843 11844 11845 11846 11847 11848 11849 11850 11851 11852 11853 11854 11855 11856 11857 11858 11859 11860 11861 11862 11863 11864 11865 11866 11867 11868 11869 11870 11871 11872 11873 11874 11875 11876 11877 11878 11879 11880 11881 11882 11883 11884 11885 11886 11887 11888 11889 11890 11891 11892 11893 11894 11895 11896 11897 11898 11899 11900 11901 11902 11903 11904 11905 11906 11907 11908 11909 11910 11911 11912 11913 11914 11915 11916 11917 11918 11919 11920 11921 11922 11923 11924 11925 11926 11927 11928 11929 11930 11931 11932 11933 11934 11935 11936 11937 11938 11939 11940 11941 11942 11943 11944 11945 11946 11947 11948 11949 11950 11951 11952 11953 11954 11955 11956 11957 11958 11959 11960 11961 11962 11963 11964 11965 11966 11967 11968 11969 11970 11971 11972 11973 11974 11975 11976 11977 11978 11979 11980 11981 11982 11983 11984 11985 11986 11987 11988 11989 11990 11991 11992 11993 11994 11995 11996 11997 11998 11999 12000 12001 12002 12003 12004 12005 12006 12007 12008 12009 12010 12011 12012 12013 12014 12015 12016 12017 12018 12019 12020 12021 12022 12023 12024 12025 12026 12027 12028 12029 12030 12031 12032 12033 12034 12035 12036 12037 12038 12039 12040 12041 12042 12043 12044 12045 12046 12047 12048 12049 12050 12051 12052 12053 12054 12055 12056 12057 12058 12059 12060 12061 12062 12063 12064 12065 12066 12067 12068 12069 12070 12071 12072 12073 12074 12075 12076 12077 12078 12079 12080 12081 12082 12083 12084 12085 12086 12087 12088 12089 12090 12091 12092 12093 12094 12095 12096 12097 12098 12099 12100 12101 12102 12103 12104 12105 12106 12107 12108 12109 12110 12111 12112 12113 12114 12115 12116 12117 12118 12119 12120 12121 12122 12123 12124 12125 12126 12127 12128 12129 12130 12131 12132 12133 12134 12135 12136 12137 12138 12139 12140 12141 12142 12143 12144 12145 12146 12147 12148 12149 12150 12151 12152 12153 12154 12155 12156 12157 12158 12159 12160 12161 12162 12163 12164 12165 12166 12167 12168 12169 12170 12171 12172 12173 12174 12175 12176 12177 12178 12179 12180 12181 12182 12183 12184 12185 12186 12187 12188 12189 12190 12191 12192 12193 12194 12195 12196 12197 12198 12199 12200 12201 12202 12203 12204 12205 12206 12207 12208 12209 12210 12211 12212 12213 12214 12215 12216 12217 12218 12219 12220 12221 12222 12223 12224 12225 12226 12227 12228 12229 12230 12231 12232 12233 12234 12235 12236 12237 12238 12239 12240 12241 12242 12243 12244 12245 12246 12247 12248 12249 12250 12251 12252 12253 12254 12255 12256 12257 12258 12259 12260 12261 12262 12263 12264 12265 12266 12267 12268 12269 12270 12271 12272 12273 12274 12275 12276 12277 12278 12279 12280 12281 12282 12283 12284 12285 12286 12287 12288 12289 12290 12291 12292 12293 12294 12295 12296 12297 12298 12299 12300 12301 12302 12303 12304 12305 12306 12307 12308 12309 12310 12311 12312 12313 12314 12315 12316 12317 12318 12319 12320 12321 12322 12323 12324 12325 12326 12327 12328 12329 12330 12331 12332 12333 12334 12335 12336 12337 12338 12339 12340 12341 12342 12343 12344 12345 12346 12347 12348 12349 12350 12351 12352 12353 12354 12355 12356 12357 12358 12359 12360 12361 12362 12363 12364 12365 12366 12367 12368 12369 12370 12371 12372 12373 12374 12375 12376 12377 12378 12379 12380 12381 12382 12383 12384 12385 12386 12387 12388 12389 12390 12391 12392 12393 12394 12395 12396 12397 12398 12399 12400 12401 12402 12403 12404 12405 12406 12407 12408 12409 12410 12411 12412 12413 12414 12415 12416 12417 12418 12419 12420 12421 12422 12423 12424 12425 12426 12427 12428 12429 12430 12431 12432 12433 12434 12435 12436 12437 12438 12439 12440 12441 12442 12443 12444 12445 12446 12447 12448 12449 12450 12451 12452 12453 12454 12455 12456 12457 12458 12459 12460 12461 12462 12463 12464 12465 12466 12467 12468 12469 12470 12471 12472 12473 12474 12475 12476 12477 12478 12479 12480 12481 12482 12483 12484 12485 12486 12487 12488 12489 12490 12491 12492 12493 12494 12495 12496 12497 12498 12499 12500 12501 12502 12503 12504 12505 12506 12507 12508 12509 12510 12511 12512 12513 12514 12515 12516 12517 12518 12519 12520 12521 12522 12523 12524 12525 12526 12527 12528 12529 12530 12531 12532 12533 12534 12535 12536 12537 12538 12539 12540 12541 12542 12543 12544 12545 12546 12547 12548 12549 12550 12551 12552 12553 12554 12555 12556 12557 12558 12559 12560 12561 12562 12563 12564 12565 12566 12567 12568 12569 12570 12571 12572 12573 12574 12575 12576 12577 12578 12579 12580 12581 12582 12583 12584 12585 12586 12587 12588 12589 12590 12591 12592 12593 12594 12595 12596 12597 12598 12599 12600 12601 12602 12603 12604 12605 12606 12607 12608 12609 12610 12611 12612 12613 12614 12615 12616 12617 12618 12619 12620 12621 12622 12623 12624 12625 12626 12627 12628 12629 12630 12631 12632 12633 12634 12635 12636 12637 12638 12639 12640 12641 12642 12643 12644 12645 12646 12647 12648 12649 12650 12651 12652 12653 12654 12655 12656 12657 12658 12659 12660 12661 12662 12663 12664 12665 12666 12667 12668 12669 12670 12671 12672 12673 12674 12675 12676 12677 12678 12679 12680 12681 12682 12683 12684 12685 12686 12687 12688 12689 12690 12691 12692 12693 12694 12695 12696 12697 12698 12699 12700 12701 12702 12703 12704 12705 12706 12707 12708 12709 12710 12711 12712 12713 12714 12715 12716 12717 12718 12719 12720 12721 12722 12723 12724 12725 12726 12727 12728 12729 12730 12731 12732 12733 12734 12735 12736 12737 12738 12739 12740 12741 12742 12743 12744 12745 12746 12747 12748 12749 12750 12751 12752 12753 12754 12755 12756 12757 12758 12759 12760 12761 12762 12763 12764 12765 12766 12767 12768 12769 12770 12771 12772 12773 12774 12775 12776 12777 12778 12779 12780 12781 12782 12783 12784 12785 12786 12787 12788 12789 12790 12791 12792 12793 12794 12795 12796 12797 12798 12799 12800 12801 12802 12803 12804 12805 12806 12807 12808 12809 12810 12811 12812 12813 12814 12815 12816 12817 12818 12819 12820 12821 12822 12823 12824 12825 12826 12827 12828 12829 12830 12831 12832 12833 12834 12835 12836 12837 12838 12839 12840 12841 12842 12843 12844 12845 12846 12847 12848 12849 12850 12851 12852 12853 12854 12855 12856 12857 12858 12859 12860 12861 12862 12863 12864 12865 12866 12867 12868 12869 12870 12871 12872 12873 12874 12875 12876 12877 12878 12879 12880 12881 12882 12883 12884 12885 12886 12887 12888 12889 12890 12891 12892 12893 12894 12895 12896 12897 12898 12899 12900 12901 12902 12903 12904 12905 12906 12907 12908 12909 12910 12911 12912 12913 12914 12915 12916 12917 12918 12919 12920 12921 12922 12923 12924 12925 12926 12927 12928 12929 12930 12931 12932 12933 12934 12935 12936 12937 12938 12939 12940 12941 12942 12943 12944 12945 12946 12947 12948 12949 12950 12951 12952 12953 12954 12955 12956 12957 12958 12959 12960 12961 12962 12963 12964 12965 12966 12967 12968 12969 12970 12971 12972 12973 12974 12975 12976 12977 12978 12979 12980 12981 12982 12983 12984 12985 12986 12987 12988 12989 12990 12991 12992 12993 12994 12995 12996 12997 12998 12999 13000 13001 13002 13003 13004 13005 13006 13007 13008 13009 13010 13011 13012 13013 13014 13015 13016 13017 13018 13019 13020 13021 13022 13023 13024 13025 13026 13027 13028 13029 13030 13031 13032 13033 13034 13035 13036 13037 13038 13039 13040 13041 13042 13043 13044 13045 13046 13047 13048 13049 13050 13051 13052 13053 13054 13055 13056 13057 13058 13059 13060 13061 13062 13063 13064 13065 13066 13067 13068 13069 13070 13071 13072 13073 13074 13075 13076 13077 13078 13079 13080 13081 13082 13083 13084 13085 13086 13087 13088 13089 13090 13091 13092 13093 13094 13095 13096 13097 13098 13099 13100 13101 13102 13103 13104 13105 13106 13107 13108 13109 13110 13111 13112 13113 13114 13115 13116 13117 13118 13119 13120 13121 13122 13123 13124 13125 13126 13127 13128 13129 13130 13131 13132 13133 13134 13135 13136 13137 13138 13139 13140 13141 13142 13143 13144 13145 13146 13147 13148 13149 13150 13151 13152 13153 13154 13155 13156 13157 13158 13159 13160 13161 13162 13163 13164 13165 13166 13167 13168 13169 13170 13171 13172 13173 13174 13175 13176 13177 13178 13179 13180 13181 13182 13183 13184 13185 13186 13187 13188 13189 13190 13191 13192 13193 13194 13195 13196 13197 13198 13199 13200 13201 13202 13203 13204 13205 13206 13207 13208 13209 13210 13211 13212 13213 13214 13215 13216 13217 13218 13219 13220 13221 13222 13223 13224 13225 13226 13227 13228 13229 13230 13231 13232 13233 13234 13235 13236 13237 13238 13239 13240 13241 13242 13243 13244 13245 13246 13247 13248 13249 13250 13251 13252 13253 13254 13255 13256 13257 13258 13259 13260 13261 13262 13263 13264 13265 13266 13267 13268 13269 13270 13271 13272 13273 13274 13275 13276 13277 13278 13279 13280 13281 13282 13283 13284 13285 13286 13287 13288 13289 13290 13291 13292 13293 13294 13295 13296 13297 13298 13299 13300 13301 13302 13303 13304 13305 13306 13307 13308 13309 13310 13311 13312 13313 13314 13315 13316 13317 13318 13319 13320 13321 13322 13323 13324 13325 13326 13327 13328 13329 13330 13331 13332 13333 13334 13335 13336 13337 13338 13339 13340 13341 13342 13343 13344 13345 13346 13347 13348 13349 13350 13351 13352 13353 13354 13355 13356 13357 13358 13359 13360 13361 13362 13363 13364 13365 13366 13367 13368 13369 13370 13371 13372 13373 13374 13375 13376 13377 13378 13379 13380 13381 13382 13383 13384 13385 13386 13387 13388 13389 13390 13391 13392 13393 13394 13395 13396 13397 13398 13399 13400 13401 13402 13403 13404 13405 13406 13407 13408 13409 13410 13411 13412 13413 13414 13415 13416 13417 13418 13419 13420 13421 13422 13423 13424 13425 13426 13427 13428 13429 13430 13431 13432 13433 13434 13435 13436 13437 13438 13439 13440 13441 13442 13443 13444 13445 13446 13447 13448 13449 13450 13451 13452 13453 13454 13455 13456 13457 13458 13459 13460 13461 13462 13463 13464 13465 13466 13467 13468 13469 13470 13471 13472 13473 13474 13475 13476 13477 13478 13479 13480 13481 13482 13483 13484 13485 13486 13487 13488 13489 13490 13491 13492 13493 13494 13495 13496 13497 13498 13499 13500 13501 13502 13503 13504 13505 13506 13507 13508 13509 13510 13511 13512 13513 13514 13515 13516 13517 13518 13519 13520 13521 13522 13523 13524 13525 13526 13527 13528 13529 13530 13531 13532 13533 13534 13535 13536 13537 13538 13539 13540 13541 13542 13543 13544 13545 13546 13547 13548 13549 13550 13551 13552 13553 13554 13555 13556 13557 13558 13559 13560 13561 13562 13563 13564 13565 13566 13567 13568 13569 13570 13571 13572 13573 13574 13575 13576 13577 13578 13579 13580 13581 13582 13583 13584 13585 13586 13587 13588 13589 13590 13591 13592 13593 13594 13595 13596 13597 13598 13599 13600 13601 13602 13603 13604 13605 13606 13607 13608 13609 13610 13611 13612 13613 13614 13615 13616 13617 13618 13619 13620 13621 13622 13623 13624 13625 13626 13627 13628 13629 13630 13631 13632 13633 13634 13635 13636 13637 13638 13639 13640 13641 13642 13643 13644 13645 13646 13647 13648 13649 13650 13651 13652 13653 13654 13655 13656 13657 13658 13659 13660 13661 13662 13663 13664 13665 13666 13667 13668 13669 13670 13671 13672 13673 13674 13675 13676 13677 13678 13679 13680 13681 13682 13683 13684 13685 13686 13687 13688 13689 13690 13691 13692 13693 13694 13695 13696 13697 13698 13699 13700 13701 13702 13703 13704 13705 13706 13707 13708 13709 13710 13711 13712 13713 13714 13715 13716 13717 13718 13719 13720 13721 13722 13723 13724 13725 13726 13727 13728 13729 13730 13731 13732 13733 13734 13735 13736 13737 13738 13739 13740 13741 13742 13743 13744 13745 13746 13747 13748 13749 13750 13751 13752 13753 13754 13755 13756 13757 13758 13759 13760 13761 13762 13763 13764 13765 13766 13767 13768 13769 13770 13771 13772 13773 13774 13775 13776 13777 13778 13779 13780 13781 13782 13783 13784 13785 13786 13787 13788 13789 13790 13791 13792 13793 13794 13795 13796 13797 13798 13799 13800 13801 13802 13803 13804 13805 13806 13807 13808 13809 13810 13811 13812 13813 13814 13815 13816 13817 13818 13819 13820 13821 13822 13823 13824 13825 13826 13827 13828 13829 13830 13831 13832 13833 13834 13835 13836 13837 13838 13839 13840 13841 13842 13843 13844 13845 13846 13847 13848 13849 13850 13851 13852 13853 13854 13855 13856 13857 13858 13859 13860 13861 13862 13863 13864 13865 13866 13867 13868 13869 13870 13871 13872 13873 13874 13875 13876 13877 13878 13879 13880 13881 13882 13883 13884 13885 13886 13887 13888 13889 13890 13891 13892 13893 13894 13895 13896 13897 13898 13899 13900 13901 13902 13903 13904 13905 13906 13907 13908 13909 13910 13911 13912 13913 13914 13915 13916 13917 13918 13919 13920 13921 13922 13923 13924 13925 13926 13927 13928 13929 13930 13931 13932 13933 13934 13935 13936 13937 13938 13939 13940 13941 13942 13943 13944 13945 13946 13947 13948 13949 13950 13951 13952 13953 13954 13955 13956 13957 13958 13959 13960 13961 13962 13963 13964 13965 13966 13967 13968 13969 13970 13971 13972 13973 13974 13975 13976 13977 13978 13979 13980 13981 13982 13983 13984 13985 13986 13987 13988 13989 13990 13991 13992 13993 13994 13995 13996 13997 13998 13999 14000 14001 14002 14003 14004 14005 14006 14007 14008 14009 14010 14011 14012 14013 14014 14015 14016 14017 14018 14019 14020 14021 14022 14023 14024 14025 14026 14027 14028 14029 14030 14031 14032 14033 14034 14035 14036 14037 14038 14039 14040 14041 14042 14043 14044 14045 14046 14047 14048 14049 14050 14051 14052 14053 14054 14055 14056 14057 14058 14059 14060 14061 14062 14063 14064 14065 14066 14067 14068 14069 14070 14071 14072 14073 14074 14075 14076 14077 14078 14079 14080 14081 14082 14083 14084 14085 14086 14087 14088 14089 14090 14091 14092 14093 14094 14095 14096 14097 14098 14099 14100 14101 14102 14103 14104 14105 14106 14107 14108 14109 14110 14111 14112 14113 14114 14115 14116 14117 14118 14119 14120 14121 14122 14123 14124 14125 14126 14127 14128 14129 14130 14131 14132 14133 14134 14135 14136 14137 14138 14139 14140 14141 14142 14143 14144 14145 14146 14147 14148 14149 14150 14151 14152 14153 14154 14155 14156 14157 14158 14159 14160 14161 14162 14163 14164 14165 14166 14167 14168 14169 14170 14171 14172 14173 14174 14175 14176 14177 14178 14179 14180 14181 14182 14183 14184 14185 14186 14187 14188 14189 14190 14191 14192 14193 14194 14195 14196 14197 14198 14199 14200 14201 14202 14203 14204 14205 14206 14207 14208 14209 14210 14211 14212 14213 14214 14215 14216 14217 14218 14219 14220 14221 14222 14223 14224 14225 14226 14227 14228 14229 14230 14231 14232 14233 14234 14235 14236 14237 14238 14239 14240 14241 14242 14243 14244 14245 14246 14247 14248 14249 14250 14251 14252 14253 14254 14255 14256 14257 14258 14259 14260 14261 14262 14263 14264 14265 14266 14267 14268 14269 14270 14271 14272 14273 14274 14275 14276 14277 14278 14279 14280 14281 14282 14283 14284 14285 14286 14287 14288 14289 14290 14291 14292 14293 14294 14295 14296 14297 14298 14299 14300 14301 14302 14303 14304 14305 14306 14307 14308 14309 14310 14311 14312 14313 14314 14315 14316 14317 14318 14319 14320 14321 14322 14323 14324 14325 14326 14327 14328 14329 14330 14331 14332 14333 14334 14335 14336 14337 14338 14339 14340 14341 14342 14343 14344 14345 14346 14347 14348 14349 14350 14351 14352 14353 14354 14355 14356 14357 14358 14359 14360 14361 14362 14363 14364 14365 14366 14367 14368 14369 14370 14371 14372 14373 14374 14375 14376 14377 14378 14379 14380 14381 14382 14383 14384 14385 14386 14387 14388 14389 14390 14391 14392 14393 14394 14395 14396 14397 14398 14399 14400 14401 14402 14403 14404 14405 14406 14407 14408 14409 14410 14411 14412 14413 14414 14415 14416 14417 14418 14419 14420 14421 14422 14423 14424 14425 14426 14427 14428 14429 14430 14431 14432 14433 14434 14435 14436 14437 14438 14439 14440 14441 14442 14443 14444 14445 14446 14447 14448 14449 14450 14451 14452 14453 14454 14455 14456 14457 14458 14459 14460 14461 14462 14463 14464 14465 14466 14467 14468 14469 14470 14471 14472 14473 14474 14475 14476 14477 14478 14479 14480 14481 14482 14483 14484 14485 14486 14487 14488 14489 14490 14491 14492 14493 14494 14495 14496 14497 14498 14499 14500 14501 14502 14503 14504 14505 14506 14507 14508 14509 14510 14511 14512 14513 14514 14515 14516 14517 14518 14519 14520 14521 14522 14523 14524 14525 14526 14527 14528 14529 14530 14531 14532 14533 14534 14535 14536 14537 14538 14539 14540 14541 14542 14543 14544 14545 14546 14547 14548 14549 14550 14551 14552 14553 14554 14555 14556 14557 14558 14559 14560 14561 14562 14563 14564 14565 14566 14567 14568 14569 14570 14571 14572 14573 14574 14575 14576 14577 14578 14579 14580 14581 14582 14583 14584 14585 14586 14587 14588 14589 14590 14591 14592 14593 14594 14595 14596 14597 14598 14599 14600 14601 14602 14603 14604 14605 14606 14607 14608 14609 14610 14611 14612 14613 14614 14615 14616 14617 14618 14619 14620 14621 14622 14623 14624 14625 14626 14627 14628 14629 14630 14631 14632 14633 14634 14635 14636 14637 14638 14639 14640 14641 14642 14643 14644 14645 14646 14647 14648 14649 14650 14651 14652 14653 14654 14655 14656 14657 14658 14659 14660 14661 14662 14663 14664 14665 14666 14667 14668 14669 14670 14671 14672 14673 14674 14675 14676 14677 14678 14679 14680 14681 14682 14683 14684 14685 14686 14687 14688 14689 14690 14691 14692 14693 14694 14695 14696 14697 14698 14699 14700 14701 14702 14703 14704 14705 14706 14707 14708 14709 14710 14711 14712 14713 14714 14715 14716 14717 14718 14719 14720 14721 14722 14723 14724 14725 14726 14727 14728 14729 14730 14731 14732 14733 14734 14735 14736 14737 14738 14739 14740 14741 14742 14743 14744 14745 14746 14747 14748 14749 14750 14751 14752 14753 14754 14755 14756 14757 14758 14759 14760 14761 14762 14763 14764 14765 14766 14767 14768 14769 14770 14771 14772 14773 14774 14775 14776 14777 14778 14779 14780 14781 14782 14783 14784 14785 14786 14787 14788 14789 14790 14791 14792 14793 14794 14795 14796 14797 14798 14799 14800 14801 14802 14803 14804 14805 14806 14807 14808 14809 14810 14811 14812 14813 14814 14815 14816 14817 14818 14819 14820 14821 14822 14823 14824 14825 14826 14827 14828 14829 14830 14831 14832 14833 14834 14835 14836 14837 14838 14839 14840 14841 14842 14843 14844 14845 14846 14847 14848 14849 14850 14851 14852 14853 14854 14855 14856 14857 14858 14859 14860 14861 14862 14863 14864 14865 14866 14867 14868 14869 14870 14871 14872 14873 14874 14875 14876 14877 14878 14879 14880 14881 14882 14883 14884 14885 14886 14887 14888 14889 14890 14891 14892 14893 14894 14895 14896 14897 14898 14899 14900 14901 14902 14903 14904 14905 14906 14907 14908 14909 14910 14911 14912 14913 14914 14915 14916 14917 14918 14919 14920 14921 14922 14923 14924 14925 14926 14927 14928 14929 14930 14931 14932 14933 14934 14935 14936 14937 14938 14939 14940 14941 14942 14943 14944 14945 14946 14947 14948 14949 14950 14951 14952 14953 14954 14955 14956 14957 14958 14959 14960 14961 14962 14963 14964 14965 14966 14967 14968 14969 14970 14971 14972 14973 14974 14975 14976 14977 14978 14979 14980 14981 14982 14983 14984 14985 14986 14987 14988 14989 14990 14991 14992 14993 14994 14995 14996 14997 14998 14999 15000 15001 15002 15003 15004 15005 15006 15007 15008 15009 15010 15011 15012 15013 15014 15015 15016 15017 15018 15019 15020 15021 15022 15023 15024 15025 15026 15027 15028 15029 15030 15031 15032 15033 15034 15035 15036 15037 15038 15039 15040 15041 15042 15043 15044 15045 15046 15047 15048 15049 15050 15051 15052 15053 15054 15055 15056 15057 15058 15059 15060 15061 15062 15063 15064 15065 15066 15067 15068 15069 15070 15071 15072 15073 15074 15075 15076 15077 15078 15079 15080 15081 15082 15083 15084 15085 15086 15087 15088 15089 15090 15091 15092 15093 15094 15095 15096 15097 15098 15099 15100 15101 15102 15103 15104 15105 15106 15107 15108 15109 15110 15111 15112 15113 15114 15115 15116 15117 15118 15119 15120 15121 15122 15123 15124 15125 15126 15127 15128 15129 15130 15131 15132 15133 15134 15135 15136 15137 15138 15139 15140 15141 15142 15143 15144 15145 15146 15147 15148 15149 15150 15151 15152 15153 15154 15155 15156 15157 15158 15159 15160 15161 15162 15163 15164 15165 15166 15167 15168 15169 15170 15171 15172 15173 15174 15175 15176 15177 15178 15179 15180 15181 15182 15183 15184 15185 15186 15187 15188 15189 15190 15191 15192 15193 15194 15195 15196 15197 15198 15199 15200 15201 15202 15203 15204 15205 15206 15207 15208 15209 15210 15211 15212 15213 15214 15215 15216 15217 15218 15219 15220 15221 15222 15223 15224 15225 15226 15227 15228 15229 15230 15231 15232 15233 15234 15235 15236 15237 15238 15239 15240 15241 15242 15243 15244 15245 15246 15247 15248 15249 15250 15251 15252 15253 15254 15255 15256 15257 15258 15259 15260 15261 15262 15263 15264 15265 15266 15267 15268 15269 15270 15271 15272 15273 15274 15275 15276 15277 15278 15279 15280 15281 15282 15283 15284 15285 15286 15287 15288 15289 15290 15291 15292 15293 15294 15295 15296 15297 15298 15299 15300 15301 15302 15303 15304 15305 15306 15307 15308 15309 15310 15311 15312 15313 15314 15315 15316 15317 15318 15319 15320 15321 15322 15323 15324 15325 15326 15327 15328 15329 15330 15331 15332 15333 15334 15335 15336 15337 15338 15339 15340 15341 15342 15343 15344 15345 15346 15347 15348 15349 15350 15351 15352 15353 15354 15355 15356 15357 15358 15359 15360 15361 15362 15363 15364 15365 15366 15367 15368 15369 15370 15371 15372 15373 15374 15375 15376 15377 15378 15379 15380 15381 15382 15383 15384 15385 15386 15387 15388 15389 15390 15391 15392 15393 15394 15395 15396 15397 15398 15399 15400 15401 15402 15403 15404 15405 15406 15407 15408 15409 15410 15411 15412 15413 15414 15415 15416 15417 15418 15419 15420 15421 15422 15423 15424 15425 15426 15427 15428 15429 15430 15431 15432 15433 15434 15435 15436 15437 15438 15439 15440 15441 15442 15443 15444 15445 15446 15447 15448 15449 15450 15451 15452 15453 15454 15455 15456 15457 15458 15459 15460 15461 15462 15463 15464 15465 15466 15467 15468 15469 15470 15471 15472 15473 15474 15475 15476 15477 15478 15479 15480 15481 15482 15483 15484 15485 15486 15487 15488 15489 15490 15491 15492 15493 15494 15495 15496 15497 15498 15499 15500 15501 15502 15503 15504 15505 15506 15507 15508 15509 15510 15511 15512 15513 15514 15515 15516 15517 15518 15519 15520 15521 15522 15523 15524 15525 15526 15527 15528 15529 15530 15531 15532 15533 15534 15535 15536 15537 15538 15539 15540 15541 15542 15543 15544 15545 15546 15547 15548 15549 15550 15551 15552 15553 15554 15555 15556 15557 15558 15559 15560 15561 15562 15563 15564 15565 15566 15567 15568 15569 15570 15571 15572 15573 15574 15575 15576 15577 15578 15579 15580 15581 15582 15583 15584 15585 15586 15587 15588 15589 15590 15591 15592 15593 15594 15595 15596 15597 15598 15599 15600 15601 15602 15603 15604 15605 15606 15607 15608 15609 15610 15611 15612 15613 15614 15615 15616 15617 15618 15619 15620 15621 15622 15623 15624 15625 15626 15627 15628 15629 15630 15631 15632 15633 15634 15635 15636 15637 15638 15639 15640 15641 15642 15643 15644 15645 15646 15647 15648 15649 15650 15651 15652 15653 15654 15655 15656 15657 15658 15659 15660 15661 15662 15663 15664 15665 15666 15667 15668 15669 15670 15671 15672 15673 15674 15675 15676 15677 15678 15679 15680 15681 15682 15683 15684 15685 15686 15687 15688 15689 15690 15691 15692 15693 15694 15695 15696 15697 15698 15699 15700 15701 15702 15703 15704 15705 15706 15707 15708 15709 15710 15711 15712 15713 15714 15715 15716 15717 15718 15719 15720 15721 15722 15723 15724 15725 15726 15727 15728 15729 15730 15731 15732 15733 15734 15735 15736 15737 15738 15739 15740 15741 15742 15743 15744 15745 15746 15747 15748 15749 15750 15751 15752 15753 15754 15755 15756 15757 15758 15759 15760 15761 15762 15763 15764 15765 15766 15767 15768 15769 15770 15771 15772 15773 15774 15775 15776 15777 15778 15779 15780 15781 15782 15783 15784 15785 15786 15787 15788 15789 15790 15791 15792 15793 15794 15795 15796 15797 15798 15799 15800 15801 15802 15803 15804 15805 15806 15807 15808 15809 15810 15811 15812 15813 15814 15815 15816 15817 15818 15819 15820 15821 15822 15823 15824 15825 15826 15827 15828 15829 15830 15831 15832 15833 15834 15835 15836 15837 15838 15839 15840 15841 15842 15843 15844 15845 15846 15847 15848 15849 15850 15851 15852 15853 15854 15855 15856 15857 15858 15859 15860 15861 15862 15863 15864 15865 15866 15867 15868 15869 15870 15871 15872 15873 15874 15875 15876 15877 15878 15879 15880 15881 15882 15883 15884 15885 15886 15887 15888 15889 15890 15891 15892 15893 15894 15895 15896 15897 15898 15899 15900 15901 15902 15903 15904 15905 15906 15907 15908 15909 15910 15911 15912 15913 15914 15915 15916 15917 15918 15919 15920 15921 15922 15923 15924 15925 15926 15927 15928 15929 15930 15931 15932 15933 15934 15935 15936 15937 15938 15939 15940 15941 15942 15943 15944 15945 15946 15947 15948 15949 15950 15951 15952 15953 15954 15955 15956 15957 15958 15959 15960 15961 15962 15963 15964 15965 15966 15967 15968 15969 15970 15971 15972 15973 15974 15975 15976 15977 15978 15979 15980 15981 15982 15983 15984 15985 15986 15987 15988 15989 15990 15991 15992 15993 15994 15995 15996 15997 15998 15999 16000 16001 16002 16003 16004 16005 16006 16007 16008 16009 16010 16011 16012 16013 16014 16015 16016 16017 16018 16019 16020 16021 16022 16023 16024 16025 16026 16027 16028 16029 16030 16031 16032 16033 16034 16035 16036 16037 16038 16039 16040 16041 16042 16043 16044 16045 16046 16047 16048 16049 16050 16051 16052 16053 16054 16055 16056 16057 16058 16059 16060 16061 16062 16063 16064 16065 16066 16067 16068 16069 16070 16071 16072 16073 16074 16075 16076 16077 16078 16079 16080 16081 16082 16083 16084 16085 16086 16087 16088 16089 16090 16091 16092 16093 16094 16095 16096 16097 16098 16099 16100 16101 16102 16103 16104 16105 16106 16107 16108 16109 16110 16111 16112 16113 16114 16115 16116 16117 16118 16119 16120 16121 16122 16123 16124 16125 16126 16127 16128 16129 16130 16131 16132 16133 16134 16135 16136 16137 16138 16139 16140 16141 16142 16143 16144 16145 16146 16147 16148 16149 16150 16151 16152 16153 16154 16155 16156 16157 16158 16159 16160 16161 16162 16163 16164 16165 16166 16167 16168 16169 16170 16171 16172 16173 16174 16175 16176 16177 16178 16179 16180 16181 16182 16183 16184 16185 16186 16187 16188 16189 16190 16191 16192 16193 16194 16195 16196 16197 16198 16199 16200 16201 16202 16203 16204 16205 16206 16207 16208 16209 16210 16211 16212 16213 16214 16215 16216 16217 16218 16219 16220 16221 16222 16223 16224 16225 16226 16227 16228 16229 16230 16231 16232 16233 16234 16235 16236 16237 16238 16239 16240 16241 16242 16243 16244 16245 16246 16247 16248 16249 16250 16251 16252 16253 16254 16255 16256 16257 16258 16259 16260 16261 16262 16263 16264 16265 16266 16267 16268 16269 16270 16271 16272 16273 16274 16275 16276 16277 16278 16279 16280 16281 16282 16283 16284 16285 16286 16287 16288 16289 16290 16291 16292 16293 16294 16295 16296 16297 16298 16299 16300 16301 16302 16303 16304 16305 16306 16307 16308 16309 16310 16311 16312 16313 16314 16315 16316 16317 16318 16319 16320 16321 16322 16323 16324 16325 16326 16327 16328 16329 16330 16331 16332 16333 16334 16335 16336 16337 16338 16339 16340 16341 16342 16343 16344 16345 16346 16347 16348 16349 16350 16351 16352 16353 16354 16355 16356 16357 16358 16359 16360 16361 16362 16363 16364 16365 16366 16367 16368 16369 16370 16371 16372 16373 16374 16375 16376 16377 16378 16379 16380 16381 16382 16383 16384 16385 16386 16387 16388 16389 16390 16391 16392 16393 16394 16395 16396 16397 16398 16399 16400 16401 16402 16403 16404 16405 16406 16407 16408 16409 16410 16411 16412 16413 16414 16415 16416 16417 16418 16419 16420 16421 16422 16423 16424 16425 16426 16427 16428 16429 16430 16431 16432 16433 16434 16435 16436 16437 16438 16439 16440 16441 16442 16443 16444 16445 16446 16447 16448 16449 16450 16451 16452 16453 16454 16455 16456 16457 16458 16459 16460 16461 16462 16463 16464 16465 16466 16467 16468 16469 16470 16471 16472 16473 16474 16475 16476 16477 16478 16479 16480 16481 16482 16483 16484 16485 16486 16487 16488 16489 16490 16491 16492 16493 16494 16495 16496 16497 16498 16499 16500 16501 16502 16503 16504 16505 16506 16507 16508 16509 16510 16511 16512 16513 16514 16515 16516 16517 16518 16519 16520 16521 16522 16523 16524 16525 16526 16527 16528 16529 16530 16531 16532 16533 16534 16535 16536 16537 16538 16539 16540 16541 16542 16543 16544 16545 16546 16547 16548 16549 16550 16551 16552 16553 16554 16555 16556 16557 16558 16559 16560 16561 16562 16563 16564 16565 16566 16567 16568 16569 16570 16571 16572 16573 16574 16575 16576 16577 16578 16579 16580 16581 16582 16583 16584 16585 16586 16587 16588 16589 16590 16591 16592 16593 16594 16595 16596 16597 16598 16599 16600 16601 16602 16603 16604 16605 16606 16607 16608 16609 16610 16611 16612 16613 16614 16615 16616 16617 16618 16619 16620 16621 16622 16623 16624 16625 16626 16627 16628 16629 16630 16631 16632 16633 16634 16635 16636 16637 16638 16639 16640 16641 16642 16643 16644 16645 16646 16647 16648 16649 16650 16651 16652 16653 16654 16655 16656 16657 16658 16659 16660 16661 16662 16663 16664 16665 16666 16667 16668 16669 16670 16671 16672 16673 16674 16675 16676 16677 16678 16679 16680 16681 16682 16683 16684 16685 16686 16687 16688 16689 16690 16691 16692 16693 16694 16695 16696 16697 16698 16699 16700 16701 16702 16703 16704 16705 16706 16707 16708 16709 16710 16711 16712 16713 16714 16715 16716 16717 16718 16719 16720 16721 16722 16723 16724 16725 16726 16727 16728 16729 16730 16731 16732 16733 16734 16735 16736 16737 16738 16739 16740 16741 16742 16743 16744 16745 16746 16747 16748 16749 16750 16751 16752 16753 16754 16755 16756 16757 16758 16759 16760 16761 16762 16763 16764 16765 16766 16767 16768 16769 16770 16771 16772 16773 16774 16775 16776 16777 16778 16779 16780 16781 16782 16783 16784 16785 16786 16787 16788 16789 16790 16791 16792 16793 16794 16795 16796 16797 16798 16799 16800 16801 16802 16803 16804 16805 16806 16807 16808 16809 16810 16811 16812 16813 16814 16815 16816 16817 16818 16819 16820 16821 16822 16823 16824 16825 16826 16827 16828 16829 16830 16831 16832 16833 16834 16835 16836 16837 16838 16839 16840 16841 16842 16843 16844 16845 16846 16847 16848 16849 16850 16851 16852 16853 16854 16855 16856 16857 16858 16859 16860 16861 16862 16863 16864 16865 16866 16867 16868 16869 16870 16871 16872 16873 16874 16875 16876 16877 16878 16879 16880 16881 16882 16883 16884 16885 16886 16887 16888 16889 16890 16891 16892 16893 16894 16895 16896 16897 16898 16899 16900 16901 16902 16903 16904 16905 16906 16907 16908 16909 16910 16911 16912 16913 16914 16915 16916 16917 16918 16919 16920 16921 16922 16923 16924 16925 16926 16927 16928 16929 16930 16931 16932 16933 16934 16935 16936 16937 16938 16939 16940 16941 16942 16943 16944 16945 16946 16947 16948 16949 16950 16951 16952 16953 16954 16955 16956 16957 16958 16959 16960 16961 16962 16963 16964 16965 16966 16967 16968 16969 16970 16971 16972 16973 16974 16975 16976 16977 16978 16979 16980 16981 16982 16983 16984 16985 16986 16987 16988 16989 16990 16991 16992 16993 16994 16995 16996 16997 16998 16999 17000 17001 17002 17003 17004 17005 17006 17007 17008 17009 17010 17011 17012 17013 17014 17015 17016 17017 17018 17019 17020 17021 17022 17023 17024 17025 17026 17027 17028 17029 17030 17031 17032 17033 17034 17035 17036 17037 17038 17039 17040 17041 17042 17043 17044 17045 17046 17047 17048 17049 17050 17051 17052 17053 17054 17055 17056 17057 17058 17059 17060 17061 17062 17063 17064 17065 17066 17067 17068 17069 17070 17071 17072 17073 17074 17075 17076 17077 17078 17079 17080 17081 17082 17083 17084 17085 17086 17087 17088 17089 17090 17091 17092 17093 17094 17095 17096 17097 17098 17099 17100 17101 17102 17103 17104 17105 17106 17107 17108 17109 17110 17111 17112 17113 17114 17115 17116 17117 17118 17119 17120 17121 17122 17123 17124 17125 17126 17127 17128 17129 17130 17131 17132 17133 17134 17135 17136 17137 17138 17139 17140 17141 17142 17143 17144 17145 17146 17147 17148 17149 17150 17151 17152 17153 17154 17155 17156 17157 17158 17159 17160 17161 17162 17163 17164 17165 17166 17167 17168 17169 17170 17171 17172 17173 17174 17175 17176 17177 17178 17179 17180 17181 17182 17183 17184 17185 17186 17187 17188 17189 17190 17191 17192 17193 17194 17195 17196 17197 17198 17199 17200 17201 17202 17203 17204 17205 17206 17207 17208 17209 17210 17211 17212 17213 17214 17215 17216 17217 17218 17219 17220 17221 17222 17223 17224 17225 17226 17227 17228 17229 17230 17231 17232 17233 17234 17235 17236 17237 17238 17239 17240 17241 17242 17243 17244 17245 17246 17247 17248 17249 17250 17251 17252 17253 17254 17255 17256 17257 17258 17259 17260 17261 17262 17263 17264 17265 17266 17267 17268 17269 17270 17271 17272 17273 17274 17275 17276 17277 17278 17279 17280 17281 17282 17283 17284 17285 17286 17287 17288 17289 17290 17291 17292 17293 17294 17295 17296 17297 17298 17299 17300 17301 17302 17303 17304 17305 17306 17307 17308 17309 17310 17311 17312 17313 17314 17315 17316 17317 17318 17319 17320 17321 17322 17323 17324 17325 17326 17327 17328 17329 17330 17331 17332 17333 17334 17335 17336 17337 17338 17339 17340 17341 17342 17343 17344 17345 17346 17347 17348 17349 17350 17351 17352 17353 17354 17355 17356 17357 17358 17359 17360 17361 17362 17363 17364 17365 17366 17367 17368 17369 17370 17371 17372 17373 17374 17375 17376 17377 17378 17379 17380 17381 17382 17383 17384 17385 17386 17387 17388 17389 17390 17391 17392 17393 17394 17395 17396 17397 17398 17399 17400 17401 17402 17403 17404 17405 17406 17407 17408 17409 17410 17411 17412 17413 17414 17415 17416 17417 17418 17419 17420 17421 17422 17423 17424 17425 17426 17427 17428 17429 17430 17431 17432 17433 17434 17435 17436 17437 17438 17439 17440 17441 17442 17443 17444 17445 17446 17447 17448 17449 17450 17451 17452 17453 17454 17455 17456 17457 17458 17459 17460 17461 17462 17463 17464 17465 17466 17467 17468 17469 17470 17471 17472 17473 17474 17475 17476 17477 17478 17479 17480 17481 17482 17483 17484 17485 17486 17487 17488 17489 17490 17491 17492 17493 17494 17495 17496 17497 17498 17499 17500 17501 17502 17503 17504 17505 17506 17507 17508 17509 17510 17511 17512 17513 17514 17515 17516 17517 17518 17519 17520 17521 17522 17523 17524 17525 17526 17527 17528 17529 17530 17531 17532 17533 17534 17535 17536 17537 17538 17539 17540 17541 17542 17543 17544 17545 17546 17547 17548 17549 17550 17551 17552 17553 17554 17555 17556 17557 17558 17559 17560 17561 17562 17563 17564 17565 17566 17567 17568 17569 17570 17571 17572 17573 17574 17575 17576 17577 17578 17579 17580 17581 17582 17583 17584 17585 17586 17587 17588 17589 17590 17591 17592 17593 17594 17595 17596 17597 17598 17599 17600 17601 17602 17603 17604 17605 17606 17607 17608 17609 17610 17611 17612 17613 17614 17615 17616 17617 17618 17619 17620 17621 17622 17623 17624 17625 17626 17627 17628 17629 17630 17631 17632 17633 17634 17635 17636 17637 17638 17639 17640 17641 17642 17643 17644 17645 17646 17647 17648 17649 17650 17651 17652 17653 17654 17655 17656 17657 17658 17659 17660 17661 17662 17663 17664 17665 17666 17667 17668 17669 17670 17671 17672 17673 17674 17675 17676 17677 17678 17679 17680 17681 17682 17683 17684 17685 17686 17687 17688 17689 17690 17691 17692 17693 17694 17695 17696 17697 17698 17699 17700 17701 17702 17703 17704 17705 17706 17707 17708 17709 17710 17711 17712 17713 17714 17715 17716 17717 17718 17719 17720 17721 17722 17723 17724 17725 17726 17727 17728 17729 17730 17731 17732 17733 17734 17735 17736 17737 17738 17739 17740 17741 17742 17743 17744 17745 17746 17747 17748 17749 17750 17751 17752 17753 17754 17755 17756 17757 17758 17759 17760 17761 17762 17763 17764 17765 17766 17767 17768 17769 17770 17771 17772 17773 17774 17775 17776 17777 17778 17779 17780 17781 17782 17783 17784 17785 17786 17787 17788 17789 17790 17791 17792 17793 17794 17795 17796 17797 17798 17799 17800 17801 17802 17803 17804 17805 17806 17807 17808 17809 17810 17811 17812 17813 17814 17815 17816 17817 17818 17819 17820 17821 17822 17823 17824 17825 17826 17827 17828 17829 17830 17831 17832 17833 17834 17835 17836 17837 17838 17839 17840 17841 17842 17843 17844 17845 17846 17847 17848 17849 17850 17851 17852 17853 17854 17855 17856 17857 17858 17859 17860 17861 17862 17863 17864 17865 17866 17867 17868 17869 17870 17871 17872 17873 17874 17875 17876 17877 17878 17879 17880 17881 17882 17883 17884 17885 17886 17887 17888 17889 17890 17891 17892 17893 17894 17895 17896 17897 17898 17899 17900 17901 17902 17903 17904 17905 17906 17907 17908 17909 17910 17911 17912 17913 17914 17915 17916 17917 17918 17919 17920 17921 17922 17923 17924 17925 17926 17927 17928 17929 17930 17931 17932 17933 17934 17935 17936 17937 17938 17939 17940 17941 17942 17943 17944 17945 17946 17947 17948 17949 17950 17951 17952 17953 17954 17955 17956 17957 17958 17959 17960 17961 17962 17963 17964 17965 17966 17967 17968 17969 17970 17971 17972 17973 17974 17975 17976 17977 17978 17979 17980 17981 17982 17983 17984 17985 17986 17987 17988 17989 17990 17991 17992 17993 17994 17995 17996 17997 17998 17999 18000 18001 18002 18003 18004 18005 18006 18007 18008 18009 18010 18011 18012 18013 18014 18015 18016 18017 18018 18019 18020 18021 18022 18023 18024 18025 18026 18027 18028 18029 18030 18031 18032 18033 18034 18035 18036 18037 18038 18039 18040 18041 18042 18043 18044 18045 18046 18047 18048 18049 18050 18051 18052 18053 18054 18055 18056 18057 18058 18059 18060 18061 18062 18063 18064 18065 18066 18067 18068 18069 18070 18071 18072 18073 18074 18075 18076 18077 18078 18079 18080 18081 18082 18083 18084 18085 18086 18087 18088 18089 18090 18091 18092 18093 18094 18095 18096 18097 18098 18099 18100 18101 18102 18103 18104 18105 18106 18107 18108 18109 18110 18111 18112 18113 18114 18115 18116 18117 18118 18119 18120 18121 18122 18123 18124 18125 18126 18127 18128 18129 18130 18131 18132 18133 18134 18135 18136 18137 18138 18139 18140 18141 18142 18143 18144 18145 18146 18147 18148 18149 18150 18151 18152 18153 18154 18155 18156 18157 18158 18159 18160 18161 18162 18163 18164 18165 18166 18167 18168 18169 18170 18171 18172 18173 18174 18175 18176 18177 18178 18179 18180 18181 18182 18183 18184 18185 18186 18187 18188 18189 18190 18191 18192 18193 18194 18195 18196 18197 18198 18199 18200 18201 18202 18203 18204 18205 18206 18207 18208 18209 18210 18211 18212 18213 18214 18215 18216 18217 18218 18219 18220 18221 18222 18223 18224 18225 18226 18227 18228 18229 18230 18231 18232 18233 18234 18235 18236 18237 18238 18239 18240 18241 18242 18243 18244 18245 18246 18247 18248 18249 18250 18251 18252 18253 18254 18255 18256 18257 18258 18259 18260 18261 18262 18263 18264 18265 18266 18267 18268 18269 18270 18271 18272 18273 18274 18275 18276 18277 18278 18279 18280 18281 18282 18283 18284 18285 18286 18287 18288 18289 18290 18291 18292 18293 18294 18295 18296 18297 18298 18299 18300 18301 18302 18303 18304 18305 18306 18307 18308 18309 18310 18311 18312 18313 18314 18315 18316 18317 18318 18319 18320 18321 18322 18323 18324 18325 18326 18327 18328 18329 18330 18331 18332 18333 18334 18335 18336 18337 18338 18339 18340 18341 18342 18343 18344 18345 18346 18347 18348 18349 18350 18351 18352 18353 18354 18355 18356 18357 18358 18359 18360 18361 18362 18363 18364 18365 18366 18367 18368 18369 18370 18371 18372 18373 18374 18375 18376 18377 18378 18379 18380 18381 18382 18383 18384 18385 18386 18387 18388 18389 18390 18391 18392 18393 18394 18395 18396 18397 18398 18399 18400 18401 18402 18403 18404 18405 18406 18407 18408 18409 18410 18411 18412 18413 18414 18415 18416 18417 18418 18419 18420 18421 18422 18423 18424 18425 18426 18427 18428 18429 18430 18431 18432 18433 18434 18435 18436 18437 18438 18439 18440 18441 18442 18443 18444 18445 18446 18447 18448 18449 18450 18451 18452 18453 18454 18455 18456 18457 18458 18459 18460 18461 18462 18463 18464 18465 18466 18467 18468 18469 18470 18471 18472 18473 18474 18475 18476 18477 18478 18479 18480 18481 18482 18483 18484 18485 18486 18487 18488 18489 18490 18491 18492 18493 18494 18495 18496 18497 18498 18499 18500 18501 18502 18503 18504 18505 18506 18507 18508 18509 18510 18511 18512 18513 18514 18515 18516 18517 18518 18519 18520 18521 18522 18523 18524 18525 18526 18527 18528 18529 18530 18531 18532 18533 18534 18535 18536 18537 18538 18539 18540 18541 18542 18543 18544 18545 18546 18547 18548 18549 18550 18551 18552 18553 18554 18555 18556 18557 18558 18559 18560 18561 18562 18563 18564 18565 18566 18567 18568 18569 18570 18571 18572 18573 18574 18575 18576 18577 18578 18579 18580 18581 18582 18583 18584 18585 18586 18587 18588 18589 18590 18591 18592 18593 18594 18595 18596 18597 18598 18599 18600 18601 18602 18603 18604 18605 18606 18607 18608 18609 18610 18611 18612 18613 18614 18615 18616 18617 18618 18619 18620 18621 18622 18623 18624 18625 18626 18627 18628 18629 18630 18631 18632 18633 18634 18635 18636 18637 18638 18639 18640 18641 18642 18643 18644 18645 18646 18647 18648 18649 18650 18651 18652 18653 18654 18655 18656 18657 18658 18659 18660 18661 18662 18663 18664 18665 18666 18667 18668 18669 18670 18671 18672 18673 18674 18675 18676 18677 18678 18679 18680 18681 18682 18683 18684 18685 18686 18687 18688 18689 18690 18691 18692 18693 18694 18695 18696 18697 18698 18699 18700 18701 18702 18703 18704 18705 18706 18707 18708 18709 18710 18711 18712 18713 18714 18715 18716 18717 18718 18719 18720 18721 18722 18723 18724 18725 18726 18727 18728 18729 18730 18731 18732 18733 18734 18735 18736 18737 18738 18739 18740 18741 18742 18743 18744 18745 18746 18747 18748 18749 18750 18751 18752 18753 18754 18755 18756 18757 18758 18759 18760 18761 18762 18763 18764 18765 18766 18767 18768 18769 18770 18771 18772 18773 18774 18775 18776 18777 18778 18779 18780 18781 18782 18783 18784 18785 18786 18787 18788 18789 18790 18791 18792 18793 18794 18795 18796 18797 18798 18799 18800 18801 18802 18803 18804 18805 18806 18807 18808 18809 18810 18811 18812 18813 18814 18815 18816 18817 18818 18819 18820 18821 18822 18823 18824 18825 18826 18827 18828 18829 18830 18831 18832 18833 18834 18835 18836 18837 18838 18839 18840 18841 18842 18843 18844 18845 18846 18847 18848 18849 18850 18851 18852 18853 18854 18855 18856 18857 18858 18859 18860 18861 18862 18863 18864 18865 18866 18867 18868 18869 18870 18871 18872 18873 18874 18875 18876 18877 18878 18879 18880 18881 18882 18883 18884 18885 18886 18887 18888 18889 18890 18891 18892 18893 18894 18895 18896 18897 18898 18899 18900 18901 18902 18903 18904 18905 18906 18907 18908 18909 18910 18911 18912 18913 18914 18915 18916 18917 18918 18919 18920 18921 18922 18923 18924 18925 18926 18927 18928 18929 18930 18931 18932 18933 18934 18935 18936 18937 18938 18939 18940 18941 18942 18943 18944 18945 18946 18947 18948 18949 18950 18951 18952 18953 18954 18955 18956 18957 18958 18959 18960 18961 18962 18963 18964 18965 18966 18967 18968 18969 18970 18971 18972 18973 18974 18975 18976 18977 18978 18979 18980 18981 18982 18983 18984 18985 18986 18987 18988 18989 18990 18991 18992 18993 18994 18995 18996 18997 18998 18999 19000 19001 19002 19003 19004 19005 19006 19007 19008 19009 19010 19011 19012 19013 19014 19015 19016 19017 19018 19019 19020 19021 19022 19023 19024 19025 19026 19027 19028 19029 19030 19031 19032 19033 19034 19035 19036 19037 19038 19039 19040 19041 19042 19043 19044 19045 19046 19047 19048 19049 19050 19051 19052 19053 19054 19055 19056 19057 19058 19059 19060 19061 19062 19063 19064 19065 19066 19067 19068 19069 19070 19071 19072 19073 19074 19075 19076 19077 19078 19079 19080 19081 19082 19083 19084 19085 19086 19087 19088 19089 19090 19091 19092 19093 19094 19095 19096 19097 19098 19099 19100 19101 19102 19103 19104 19105 19106 19107 19108 19109 19110 19111 19112 19113 19114 19115 19116 19117 19118 19119 19120 19121 19122 19123 19124 19125 19126 19127 19128 19129 19130 19131 19132 19133 19134 19135 19136 19137 19138 19139 19140 19141 19142 19143 19144 19145 19146 19147 19148 19149 19150 19151 19152 19153 19154 19155 19156 19157 19158 19159 19160 19161 19162 19163 19164 19165 19166 19167 19168 19169 19170 19171 19172 19173 19174 19175 19176 19177 19178 19179 19180 19181 19182 19183 19184 19185 19186 19187 19188 19189 19190 19191 19192 19193 19194 19195 19196 19197 19198 19199 19200 19201 19202 19203 19204 19205 19206 19207 19208 19209 19210 19211 19212 19213 19214 19215 19216 19217 19218 19219 19220 19221 19222 19223 19224 19225 19226 19227 19228 19229 19230 19231 19232 19233 19234 19235 19236 19237 19238 19239 19240 19241 19242 19243 19244 19245 19246 19247 19248 19249 19250 19251 19252 19253 19254 19255 19256 19257 19258 19259 19260 19261 19262 19263 19264 19265 19266 19267 19268 19269 19270 19271 19272 19273 19274 19275 19276 19277 19278 19279 19280 19281 19282 19283 19284 19285 19286 19287 19288 19289 19290 19291 19292 19293 19294 19295 19296 19297 19298 19299 19300 19301 19302 19303 19304 19305 19306 19307 19308 19309 19310 19311 19312 19313 19314 19315 19316 19317 19318 19319 19320 19321 19322 19323 19324 19325 19326 19327 19328 19329 19330 19331 19332 19333 19334 19335 19336 19337 19338 19339 19340 19341 19342 19343 19344 19345 19346 19347 19348 19349 19350 19351 19352 19353 19354 19355 19356 19357 19358 19359 19360 19361 19362 19363 19364 19365 19366 19367 19368 19369 19370 19371 19372 19373 19374 19375 19376 19377 19378 19379 19380 19381 19382 19383 19384 19385 19386 19387 19388 19389 19390 19391 19392 19393 19394 19395 19396 19397 19398 19399 19400 19401 19402 19403 19404 19405 19406 19407 19408 19409 19410 19411 19412 19413 19414 19415 19416 19417 19418 19419 19420 19421 19422 19423 19424 19425 19426 19427 19428 19429 19430 19431 19432 19433 19434 19435 19436 19437 19438 19439 19440 19441 19442 19443 19444 19445 19446 19447 19448 19449 19450 19451 19452 19453 19454 19455 19456 19457 19458 19459 19460 19461 19462 19463 19464 19465 19466 19467 19468 19469 19470 19471 19472 19473 19474 19475 19476 19477 19478 19479 19480 19481 19482 19483 19484 19485 19486 19487 19488 19489 19490 19491 19492 19493 19494 19495 19496 19497 19498 19499 19500 19501 19502 19503 19504 19505 19506 19507 19508 19509 19510 19511 19512 19513 19514 19515 19516 19517 19518 19519 19520 19521 19522 19523 19524 19525 19526 19527 19528 19529 19530 19531 19532 19533 19534 19535 19536 19537 19538 19539 19540 19541 19542 19543 19544 19545 19546 19547 19548 19549 19550 19551 19552 19553 19554 19555 19556 19557 19558 19559 19560 19561 19562 19563 19564 19565 19566 19567 19568 19569 19570 19571 19572 19573 19574 19575 19576 19577 19578 19579 19580 19581 19582 19583 19584 19585 19586 19587 19588 19589 19590 19591 19592 19593 19594 19595 19596 19597 19598 19599 19600 19601 19602 19603 19604 19605 19606 19607 19608 19609 19610 19611 19612 19613 19614 19615 19616 19617 19618 19619 19620 19621 19622 19623 19624 19625 19626 19627 19628 19629 19630 19631 19632 19633 19634 19635 19636 19637 19638 19639 19640 19641 19642 19643 19644 19645 19646 19647 19648 19649 19650 19651 19652 19653 19654 19655 19656 19657 19658 19659 19660 19661 19662 19663 19664 19665 19666 19667 19668 19669 19670 19671 19672 19673 19674 19675 19676 19677 19678 19679 19680 19681 19682 19683 19684 19685 19686 19687 19688 19689 19690 19691 19692 19693 19694 19695 19696 19697 19698 19699 19700 19701 19702 19703 19704 19705 19706 19707 19708 19709 19710 19711 19712 19713 19714 19715 19716 19717 19718 19719 19720 19721 19722 19723 19724 19725 19726 19727 19728 19729 19730 19731 19732 19733 19734 19735 19736 19737 19738 19739 19740 19741 19742 19743 19744 19745 19746 19747 19748 19749 19750 19751 19752 19753 19754 19755 19756 19757 19758 19759 19760 19761 19762 19763 19764 19765 19766 19767 19768 19769 19770 19771 19772 19773 19774 19775 19776 19777 19778 19779 19780 19781 19782 19783 19784 19785 19786 19787 19788 19789 19790 19791 19792 19793 19794 19795 19796 19797 19798 19799 19800 19801 19802 19803 19804 19805 19806 19807 19808 19809 19810 19811 19812 19813 19814 19815 19816 19817 19818 19819 19820 19821 19822 19823 19824 19825 19826 19827 19828 19829 19830 19831 19832 19833 19834 19835 19836 19837 19838 19839 19840 19841 19842 19843 19844 19845 19846 19847 19848 19849 19850 19851 19852 19853 19854 19855 19856 19857 19858 19859 19860 19861 19862 19863 19864 19865 19866 19867 19868 19869 19870 19871 19872 19873 19874 19875 19876 19877 19878 19879 19880 19881 19882 19883 19884 19885 19886 19887 19888 19889 19890 19891 19892 19893 19894 19895 19896 19897 19898 19899 19900 19901 19902 19903 19904 19905 19906 19907 19908 19909 19910 19911 19912 19913 19914 19915 19916 19917 19918 19919 19920 19921 19922 19923 19924 19925 19926 19927 19928 19929 19930 19931 19932 19933 19934 19935 19936 19937 19938 19939 19940 19941 19942 19943 19944 19945 19946 19947 19948 19949 19950 19951 19952 19953 19954 19955 19956 19957 19958 19959 19960 19961 19962 19963 19964 19965 19966 19967 19968 19969 19970 19971 19972 19973 19974 19975 19976 19977 19978 19979 19980 19981 19982 19983 19984 19985 19986 19987 19988 19989 19990 19991 19992 19993 19994 19995 19996 19997 19998 19999 20000 20001 20002 20003 20004 20005 20006 20007 20008 20009 20010 20011 20012 20013 20014 20015 20016 20017 20018 20019 20020 20021 20022 20023 20024 20025 20026 20027 20028 20029 20030 20031 20032 20033 20034 20035 20036 20037 20038 20039 20040 20041 20042 20043 20044 20045 20046 20047 20048 20049 20050 20051 20052 20053 20054 20055 20056 20057 20058 20059 20060 20061 20062 20063 20064 20065 20066 20067 20068 20069 20070 20071 20072 20073 20074 20075 20076 20077 20078 20079 20080 20081 20082 20083 20084 20085 20086 20087 20088 20089 20090 20091 20092 20093 20094 20095 20096 20097 20098 20099 20100 20101 20102 20103 20104 20105 20106 20107 20108 20109 20110 20111 20112 20113 20114 20115 20116 20117 20118 20119 20120 20121 20122 20123 20124 20125 20126 20127 20128 20129 20130 20131 20132 20133 20134 20135 20136 20137 20138 20139 20140 20141 20142 20143 20144 20145 20146 20147 20148 20149 20150 20151 20152 20153 20154 20155 20156 20157 20158 20159 20160 20161 20162 20163 20164 20165 20166 20167 20168 20169 20170 20171 20172 20173 20174 20175 20176 20177 20178 20179 20180 20181 20182 20183 20184 20185 20186 20187 20188 20189 20190 20191 20192 20193 20194 20195 20196 20197 20198 20199 20200 20201 20202 20203 20204 20205 20206 20207 20208 20209 20210 20211 20212 20213 20214 20215 20216 20217 20218 20219 20220 20221 20222 20223 20224 20225 20226 20227 20228 20229 20230 20231 20232 20233 20234 20235 20236 20237 20238 20239 20240 20241 20242 20243 20244 20245 20246 20247 20248 20249 20250 20251 20252 20253 20254 20255 20256 20257 20258 20259 20260 20261 20262 20263 20264 20265 20266 20267 20268 20269 20270 20271 20272 20273 20274 20275 20276 20277 20278 20279 20280 20281 20282 20283 20284 20285 20286 20287 20288 20289 20290 20291 20292 20293 20294 20295 20296 20297 20298 20299 20300 20301 20302 20303 20304 20305 20306 20307 20308 20309 20310 20311 20312 20313 20314 20315 20316 20317 20318 20319 20320 20321 20322 20323 20324 20325 20326 20327 20328 20329 20330 20331 20332 20333 20334 20335 20336 20337 20338 20339 20340 20341 20342 20343 20344 20345 20346 20347 20348 20349 20350 20351 20352 20353 20354 20355 20356 20357 20358 20359 20360 20361 20362 20363 20364 20365 20366 20367 20368 20369 20370 20371 20372 20373 20374 20375 20376 20377 20378 20379 20380 20381 20382 20383 20384 20385 20386 20387 20388 20389 20390 20391 20392 20393 20394 20395 20396 20397 20398 20399 20400 20401 20402 20403 20404 20405 20406 20407 20408 20409 20410 20411 20412 20413 20414 20415 20416 20417 20418 20419 20420 20421 20422 20423 20424 20425 20426 20427 20428 20429 20430 20431 20432 20433 20434 20435 20436 20437 20438 20439 20440 20441 20442 20443 20444 20445 20446 20447 20448 20449 20450 20451 20452 20453 20454 20455 20456 20457 20458 20459 20460 20461 20462 20463 20464 20465 20466 20467 20468 20469 20470 20471 20472 20473 20474 20475 20476 20477 20478 20479 20480 20481 20482 20483 20484 20485 20486 20487 20488 20489 20490 20491 20492 20493 20494 20495 20496 20497 20498 20499 20500 20501 20502 20503 20504 20505 20506 20507 20508 20509 20510 20511 20512 20513 20514 20515 20516 20517 20518 20519 20520 20521 20522 20523 20524 20525 20526 20527 20528 20529 20530 20531 20532 20533 20534 20535 20536 20537 20538 20539 20540 20541 20542 20543 20544 20545 20546 20547 20548 20549 20550 20551 20552 20553 20554 20555 20556 20557 20558 20559 20560 20561 20562 20563 20564 20565 20566 20567 20568 20569 20570 20571 20572 20573 20574 20575 20576 20577 20578 20579 20580 20581 20582 20583 20584 20585 20586 20587 20588 20589 20590 20591 20592 20593 20594 20595 20596 20597 20598 20599 20600 20601 20602 20603 20604 20605 20606 20607 20608 20609 20610 20611 20612 20613 20614 20615 20616 20617 20618 20619 20620 20621 20622 20623 20624 20625 20626 20627 20628 20629 20630 20631 20632 20633 20634 20635 20636 20637 20638 20639 20640 20641 20642 20643 20644 20645 20646 20647 20648 20649 20650 20651 20652 20653 20654 20655 20656 20657 20658 20659 20660 20661 20662 20663 20664 20665 20666 20667 20668 20669 20670 20671 20672 20673 20674 20675 20676 20677 20678 20679 20680 20681 20682 20683 20684 20685 20686 20687 20688 20689 20690 20691 20692 20693 20694 20695 20696 20697 20698 20699 20700 20701 20702 20703 20704 20705 20706 20707 20708 20709 20710 20711 20712 20713 20714 20715 20716 20717 20718 20719 20720 20721 20722 20723 20724 20725 20726 20727 20728 20729 20730 20731 20732 20733 20734 20735 20736 20737 20738 20739 20740 20741 20742 20743 20744 20745 20746 20747 20748 20749 20750 20751 20752 20753 20754 20755 20756 20757 20758 20759 20760 20761 20762 20763 20764 20765 20766 20767 20768 20769 20770 20771 20772 20773 20774 20775 20776 20777 20778 20779 20780 20781 20782 20783 20784 20785 20786 20787 20788 20789 20790 20791 20792 20793 20794 20795 20796 20797 20798 20799 20800 20801 20802 20803 20804 20805 20806 20807 20808 20809 20810 20811 20812 20813 20814 20815 20816 20817 20818 20819 20820 20821 20822 20823 20824 20825 20826 20827 20828 20829 20830 20831 20832 20833 20834 20835 20836 20837 20838 20839 20840 20841 20842 20843 20844 20845 20846 20847 20848 20849 20850 20851 20852 20853 20854 20855 20856 20857 20858 20859 20860 20861 20862 20863 20864 20865 20866 20867 20868 20869 20870 20871 20872 20873 20874 20875 20876 20877 20878 20879 20880 20881 20882 20883 20884 20885 20886 20887 20888 20889 20890 20891 20892 20893 20894 20895 20896 20897 20898 20899 20900 20901 20902 20903 20904 20905 20906 20907 20908 20909 20910 20911 20912 20913 20914 20915 20916 20917 20918 20919 20920 20921 20922 20923 20924 20925 20926 20927 20928 20929 20930 20931 20932 20933 20934 20935 20936 20937 20938 20939 20940 20941 20942 20943 20944 20945 20946 20947 20948 20949 20950 20951 20952 20953 20954 20955 20956 20957 20958 20959 20960 20961 20962 20963 20964 20965 20966 20967 20968 20969 20970 20971 20972 20973 20974 20975 20976 20977 20978 20979 20980 20981 20982 20983 20984 20985 20986 20987 20988 20989 20990 20991 20992 20993 20994 20995 20996 20997 20998 20999 21000 21001 21002 21003 21004 21005 21006 21007 21008 21009 21010 21011 21012 21013 21014 21015 21016 21017 21018 21019 21020 21021 21022 21023 21024 21025 21026 21027 21028 21029 21030 21031 21032 21033 21034 21035 21036 21037 21038 21039 21040 21041 21042 21043 21044 21045 21046 21047 21048 21049 21050 21051 21052 21053 21054 21055 21056 21057 21058 21059 21060 21061 21062 21063 21064 21065 21066 21067 21068 21069 21070 21071 21072 21073 21074 21075 21076 21077 21078 21079 21080 21081 21082 21083 21084 21085 21086 21087 21088 21089 21090 21091 21092 21093 21094 21095 21096 21097 21098 21099 21100 21101 21102 21103 21104 21105 21106 21107 21108 21109 21110 21111 21112 21113 21114 21115 21116 21117 21118 21119 21120 21121 21122 21123 21124 21125 21126 21127 21128 21129 21130 21131 21132 21133 21134 21135 21136 21137 21138 21139 21140 21141 21142 21143 21144 21145 21146 21147 21148 21149 21150 21151 21152 21153 21154 21155 21156 21157 21158 21159 21160 21161 21162 21163 21164 21165 21166 21167 21168 21169 21170 21171 21172 21173 21174 21175 21176 21177 21178 21179 21180 21181 21182 21183 21184 21185 21186 21187 21188 21189 21190 21191 21192 21193 21194 21195 21196 21197 21198 21199 21200 21201 21202 21203 21204 21205 21206 21207 21208 21209 21210 21211 21212 21213 21214 21215 21216 21217 21218 21219 21220 21221 21222 21223 21224 21225 21226 21227 21228 21229 21230 21231 21232 21233 21234 21235 21236 21237 21238 21239 21240 21241 21242 21243 21244 21245 21246 21247 21248 21249 21250 21251 21252 21253 21254 21255 21256 21257 21258 21259 21260 21261 21262 21263 21264 21265 21266 21267 21268 21269 21270 21271 21272 21273 21274 21275 21276 21277 21278 21279 21280 21281 21282 21283 21284 21285 21286 21287 21288 21289 21290 21291 21292 21293 21294 21295 21296 21297 21298 21299 21300 21301 21302 21303 21304 21305 21306 21307 21308 21309 21310 21311 21312 21313 21314 21315 21316 21317 21318 21319 21320 21321 21322 21323 21324 21325 21326 21327 21328 21329 21330 21331 21332 21333 21334 21335 21336 21337 21338 21339 21340 21341 21342 21343 21344 21345 21346 21347 21348 21349 21350 21351 21352 21353 21354 21355 21356 21357 21358 21359 21360 21361 21362 21363 21364 21365 21366 21367 21368 21369 21370 21371 21372 21373 21374 21375 21376 21377 21378 21379 21380 21381 21382 21383 21384 21385 21386 21387 21388 21389 21390 21391 21392 21393 21394 21395 21396 21397 21398 21399 21400 21401 21402 21403 21404 21405 21406 21407 21408 21409 21410 21411 21412 21413 21414 21415 21416 21417 21418 21419 21420 21421 21422 21423 21424 21425 21426 21427 21428 21429 21430 21431 21432 21433 21434 21435 21436 21437 21438 21439 21440 21441 21442 21443 21444 21445 21446 21447 21448 21449 21450 21451 21452 21453 21454 21455 21456 21457 21458 21459 21460 21461 21462 21463 21464 21465 21466 21467 21468 21469 21470 21471 21472 21473 21474 21475 21476 21477 21478 21479 21480 21481 21482 21483 21484 21485 21486 21487 21488 21489 21490 21491 21492 21493 21494 21495 21496 21497 21498 21499 21500 21501 21502 21503 21504 21505 21506 21507 21508 21509 21510 21511 21512 21513 21514 21515 21516 21517 21518 21519 21520 21521 21522 21523 21524 21525 21526 21527 21528 21529 21530 21531 21532 21533 21534 21535 21536 21537 21538 21539 21540 21541 21542 21543 21544 21545 21546 21547 21548 21549 21550 21551 21552 21553 21554 21555 21556 21557 21558 21559 21560 21561 21562 21563 21564 21565 21566 21567 21568 21569 21570 21571 21572 21573 21574 21575 21576 21577 21578 21579 21580 21581 21582 21583 21584 21585 21586 21587 21588 21589 21590 21591 21592 21593 21594 21595 21596 21597 21598 21599 21600 21601 21602 21603 21604 21605 21606 21607 21608 21609 21610 21611 21612 21613 21614 21615 21616 21617 21618 21619 21620 21621 21622 21623 21624 21625 21626 21627 21628 21629 21630 21631 21632 21633 21634 21635 21636 21637 21638 21639 21640 21641 21642 21643 21644 21645 21646 21647 21648 21649 21650 21651 21652 21653 21654 21655 21656 21657 21658 21659 21660 21661 21662 21663 21664 21665 21666 21667 21668 21669 21670 21671 21672 21673 21674 21675 21676 21677 21678 21679 21680 21681 21682 21683 21684 21685 21686 21687 21688 21689 21690 21691 21692 21693 21694 21695 21696 21697 21698 21699 21700 21701 21702 21703 21704 21705 21706 21707 21708 21709 21710 21711 21712 21713 21714 21715 21716 21717 21718 21719 21720 21721 21722 21723 21724 21725 21726 21727 21728 21729 21730 21731 21732 21733 21734 21735 21736 21737 21738 21739 21740 21741 21742 21743 21744 21745 21746 21747 21748 21749 21750 21751 21752 21753 21754 21755 21756 21757 21758 21759 21760 21761 21762 21763 21764 21765 21766 21767 21768 21769 21770 21771 21772 21773 21774 21775 21776 21777 21778 21779 21780 21781 21782 21783 21784 21785 21786 21787 21788 21789 21790 21791 21792 21793 21794 21795 21796 21797 21798 21799 21800 21801 21802 21803 21804 21805 21806 21807 21808 21809 21810 21811 21812 21813 21814 21815 21816 21817 21818 21819 21820 21821 21822 21823 21824 21825 21826 21827 21828 21829 21830 21831 21832 21833 21834 21835 21836 21837 21838 21839 21840 21841 21842 21843 21844 21845 21846 21847 21848 21849 21850 21851 21852 21853 21854 21855 21856 21857 21858 21859 21860 21861 21862 21863 21864 21865 21866 21867 21868 21869 21870 21871 21872 21873 21874 21875 21876 21877 21878 21879 21880 21881 21882 21883 21884 21885 21886 21887 21888 21889 21890 21891 21892 21893 21894 21895 21896 21897 21898 21899 21900 21901 21902 21903 21904 21905 21906 21907 21908 21909 21910 21911 21912 21913 21914 21915 21916 21917 21918 21919 21920 21921 21922 21923 21924 21925 21926 21927 21928 21929 21930 21931 21932 21933 21934 21935 21936 21937 21938 21939 21940 21941 21942 21943 21944 21945 21946 21947 21948 21949 21950 21951 21952 21953 21954 21955 21956 21957 21958 21959 21960 21961 21962 21963 21964 21965 21966 21967 21968 21969 21970 21971 21972 21973 21974 21975 21976 21977 21978 21979 21980 21981 21982 21983 21984 21985 21986 21987 21988 21989 21990 21991 21992 21993 21994 21995 21996 21997 21998 21999 22000 22001 22002 22003 22004 22005 22006 22007 22008 22009 22010 22011 22012 22013 22014 22015 22016 22017 22018 22019 22020 22021 22022 22023 22024 22025 22026 22027 22028 22029 22030 22031 22032 22033 22034 22035 22036 22037 22038 22039 22040 22041 22042 22043 22044 22045 22046 22047 22048 22049 22050 22051 22052 22053 22054 22055 22056 22057 22058 22059 22060 22061 22062 22063 22064 22065 22066 22067 22068 22069 22070 22071 22072 22073 22074 22075 22076 22077 22078 22079 22080 22081 22082 22083 22084 22085 22086 22087 22088 22089 22090 22091 22092 22093 22094 22095 22096 22097 22098 22099 22100 22101 22102 22103 22104 22105 22106 22107 22108 22109 22110 22111 22112 22113 22114 22115 22116 22117 22118 22119 22120 22121 22122 22123 22124 22125 22126 22127 22128 22129 22130 22131 22132 22133 22134 22135 22136 22137 22138 22139 22140 22141 22142 22143 22144 22145 22146 22147 22148 22149 22150 22151 22152 22153 22154 22155 22156 22157 22158 22159 22160 22161 22162 22163 22164 22165 22166 22167 22168 22169 22170 22171 22172 22173 22174 22175 22176 22177 22178 22179 22180 22181 22182 22183 22184 22185 22186 22187 22188 22189 22190 22191 22192 22193 22194 22195 22196 22197 22198 22199 22200 22201 22202 22203 22204 22205 22206 22207 22208 22209 22210 22211 22212 22213 22214 22215 22216 22217 22218 22219 22220 22221 22222 22223 22224 22225 22226 22227 22228 22229 22230 22231 22232 22233 22234 22235 22236 22237 22238 22239 22240 22241 22242 22243 22244 22245 22246 22247 22248 22249 22250 22251 22252 22253 22254 22255 22256 22257 22258 22259 22260 22261 22262 22263 22264 22265 22266 22267 22268 22269 22270 22271 22272 22273 22274 22275 22276 22277 22278 22279 22280 22281 22282 22283 22284 22285 22286 22287 22288 22289 22290 22291 22292 22293 22294 22295 22296 22297 22298 22299 22300 22301 22302 22303 22304 22305 22306 22307 22308 22309 22310 22311 22312 22313 22314 22315 22316 22317 22318 22319 22320 22321 22322 22323 22324 22325 22326 22327 22328 22329 22330 22331 22332 22333 22334 22335 22336 22337 22338 22339 22340 22341 22342 22343 22344 22345 22346 22347 22348 22349 22350 22351 22352 22353 22354 22355 22356 22357 22358 22359 22360 22361 22362 22363 22364 22365 22366 22367 22368 22369 22370 22371 22372 22373 22374 22375 22376 22377 22378 22379 22380 22381 22382 22383 22384 22385 22386 22387 22388 22389 22390 22391 22392 22393 22394 22395 22396 22397 22398 22399 22400 22401 22402 22403 22404 22405 22406 22407 22408 22409 22410 22411 22412 22413 22414 22415 22416 22417 22418 22419 22420 22421 22422 22423 22424 22425 22426 22427 22428 22429 22430 22431 22432 22433 22434 22435 22436 22437 22438 22439 22440 22441 22442 22443 22444 22445 22446 22447 22448 22449 22450 22451 22452 22453 22454 22455 22456 22457 22458 22459 22460 22461 22462 22463 22464 22465 22466 22467 22468 22469 22470 22471 22472 22473 22474 22475 22476 22477 22478 22479 22480 22481 22482 22483 22484 22485 22486 22487 22488 22489 22490 22491 22492 22493 22494 22495 22496 22497 22498 22499 22500 22501 22502 22503 22504 22505 22506 22507 22508 22509 22510 22511 22512 22513 22514 22515 22516 22517 22518 22519 22520 22521 22522 22523 22524 22525 22526 22527 22528 22529 22530 22531 22532 22533 22534 22535 22536 22537 22538 22539 22540 22541 22542 22543 22544 22545 22546 22547 22548 22549 22550 22551 22552 22553 22554 22555 22556 22557 22558 22559 22560 22561 22562 22563 22564 22565 22566 22567 22568 22569 22570 22571 22572 22573 22574 22575 22576 22577 22578 22579 22580 22581 22582 22583 22584 22585 22586 22587 22588 22589 22590 22591 22592 22593 22594 22595 22596 22597 22598 22599 22600 22601 22602 22603 22604 22605 22606 22607 22608 22609 22610 22611 22612 22613 22614 22615 22616 22617 22618 22619 22620 22621 22622 22623 22624 22625 22626 22627 22628 22629 22630 22631 22632 22633 22634 22635 22636 22637 22638 22639 22640 22641 22642 22643 22644 22645 22646 22647 22648 22649 22650 22651 22652 22653 22654 22655 22656 22657 22658 22659 22660 22661 22662 22663 22664 22665 22666 22667 22668 22669 22670 22671 22672 22673 22674 22675 22676 22677 22678 22679 22680 22681 22682 22683 22684 22685 22686 22687 22688 22689 22690 22691 22692 22693 22694 22695 22696 22697 22698 22699 22700 22701 22702 22703 22704 22705 22706 22707 22708 22709 22710 22711 22712 22713 22714 22715 22716 22717 22718 22719 22720 22721 22722 22723 22724 22725 22726 22727 22728 22729 22730 22731 22732 22733 22734 22735 22736 22737 22738 22739 22740 22741 22742 22743 22744 22745 22746 22747 22748 22749 22750 22751 22752 22753 22754 22755 22756 22757 22758 22759 22760 22761 22762 22763 22764 22765 22766 22767 22768 22769 22770 22771 22772 22773 22774 22775 22776 22777 22778 22779 22780 22781 22782 22783 22784 22785 22786 22787 22788 22789 22790 22791 22792 22793 22794 22795 22796 22797 22798 22799 22800 22801 22802 22803 22804 22805 22806 22807 22808 22809 22810 22811 22812 22813 22814 22815 22816 22817 22818 22819 22820 22821 22822 22823 22824 22825 22826 22827 22828 22829 22830 22831 22832 22833 22834 22835 22836 22837 22838 22839 22840 22841 22842 22843 22844 22845 22846 22847 22848 22849 22850 22851 22852 22853 22854 22855 22856 22857 22858 22859 22860 22861 22862 22863 22864 22865 22866 22867 22868 22869 22870 22871 22872 22873 22874 22875 22876 22877 22878 22879 22880 22881 22882 22883 22884 22885 22886 22887 22888 22889 22890 22891 22892 22893 22894 22895 22896 22897 22898 22899 22900 22901 22902 22903 22904 22905 22906 22907 22908 22909 22910 22911 22912 22913 22914 22915 22916 22917 22918 22919 22920 22921 22922 22923 22924 22925 22926 22927 22928 22929 22930 22931 22932 22933 22934 22935 22936 22937 22938 22939 22940 22941 22942 22943 22944 22945 22946 22947 22948 22949 22950 22951 22952 22953 22954 22955 22956 22957 22958 22959 22960 22961 22962 22963 22964 22965 22966 22967 22968 22969 22970 22971 22972 22973 22974 22975 22976 22977 22978 22979 22980 22981 22982 22983 22984 22985 22986 22987 22988 22989 22990 22991 22992 22993 22994 22995 22996 22997 22998 22999 23000 23001 23002 23003 23004 23005 23006 23007 23008 23009 23010 23011 23012 23013 23014 23015 23016 23017 23018 23019 23020 23021 23022 23023 23024 23025 23026 23027 23028 23029 23030 23031 23032 23033 23034 23035 23036 23037 23038 23039 23040 23041 23042 23043 23044 23045 23046 23047 23048 23049 23050 23051 23052 23053 23054 23055 23056 23057 23058 23059 23060 23061 23062 23063 23064 23065 23066 23067 23068 23069 23070 23071 23072 23073 23074 23075 23076 23077 23078 23079 23080 23081 23082 23083 23084 23085 23086 23087 23088 23089 23090 23091 23092 23093 23094 23095 23096 23097 23098 23099 23100 23101 23102 23103 23104 23105 23106 23107 23108 23109 23110 23111 23112 23113 23114 23115 23116 23117 23118 23119 23120 23121 23122 23123 23124 23125 23126 23127 23128 23129 23130 23131 23132 23133 23134 23135 23136 23137 23138 23139 23140 23141 23142 23143 23144 23145 23146 23147 23148 23149 23150 23151 23152 23153 23154 23155 23156 23157 23158 23159 23160 23161 23162 23163 23164 23165 23166 23167 23168 23169 23170 23171 23172 23173 23174 23175 23176 23177 23178 23179 23180 23181 23182 23183 23184 23185 23186 23187 23188 23189 23190 23191 23192 23193 23194 23195 23196 23197 23198 23199 23200 23201 23202 23203 23204 23205 23206 23207 23208 23209 23210 23211 23212 23213 23214 23215 23216 23217 23218 23219 23220 23221 23222 23223 23224 23225 23226 23227 23228 23229 23230 23231 23232 23233 23234 23235 23236 23237 23238 23239 23240 23241 23242 23243 23244 23245 23246 23247 23248 23249 23250 23251 23252 23253 23254 23255 23256 23257 23258 23259 23260 23261 23262 23263 23264 23265 23266 23267 23268 23269 23270 23271 23272 23273 23274 23275 23276 23277 23278 23279 23280 23281 23282 23283 23284 23285 23286 23287 23288 23289 23290 23291 23292 23293 23294 23295 23296 23297 23298 23299 23300 23301 23302 23303 23304 23305 23306 23307 23308 23309 23310 23311 23312 23313 23314 23315 23316 23317 23318 23319 23320 23321 23322 23323 23324 23325 23326 23327 23328 23329 23330 23331 23332 23333 23334 23335 23336 23337 23338 23339 23340 23341 23342 23343 23344 23345 23346 23347 23348 23349 23350 23351 23352 23353 23354 23355 23356 23357 23358 23359 23360 23361 23362 23363 23364 23365 23366 23367 23368 23369 23370 23371 23372 23373 23374 23375 23376 23377 23378 23379 23380 23381 23382 23383 23384 23385 23386 23387 23388 23389 23390 23391 23392 23393 23394 23395 23396 23397 23398 23399 23400 23401 23402 23403 23404 23405 23406 23407 23408 23409 23410 23411 23412 23413 23414 23415 23416 23417 23418 23419 23420 23421 23422 23423 23424 23425 23426 23427 23428 23429 23430 23431 23432 23433 23434 23435 23436 23437 23438 23439 23440 23441 23442 23443 23444 23445 23446 23447 23448 23449 23450 23451 23452 23453 23454 23455 23456 23457 23458 23459 23460 23461 23462 23463 23464 23465 23466 23467 23468 23469 23470 23471 23472 23473 23474 23475 23476 23477 23478 23479 23480 23481 23482 23483 23484 23485 23486 23487 23488 23489 23490 23491 23492 23493 23494 23495 23496 23497 23498 23499 23500 23501 23502 23503 23504 23505 23506 23507 23508 23509 23510 23511 23512 23513 23514 23515 23516 23517 23518 23519 23520 23521 23522 23523 23524 23525 23526 23527 23528 23529 23530 23531 23532 23533 23534 23535 23536 23537 23538 23539 23540 23541 23542 23543 23544 23545 23546 23547 23548 23549 23550 23551 23552 23553 23554 23555 23556 23557 23558 23559 23560 23561 23562 23563 23564 23565 23566 23567 23568 23569 23570 23571 23572 23573 23574 23575 23576 23577 23578 23579 23580 23581 23582 23583 23584 23585 23586 23587 23588 23589 23590 23591 23592 23593 23594 23595 23596 23597 23598 23599 23600 23601 23602 23603 23604 23605 23606 23607 23608 23609 23610 23611 23612 23613 23614 23615 23616 23617 23618 23619 23620 23621 23622 23623 23624 23625 23626 23627 23628 23629 23630 23631 23632 23633 23634 23635 23636 23637 23638 23639 23640 23641 23642 23643 23644 23645 23646 23647 23648 23649 23650 23651 23652 23653 23654 23655 23656 23657 23658 23659 23660 23661 23662 23663 23664 23665 23666 23667 23668 23669 23670 23671 23672 23673 23674 23675 23676 23677 23678 23679 23680 23681 23682 23683 23684 23685 23686 23687 23688 23689 23690 23691 23692 23693 23694 23695 23696 23697 23698 23699 23700 23701 23702 23703 23704 23705 23706 23707 23708 23709 23710 23711 23712 23713 23714 23715 23716 23717 23718 23719 23720 23721 23722 23723 23724 23725 23726 23727 23728 23729 23730 23731 23732 23733 23734 23735 23736 23737 23738 23739 23740 23741 23742 23743 23744 23745 23746 23747 23748 23749 23750 23751 23752 23753 23754 23755 23756 23757 23758 23759 23760 23761 23762 23763 23764 23765 23766 23767 23768 23769 23770 23771 23772 23773 23774 23775 23776 23777 23778 23779 23780 23781 23782 23783 23784 23785 23786 23787 23788 23789 23790 23791 23792 23793 23794 23795 23796 23797 23798 23799 23800 23801 23802 23803 23804 23805 23806 23807 23808 23809 23810 23811 23812 23813 23814 23815 23816 23817 23818 23819 23820 23821 23822 23823 23824 23825 23826 23827 23828 23829 23830 23831 23832 23833 23834 23835 23836 23837 23838 23839 23840 23841 23842 23843 23844 23845 23846 23847 23848 23849 23850 23851 23852 23853 23854 23855 23856 23857 23858 23859 23860 23861 23862 23863 23864 23865 23866 23867 23868 23869 23870 23871 23872 23873 23874 23875 23876 23877 23878 23879 23880 23881 23882 23883 23884 23885 23886 23887 23888 23889 23890 23891 23892 23893 23894 23895 23896 23897 23898 23899 23900 23901 23902 23903 23904 23905 23906 23907 23908 23909 23910 23911 23912 23913 23914 23915 23916 23917 23918 23919 23920 23921 23922 23923 23924 23925 23926 23927 23928 23929 23930 23931 23932 23933 23934 23935 23936 23937 23938 23939 23940 23941 23942 23943 23944 23945 23946 23947 23948 23949 23950 23951 23952 23953 23954 23955 23956 23957 23958 23959 23960 23961 23962 23963 23964 23965 23966 23967 23968 23969 23970 23971 23972 23973 23974 23975 23976 23977 23978 23979 23980 23981 23982 23983 23984 23985 23986 23987 23988 23989 23990 23991 23992 23993 23994 23995 23996 23997 23998 23999 24000 24001 24002 24003 24004 24005 24006 24007 24008 24009 24010 24011 24012 24013 24014 24015 24016 24017 24018 24019 24020 24021 24022 24023 24024 24025 24026 24027 24028 24029 24030 24031 24032 24033 24034 24035 24036 24037 24038 24039 24040 24041 24042 24043 24044 24045 24046 24047 24048 24049 24050 24051 24052 24053 24054 24055 24056 24057 24058 24059 24060 24061 24062 24063 24064 24065 24066 24067 24068 24069 24070 24071 24072 24073 24074 24075 24076 24077 24078 24079 24080 24081 24082 24083 24084 24085 24086 24087 24088 24089 24090 24091 24092 24093 24094 24095 24096 24097 24098 24099 24100 24101 24102 24103 24104 24105 24106 24107 24108 24109 24110 24111 24112 24113 24114 24115 24116 24117 24118 24119 24120 24121 24122 24123 24124 24125 24126 24127 24128 24129 24130 24131 24132 24133 24134 24135 24136 24137 24138 24139 24140 24141 24142 24143 24144 24145 24146 24147 24148 24149 24150 24151 24152 24153 24154 24155 24156 24157 24158 24159 24160 24161 24162 24163 24164 24165 24166 24167 24168 24169 24170 24171 24172 24173 24174 24175 24176 24177 24178 24179 24180 24181 24182 24183 24184 24185 24186 24187 24188 24189 24190 24191 24192 24193 24194 24195 24196 24197 24198 24199 24200 24201 24202 24203 24204 24205 24206 24207 24208 24209 24210 24211 24212 24213 24214 24215 24216 24217 24218 24219 24220 24221 24222 24223 24224 24225 24226 24227 24228 24229 24230 24231 24232 24233 24234 24235 24236 24237 24238 24239 24240 24241 24242 24243 24244 24245 24246 24247 24248 24249 24250 24251 24252 24253 24254 24255 24256 24257 24258 24259 24260 24261 24262 24263 24264 24265 24266 24267 24268 24269 24270 24271 24272 24273 24274 24275 24276 24277 24278 24279 24280 24281 24282 24283 24284 24285 24286 24287 24288 24289 24290 24291 24292 24293 24294 24295 24296 24297 24298 24299 24300 24301 24302 24303 24304 24305 24306 24307 24308 24309 24310 24311 24312 24313 24314 24315 24316 24317 24318 24319 24320 24321 24322 24323 24324 24325 24326 24327 24328 24329 24330 24331 24332 24333 24334 24335 24336 24337 24338 24339 24340 24341 24342 24343 24344 24345 24346 24347 24348 24349 24350 24351 24352 24353 24354 24355 24356 24357 24358 24359 24360 24361 24362 24363 24364 24365 24366 24367 24368 24369 24370 24371 24372 24373 24374 24375 24376 24377 24378 24379 24380 24381 24382 24383 24384 24385 24386 24387 24388 24389 24390 24391 24392 24393 24394 24395 24396 24397 24398 24399 24400 24401 24402 24403 24404 24405 24406 24407 24408 24409 24410 24411 24412 24413 24414 24415 24416 24417 24418 24419 24420 24421 24422 24423 24424 24425 24426 24427 24428 24429 24430 24431 24432 24433 24434 24435 24436 24437 24438 24439 24440 24441 24442 24443 24444 24445 24446 24447 24448 24449 24450 24451 24452 24453 24454 24455 24456 24457 24458 24459 24460 24461 24462 24463 24464 24465 24466 24467 24468 24469 24470 24471 24472 24473 24474 24475 24476 24477 24478 24479 24480 24481 24482 24483 24484 24485 24486 24487 24488 24489 24490 24491 24492 24493 24494 24495 24496 24497 24498 24499 24500 24501 24502 24503 24504 24505 24506 24507 24508 24509 24510 24511 24512 24513 24514 24515 24516 24517 24518 24519 24520 24521 24522 24523 24524 24525 24526 24527 24528 24529 24530 24531 24532 24533 24534 24535 24536 24537 24538 24539 24540 24541 24542 24543 24544 24545 24546 24547 24548 24549 24550 24551 24552 24553 24554 24555 24556 24557 24558 24559 24560 24561 24562 24563 24564 24565 24566 24567 24568 24569 24570 24571 24572 24573 24574 24575 24576 24577 24578 24579 24580 24581 24582 24583 24584 24585 24586 24587 24588 24589 24590 24591 24592 24593 24594 24595 24596 24597 24598 24599 24600 24601 24602 24603 24604 24605 24606 24607 24608 24609 24610 24611 24612 24613 24614 24615 24616 24617 24618 24619 24620 24621 24622 24623 24624 24625 24626 24627 24628 24629 24630 24631 24632 24633 24634 24635 24636 24637 24638 24639 24640 24641 24642 24643 24644 24645 24646 24647 24648 24649 24650 24651 24652 24653 24654 24655 24656 24657 24658 24659 24660 24661 24662 24663 24664 24665 24666 24667 24668 24669 24670 24671 24672 24673 24674 24675 24676 24677 24678 24679 24680 24681 24682 24683 24684 24685 24686 24687 24688 24689 24690 24691 24692 24693 24694 24695 24696 24697 24698 24699 24700 24701 24702 24703 24704 24705 24706 24707 24708 24709 24710 24711 24712 24713 24714 24715 24716 24717 24718 24719 24720 24721 24722 24723 24724 24725 24726 24727 24728 24729 24730 24731 24732 24733 24734 24735 24736 24737 24738 24739 24740 24741 24742 24743 24744 24745 24746 24747 24748 24749 24750 24751 24752 24753 24754 24755 24756 24757 24758 24759 24760 24761 24762 24763 24764 24765 24766 24767 24768 24769 24770 24771 24772 24773 24774 24775 24776 24777 24778 24779 24780 24781 24782 24783 24784 24785 24786 24787 24788 24789 24790 24791 24792 24793 24794 24795 24796 24797 24798 24799 24800 24801 24802 24803 24804 24805 24806 24807 24808 24809 24810 24811 24812 24813 24814 24815 24816 24817 24818 24819 24820 24821 24822 24823 24824 24825 24826 24827 24828 24829 24830 24831 24832 24833 24834 24835 24836 24837 24838 24839 24840 24841 24842 24843 24844 24845 24846 24847 24848 24849 24850 24851 24852 24853 24854 24855 24856 24857 24858 24859 24860 24861 24862 24863 24864 24865 24866 24867 24868 24869 24870 24871 24872 24873 24874 24875 24876 24877 24878 24879 24880 24881 24882 24883 24884 24885 24886 24887 24888 24889 24890 24891 24892 24893 24894 24895 24896 24897 24898 24899 24900 24901 24902 24903 24904 24905 24906 24907 24908 24909 24910 24911 24912 24913 24914 24915 24916 24917 24918 24919 24920 24921 24922 24923 24924 24925 24926 24927 24928 24929 24930 24931 24932 24933 24934 24935 24936 24937 24938 24939 24940 24941 24942 24943 24944 24945 24946 24947 24948 24949 24950 24951 24952 24953 24954 24955 24956 24957 24958 24959 24960 24961 24962 24963 24964 24965 24966 24967 24968 24969 24970 24971 24972 24973 24974 24975 24976 24977 24978 24979 24980 24981 24982 24983 24984 24985 24986 24987 24988 24989 24990 24991 24992 24993 24994 24995 24996 24997 24998 24999 25000 25001 25002 25003 25004 25005 25006 25007 25008 25009 25010 25011 25012 25013 25014 25015 25016 25017 25018 25019 25020 25021 25022 25023 25024 25025 25026 25027 25028 25029 25030 25031 25032 25033 25034 25035 25036 25037 25038 25039 25040 25041 25042 25043 25044 25045 25046 25047 25048 25049 25050 25051 25052 25053 25054 25055 25056 25057 25058 25059 25060 25061 25062 25063 25064 25065 25066 25067 25068 25069 25070 25071 25072 25073 25074 25075 25076 25077 25078 25079 25080 25081 25082 25083 25084 25085 25086 25087 25088 25089 25090 25091 25092 25093 25094 25095 25096 25097 25098 25099 25100 25101 25102 25103 25104 25105 25106 25107 25108 25109 25110 25111 25112 25113 25114 25115 25116 25117 25118 25119 25120 25121 25122 25123 25124 25125 25126 25127 25128 25129 25130 25131 25132 25133 25134 25135 25136 25137 25138 25139 25140 25141 25142 25143 25144 25145 25146 25147 25148 25149 25150 25151 25152 25153 25154 25155 25156 25157 25158 25159 25160 25161 25162 25163 25164 25165 25166 25167 25168 25169 25170 25171 25172 25173 25174 25175 25176 25177 25178 25179 25180 25181 25182 25183 25184 25185 25186 25187 25188 25189 25190 25191 25192 25193 25194 25195 25196 25197 25198 25199 25200 25201 25202 25203 25204 25205 25206 25207 25208 25209 25210 25211 25212 25213 25214 25215 25216 25217 25218 25219 25220 25221 25222 25223 25224 25225 25226 25227 25228 25229 25230 25231 25232 25233 25234 25235 25236 25237 25238 25239 25240 25241 25242 25243 25244 25245 25246 25247 25248 25249 25250 25251 25252 25253 25254 25255 25256 25257 25258 25259 25260 25261 25262 25263 25264 25265 25266 25267 25268 25269 25270 25271 25272 25273 25274 25275 25276 25277 25278 25279 25280 25281 25282 25283 25284 25285 25286 25287 25288 25289 25290 25291 25292 25293 25294 25295 25296 25297 25298 25299 25300 25301 25302 25303 25304 25305 25306 25307 25308 25309 25310 25311 25312 25313 25314 25315 25316 25317 25318 25319 25320 25321 25322 25323 25324 25325 25326 25327 25328 25329 25330 25331 25332 25333 25334 25335 25336 25337 25338 25339 25340 25341 25342 25343 25344 25345 25346 25347 25348 25349 25350 25351 25352 25353 25354 25355 25356 25357 25358 25359 25360 25361 25362 25363 25364 25365 25366 25367 25368 25369 25370 25371 25372 25373 25374 25375 25376 25377 25378 25379 25380 25381 25382 25383
|
c Copyright (C) 1988-2022 Free Software Foundation, Inc.
@c This is part of the GCC manual.
@c For copying conditions, see the file gcc.texi.
@node C Extensions
@chapter Extensions to the C Language Family
@cindex extensions, C language
@cindex C language extensions
@opindex pedantic
GNU C provides several language features not found in ISO standard C@.
(The @option{-pedantic} option directs GCC to print a warning message if
any of these features is used.) To test for the availability of these
features in conditional compilation, check for a predefined macro
@code{__GNUC__}, which is always defined under GCC@.
These extensions are available in C and Objective-C@. Most of them are
also available in C++. @xref{C++ Extensions,,Extensions to the
C++ Language}, for extensions that apply @emph{only} to C++.
Some features that are in ISO C99 but not C90 or C++ are also, as
extensions, accepted by GCC in C90 mode and in C++.
@menu
* Statement Exprs:: Putting statements and declarations inside expressions.
* Local Labels:: Labels local to a block.
* Labels as Values:: Getting pointers to labels, and computed gotos.
* Nested Functions:: Nested function in GNU C.
* Nonlocal Gotos:: Nonlocal gotos.
* Constructing Calls:: Dispatching a call to another function.
* Typeof:: @code{typeof}: referring to the type of an expression.
* Conditionals:: Omitting the middle operand of a @samp{?:} expression.
* __int128:: 128-bit integers---@code{__int128}.
* Long Long:: Double-word integers---@code{long long int}.
* Complex:: Data types for complex numbers.
* Floating Types:: Additional Floating Types.
* Half-Precision:: Half-Precision Floating Point.
* Decimal Float:: Decimal Floating Types.
* Hex Floats:: Hexadecimal floating-point constants.
* Fixed-Point:: Fixed-Point Types.
* Named Address Spaces::Named address spaces.
* Zero Length:: Zero-length arrays.
* Empty Structures:: Structures with no members.
* Variable Length:: Arrays whose length is computed at run time.
* Variadic Macros:: Macros with a variable number of arguments.
* Escaped Newlines:: Slightly looser rules for escaped newlines.
* Subscripting:: Any array can be subscripted, even if not an lvalue.
* Pointer Arith:: Arithmetic on @code{void}-pointers and function pointers.
* Variadic Pointer Args:: Pointer arguments to variadic functions.
* Pointers to Arrays:: Pointers to arrays with qualifiers work as expected.
* Initializers:: Non-constant initializers.
* Compound Literals:: Compound literals give structures, unions
or arrays as values.
* Designated Inits:: Labeling elements of initializers.
* Case Ranges:: `case 1 ... 9' and such.
* Cast to Union:: Casting to union type from any member of the union.
* Mixed Labels and Declarations:: Mixing declarations, labels and code.
* Function Attributes:: Declaring that functions have no side effects,
or that they can never return.
* Variable Attributes:: Specifying attributes of variables.
* Type Attributes:: Specifying attributes of types.
* Label Attributes:: Specifying attributes on labels.
* Enumerator Attributes:: Specifying attributes on enumerators.
* Statement Attributes:: Specifying attributes on statements.
* Attribute Syntax:: Formal syntax for attributes.
* Function Prototypes:: Prototype declarations and old-style definitions.
* C++ Comments:: C++ comments are recognized.
* Dollar Signs:: Dollar sign is allowed in identifiers.
* Character Escapes:: @samp{\e} stands for the character @key{ESC}.
* Alignment:: Determining the alignment of a function, type or variable.
* Inline:: Defining inline functions (as fast as macros).
* Volatiles:: What constitutes an access to a volatile object.
* Using Assembly Language with C:: Instructions and extensions for interfacing C with assembler.
* Alternate Keywords:: @code{__const__}, @code{__asm__}, etc., for header files.
* Incomplete Enums:: @code{enum foo;}, with details to follow.
* Function Names:: Printable strings which are the name of the current
function.
* Return Address:: Getting the return or frame address of a function.
* Vector Extensions:: Using vector instructions through built-in functions.
* Offsetof:: Special syntax for implementing @code{offsetof}.
* __sync Builtins:: Legacy built-in functions for atomic memory access.
* __atomic Builtins:: Atomic built-in functions with memory model.
* Integer Overflow Builtins:: Built-in functions to perform arithmetics and
arithmetic overflow checking.
* x86 specific memory model extensions for transactional memory:: x86 memory models.
* Object Size Checking:: Built-in functions for limited buffer overflow
checking.
* Other Builtins:: Other built-in functions.
* Target Builtins:: Built-in functions specific to particular targets.
* Target Format Checks:: Format checks specific to particular targets.
* Pragmas:: Pragmas accepted by GCC.
* Unnamed Fields:: Unnamed struct/union fields within structs/unions.
* Thread-Local:: Per-thread variables.
* Binary constants:: Binary constants using the @samp{0b} prefix.
@end menu
@node Statement Exprs
@section Statements and Declarations in Expressions
@cindex statements inside expressions
@cindex declarations inside expressions
@cindex expressions containing statements
@cindex macros, statements in expressions
@c the above section title wrapped and causes an underfull hbox.. i
@c changed it from "within" to "in". --mew 4feb93
A compound statement enclosed in parentheses may appear as an expression
in GNU C@. This allows you to use loops, switches, and local variables
within an expression.
Recall that a compound statement is a sequence of statements surrounded
by braces; in this construct, parentheses go around the braces. For
example:
@smallexample
(@{ int y = foo (); int z;
if (y > 0) z = y;
else z = - y;
z; @})
@end smallexample
@noindent
is a valid (though slightly more complex than necessary) expression
for the absolute value of @code{foo ()}.
The last thing in the compound statement should be an expression
followed by a semicolon; the value of this subexpression serves as the
value of the entire construct. (If you use some other kind of statement
last within the braces, the construct has type @code{void}, and thus
effectively no value.)
This feature is especially useful in making macro definitions ``safe'' (so
that they evaluate each operand exactly once). For example, the
``maximum'' function is commonly defined as a macro in standard C as
follows:
@smallexample
#define max(a,b) ((a) > (b) ? (a) : (b))
@end smallexample
@noindent
@cindex side effects, macro argument
But this definition computes either @var{a} or @var{b} twice, with bad
results if the operand has side effects. In GNU C, if you know the
type of the operands (here taken as @code{int}), you can avoid this
problem by defining the macro as follows:
@smallexample
#define maxint(a,b) \
(@{int _a = (a), _b = (b); _a > _b ? _a : _b; @})
@end smallexample
Note that introducing variable declarations (as we do in @code{maxint}) can
cause variable shadowing, so while this example using the @code{max} macro
produces correct results:
@smallexample
int _a = 1, _b = 2, c;
c = max (_a, _b);
@end smallexample
@noindent
this example using maxint will not:
@smallexample
int _a = 1, _b = 2, c;
c = maxint (_a, _b);
@end smallexample
This problem may for instance occur when we use this pattern recursively, like
so:
@smallexample
#define maxint3(a, b, c) \
(@{int _a = (a), _b = (b), _c = (c); maxint (maxint (_a, _b), _c); @})
@end smallexample
Embedded statements are not allowed in constant expressions, such as
the value of an enumeration constant, the width of a bit-field, or
the initial value of a static variable.
If you don't know the type of the operand, you can still do this, but you
must use @code{typeof} or @code{__auto_type} (@pxref{Typeof}).
In G++, the result value of a statement expression undergoes array and
function pointer decay, and is returned by value to the enclosing
expression. For instance, if @code{A} is a class, then
@smallexample
A a;
(@{a;@}).Foo ()
@end smallexample
@noindent
constructs a temporary @code{A} object to hold the result of the
statement expression, and that is used to invoke @code{Foo}.
Therefore the @code{this} pointer observed by @code{Foo} is not the
address of @code{a}.
In a statement expression, any temporaries created within a statement
are destroyed at that statement's end. This makes statement
expressions inside macros slightly different from function calls. In
the latter case temporaries introduced during argument evaluation are
destroyed at the end of the statement that includes the function
call. In the statement expression case they are destroyed during
the statement expression. For instance,
@smallexample
#define macro(a) (@{__typeof__(a) b = (a); b + 3; @})
template<typename T> T function(T a) @{ T b = a; return b + 3; @}
void foo ()
@{
macro (X ());
function (X ());
@}
@end smallexample
@noindent
has different places where temporaries are destroyed. For the
@code{macro} case, the temporary @code{X} is destroyed just after
the initialization of @code{b}. In the @code{function} case that
temporary is destroyed when the function returns.
These considerations mean that it is probably a bad idea to use
statement expressions of this form in header files that are designed to
work with C++. (Note that some versions of the GNU C Library contained
header files using statement expressions that lead to precisely this
bug.)
Jumping into a statement expression with @code{goto} or using a
@code{switch} statement outside the statement expression with a
@code{case} or @code{default} label inside the statement expression is
not permitted. Jumping into a statement expression with a computed
@code{goto} (@pxref{Labels as Values}) has undefined behavior.
Jumping out of a statement expression is permitted, but if the
statement expression is part of a larger expression then it is
unspecified which other subexpressions of that expression have been
evaluated except where the language definition requires certain
subexpressions to be evaluated before or after the statement
expression. A @code{break} or @code{continue} statement inside of
a statement expression used in @code{while}, @code{do} or @code{for}
loop or @code{switch} statement condition
or @code{for} statement init or increment expressions jumps to an
outer loop or @code{switch} statement if any (otherwise it is an error),
rather than to the loop or @code{switch} statement in whose condition
or init or increment expression it appears.
In any case, as with a function call, the evaluation of a
statement expression is not interleaved with the evaluation of other
parts of the containing expression. For example,
@smallexample
foo (), ((@{ bar1 (); goto a; 0; @}) + bar2 ()), baz();
@end smallexample
@noindent
calls @code{foo} and @code{bar1} and does not call @code{baz} but
may or may not call @code{bar2}. If @code{bar2} is called, it is
called after @code{foo} and before @code{bar1}.
@node Local Labels
@section Locally Declared Labels
@cindex local labels
@cindex macros, local labels
GCC allows you to declare @dfn{local labels} in any nested block
scope. A local label is just like an ordinary label, but you can
only reference it (with a @code{goto} statement, or by taking its
address) within the block in which it is declared.
A local label declaration looks like this:
@smallexample
__label__ @var{label};
@end smallexample
@noindent
or
@smallexample
__label__ @var{label1}, @var{label2}, /* @r{@dots{}} */;
@end smallexample
Local label declarations must come at the beginning of the block,
before any ordinary declarations or statements.
The label declaration defines the label @emph{name}, but does not define
the label itself. You must do this in the usual way, with
@code{@var{label}:}, within the statements of the statement expression.
The local label feature is useful for complex macros. If a macro
contains nested loops, a @code{goto} can be useful for breaking out of
them. However, an ordinary label whose scope is the whole function
cannot be used: if the macro can be expanded several times in one
function, the label is multiply defined in that function. A
local label avoids this problem. For example:
@smallexample
#define SEARCH(value, array, target) \
do @{ \
__label__ found; \
typeof (target) _SEARCH_target = (target); \
typeof (*(array)) *_SEARCH_array = (array); \
int i, j; \
int value; \
for (i = 0; i < max; i++) \
for (j = 0; j < max; j++) \
if (_SEARCH_array[i][j] == _SEARCH_target) \
@{ (value) = i; goto found; @} \
(value) = -1; \
found:; \
@} while (0)
@end smallexample
This could also be written using a statement expression:
@smallexample
#define SEARCH(array, target) \
(@{ \
__label__ found; \
typeof (target) _SEARCH_target = (target); \
typeof (*(array)) *_SEARCH_array = (array); \
int i, j; \
int value; \
for (i = 0; i < max; i++) \
for (j = 0; j < max; j++) \
if (_SEARCH_array[i][j] == _SEARCH_target) \
@{ value = i; goto found; @} \
value = -1; \
found: \
value; \
@})
@end smallexample
Local label declarations also make the labels they declare visible to
nested functions, if there are any. @xref{Nested Functions}, for details.
@node Labels as Values
@section Labels as Values
@cindex labels as values
@cindex computed gotos
@cindex goto with computed label
@cindex address of a label
You can get the address of a label defined in the current function
(or a containing function) with the unary operator @samp{&&}. The
value has type @code{void *}. This value is a constant and can be used
wherever a constant of that type is valid. For example:
@smallexample
void *ptr;
/* @r{@dots{}} */
ptr = &&foo;
@end smallexample
To use these values, you need to be able to jump to one. This is done
with the computed goto statement@footnote{The analogous feature in
Fortran is called an assigned goto, but that name seems inappropriate in
C, where one can do more than simply store label addresses in label
variables.}, @code{goto *@var{exp};}. For example,
@smallexample
goto *ptr;
@end smallexample
@noindent
Any expression of type @code{void *} is allowed.
One way of using these constants is in initializing a static array that
serves as a jump table:
@smallexample
static void *array[] = @{ &&foo, &&bar, &&hack @};
@end smallexample
@noindent
Then you can select a label with indexing, like this:
@smallexample
goto *array[i];
@end smallexample
@noindent
Note that this does not check whether the subscript is in bounds---array
indexing in C never does that.
Such an array of label values serves a purpose much like that of the
@code{switch} statement. The @code{switch} statement is cleaner, so
use that rather than an array unless the problem does not fit a
@code{switch} statement very well.
Another use of label values is in an interpreter for threaded code.
The labels within the interpreter function can be stored in the
threaded code for super-fast dispatching.
You may not use this mechanism to jump to code in a different function.
If you do that, totally unpredictable things happen. The best way to
avoid this is to store the label address only in automatic variables and
never pass it as an argument.
An alternate way to write the above example is
@smallexample
static const int array[] = @{ &&foo - &&foo, &&bar - &&foo,
&&hack - &&foo @};
goto *(&&foo + array[i]);
@end smallexample
@noindent
This is more friendly to code living in shared libraries, as it reduces
the number of dynamic relocations that are needed, and by consequence,
allows the data to be read-only.
This alternative with label differences is not supported for the AVR target,
please use the first approach for AVR programs.
The @code{&&foo} expressions for the same label might have different
values if the containing function is inlined or cloned. If a program
relies on them being always the same,
@code{__attribute__((__noinline__,__noclone__))} should be used to
prevent inlining and cloning. If @code{&&foo} is used in a static
variable initializer, inlining and cloning is forbidden.
@node Nested Functions
@section Nested Functions
@cindex nested functions
@cindex downward funargs
@cindex thunks
A @dfn{nested function} is a function defined inside another function.
Nested functions are supported as an extension in GNU C, but are not
supported by GNU C++.
The nested function's name is local to the block where it is defined.
For example, here we define a nested function named @code{square}, and
call it twice:
@smallexample
@group
foo (double a, double b)
@{
double square (double z) @{ return z * z; @}
return square (a) + square (b);
@}
@end group
@end smallexample
The nested function can access all the variables of the containing
function that are visible at the point of its definition. This is
called @dfn{lexical scoping}. For example, here we show a nested
function which uses an inherited variable named @code{offset}:
@smallexample
@group
bar (int *array, int offset, int size)
@{
int access (int *array, int index)
@{ return array[index + offset]; @}
int i;
/* @r{@dots{}} */
for (i = 0; i < size; i++)
/* @r{@dots{}} */ access (array, i) /* @r{@dots{}} */
@}
@end group
@end smallexample
Nested function definitions are permitted within functions in the places
where variable definitions are allowed; that is, in any block, mixed
with the other declarations and statements in the block.
It is possible to call the nested function from outside the scope of its
name by storing its address or passing the address to another function:
@smallexample
hack (int *array, int size)
@{
void store (int index, int value)
@{ array[index] = value; @}
intermediate (store, size);
@}
@end smallexample
Here, the function @code{intermediate} receives the address of
@code{store} as an argument. If @code{intermediate} calls @code{store},
the arguments given to @code{store} are used to store into @code{array}.
But this technique works only so long as the containing function
(@code{hack}, in this example) does not exit.
If you try to call the nested function through its address after the
containing function exits, all hell breaks loose. If you try
to call it after a containing scope level exits, and if it refers
to some of the variables that are no longer in scope, you may be lucky,
but it's not wise to take the risk. If, however, the nested function
does not refer to anything that has gone out of scope, you should be
safe.
GCC implements taking the address of a nested function using a technique
called @dfn{trampolines}. This technique was described in
@cite{Lexical Closures for C++} (Thomas M. Breuel, USENIX
C++ Conference Proceedings, October 17-21, 1988).
A nested function can jump to a label inherited from a containing
function, provided the label is explicitly declared in the containing
function (@pxref{Local Labels}). Such a jump returns instantly to the
containing function, exiting the nested function that did the
@code{goto} and any intermediate functions as well. Here is an example:
@smallexample
@group
bar (int *array, int offset, int size)
@{
__label__ failure;
int access (int *array, int index)
@{
if (index > size)
goto failure;
return array[index + offset];
@}
int i;
/* @r{@dots{}} */
for (i = 0; i < size; i++)
/* @r{@dots{}} */ access (array, i) /* @r{@dots{}} */
/* @r{@dots{}} */
return 0;
/* @r{Control comes here from @code{access}
if it detects an error.} */
failure:
return -1;
@}
@end group
@end smallexample
A nested function always has no linkage. Declaring one with
@code{extern} or @code{static} is erroneous. If you need to declare the nested function
before its definition, use @code{auto} (which is otherwise meaningless
for function declarations).
@smallexample
bar (int *array, int offset, int size)
@{
__label__ failure;
auto int access (int *, int);
/* @r{@dots{}} */
int access (int *array, int index)
@{
if (index > size)
goto failure;
return array[index + offset];
@}
/* @r{@dots{}} */
@}
@end smallexample
@node Nonlocal Gotos
@section Nonlocal Gotos
@cindex nonlocal gotos
GCC provides the built-in functions @code{__builtin_setjmp} and
@code{__builtin_longjmp} which are similar to, but not interchangeable
with, the C library functions @code{setjmp} and @code{longjmp}.
The built-in versions are used internally by GCC's libraries
to implement exception handling on some targets. You should use the
standard C library functions declared in @code{<setjmp.h>} in user code
instead of the builtins.
The built-in versions of these functions use GCC's normal
mechanisms to save and restore registers using the stack on function
entry and exit. The jump buffer argument @var{buf} holds only the
information needed to restore the stack frame, rather than the entire
set of saved register values.
An important caveat is that GCC arranges to save and restore only
those registers known to the specific architecture variant being
compiled for. This can make @code{__builtin_setjmp} and
@code{__builtin_longjmp} more efficient than their library
counterparts in some cases, but it can also cause incorrect and
mysterious behavior when mixing with code that uses the full register
set.
You should declare the jump buffer argument @var{buf} to the
built-in functions as:
@smallexample
#include <stdint.h>
intptr_t @var{buf}[5];
@end smallexample
@deftypefn {Built-in Function} {int} __builtin_setjmp (intptr_t *@var{buf})
This function saves the current stack context in @var{buf}.
@code{__builtin_setjmp} returns 0 when returning directly,
and 1 when returning from @code{__builtin_longjmp} using the same
@var{buf}.
@end deftypefn
@deftypefn {Built-in Function} {void} __builtin_longjmp (intptr_t *@var{buf}, int @var{val})
This function restores the stack context in @var{buf},
saved by a previous call to @code{__builtin_setjmp}. After
@code{__builtin_longjmp} is finished, the program resumes execution as
if the matching @code{__builtin_setjmp} returns the value @var{val},
which must be 1.
Because @code{__builtin_longjmp} depends on the function return
mechanism to restore the stack context, it cannot be called
from the same function calling @code{__builtin_setjmp} to
initialize @var{buf}. It can only be called from a function called
(directly or indirectly) from the function calling @code{__builtin_setjmp}.
@end deftypefn
@node Constructing Calls
@section Constructing Function Calls
@cindex constructing calls
@cindex forwarding calls
Using the built-in functions described below, you can record
the arguments a function received, and call another function
with the same arguments, without knowing the number or types
of the arguments.
You can also record the return value of that function call,
and later return that value, without knowing what data type
the function tried to return (as long as your caller expects
that data type).
However, these built-in functions may interact badly with some
sophisticated features or other extensions of the language. It
is, therefore, not recommended to use them outside very simple
functions acting as mere forwarders for their arguments.
@deftypefn {Built-in Function} {void *} __builtin_apply_args ()
This built-in function returns a pointer to data
describing how to perform a call with the same arguments as are passed
to the current function.
The function saves the arg pointer register, structure value address,
and all registers that might be used to pass arguments to a function
into a block of memory allocated on the stack. Then it returns the
address of that block.
@end deftypefn
@deftypefn {Built-in Function} {void *} __builtin_apply (void (*@var{function})(), void *@var{arguments}, size_t @var{size})
This built-in function invokes @var{function}
with a copy of the parameters described by @var{arguments}
and @var{size}.
The value of @var{arguments} should be the value returned by
@code{__builtin_apply_args}. The argument @var{size} specifies the size
of the stack argument data, in bytes.
This function returns a pointer to data describing
how to return whatever value is returned by @var{function}. The data
is saved in a block of memory allocated on the stack.
It is not always simple to compute the proper value for @var{size}. The
value is used by @code{__builtin_apply} to compute the amount of data
that should be pushed on the stack and copied from the incoming argument
area.
@end deftypefn
@deftypefn {Built-in Function} {void} __builtin_return (void *@var{result})
This built-in function returns the value described by @var{result} from
the containing function. You should specify, for @var{result}, a value
returned by @code{__builtin_apply}.
@end deftypefn
@deftypefn {Built-in Function} {} __builtin_va_arg_pack ()
This built-in function represents all anonymous arguments of an inline
function. It can be used only in inline functions that are always
inlined, never compiled as a separate function, such as those using
@code{__attribute__ ((__always_inline__))} or
@code{__attribute__ ((__gnu_inline__))} extern inline functions.
It must be only passed as last argument to some other function
with variable arguments. This is useful for writing small wrapper
inlines for variable argument functions, when using preprocessor
macros is undesirable. For example:
@smallexample
extern int myprintf (FILE *f, const char *format, ...);
extern inline __attribute__ ((__gnu_inline__)) int
myprintf (FILE *f, const char *format, ...)
@{
int r = fprintf (f, "myprintf: ");
if (r < 0)
return r;
int s = fprintf (f, format, __builtin_va_arg_pack ());
if (s < 0)
return s;
return r + s;
@}
@end smallexample
@end deftypefn
@deftypefn {Built-in Function} {size_t} __builtin_va_arg_pack_len ()
This built-in function returns the number of anonymous arguments of
an inline function. It can be used only in inline functions that
are always inlined, never compiled as a separate function, such
as those using @code{__attribute__ ((__always_inline__))} or
@code{__attribute__ ((__gnu_inline__))} extern inline functions.
For example following does link- or run-time checking of open
arguments for optimized code:
@smallexample
#ifdef __OPTIMIZE__
extern inline __attribute__((__gnu_inline__)) int
myopen (const char *path, int oflag, ...)
@{
if (__builtin_va_arg_pack_len () > 1)
warn_open_too_many_arguments ();
if (__builtin_constant_p (oflag))
@{
if ((oflag & O_CREAT) != 0 && __builtin_va_arg_pack_len () < 1)
@{
warn_open_missing_mode ();
return __open_2 (path, oflag);
@}
return open (path, oflag, __builtin_va_arg_pack ());
@}
if (__builtin_va_arg_pack_len () < 1)
return __open_2 (path, oflag);
return open (path, oflag, __builtin_va_arg_pack ());
@}
#endif
@end smallexample
@end deftypefn
@node Typeof
@section Referring to a Type with @code{typeof}
@findex typeof
@findex sizeof
@cindex macros, types of arguments
Another way to refer to the type of an expression is with @code{typeof}.
The syntax of using of this keyword looks like @code{sizeof}, but the
construct acts semantically like a type name defined with @code{typedef}.
There are two ways of writing the argument to @code{typeof}: with an
expression or with a type. Here is an example with an expression:
@smallexample
typeof (x[0](1))
@end smallexample
@noindent
This assumes that @code{x} is an array of pointers to functions;
the type described is that of the values of the functions.
Here is an example with a typename as the argument:
@smallexample
typeof (int *)
@end smallexample
@noindent
Here the type described is that of pointers to @code{int}.
If you are writing a header file that must work when included in ISO C
programs, write @code{__typeof__} instead of @code{typeof}.
@xref{Alternate Keywords}.
A @code{typeof} construct can be used anywhere a typedef name can be
used. For example, you can use it in a declaration, in a cast, or inside
of @code{sizeof} or @code{typeof}.
The operand of @code{typeof} is evaluated for its side effects if and
only if it is an expression of variably modified type or the name of
such a type.
@code{typeof} is often useful in conjunction with
statement expressions (@pxref{Statement Exprs}).
Here is how the two together can
be used to define a safe ``maximum'' macro which operates on any
arithmetic type and evaluates each of its arguments exactly once:
@smallexample
#define max(a,b) \
(@{ typeof (a) _a = (a); \
typeof (b) _b = (b); \
_a > _b ? _a : _b; @})
@end smallexample
@cindex underscores in variables in macros
@cindex @samp{_} in variables in macros
@cindex local variables in macros
@cindex variables, local, in macros
@cindex macros, local variables in
The reason for using names that start with underscores for the local
variables is to avoid conflicts with variable names that occur within the
expressions that are substituted for @code{a} and @code{b}. Eventually we
hope to design a new form of declaration syntax that allows you to declare
variables whose scopes start only after their initializers; this will be a
more reliable way to prevent such conflicts.
@noindent
Some more examples of the use of @code{typeof}:
@itemize @bullet
@item
This declares @code{y} with the type of what @code{x} points to.
@smallexample
typeof (*x) y;
@end smallexample
@item
This declares @code{y} as an array of such values.
@smallexample
typeof (*x) y[4];
@end smallexample
@item
This declares @code{y} as an array of pointers to characters:
@smallexample
typeof (typeof (char *)[4]) y;
@end smallexample
@noindent
It is equivalent to the following traditional C declaration:
@smallexample
char *y[4];
@end smallexample
To see the meaning of the declaration using @code{typeof}, and why it
might be a useful way to write, rewrite it with these macros:
@smallexample
#define pointer(T) typeof(T *)
#define array(T, N) typeof(T [N])
@end smallexample
@noindent
Now the declaration can be rewritten this way:
@smallexample
array (pointer (char), 4) y;
@end smallexample
@noindent
Thus, @code{array (pointer (char), 4)} is the type of arrays of 4
pointers to @code{char}.
@end itemize
In GNU C, but not GNU C++, you may also declare the type of a variable
as @code{__auto_type}. In that case, the declaration must declare
only one variable, whose declarator must just be an identifier, the
declaration must be initialized, and the type of the variable is
determined by the initializer; the name of the variable is not in
scope until after the initializer. (In C++, you should use C++11
@code{auto} for this purpose.) Using @code{__auto_type}, the
``maximum'' macro above could be written as:
@smallexample
#define max(a,b) \
(@{ __auto_type _a = (a); \
__auto_type _b = (b); \
_a > _b ? _a : _b; @})
@end smallexample
Using @code{__auto_type} instead of @code{typeof} has two advantages:
@itemize @bullet
@item Each argument to the macro appears only once in the expansion of
the macro. This prevents the size of the macro expansion growing
exponentially when calls to such macros are nested inside arguments of
such macros.
@item If the argument to the macro has variably modified type, it is
evaluated only once when using @code{__auto_type}, but twice if
@code{typeof} is used.
@end itemize
@node Conditionals
@section Conditionals with Omitted Operands
@cindex conditional expressions, extensions
@cindex omitted middle-operands
@cindex middle-operands, omitted
@cindex extensions, @code{?:}
@cindex @code{?:} extensions
The middle operand in a conditional expression may be omitted. Then
if the first operand is nonzero, its value is the value of the conditional
expression.
Therefore, the expression
@smallexample
x ? : y
@end smallexample
@noindent
has the value of @code{x} if that is nonzero; otherwise, the value of
@code{y}.
This example is perfectly equivalent to
@smallexample
x ? x : y
@end smallexample
@cindex side effect in @code{?:}
@cindex @code{?:} side effect
@noindent
In this simple case, the ability to omit the middle operand is not
especially useful. When it becomes useful is when the first operand does,
or may (if it is a macro argument), contain a side effect. Then repeating
the operand in the middle would perform the side effect twice. Omitting
the middle operand uses the value already computed without the undesirable
effects of recomputing it.
@node __int128
@section 128-bit Integers
@cindex @code{__int128} data types
As an extension the integer scalar type @code{__int128} is supported for
targets which have an integer mode wide enough to hold 128 bits.
Simply write @code{__int128} for a signed 128-bit integer, or
@code{unsigned __int128} for an unsigned 128-bit integer. There is no
support in GCC for expressing an integer constant of type @code{__int128}
for targets with @code{long long} integer less than 128 bits wide.
@node Long Long
@section Double-Word Integers
@cindex @code{long long} data types
@cindex double-word arithmetic
@cindex multiprecision arithmetic
@cindex @code{LL} integer suffix
@cindex @code{ULL} integer suffix
ISO C99 and ISO C++11 support data types for integers that are at least
64 bits wide, and as an extension GCC supports them in C90 and C++98 modes.
Simply write @code{long long int} for a signed integer, or
@code{unsigned long long int} for an unsigned integer. To make an
integer constant of type @code{long long int}, add the suffix @samp{LL}
to the integer. To make an integer constant of type @code{unsigned long
long int}, add the suffix @samp{ULL} to the integer.
You can use these types in arithmetic like any other integer types.
Addition, subtraction, and bitwise boolean operations on these types
are open-coded on all types of machines. Multiplication is open-coded
if the machine supports a fullword-to-doubleword widening multiply
instruction. Division and shifts are open-coded only on machines that
provide special support. The operations that are not open-coded use
special library routines that come with GCC@.
There may be pitfalls when you use @code{long long} types for function
arguments without function prototypes. If a function
expects type @code{int} for its argument, and you pass a value of type
@code{long long int}, confusion results because the caller and the
subroutine disagree about the number of bytes for the argument.
Likewise, if the function expects @code{long long int} and you pass
@code{int}. The best way to avoid such problems is to use prototypes.
@node Complex
@section Complex Numbers
@cindex complex numbers
@cindex @code{_Complex} keyword
@cindex @code{__complex__} keyword
ISO C99 supports complex floating data types, and as an extension GCC
supports them in C90 mode and in C++. GCC also supports complex integer data
types which are not part of ISO C99. You can declare complex types
using the keyword @code{_Complex}. As an extension, the older GNU
keyword @code{__complex__} is also supported.
For example, @samp{_Complex double x;} declares @code{x} as a
variable whose real part and imaginary part are both of type
@code{double}. @samp{_Complex short int y;} declares @code{y} to
have real and imaginary parts of type @code{short int}; this is not
likely to be useful, but it shows that the set of complex types is
complete.
To write a constant with a complex data type, use the suffix @samp{i} or
@samp{j} (either one; they are equivalent). For example, @code{2.5fi}
has type @code{_Complex float} and @code{3i} has type
@code{_Complex int}. Such a constant always has a pure imaginary
value, but you can form any complex value you like by adding one to a
real constant. This is a GNU extension; if you have an ISO C99
conforming C library (such as the GNU C Library), and want to construct complex
constants of floating type, you should include @code{<complex.h>} and
use the macros @code{I} or @code{_Complex_I} instead.
The ISO C++14 library also defines the @samp{i} suffix, so C++14 code
that includes the @samp{<complex>} header cannot use @samp{i} for the
GNU extension. The @samp{j} suffix still has the GNU meaning.
GCC can handle both implicit and explicit casts between the @code{_Complex}
types and other @code{_Complex} types as casting both the real and imaginary
parts to the scalar type.
GCC can handle implicit and explicit casts from a scalar type to a @code{_Complex}
type and where the imaginary part will be considered zero.
The C front-end can handle implicit and explicit casts from a @code{_Complex} type
to a scalar type where the imaginary part will be ignored. In C++ code, this cast
is considered illformed and G++ will error out.
GCC provides a built-in function @code{__builtin_complex} will can be used to
construct a complex value.
@cindex @code{__real__} keyword
@cindex @code{__imag__} keyword
GCC has a few extensions which can be used to extract the real
and the imaginary part of the complex-valued expression. Note
these expressions are lvalues if the @var{exp} is an lvalue.
These expressions operands have the type of a complex type
which might get prompoted to a complex type from a scalar type.
E.g. @code{__real__ (int)@var{x}} is the same as casting to
@code{_Complex int} before @code{__real__} is done.
@multitable @columnfractions .4 .6
@headitem Expression @tab Description
@item @code{__real__ @var{exp}}
@tab Extract the real part of @var{exp}.
@item @code{__imag__ @var{exp}}
@tab Extract the imaginary part of @var{exp}.
@end multitable
For values of floating point, you should use the ISO C99
functions, declared in @code{<complex.h>} and also provided as
built-in functions by GCC@.
@multitable @columnfractions .4 .2 .2 .2
@headitem Expression @tab float @tab double @tab long double
@item @code{__real__ @var{exp}}
@tab @code{crealf} @tab @code{creal} @tab @code{creall}
@item @code{__imag__ @var{exp}}
@tab @code{cimagf} @tab @code{cimag} @tab @code{cimagl}
@end multitable
@cindex complex conjugation
The operator @samp{~} performs complex conjugation when used on a value
with a complex type. This is a GNU extension; for values of
floating type, you should use the ISO C99 functions @code{conjf},
@code{conj} and @code{conjl}, declared in @code{<complex.h>} and also
provided as built-in functions by GCC@. Note unlike the @code{__real__}
and @code{__imag__} operators, this operator will not do an implicit cast
to the complex type because the @samp{~} is already a normal operator.
GCC can allocate complex automatic variables in a noncontiguous
fashion; it's even possible for the real part to be in a register while
the imaginary part is on the stack (or vice versa). Only the DWARF
debug info format can represent this, so use of DWARF is recommended.
If you are using the stabs debug info format, GCC describes a noncontiguous
complex variable as if it were two separate variables of noncomplex type.
If the variable's actual name is @code{foo}, the two fictitious
variables are named @code{foo$real} and @code{foo$imag}. You can
examine and set these two fictitious variables with your debugger.
@deftypefn {Built-in Function} @var{type} __builtin_complex (@var{real}, @var{imag})
The built-in function @code{__builtin_complex} is provided for use in
implementing the ISO C11 macros @code{CMPLXF}, @code{CMPLX} and
@code{CMPLXL}. @var{real} and @var{imag} must have the same type, a
real binary floating-point type, and the result has the corresponding
complex type with real and imaginary parts @var{real} and @var{imag}.
Unlike @samp{@var{real} + I * @var{imag}}, this works even when
infinities, NaNs and negative zeros are involved.
@end deftypefn
@node Floating Types
@section Additional Floating Types
@cindex additional floating types
@cindex @code{_Float@var{n}} data types
@cindex @code{_Float@var{n}x} data types
@cindex @code{__float80} data type
@cindex @code{__float128} data type
@cindex @code{__ibm128} data type
@cindex @code{w} floating point suffix
@cindex @code{q} floating point suffix
@cindex @code{W} floating point suffix
@cindex @code{Q} floating point suffix
ISO/IEC TS 18661-3:2015 defines C support for additional floating
types @code{_Float@var{n}} and @code{_Float@var{n}x}, and GCC supports
these type names; the set of types supported depends on the target
architecture. These types are not supported when compiling C++.
Constants with these types use suffixes @code{f@var{n}} or
@code{F@var{n}} and @code{f@var{n}x} or @code{F@var{n}x}. These type
names can be used together with @code{_Complex} to declare complex
types.
As an extension, GNU C and GNU C++ support additional floating
types, which are not supported by all targets.
@itemize @bullet
@item @code{__float128} is available on i386, x86_64, IA-64, and
hppa HP-UX, as well as on PowerPC GNU/Linux targets that enable
the vector scalar (VSX) instruction set. @code{__float128} supports
the 128-bit floating type. On i386, x86_64, PowerPC, and IA-64
other than HP-UX, @code{__float128} is an alias for @code{_Float128}.
On hppa and IA-64 HP-UX, @code{__float128} is an alias for @code{long
double}.
@item @code{__float80} is available on the i386, x86_64, and IA-64
targets, and supports the 80-bit (@code{XFmode}) floating type. It is
an alias for the type name @code{_Float64x} on these targets.
@item @code{__ibm128} is available on PowerPC targets, and provides
access to the IBM extended double format which is the current format
used for @code{long double}. When @code{long double} transitions to
@code{__float128} on PowerPC in the future, @code{__ibm128} will remain
for use in conversions between the two types.
@end itemize
Support for these additional types includes the arithmetic operators:
add, subtract, multiply, divide; unary arithmetic operators;
relational operators; equality operators; and conversions to and from
integer and other floating types. Use a suffix @samp{w} or @samp{W}
in a literal constant of type @code{__float80} or type
@code{__ibm128}. Use a suffix @samp{q} or @samp{Q} for @code{_float128}.
In order to use @code{_Float128}, @code{__float128}, and @code{__ibm128}
on PowerPC Linux systems, you must use the @option{-mfloat128} option. It is
expected in future versions of GCC that @code{_Float128} and @code{__float128}
will be enabled automatically.
The @code{_Float128} type is supported on all systems where
@code{__float128} is supported or where @code{long double} has the
IEEE binary128 format. The @code{_Float64x} type is supported on all
systems where @code{__float128} is supported. The @code{_Float32}
type is supported on all systems supporting IEEE binary32; the
@code{_Float64} and @code{_Float32x} types are supported on all systems
supporting IEEE binary64. The @code{_Float16} type is supported on AArch64
systems by default, on ARM systems when the IEEE format for 16-bit
floating-point types is selected with @option{-mfp16-format=ieee} and,
for both C and C++, on x86 systems with SSE2 enabled. GCC does not currently
support @code{_Float128x} on any systems.
On the i386, x86_64, IA-64, and HP-UX targets, you can declare complex
types using the corresponding internal complex type, @code{XCmode} for
@code{__float80} type and @code{TCmode} for @code{__float128} type:
@smallexample
typedef _Complex float __attribute__((mode(TC))) _Complex128;
typedef _Complex float __attribute__((mode(XC))) _Complex80;
@end smallexample
On the PowerPC Linux VSX targets, you can declare complex types using
the corresponding internal complex type, @code{KCmode} for
@code{__float128} type and @code{ICmode} for @code{__ibm128} type:
@smallexample
typedef _Complex float __attribute__((mode(KC))) _Complex_float128;
typedef _Complex float __attribute__((mode(IC))) _Complex_ibm128;
@end smallexample
@node Half-Precision
@section Half-Precision Floating Point
@cindex half-precision floating point
@cindex @code{__fp16} data type
@cindex @code{__Float16} data type
On ARM and AArch64 targets, GCC supports half-precision (16-bit) floating
point via the @code{__fp16} type defined in the ARM C Language Extensions.
On ARM systems, you must enable this type explicitly with the
@option{-mfp16-format} command-line option in order to use it.
On x86 targets with SSE2 enabled, GCC supports half-precision (16-bit)
floating point via the @code{_Float16} type. For C++, x86 provides a builtin
type named @code{_Float16} which contains same data format as C.
ARM targets support two incompatible representations for half-precision
floating-point values. You must choose one of the representations and
use it consistently in your program.
Specifying @option{-mfp16-format=ieee} selects the IEEE 754-2008 format.
This format can represent normalized values in the range of @math{2^{-14}} to 65504.
There are 11 bits of significand precision, approximately 3
decimal digits.
Specifying @option{-mfp16-format=alternative} selects the ARM
alternative format. This representation is similar to the IEEE
format, but does not support infinities or NaNs. Instead, the range
of exponents is extended, so that this format can represent normalized
values in the range of @math{2^{-14}} to 131008.
The GCC port for AArch64 only supports the IEEE 754-2008 format, and does
not require use of the @option{-mfp16-format} command-line option.
The @code{__fp16} type may only be used as an argument to intrinsics defined
in @code{<arm_fp16.h>}, or as a storage format. For purposes of
arithmetic and other operations, @code{__fp16} values in C or C++
expressions are automatically promoted to @code{float}.
The ARM target provides hardware support for conversions between
@code{__fp16} and @code{float} values
as an extension to VFP and NEON (Advanced SIMD), and from ARMv8-A provides
hardware support for conversions between @code{__fp16} and @code{double}
values. GCC generates code using these hardware instructions if you
compile with options to select an FPU that provides them;
for example, @option{-mfpu=neon-fp16 -mfloat-abi=softfp},
in addition to the @option{-mfp16-format} option to select
a half-precision format.
Language-level support for the @code{__fp16} data type is
independent of whether GCC generates code using hardware floating-point
instructions. In cases where hardware support is not specified, GCC
implements conversions between @code{__fp16} and other types as library
calls.
It is recommended that portable code use the @code{_Float16} type defined
by ISO/IEC TS 18661-3:2015. @xref{Floating Types}.
On x86 targets with SSE2 enabled, without @option{-mavx512fp16},
all operations will be emulated by software emulation and the @code{float}
instructions. The default behavior for @code{FLT_EVAL_METHOD} is to keep the
intermediate result of the operation as 32-bit precision. This may lead to
inconsistent behavior between software emulation and AVX512-FP16 instructions.
Using @option{-fexcess-precision=16} will force round back after each operation.
Using @option{-mavx512fp16} will generate AVX512-FP16 instructions instead of
software emulation. The default behavior of @code{FLT_EVAL_METHOD} is to round
after each operation. The same is true with @option{-fexcess-precision=standard}
and @option{-mfpmath=sse}. If there is no @option{-mfpmath=sse},
@option{-fexcess-precision=standard} alone does the same thing as before,
It is useful for code that does not have @code{_Float16} and runs on the x87
FPU.
@node Decimal Float
@section Decimal Floating Types
@cindex decimal floating types
@cindex @code{_Decimal32} data type
@cindex @code{_Decimal64} data type
@cindex @code{_Decimal128} data type
@cindex @code{df} integer suffix
@cindex @code{dd} integer suffix
@cindex @code{dl} integer suffix
@cindex @code{DF} integer suffix
@cindex @code{DD} integer suffix
@cindex @code{DL} integer suffix
As an extension, GNU C supports decimal floating types as
defined in the N1312 draft of ISO/IEC WDTR24732. Support for decimal
floating types in GCC will evolve as the draft technical report changes.
Calling conventions for any target might also change. Not all targets
support decimal floating types.
The decimal floating types are @code{_Decimal32}, @code{_Decimal64}, and
@code{_Decimal128}. They use a radix of ten, unlike the floating types
@code{float}, @code{double}, and @code{long double} whose radix is not
specified by the C standard but is usually two.
Support for decimal floating types includes the arithmetic operators
add, subtract, multiply, divide; unary arithmetic operators;
relational operators; equality operators; and conversions to and from
integer and other floating types. Use a suffix @samp{df} or
@samp{DF} in a literal constant of type @code{_Decimal32}, @samp{dd}
or @samp{DD} for @code{_Decimal64}, and @samp{dl} or @samp{DL} for
@code{_Decimal128}.
GCC support of decimal float as specified by the draft technical report
is incomplete:
@itemize @bullet
@item
When the value of a decimal floating type cannot be represented in the
integer type to which it is being converted, the result is undefined
rather than the result value specified by the draft technical report.
@item
GCC does not provide the C library functionality associated with
@file{math.h}, @file{fenv.h}, @file{stdio.h}, @file{stdlib.h}, and
@file{wchar.h}, which must come from a separate C library implementation.
Because of this the GNU C compiler does not define macro
@code{__STDC_DEC_FP__} to indicate that the implementation conforms to
the technical report.
@end itemize
Types @code{_Decimal32}, @code{_Decimal64}, and @code{_Decimal128}
are supported by the DWARF debug information format.
@node Hex Floats
@section Hex Floats
@cindex hex floats
ISO C99 and ISO C++17 support floating-point numbers written not only in
the usual decimal notation, such as @code{1.55e1}, but also numbers such as
@code{0x1.fp3} written in hexadecimal format. As a GNU extension, GCC
supports this in C90 mode (except in some cases when strictly
conforming) and in C++98, C++11 and C++14 modes. In that format the
@samp{0x} hex introducer and the @samp{p} or @samp{P} exponent field are
mandatory. The exponent is a decimal number that indicates the power of
2 by which the significant part is multiplied. Thus @samp{0x1.f} is
@tex
$1 {15\over16}$,
@end tex
@ifnottex
1 15/16,
@end ifnottex
@samp{p3} multiplies it by 8, and the value of @code{0x1.fp3}
is the same as @code{1.55e1}.
Unlike for floating-point numbers in the decimal notation the exponent
is always required in the hexadecimal notation. Otherwise the compiler
would not be able to resolve the ambiguity of, e.g., @code{0x1.f}. This
could mean @code{1.0f} or @code{1.9375} since @samp{f} is also the
extension for floating-point constants of type @code{float}.
@node Fixed-Point
@section Fixed-Point Types
@cindex fixed-point types
@cindex @code{_Fract} data type
@cindex @code{_Accum} data type
@cindex @code{_Sat} data type
@cindex @code{hr} fixed-suffix
@cindex @code{r} fixed-suffix
@cindex @code{lr} fixed-suffix
@cindex @code{llr} fixed-suffix
@cindex @code{uhr} fixed-suffix
@cindex @code{ur} fixed-suffix
@cindex @code{ulr} fixed-suffix
@cindex @code{ullr} fixed-suffix
@cindex @code{hk} fixed-suffix
@cindex @code{k} fixed-suffix
@cindex @code{lk} fixed-suffix
@cindex @code{llk} fixed-suffix
@cindex @code{uhk} fixed-suffix
@cindex @code{uk} fixed-suffix
@cindex @code{ulk} fixed-suffix
@cindex @code{ullk} fixed-suffix
@cindex @code{HR} fixed-suffix
@cindex @code{R} fixed-suffix
@cindex @code{LR} fixed-suffix
@cindex @code{LLR} fixed-suffix
@cindex @code{UHR} fixed-suffix
@cindex @code{UR} fixed-suffix
@cindex @code{ULR} fixed-suffix
@cindex @code{ULLR} fixed-suffix
@cindex @code{HK} fixed-suffix
@cindex @code{K} fixed-suffix
@cindex @code{LK} fixed-suffix
@cindex @code{LLK} fixed-suffix
@cindex @code{UHK} fixed-suffix
@cindex @code{UK} fixed-suffix
@cindex @code{ULK} fixed-suffix
@cindex @code{ULLK} fixed-suffix
As an extension, GNU C supports fixed-point types as
defined in the N1169 draft of ISO/IEC DTR 18037. Support for fixed-point
types in GCC will evolve as the draft technical report changes.
Calling conventions for any target might also change. Not all targets
support fixed-point types.
The fixed-point types are
@code{short _Fract},
@code{_Fract},
@code{long _Fract},
@code{long long _Fract},
@code{unsigned short _Fract},
@code{unsigned _Fract},
@code{unsigned long _Fract},
@code{unsigned long long _Fract},
@code{_Sat short _Fract},
@code{_Sat _Fract},
@code{_Sat long _Fract},
@code{_Sat long long _Fract},
@code{_Sat unsigned short _Fract},
@code{_Sat unsigned _Fract},
@code{_Sat unsigned long _Fract},
@code{_Sat unsigned long long _Fract},
@code{short _Accum},
@code{_Accum},
@code{long _Accum},
@code{long long _Accum},
@code{unsigned short _Accum},
@code{unsigned _Accum},
@code{unsigned long _Accum},
@code{unsigned long long _Accum},
@code{_Sat short _Accum},
@code{_Sat _Accum},
@code{_Sat long _Accum},
@code{_Sat long long _Accum},
@code{_Sat unsigned short _Accum},
@code{_Sat unsigned _Accum},
@code{_Sat unsigned long _Accum},
@code{_Sat unsigned long long _Accum}.
Fixed-point data values contain fractional and optional integral parts.
The format of fixed-point data varies and depends on the target machine.
Support for fixed-point types includes:
@itemize @bullet
@item
prefix and postfix increment and decrement operators (@code{++}, @code{--})
@item
unary arithmetic operators (@code{+}, @code{-}, @code{!})
@item
binary arithmetic operators (@code{+}, @code{-}, @code{*}, @code{/})
@item
binary shift operators (@code{<<}, @code{>>})
@item
relational operators (@code{<}, @code{<=}, @code{>=}, @code{>})
@item
equality operators (@code{==}, @code{!=})
@item
assignment operators (@code{+=}, @code{-=}, @code{*=}, @code{/=},
@code{<<=}, @code{>>=})
@item
conversions to and from integer, floating-point, or fixed-point types
@end itemize
Use a suffix in a fixed-point literal constant:
@itemize
@item @samp{hr} or @samp{HR} for @code{short _Fract} and
@code{_Sat short _Fract}
@item @samp{r} or @samp{R} for @code{_Fract} and @code{_Sat _Fract}
@item @samp{lr} or @samp{LR} for @code{long _Fract} and
@code{_Sat long _Fract}
@item @samp{llr} or @samp{LLR} for @code{long long _Fract} and
@code{_Sat long long _Fract}
@item @samp{uhr} or @samp{UHR} for @code{unsigned short _Fract} and
@code{_Sat unsigned short _Fract}
@item @samp{ur} or @samp{UR} for @code{unsigned _Fract} and
@code{_Sat unsigned _Fract}
@item @samp{ulr} or @samp{ULR} for @code{unsigned long _Fract} and
@code{_Sat unsigned long _Fract}
@item @samp{ullr} or @samp{ULLR} for @code{unsigned long long _Fract}
and @code{_Sat unsigned long long _Fract}
@item @samp{hk} or @samp{HK} for @code{short _Accum} and
@code{_Sat short _Accum}
@item @samp{k} or @samp{K} for @code{_Accum} and @code{_Sat _Accum}
@item @samp{lk} or @samp{LK} for @code{long _Accum} and
@code{_Sat long _Accum}
@item @samp{llk} or @samp{LLK} for @code{long long _Accum} and
@code{_Sat long long _Accum}
@item @samp{uhk} or @samp{UHK} for @code{unsigned short _Accum} and
@code{_Sat unsigned short _Accum}
@item @samp{uk} or @samp{UK} for @code{unsigned _Accum} and
@code{_Sat unsigned _Accum}
@item @samp{ulk} or @samp{ULK} for @code{unsigned long _Accum} and
@code{_Sat unsigned long _Accum}
@item @samp{ullk} or @samp{ULLK} for @code{unsigned long long _Accum}
and @code{_Sat unsigned long long _Accum}
@end itemize
GCC support of fixed-point types as specified by the draft technical report
is incomplete:
@itemize @bullet
@item
Pragmas to control overflow and rounding behaviors are not implemented.
@end itemize
Fixed-point types are supported by the DWARF debug information format.
@node Named Address Spaces
@section Named Address Spaces
@cindex Named Address Spaces
As an extension, GNU C supports named address spaces as
defined in the N1275 draft of ISO/IEC DTR 18037. Support for named
address spaces in GCC will evolve as the draft technical report
changes. Calling conventions for any target might also change. At
present, only the AVR, M32C, PRU, RL78, and x86 targets support
address spaces other than the generic address space.
Address space identifiers may be used exactly like any other C type
qualifier (e.g., @code{const} or @code{volatile}). See the N1275
document for more details.
@anchor{AVR Named Address Spaces}
@subsection AVR Named Address Spaces
On the AVR target, there are several address spaces that can be used
in order to put read-only data into the flash memory and access that
data by means of the special instructions @code{LPM} or @code{ELPM}
needed to read from flash.
Devices belonging to @code{avrtiny} and @code{avrxmega3} can access
flash memory by means of @code{LD*} instructions because the flash
memory is mapped into the RAM address space. There is @emph{no need}
for language extensions like @code{__flash} or attribute
@ref{AVR Variable Attributes,,@code{progmem}}.
The default linker description files for these devices cater for that
feature and @code{.rodata} stays in flash: The compiler just generates
@code{LD*} instructions, and the linker script adds core specific
offsets to all @code{.rodata} symbols: @code{0x4000} in the case of
@code{avrtiny} and @code{0x8000} in the case of @code{avrxmega3}.
See @ref{AVR Options} for a list of respective devices.
For devices not in @code{avrtiny} or @code{avrxmega3},
any data including read-only data is located in RAM (the generic
address space) because flash memory is not visible in the RAM address
space. In order to locate read-only data in flash memory @emph{and}
to generate the right instructions to access this data without
using (inline) assembler code, special address spaces are needed.
@table @code
@item __flash
@cindex @code{__flash} AVR Named Address Spaces
The @code{__flash} qualifier locates data in the
@code{.progmem.data} section. Data is read using the @code{LPM}
instruction. Pointers to this address space are 16 bits wide.
@item __flash1
@itemx __flash2
@itemx __flash3
@itemx __flash4
@itemx __flash5
@cindex @code{__flash1} AVR Named Address Spaces
@cindex @code{__flash2} AVR Named Address Spaces
@cindex @code{__flash3} AVR Named Address Spaces
@cindex @code{__flash4} AVR Named Address Spaces
@cindex @code{__flash5} AVR Named Address Spaces
These are 16-bit address spaces locating data in section
@code{.progmem@var{N}.data} where @var{N} refers to
address space @code{__flash@var{N}}.
The compiler sets the @code{RAMPZ} segment register appropriately
before reading data by means of the @code{ELPM} instruction.
@item __memx
@cindex @code{__memx} AVR Named Address Spaces
This is a 24-bit address space that linearizes flash and RAM:
If the high bit of the address is set, data is read from
RAM using the lower two bytes as RAM address.
If the high bit of the address is clear, data is read from flash
with @code{RAMPZ} set according to the high byte of the address.
@xref{AVR Built-in Functions,,@code{__builtin_avr_flash_segment}}.
Objects in this address space are located in @code{.progmemx.data}.
@end table
@b{Example}
@smallexample
char my_read (const __flash char ** p)
@{
/* p is a pointer to RAM that points to a pointer to flash.
The first indirection of p reads that flash pointer
from RAM and the second indirection reads a char from this
flash address. */
return **p;
@}
/* Locate array[] in flash memory */
const __flash int array[] = @{ 3, 5, 7, 11, 13, 17, 19 @};
int i = 1;
int main (void)
@{
/* Return 17 by reading from flash memory */
return array[array[i]];
@}
@end smallexample
@noindent
For each named address space supported by avr-gcc there is an equally
named but uppercase built-in macro defined.
The purpose is to facilitate testing if respective address space
support is available or not:
@smallexample
#ifdef __FLASH
const __flash int var = 1;
int read_var (void)
@{
return var;
@}
#else
#include <avr/pgmspace.h> /* From AVR-LibC */
const int var PROGMEM = 1;
int read_var (void)
@{
return (int) pgm_read_word (&var);
@}
#endif /* __FLASH */
@end smallexample
@noindent
Notice that attribute @ref{AVR Variable Attributes,,@code{progmem}}
locates data in flash but
accesses to these data read from generic address space, i.e.@:
from RAM,
so that you need special accessors like @code{pgm_read_byte}
from @w{@uref{http://nongnu.org/avr-libc/user-manual/,AVR-LibC}}
together with attribute @code{progmem}.
@noindent
@b{Limitations and caveats}
@itemize
@item
Reading across the 64@tie{}KiB section boundary of
the @code{__flash} or @code{__flash@var{N}} address spaces
shows undefined behavior. The only address space that
supports reading across the 64@tie{}KiB flash segment boundaries is
@code{__memx}.
@item
If you use one of the @code{__flash@var{N}} address spaces
you must arrange your linker script to locate the
@code{.progmem@var{N}.data} sections according to your needs.
@item
Any data or pointers to the non-generic address spaces must
be qualified as @code{const}, i.e.@: as read-only data.
This still applies if the data in one of these address
spaces like software version number or calibration lookup table are intended to
be changed after load time by, say, a boot loader. In this case
the right qualification is @code{const} @code{volatile} so that the compiler
must not optimize away known values or insert them
as immediates into operands of instructions.
@item
The following code initializes a variable @code{pfoo}
located in static storage with a 24-bit address:
@smallexample
extern const __memx char foo;
const __memx void *pfoo = &foo;
@end smallexample
@item
On the reduced Tiny devices like ATtiny40, no address spaces are supported.
Just use vanilla C / C++ code without overhead as outlined above.
Attribute @code{progmem} is supported but works differently,
see @ref{AVR Variable Attributes}.
@end itemize
@subsection M32C Named Address Spaces
@cindex @code{__far} M32C Named Address Spaces
On the M32C target, with the R8C and M16C CPU variants, variables
qualified with @code{__far} are accessed using 32-bit addresses in
order to access memory beyond the first 64@tie{}Ki bytes. If
@code{__far} is used with the M32CM or M32C CPU variants, it has no
effect.
@subsection PRU Named Address Spaces
@cindex @code{__regio_symbol} PRU Named Address Spaces
On the PRU target, variables qualified with @code{__regio_symbol} are
aliases used to access the special I/O CPU registers. They must be
declared as @code{extern} because such variables will not be allocated in
any data memory. They must also be marked as @code{volatile}, and can
only be 32-bit integer types. The only names those variables can have
are @code{__R30} and @code{__R31}, representing respectively the
@code{R30} and @code{R31} special I/O CPU registers. Hence the following
example is the only valid usage of @code{__regio_symbol}:
@smallexample
extern volatile __regio_symbol uint32_t __R30;
extern volatile __regio_symbol uint32_t __R31;
@end smallexample
@subsection RL78 Named Address Spaces
@cindex @code{__far} RL78 Named Address Spaces
On the RL78 target, variables qualified with @code{__far} are accessed
with 32-bit pointers (20-bit addresses) rather than the default 16-bit
addresses. Non-far variables are assumed to appear in the topmost
64@tie{}KiB of the address space.
@subsection x86 Named Address Spaces
@cindex x86 named address spaces
On the x86 target, variables may be declared as being relative
to the @code{%fs} or @code{%gs} segments.
@table @code
@item __seg_fs
@itemx __seg_gs
@cindex @code{__seg_fs} x86 named address space
@cindex @code{__seg_gs} x86 named address space
The object is accessed with the respective segment override prefix.
The respective segment base must be set via some method specific to
the operating system. Rather than require an expensive system call
to retrieve the segment base, these address spaces are not considered
to be subspaces of the generic (flat) address space. This means that
explicit casts are required to convert pointers between these address
spaces and the generic address space. In practice the application
should cast to @code{uintptr_t} and apply the segment base offset
that it installed previously.
The preprocessor symbols @code{__SEG_FS} and @code{__SEG_GS} are
defined when these address spaces are supported.
@end table
@node Zero Length
@section Arrays of Length Zero
@cindex arrays of length zero
@cindex zero-length arrays
@cindex length-zero arrays
@cindex flexible array members
Declaring zero-length arrays is allowed in GNU C as an extension.
A zero-length array can be useful as the last element of a structure
that is really a header for a variable-length object:
@smallexample
struct line @{
int length;
char contents[0];
@};
struct line *thisline = (struct line *)
malloc (sizeof (struct line) + this_length);
thisline->length = this_length;
@end smallexample
Although the size of a zero-length array is zero, an array member of
this kind may increase the size of the enclosing type as a result of tail
padding. The offset of a zero-length array member from the beginning
of the enclosing structure is the same as the offset of an array with
one or more elements of the same type. The alignment of a zero-length
array is the same as the alignment of its elements.
Declaring zero-length arrays in other contexts, including as interior
members of structure objects or as non-member objects, is discouraged.
Accessing elements of zero-length arrays declared in such contexts is
undefined and may be diagnosed.
In the absence of the zero-length array extension, in ISO C90
the @code{contents} array in the example above would typically be declared
to have a single element. Unlike a zero-length array which only contributes
to the size of the enclosing structure for the purposes of alignment,
a one-element array always occupies at least as much space as a single
object of the type. Although using one-element arrays this way is
discouraged, GCC handles accesses to trailing one-element array members
analogously to zero-length arrays.
The preferred mechanism to declare variable-length types like
@code{struct line} above is the ISO C99 @dfn{flexible array member},
with slightly different syntax and semantics:
@itemize @bullet
@item
Flexible array members are written as @code{contents[]} without
the @code{0}.
@item
Flexible array members have incomplete type, and so the @code{sizeof}
operator may not be applied. As a quirk of the original implementation
of zero-length arrays, @code{sizeof} evaluates to zero.
@item
Flexible array members may only appear as the last member of a
@code{struct} that is otherwise non-empty.
@item
A structure containing a flexible array member, or a union containing
such a structure (possibly recursively), may not be a member of a
structure or an element of an array. (However, these uses are
permitted by GCC as extensions.)
@end itemize
Non-empty initialization of zero-length
arrays is treated like any case where there are more initializer
elements than the array holds, in that a suitable warning about ``excess
elements in array'' is given, and the excess elements (all of them, in
this case) are ignored.
GCC allows static initialization of flexible array members.
This is equivalent to defining a new structure containing the original
structure followed by an array of sufficient size to contain the data.
E.g.@: in the following, @code{f1} is constructed as if it were declared
like @code{f2}.
@smallexample
struct f1 @{
int x; int y[];
@} f1 = @{ 1, @{ 2, 3, 4 @} @};
struct f2 @{
struct f1 f1; int data[3];
@} f2 = @{ @{ 1 @}, @{ 2, 3, 4 @} @};
@end smallexample
@noindent
The convenience of this extension is that @code{f1} has the desired
type, eliminating the need to consistently refer to @code{f2.f1}.
This has symmetry with normal static arrays, in that an array of
unknown size is also written with @code{[]}.
Of course, this extension only makes sense if the extra data comes at
the end of a top-level object, as otherwise we would be overwriting
data at subsequent offsets. To avoid undue complication and confusion
with initialization of deeply nested arrays, we simply disallow any
non-empty initialization except when the structure is the top-level
object. For example:
@smallexample
struct foo @{ int x; int y[]; @};
struct bar @{ struct foo z; @};
struct foo a = @{ 1, @{ 2, 3, 4 @} @}; // @r{Valid.}
struct bar b = @{ @{ 1, @{ 2, 3, 4 @} @} @}; // @r{Invalid.}
struct bar c = @{ @{ 1, @{ @} @} @}; // @r{Valid.}
struct foo d[1] = @{ @{ 1, @{ 2, 3, 4 @} @} @}; // @r{Invalid.}
@end smallexample
@node Empty Structures
@section Structures with No Members
@cindex empty structures
@cindex zero-size structures
GCC permits a C structure to have no members:
@smallexample
struct empty @{
@};
@end smallexample
The structure has size zero. In C++, empty structures are part
of the language. G++ treats empty structures as if they had a single
member of type @code{char}.
@node Variable Length
@section Arrays of Variable Length
@cindex variable-length arrays
@cindex arrays of variable length
@cindex VLAs
Variable-length automatic arrays are allowed in ISO C99, and as an
extension GCC accepts them in C90 mode and in C++. These arrays are
declared like any other automatic arrays, but with a length that is not
a constant expression. The storage is allocated at the point of
declaration and deallocated when the block scope containing the declaration
exits. For
example:
@smallexample
FILE *
concat_fopen (char *s1, char *s2, char *mode)
@{
char str[strlen (s1) + strlen (s2) + 1];
strcpy (str, s1);
strcat (str, s2);
return fopen (str, mode);
@}
@end smallexample
@cindex scope of a variable length array
@cindex variable-length array scope
@cindex deallocating variable length arrays
Jumping or breaking out of the scope of the array name deallocates the
storage. Jumping into the scope is not allowed; you get an error
message for it.
@cindex variable-length array in a structure
As an extension, GCC accepts variable-length arrays as a member of
a structure or a union. For example:
@smallexample
void
foo (int n)
@{
struct S @{ int x[n]; @};
@}
@end smallexample
@cindex @code{alloca} vs variable-length arrays
You can use the function @code{alloca} to get an effect much like
variable-length arrays. The function @code{alloca} is available in
many other C implementations (but not in all). On the other hand,
variable-length arrays are more elegant.
There are other differences between these two methods. Space allocated
with @code{alloca} exists until the containing @emph{function} returns.
The space for a variable-length array is deallocated as soon as the array
name's scope ends, unless you also use @code{alloca} in this scope.
You can also use variable-length arrays as arguments to functions:
@smallexample
struct entry
tester (int len, char data[len][len])
@{
/* @r{@dots{}} */
@}
@end smallexample
The length of an array is computed once when the storage is allocated
and is remembered for the scope of the array in case you access it with
@code{sizeof}.
If you want to pass the array first and the length afterward, you can
use a forward declaration in the parameter list---another GNU extension.
@smallexample
struct entry
tester (int len; char data[len][len], int len)
@{
/* @r{@dots{}} */
@}
@end smallexample
@cindex parameter forward declaration
The @samp{int len} before the semicolon is a @dfn{parameter forward
declaration}, and it serves the purpose of making the name @code{len}
known when the declaration of @code{data} is parsed.
You can write any number of such parameter forward declarations in the
parameter list. They can be separated by commas or semicolons, but the
last one must end with a semicolon, which is followed by the ``real''
parameter declarations. Each forward declaration must match a ``real''
declaration in parameter name and data type. ISO C99 does not support
parameter forward declarations.
@node Variadic Macros
@section Macros with a Variable Number of Arguments.
@cindex variable number of arguments
@cindex macro with variable arguments
@cindex rest argument (in macro)
@cindex variadic macros
In the ISO C standard of 1999, a macro can be declared to accept a
variable number of arguments much as a function can. The syntax for
defining the macro is similar to that of a function. Here is an
example:
@smallexample
#define debug(format, ...) fprintf (stderr, format, __VA_ARGS__)
@end smallexample
@noindent
Here @samp{@dots{}} is a @dfn{variable argument}. In the invocation of
such a macro, it represents the zero or more tokens until the closing
parenthesis that ends the invocation, including any commas. This set of
tokens replaces the identifier @code{__VA_ARGS__} in the macro body
wherever it appears. See the CPP manual for more information.
GCC has long supported variadic macros, and used a different syntax that
allowed you to give a name to the variable arguments just like any other
argument. Here is an example:
@smallexample
#define debug(format, args...) fprintf (stderr, format, args)
@end smallexample
@noindent
This is in all ways equivalent to the ISO C example above, but arguably
more readable and descriptive.
GNU CPP has two further variadic macro extensions, and permits them to
be used with either of the above forms of macro definition.
In standard C, you are not allowed to leave the variable argument out
entirely; but you are allowed to pass an empty argument. For example,
this invocation is invalid in ISO C, because there is no comma after
the string:
@smallexample
debug ("A message")
@end smallexample
GNU CPP permits you to completely omit the variable arguments in this
way. In the above examples, the compiler would complain, though since
the expansion of the macro still has the extra comma after the format
string.
To help solve this problem, CPP behaves specially for variable arguments
used with the token paste operator, @samp{##}. If instead you write
@smallexample
#define debug(format, ...) fprintf (stderr, format, ## __VA_ARGS__)
@end smallexample
@noindent
and if the variable arguments are omitted or empty, the @samp{##}
operator causes the preprocessor to remove the comma before it. If you
do provide some variable arguments in your macro invocation, GNU CPP
does not complain about the paste operation and instead places the
variable arguments after the comma. Just like any other pasted macro
argument, these arguments are not macro expanded.
@node Escaped Newlines
@section Slightly Looser Rules for Escaped Newlines
@cindex escaped newlines
@cindex newlines (escaped)
The preprocessor treatment of escaped newlines is more relaxed
than that specified by the C90 standard, which requires the newline
to immediately follow a backslash.
GCC's implementation allows whitespace in the form
of spaces, horizontal and vertical tabs, and form feeds between the
backslash and the subsequent newline. The preprocessor issues a
warning, but treats it as a valid escaped newline and combines the two
lines to form a single logical line. This works within comments and
tokens, as well as between tokens. Comments are @emph{not} treated as
whitespace for the purposes of this relaxation, since they have not
yet been replaced with spaces.
@node Subscripting
@section Non-Lvalue Arrays May Have Subscripts
@cindex subscripting
@cindex arrays, non-lvalue
@cindex subscripting and function values
In ISO C99, arrays that are not lvalues still decay to pointers, and
may be subscripted, although they may not be modified or used after
the next sequence point and the unary @samp{&} operator may not be
applied to them. As an extension, GNU C allows such arrays to be
subscripted in C90 mode, though otherwise they do not decay to
pointers outside C99 mode. For example,
this is valid in GNU C though not valid in C90:
@smallexample
@group
struct foo @{int a[4];@};
struct foo f();
bar (int index)
@{
return f().a[index];
@}
@end group
@end smallexample
@node Pointer Arith
@section Arithmetic on @code{void}- and Function-Pointers
@cindex void pointers, arithmetic
@cindex void, size of pointer to
@cindex function pointers, arithmetic
@cindex function, size of pointer to
In GNU C, addition and subtraction operations are supported on pointers to
@code{void} and on pointers to functions. This is done by treating the
size of a @code{void} or of a function as 1.
A consequence of this is that @code{sizeof} is also allowed on @code{void}
and on function types, and returns 1.
@opindex Wpointer-arith
The option @option{-Wpointer-arith} requests a warning if these extensions
are used.
@node Variadic Pointer Args
@section Pointer Arguments in Variadic Functions
@cindex pointer arguments in variadic functions
@cindex variadic functions, pointer arguments
Standard C requires that pointer types used with @code{va_arg} in
functions with variable argument lists either must be compatible with
that of the actual argument, or that one type must be a pointer to
@code{void} and the other a pointer to a character type. GNU C
implements the POSIX XSI extension that additionally permits the use
of @code{va_arg} with a pointer type to receive arguments of any other
pointer type.
In particular, in GNU C @samp{va_arg (ap, void *)} can safely be used
to consume an argument of any pointer type.
@node Pointers to Arrays
@section Pointers to Arrays with Qualifiers Work as Expected
@cindex pointers to arrays
@cindex const qualifier
In GNU C, pointers to arrays with qualifiers work similar to pointers
to other qualified types. For example, a value of type @code{int (*)[5]}
can be used to initialize a variable of type @code{const int (*)[5]}.
These types are incompatible in ISO C because the @code{const} qualifier
is formally attached to the element type of the array and not the
array itself.
@smallexample
extern void
transpose (int N, int M, double out[M][N], const double in[N][M]);
double x[3][2];
double y[2][3];
@r{@dots{}}
transpose(3, 2, y, x);
@end smallexample
@node Initializers
@section Non-Constant Initializers
@cindex initializers, non-constant
@cindex non-constant initializers
As in standard C++ and ISO C99, the elements of an aggregate initializer for an
automatic variable are not required to be constant expressions in GNU C@.
Here is an example of an initializer with run-time varying elements:
@smallexample
foo (float f, float g)
@{
float beat_freqs[2] = @{ f-g, f+g @};
/* @r{@dots{}} */
@}
@end smallexample
@node Compound Literals
@section Compound Literals
@cindex constructor expressions
@cindex initializations in expressions
@cindex structures, constructor expression
@cindex expressions, constructor
@cindex compound literals
@c The GNU C name for what C99 calls compound literals was "constructor expressions".
A compound literal looks like a cast of a brace-enclosed aggregate
initializer list. Its value is an object of the type specified in
the cast, containing the elements specified in the initializer.
Unlike the result of a cast, a compound literal is an lvalue. ISO
C99 and later support compound literals. As an extension, GCC
supports compound literals also in C90 mode and in C++, although
as explained below, the C++ semantics are somewhat different.
Usually, the specified type of a compound literal is a structure. Assume
that @code{struct foo} and @code{structure} are declared as shown:
@smallexample
struct foo @{int a; char b[2];@} structure;
@end smallexample
@noindent
Here is an example of constructing a @code{struct foo} with a compound literal:
@smallexample
structure = ((struct foo) @{x + y, 'a', 0@});
@end smallexample
@noindent
This is equivalent to writing the following:
@smallexample
@{
struct foo temp = @{x + y, 'a', 0@};
structure = temp;
@}
@end smallexample
You can also construct an array, though this is dangerous in C++, as
explained below. If all the elements of the compound literal are
(made up of) simple constant expressions suitable for use in
initializers of objects of static storage duration, then the compound
literal can be coerced to a pointer to its first element and used in
such an initializer, as shown here:
@smallexample
char **foo = (char *[]) @{ "x", "y", "z" @};
@end smallexample
Compound literals for scalar types and union types are also allowed. In
the following example the variable @code{i} is initialized to the value
@code{2}, the result of incrementing the unnamed object created by
the compound literal.
@smallexample
int i = ++(int) @{ 1 @};
@end smallexample
As a GNU extension, GCC allows initialization of objects with static storage
duration by compound literals (which is not possible in ISO C99 because
the initializer is not a constant).
It is handled as if the object were initialized only with the brace-enclosed
list if the types of the compound literal and the object match.
The elements of the compound literal must be constant.
If the object being initialized has array type of unknown size, the size is
determined by the size of the compound literal.
@smallexample
static struct foo x = (struct foo) @{1, 'a', 'b'@};
static int y[] = (int []) @{1, 2, 3@};
static int z[] = (int [3]) @{1@};
@end smallexample
@noindent
The above lines are equivalent to the following:
@smallexample
static struct foo x = @{1, 'a', 'b'@};
static int y[] = @{1, 2, 3@};
static int z[] = @{1, 0, 0@};
@end smallexample
In C, a compound literal designates an unnamed object with static or
automatic storage duration. In C++, a compound literal designates a
temporary object that only lives until the end of its full-expression.
As a result, well-defined C code that takes the address of a subobject
of a compound literal can be undefined in C++, so G++ rejects
the conversion of a temporary array to a pointer. For instance, if
the array compound literal example above appeared inside a function,
any subsequent use of @code{foo} in C++ would have undefined behavior
because the lifetime of the array ends after the declaration of @code{foo}.
As an optimization, G++ sometimes gives array compound literals longer
lifetimes: when the array either appears outside a function or has
a @code{const}-qualified type. If @code{foo} and its initializer had
elements of type @code{char *const} rather than @code{char *}, or if
@code{foo} were a global variable, the array would have static storage
duration. But it is probably safest just to avoid the use of array
compound literals in C++ code.
@node Designated Inits
@section Designated Initializers
@cindex initializers with labeled elements
@cindex labeled elements in initializers
@cindex case labels in initializers
@cindex designated initializers
Standard C90 requires the elements of an initializer to appear in a fixed
order, the same as the order of the elements in the array or structure
being initialized.
In ISO C99 you can give the elements in any order, specifying the array
indices or structure field names they apply to, and GNU C allows this as
an extension in C90 mode as well. This extension is not
implemented in GNU C++.
To specify an array index, write
@samp{[@var{index}] =} before the element value. For example,
@smallexample
int a[6] = @{ [4] = 29, [2] = 15 @};
@end smallexample
@noindent
is equivalent to
@smallexample
int a[6] = @{ 0, 0, 15, 0, 29, 0 @};
@end smallexample
@noindent
The index values must be constant expressions, even if the array being
initialized is automatic.
An alternative syntax for this that has been obsolete since GCC 2.5 but
GCC still accepts is to write @samp{[@var{index}]} before the element
value, with no @samp{=}.
To initialize a range of elements to the same value, write
@samp{[@var{first} ... @var{last}] = @var{value}}. This is a GNU
extension. For example,
@smallexample
int widths[] = @{ [0 ... 9] = 1, [10 ... 99] = 2, [100] = 3 @};
@end smallexample
@noindent
If the value in it has side effects, the side effects happen only once,
not for each initialized field by the range initializer.
@noindent
Note that the length of the array is the highest value specified
plus one.
In a structure initializer, specify the name of a field to initialize
with @samp{.@var{fieldname} =} before the element value. For example,
given the following structure,
@smallexample
struct point @{ int x, y; @};
@end smallexample
@noindent
the following initialization
@smallexample
struct point p = @{ .y = yvalue, .x = xvalue @};
@end smallexample
@noindent
is equivalent to
@smallexample
struct point p = @{ xvalue, yvalue @};
@end smallexample
Another syntax that has the same meaning, obsolete since GCC 2.5, is
@samp{@var{fieldname}:}, as shown here:
@smallexample
struct point p = @{ y: yvalue, x: xvalue @};
@end smallexample
Omitted fields are implicitly initialized the same as for objects
that have static storage duration.
@cindex designators
The @samp{[@var{index}]} or @samp{.@var{fieldname}} is known as a
@dfn{designator}. You can also use a designator (or the obsolete colon
syntax) when initializing a union, to specify which element of the union
should be used. For example,
@smallexample
union foo @{ int i; double d; @};
union foo f = @{ .d = 4 @};
@end smallexample
@noindent
converts 4 to a @code{double} to store it in the union using
the second element. By contrast, casting 4 to type @code{union foo}
stores it into the union as the integer @code{i}, since it is
an integer. @xref{Cast to Union}.
You can combine this technique of naming elements with ordinary C
initialization of successive elements. Each initializer element that
does not have a designator applies to the next consecutive element of the
array or structure. For example,
@smallexample
int a[6] = @{ [1] = v1, v2, [4] = v4 @};
@end smallexample
@noindent
is equivalent to
@smallexample
int a[6] = @{ 0, v1, v2, 0, v4, 0 @};
@end smallexample
Labeling the elements of an array initializer is especially useful
when the indices are characters or belong to an @code{enum} type.
For example:
@smallexample
int whitespace[256]
= @{ [' '] = 1, ['\t'] = 1, ['\h'] = 1,
['\f'] = 1, ['\n'] = 1, ['\r'] = 1 @};
@end smallexample
@cindex designator lists
You can also write a series of @samp{.@var{fieldname}} and
@samp{[@var{index}]} designators before an @samp{=} to specify a
nested subobject to initialize; the list is taken relative to the
subobject corresponding to the closest surrounding brace pair. For
example, with the @samp{struct point} declaration above:
@smallexample
struct point ptarray[10] = @{ [2].y = yv2, [2].x = xv2, [0].x = xv0 @};
@end smallexample
If the same field is initialized multiple times, or overlapping
fields of a union are initialized, the value from the last
initialization is used. When a field of a union is itself a structure,
the entire structure from the last field initialized is used. If any previous
initializer has side effect, it is unspecified whether the side effect
happens or not. Currently, GCC discards the side-effecting
initializer expressions and issues a warning.
@node Case Ranges
@section Case Ranges
@cindex case ranges
@cindex ranges in case statements
You can specify a range of consecutive values in a single @code{case} label,
like this:
@smallexample
case @var{low} ... @var{high}:
@end smallexample
@noindent
This has the same effect as the proper number of individual @code{case}
labels, one for each integer value from @var{low} to @var{high}, inclusive.
This feature is especially useful for ranges of ASCII character codes:
@smallexample
case 'A' ... 'Z':
@end smallexample
@strong{Be careful:} Write spaces around the @code{...}, for otherwise
it may be parsed wrong when you use it with integer values. For example,
write this:
@smallexample
case 1 ... 5:
@end smallexample
@noindent
rather than this:
@smallexample
case 1...5:
@end smallexample
@node Cast to Union
@section Cast to a Union Type
@cindex cast to a union
@cindex union, casting to a
A cast to a union type is a C extension not available in C++. It looks
just like ordinary casts with the constraint that the type specified is
a union type. You can specify the type either with the @code{union}
keyword or with a @code{typedef} name that refers to a union. The result
of a cast to a union is a temporary rvalue of the union type with a member
whose type matches that of the operand initialized to the value of
the operand. The effect of a cast to a union is similar to a compound
literal except that it yields an rvalue like standard casts do.
@xref{Compound Literals}.
Expressions that may be cast to the union type are those whose type matches
at least one of the members of the union. Thus, given the following union
and variables:
@smallexample
union foo @{ int i; double d; @};
int x;
double y;
union foo z;
@end smallexample
@noindent
both @code{x} and @code{y} can be cast to type @code{union foo} and
the following assignments
@smallexample
z = (union foo) x;
z = (union foo) y;
@end smallexample
are shorthand equivalents of these
@smallexample
z = (union foo) @{ .i = x @};
z = (union foo) @{ .d = y @};
@end smallexample
However, @code{(union foo) FLT_MAX;} is not a valid cast because the union
has no member of type @code{float}.
Using the cast as the right-hand side of an assignment to a variable of
union type is equivalent to storing in a member of the union with
the same type
@smallexample
union foo u;
/* @r{@dots{}} */
u = (union foo) x @equiv{} u.i = x
u = (union foo) y @equiv{} u.d = y
@end smallexample
You can also use the union cast as a function argument:
@smallexample
void hack (union foo);
/* @r{@dots{}} */
hack ((union foo) x);
@end smallexample
@node Mixed Labels and Declarations
@section Mixed Declarations, Labels and Code
@cindex mixed declarations and code
@cindex declarations, mixed with code
@cindex code, mixed with declarations
ISO C99 and ISO C++ allow declarations and code to be freely mixed
within compound statements. ISO C2X allows labels to be
placed before declarations and at the end of a compound statement.
As an extension, GNU C also allows all this in C90 mode. For example,
you could do:
@smallexample
int i;
/* @r{@dots{}} */
i++;
int j = i + 2;
@end smallexample
Each identifier is visible from where it is declared until the end of
the enclosing block.
@node Function Attributes
@section Declaring Attributes of Functions
@cindex function attributes
@cindex declaring attributes of functions
@cindex @code{volatile} applied to function
@cindex @code{const} applied to function
In GNU C and C++, you can use function attributes to specify certain
function properties that may help the compiler optimize calls or
check code more carefully for correctness. For example, you
can use attributes to specify that a function never returns
(@code{noreturn}), returns a value depending only on the values of
its arguments (@code{const}), or has @code{printf}-style arguments
(@code{format}).
You can also use attributes to control memory placement, code
generation options or call/return conventions within the function
being annotated. Many of these attributes are target-specific. For
example, many targets support attributes for defining interrupt
handler functions, which typically must follow special register usage
and return conventions. Such attributes are described in the subsection
for each target. However, a considerable number of attributes are
supported by most, if not all targets. Those are described in
the @ref{Common Function Attributes} section.
Function attributes are introduced by the @code{__attribute__} keyword
in the declaration of a function, followed by an attribute specification
enclosed in double parentheses. You can specify multiple attributes in
a declaration by separating them by commas within the double parentheses
or by immediately following one attribute specification with another.
@xref{Attribute Syntax}, for the exact rules on attribute syntax and
placement. Compatible attribute specifications on distinct declarations
of the same function are merged. An attribute specification that is not
compatible with attributes already applied to a declaration of the same
function is ignored with a warning.
Some function attributes take one or more arguments that refer to
the function's parameters by their positions within the function parameter
list. Such attribute arguments are referred to as @dfn{positional arguments}.
Unless specified otherwise, positional arguments that specify properties
of parameters with pointer types can also specify the same properties of
the implicit C++ @code{this} argument in non-static member functions, and
of parameters of reference to a pointer type. For ordinary functions,
position one refers to the first parameter on the list. In C++ non-static
member functions, position one refers to the implicit @code{this} pointer.
The same restrictions and effects apply to function attributes used with
ordinary functions or C++ member functions.
GCC also supports attributes on
variable declarations (@pxref{Variable Attributes}),
labels (@pxref{Label Attributes}),
enumerators (@pxref{Enumerator Attributes}),
statements (@pxref{Statement Attributes}),
types (@pxref{Type Attributes}),
and on field declarations (for @code{tainted_args}).
There is some overlap between the purposes of attributes and pragmas
(@pxref{Pragmas,,Pragmas Accepted by GCC}). It has been
found convenient to use @code{__attribute__} to achieve a natural
attachment of attributes to their corresponding declarations, whereas
@code{#pragma} is of use for compatibility with other compilers
or constructs that do not naturally form part of the grammar.
In addition to the attributes documented here,
GCC plugins may provide their own attributes.
@menu
* Common Function Attributes::
* AArch64 Function Attributes::
* AMD GCN Function Attributes::
* ARC Function Attributes::
* ARM Function Attributes::
* AVR Function Attributes::
* Blackfin Function Attributes::
* BPF Function Attributes::
* CR16 Function Attributes::
* C-SKY Function Attributes::
* Epiphany Function Attributes::
* H8/300 Function Attributes::
* IA-64 Function Attributes::
* M32C Function Attributes::
* M32R/D Function Attributes::
* m68k Function Attributes::
* MCORE Function Attributes::
* MeP Function Attributes::
* MicroBlaze Function Attributes::
* Microsoft Windows Function Attributes::
* MIPS Function Attributes::
* MSP430 Function Attributes::
* NDS32 Function Attributes::
* Nios II Function Attributes::
* Nvidia PTX Function Attributes::
* PowerPC Function Attributes::
* RISC-V Function Attributes::
* RL78 Function Attributes::
* RX Function Attributes::
* S/390 Function Attributes::
* SH Function Attributes::
* Symbian OS Function Attributes::
* V850 Function Attributes::
* Visium Function Attributes::
* x86 Function Attributes::
* Xstormy16 Function Attributes::
@end menu
@node Common Function Attributes
@subsection Common Function Attributes
The following attributes are supported on most targets.
@table @code
@c Keep this table alphabetized by attribute name. Treat _ as space.
@item access (@var{access-mode}, @var{ref-index})
@itemx access (@var{access-mode}, @var{ref-index}, @var{size-index})
The @code{access} attribute enables the detection of invalid or unsafe
accesses by functions to which they apply or their callers, as well as
write-only accesses to objects that are never read from. Such accesses
may be diagnosed by warnings such as @option{-Wstringop-overflow},
@option{-Wuninitialized}, @option{-Wunused}, and others.
The @code{access} attribute specifies that a function to whose by-reference
arguments the attribute applies accesses the referenced object according to
@var{access-mode}. The @var{access-mode} argument is required and must be
one of four names: @code{read_only}, @code{read_write}, @code{write_only},
or @code{none}. The remaining two are positional arguments.
The required @var{ref-index} positional argument denotes a function
argument of pointer (or in C++, reference) type that is subject to
the access. The same pointer argument can be referenced by at most one
distinct @code{access} attribute.
The optional @var{size-index} positional argument denotes a function
argument of integer type that specifies the maximum size of the access.
The size is the number of elements of the type referenced by @var{ref-index},
or the number of bytes when the pointer type is @code{void*}. When no
@var{size-index} argument is specified, the pointer argument must be either
null or point to a space that is suitably aligned and large for at least one
object of the referenced type (this implies that a past-the-end pointer is
not a valid argument). The actual size of the access may be less but it
must not be more.
The @code{read_only} access mode specifies that the pointer to which it
applies is used to read the referenced object but not write to it. Unless
the argument specifying the size of the access denoted by @var{size-index}
is zero, the referenced object must be initialized. The mode implies
a stronger guarantee than the @code{const} qualifier which, when cast away
from a pointer, does not prevent the pointed-to object from being modified.
Examples of the use of the @code{read_only} access mode is the argument to
the @code{puts} function, or the second and third arguments to
the @code{memcpy} function.
@smallexample
__attribute__ ((access (read_only, 1))) int puts (const char*);
__attribute__ ((access (read_only, 2, 3))) void* memcpy (void*, const void*, size_t);
@end smallexample
The @code{read_write} access mode applies to arguments of pointer types
without the @code{const} qualifier. It specifies that the pointer to which
it applies is used to both read and write the referenced object. Unless
the argument specifying the size of the access denoted by @var{size-index}
is zero, the object referenced by the pointer must be initialized. An example
of the use of the @code{read_write} access mode is the first argument to
the @code{strcat} function.
@smallexample
__attribute__ ((access (read_write, 1), access (read_only, 2))) char* strcat (char*, const char*);
@end smallexample
The @code{write_only} access mode applies to arguments of pointer types
without the @code{const} qualifier. It specifies that the pointer to which
it applies is used to write to the referenced object but not read from it.
The object referenced by the pointer need not be initialized. An example
of the use of the @code{write_only} access mode is the first argument to
the @code{strcpy} function, or the first two arguments to the @code{fgets}
function.
@smallexample
__attribute__ ((access (write_only, 1), access (read_only, 2))) char* strcpy (char*, const char*);
__attribute__ ((access (write_only, 1, 2), access (read_write, 3))) int fgets (char*, int, FILE*);
@end smallexample
The access mode @code{none} specifies that the pointer to which it applies
is not used to access the referenced object at all. Unless the pointer is
null the pointed-to object must exist and have at least the size as denoted
by the @var{size-index} argument. When the optional @var{size-index}
argument is omitted for an argument of @code{void*} type the actual pointer
agument is ignored. The referenced object need not be initialized.
The mode is intended to be used as a means to help validate the expected
object size, for example in functions that call @code{__builtin_object_size}.
@xref{Object Size Checking}.
Note that the @code{access} attribute merely specifies how an object
referenced by the pointer argument can be accessed; it does not imply that
an access @strong{will} happen. Also, the @code{access} attribute does not
imply the attribute @code{nonnull}; it may be appropriate to add both attributes
at the declaration of a function that unconditionally manipulates a buffer via
a pointer argument. See the @code{nonnull} attribute for more information and
caveats.
@item alias ("@var{target}")
@cindex @code{alias} function attribute
The @code{alias} attribute causes the declaration to be emitted as an alias
for another symbol, which must have been previously declared with the same
type, and for variables, also the same size and alignment. Declaring an alias
with a different type than the target is undefined and may be diagnosed. As
an example, the following declarations:
@smallexample
void __f () @{ /* @r{Do something.} */; @}
void f () __attribute__ ((weak, alias ("__f")));
@end smallexample
@noindent
define @samp{f} to be a weak alias for @samp{__f}. In C++, the mangled name
for the target must be used. It is an error if @samp{__f} is not defined in
the same translation unit.
This attribute requires assembler and object file support,
and may not be available on all targets.
@item aligned
@itemx aligned (@var{alignment})
@cindex @code{aligned} function attribute
The @code{aligned} attribute specifies a minimum alignment for
the first instruction of the function, measured in bytes. When specified,
@var{alignment} must be an integer constant power of 2. Specifying no
@var{alignment} argument implies the ideal alignment for the target.
The @code{__alignof__} operator can be used to determine what that is
(@pxref{Alignment}). The attribute has no effect when a definition for
the function is not provided in the same translation unit.
The attribute cannot be used to decrease the alignment of a function
previously declared with a more restrictive alignment; only to increase
it. Attempts to do otherwise are diagnosed. Some targets specify
a minimum default alignment for functions that is greater than 1. On
such targets, specifying a less restrictive alignment is silently ignored.
Using the attribute overrides the effect of the @option{-falign-functions}
(@pxref{Optimize Options}) option for this function.
Note that the effectiveness of @code{aligned} attributes may be
limited by inherent limitations in the system linker
and/or object file format. On some systems, the
linker is only able to arrange for functions to be aligned up to a
certain maximum alignment. (For some linkers, the maximum supported
alignment may be very very small.) See your linker documentation for
further information.
The @code{aligned} attribute can also be used for variables and fields
(@pxref{Variable Attributes}.)
@item alloc_align (@var{position})
@cindex @code{alloc_align} function attribute
The @code{alloc_align} attribute may be applied to a function that
returns a pointer and takes at least one argument of an integer or
enumerated type.
It indicates that the returned pointer is aligned on a boundary given
by the function argument at @var{position}. Meaningful alignments are
powers of 2 greater than one. GCC uses this information to improve
pointer alignment analysis.
The function parameter denoting the allocated alignment is specified by
one constant integer argument whose number is the argument of the attribute.
Argument numbering starts at one.
For instance,
@smallexample
void* my_memalign (size_t, size_t) __attribute__ ((alloc_align (1)));
@end smallexample
@noindent
declares that @code{my_memalign} returns memory with minimum alignment
given by parameter 1.
@item alloc_size (@var{position})
@itemx alloc_size (@var{position-1}, @var{position-2})
@cindex @code{alloc_size} function attribute
The @code{alloc_size} attribute may be applied to a function that
returns a pointer and takes at least one argument of an integer or
enumerated type.
It indicates that the returned pointer points to memory whose size is
given by the function argument at @var{position-1}, or by the product
of the arguments at @var{position-1} and @var{position-2}. Meaningful
sizes are positive values less than @code{PTRDIFF_MAX}. GCC uses this
information to improve the results of @code{__builtin_object_size}.
The function parameter(s) denoting the allocated size are specified by
one or two integer arguments supplied to the attribute. The allocated size
is either the value of the single function argument specified or the product
of the two function arguments specified. Argument numbering starts at
one for ordinary functions, and at two for C++ non-static member functions.
For instance,
@smallexample
void* my_calloc (size_t, size_t) __attribute__ ((alloc_size (1, 2)));
void* my_realloc (void*, size_t) __attribute__ ((alloc_size (2)));
@end smallexample
@noindent
declares that @code{my_calloc} returns memory of the size given by
the product of parameter 1 and 2 and that @code{my_realloc} returns memory
of the size given by parameter 2.
@item always_inline
@cindex @code{always_inline} function attribute
Generally, functions are not inlined unless optimization is specified.
For functions declared inline, this attribute inlines the function
independent of any restrictions that otherwise apply to inlining.
Failure to inline such a function is diagnosed as an error.
Note that if such a function is called indirectly the compiler may
or may not inline it depending on optimization level and a failure
to inline an indirect call may or may not be diagnosed.
@item artificial
@cindex @code{artificial} function attribute
This attribute is useful for small inline wrappers that if possible
should appear during debugging as a unit. Depending on the debug
info format it either means marking the function as artificial
or using the caller location for all instructions within the inlined
body.
@item assume_aligned (@var{alignment})
@itemx assume_aligned (@var{alignment}, @var{offset})
@cindex @code{assume_aligned} function attribute
The @code{assume_aligned} attribute may be applied to a function that
returns a pointer. It indicates that the returned pointer is aligned
on a boundary given by @var{alignment}. If the attribute has two
arguments, the second argument is misalignment @var{offset}. Meaningful
values of @var{alignment} are powers of 2 greater than one. Meaningful
values of @var{offset} are greater than zero and less than @var{alignment}.
For instance
@smallexample
void* my_alloc1 (size_t) __attribute__((assume_aligned (16)));
void* my_alloc2 (size_t) __attribute__((assume_aligned (32, 8)));
@end smallexample
@noindent
declares that @code{my_alloc1} returns 16-byte aligned pointers and
that @code{my_alloc2} returns a pointer whose value modulo 32 is equal
to 8.
@item cold
@cindex @code{cold} function attribute
The @code{cold} attribute on functions is used to inform the compiler that
the function is unlikely to be executed. The function is optimized for
size rather than speed and on many targets it is placed into a special
subsection of the text section so all cold functions appear close together,
improving code locality of non-cold parts of program. The paths leading
to calls of cold functions within code are marked as unlikely by the branch
prediction mechanism. It is thus useful to mark functions used to handle
unlikely conditions, such as @code{perror}, as cold to improve optimization
of hot functions that do call marked functions in rare occasions.
When profile feedback is available, via @option{-fprofile-use}, cold functions
are automatically detected and this attribute is ignored.
@item const
@cindex @code{const} function attribute
@cindex functions that have no side effects
Calls to functions whose return value is not affected by changes to
the observable state of the program and that have no observable effects
on such state other than to return a value may lend themselves to
optimizations such as common subexpression elimination. Declaring such
functions with the @code{const} attribute allows GCC to avoid emitting
some calls in repeated invocations of the function with the same argument
values.
For example,
@smallexample
int square (int) __attribute__ ((const));
@end smallexample
@noindent
tells GCC that subsequent calls to function @code{square} with the same
argument value can be replaced by the result of the first call regardless
of the statements in between.
The @code{const} attribute prohibits a function from reading objects
that affect its return value between successive invocations. However,
functions declared with the attribute can safely read objects that do
not change their return value, such as non-volatile constants.
The @code{const} attribute imposes greater restrictions on a function's
definition than the similar @code{pure} attribute. Declaring the same
function with both the @code{const} and the @code{pure} attribute is
diagnosed. Because a const function cannot have any observable side
effects it does not make sense for it to return @code{void}. Declaring
such a function is diagnosed.
@cindex pointer arguments
Note that a function that has pointer arguments and examines the data
pointed to must @emph{not} be declared @code{const} if the pointed-to
data might change between successive invocations of the function. In
general, since a function cannot distinguish data that might change
from data that cannot, const functions should never take pointer or,
in C++, reference arguments. Likewise, a function that calls a non-const
function usually must not be const itself.
@item constructor
@itemx destructor
@itemx constructor (@var{priority})
@itemx destructor (@var{priority})
@cindex @code{constructor} function attribute
@cindex @code{destructor} function attribute
The @code{constructor} attribute causes the function to be called
automatically before execution enters @code{main ()}. Similarly, the
@code{destructor} attribute causes the function to be called
automatically after @code{main ()} completes or @code{exit ()} is
called. Functions with these attributes are useful for
initializing data that is used implicitly during the execution of
the program.
On some targets the attributes also accept an integer argument to
specify a priority to control the order in which constructor and
destructor functions are run. A constructor
with a smaller priority number runs before a constructor with a larger
priority number; the opposite relationship holds for destructors. Note
that priorities 0-100 are reserved. So, if you have a constructor that
allocates a resource and a destructor that deallocates the same
resource, both functions typically have the same priority. The
priorities for constructor and destructor functions are the same as
those specified for namespace-scope C++ objects (@pxref{C++ Attributes}).
However, at present, the order in which constructors for C++ objects
with static storage duration and functions decorated with attribute
@code{constructor} are invoked is unspecified. In mixed declarations,
attribute @code{init_priority} can be used to impose a specific ordering.
Using the argument forms of the @code{constructor} and @code{destructor}
attributes on targets where the feature is not supported is rejected with
an error.
@item copy
@itemx copy (@var{function})
@cindex @code{copy} function attribute
The @code{copy} attribute applies the set of attributes with which
@var{function} has been declared to the declaration of the function
to which the attribute is applied. The attribute is designed for
libraries that define aliases or function resolvers that are expected
to specify the same set of attributes as their targets. The @code{copy}
attribute can be used with functions, variables, or types. However,
the kind of symbol to which the attribute is applied (either function
or variable) must match the kind of symbol to which the argument refers.
The @code{copy} attribute copies only syntactic and semantic attributes
but not attributes that affect a symbol's linkage or visibility such as
@code{alias}, @code{visibility}, or @code{weak}. The @code{deprecated}
and @code{target_clones} attribute are also not copied.
@xref{Common Type Attributes}.
@xref{Common Variable Attributes}.
For example, the @var{StrongAlias} macro below makes use of the @code{alias}
and @code{copy} attributes to define an alias named @var{alloc} for function
@var{allocate} declared with attributes @var{alloc_size}, @var{malloc}, and
@var{nothrow}. Thanks to the @code{__typeof__} operator the alias has
the same type as the target function. As a result of the @code{copy}
attribute the alias also shares the same attributes as the target.
@smallexample
#define StrongAlias(TargetFunc, AliasDecl) \
extern __typeof__ (TargetFunc) AliasDecl \
__attribute__ ((alias (#TargetFunc), copy (TargetFunc)));
extern __attribute__ ((alloc_size (1), malloc, nothrow))
void* allocate (size_t);
StrongAlias (allocate, alloc);
@end smallexample
@item deprecated
@itemx deprecated (@var{msg})
@cindex @code{deprecated} function attribute
The @code{deprecated} attribute results in a warning if the function
is used anywhere in the source file. This is useful when identifying
functions that are expected to be removed in a future version of a
program. The warning also includes the location of the declaration
of the deprecated function, to enable users to easily find further
information about why the function is deprecated, or what they should
do instead. Note that the warnings only occurs for uses:
@smallexample
int old_fn () __attribute__ ((deprecated));
int old_fn ();
int (*fn_ptr)() = old_fn;
@end smallexample
@noindent
results in a warning on line 3 but not line 2. The optional @var{msg}
argument, which must be a string, is printed in the warning if
present.
The @code{deprecated} attribute can also be used for variables and
types (@pxref{Variable Attributes}, @pxref{Type Attributes}.)
The message attached to the attribute is affected by the setting of
the @option{-fmessage-length} option.
@item unavailable
@itemx unavailable (@var{msg})
@cindex @code{unavailable} function attribute
The @code{unavailable} attribute results in an error if the function
is used anywhere in the source file. This is useful when identifying
functions that have been removed from a particular variation of an
interface. Other than emitting an error rather than a warning, the
@code{unavailable} attribute behaves in the same manner as
@code{deprecated}.
The @code{unavailable} attribute can also be used for variables and
types (@pxref{Variable Attributes}, @pxref{Type Attributes}.)
@item error ("@var{message}")
@itemx warning ("@var{message}")
@cindex @code{error} function attribute
@cindex @code{warning} function attribute
If the @code{error} or @code{warning} attribute
is used on a function declaration and a call to such a function
is not eliminated through dead code elimination or other optimizations,
an error or warning (respectively) that includes @var{message} is diagnosed.
This is useful
for compile-time checking, especially together with @code{__builtin_constant_p}
and inline functions where checking the inline function arguments is not
possible through @code{extern char [(condition) ? 1 : -1];} tricks.
While it is possible to leave the function undefined and thus invoke
a link failure (to define the function with
a message in @code{.gnu.warning*} section),
when using these attributes the problem is diagnosed
earlier and with exact location of the call even in presence of inline
functions or when not emitting debugging information.
@item externally_visible
@cindex @code{externally_visible} function attribute
This attribute, attached to a global variable or function, nullifies
the effect of the @option{-fwhole-program} command-line option, so the
object remains visible outside the current compilation unit.
If @option{-fwhole-program} is used together with @option{-flto} and
@command{gold} is used as the linker plugin,
@code{externally_visible} attributes are automatically added to functions
(not variable yet due to a current @command{gold} issue)
that are accessed outside of LTO objects according to resolution file
produced by @command{gold}.
For other linkers that cannot generate resolution file,
explicit @code{externally_visible} attributes are still necessary.
@item flatten
@cindex @code{flatten} function attribute
Generally, inlining into a function is limited. For a function marked with
this attribute, every call inside this function is inlined, if possible.
Functions declared with attribute @code{noinline} and similar are not
inlined. Whether the function itself is considered for inlining depends
on its size and the current inlining parameters.
@item format (@var{archetype}, @var{string-index}, @var{first-to-check})
@cindex @code{format} function attribute
@cindex functions with @code{printf}, @code{scanf}, @code{strftime} or @code{strfmon} style arguments
@opindex Wformat
The @code{format} attribute specifies that a function takes @code{printf},
@code{scanf}, @code{strftime} or @code{strfmon} style arguments that
should be type-checked against a format string. For example, the
declaration:
@smallexample
extern int
my_printf (void *my_object, const char *my_format, ...)
__attribute__ ((format (printf, 2, 3)));
@end smallexample
@noindent
causes the compiler to check the arguments in calls to @code{my_printf}
for consistency with the @code{printf} style format string argument
@code{my_format}.
The parameter @var{archetype} determines how the format string is
interpreted, and should be @code{printf}, @code{scanf}, @code{strftime},
@code{gnu_printf}, @code{gnu_scanf}, @code{gnu_strftime} or
@code{strfmon}. (You can also use @code{__printf__},
@code{__scanf__}, @code{__strftime__} or @code{__strfmon__}.) On
MinGW targets, @code{ms_printf}, @code{ms_scanf}, and
@code{ms_strftime} are also present.
@var{archetype} values such as @code{printf} refer to the formats accepted
by the system's C runtime library,
while values prefixed with @samp{gnu_} always refer
to the formats accepted by the GNU C Library. On Microsoft Windows
targets, values prefixed with @samp{ms_} refer to the formats accepted by the
@file{msvcrt.dll} library.
The parameter @var{string-index}
specifies which argument is the format string argument (starting
from 1), while @var{first-to-check} is the number of the first
argument to check against the format string. For functions
where the arguments are not available to be checked (such as
@code{vprintf}), specify the third parameter as zero. In this case the
compiler only checks the format string for consistency. For
@code{strftime} formats, the third parameter is required to be zero.
Since non-static C++ methods have an implicit @code{this} argument, the
arguments of such methods should be counted from two, not one, when
giving values for @var{string-index} and @var{first-to-check}.
In the example above, the format string (@code{my_format}) is the second
argument of the function @code{my_print}, and the arguments to check
start with the third argument, so the correct parameters for the format
attribute are 2 and 3.
@opindex ffreestanding
@opindex fno-builtin
The @code{format} attribute allows you to identify your own functions
that take format strings as arguments, so that GCC can check the
calls to these functions for errors. The compiler always (unless
@option{-ffreestanding} or @option{-fno-builtin} is used) checks formats
for the standard library functions @code{printf}, @code{fprintf},
@code{sprintf}, @code{scanf}, @code{fscanf}, @code{sscanf}, @code{strftime},
@code{vprintf}, @code{vfprintf} and @code{vsprintf} whenever such
warnings are requested (using @option{-Wformat}), so there is no need to
modify the header file @file{stdio.h}. In C99 mode, the functions
@code{snprintf}, @code{vsnprintf}, @code{vscanf}, @code{vfscanf} and
@code{vsscanf} are also checked. Except in strictly conforming C
standard modes, the X/Open function @code{strfmon} is also checked as
are @code{printf_unlocked} and @code{fprintf_unlocked}.
@xref{C Dialect Options,,Options Controlling C Dialect}.
For Objective-C dialects, @code{NSString} (or @code{__NSString__}) is
recognized in the same context. Declarations including these format attributes
are parsed for correct syntax, however the result of checking of such format
strings is not yet defined, and is not carried out by this version of the
compiler.
The target may also provide additional types of format checks.
@xref{Target Format Checks,,Format Checks Specific to Particular
Target Machines}.
@item format_arg (@var{string-index})
@cindex @code{format_arg} function attribute
@opindex Wformat-nonliteral
The @code{format_arg} attribute specifies that a function takes one or
more format strings for a @code{printf}, @code{scanf}, @code{strftime} or
@code{strfmon} style function and modifies it (for example, to translate
it into another language), so the result can be passed to a
@code{printf}, @code{scanf}, @code{strftime} or @code{strfmon} style
function (with the remaining arguments to the format function the same
as they would have been for the unmodified string). Multiple
@code{format_arg} attributes may be applied to the same function, each
designating a distinct parameter as a format string. For example, the
declaration:
@smallexample
extern char *
my_dgettext (char *my_domain, const char *my_format)
__attribute__ ((format_arg (2)));
@end smallexample
@noindent
causes the compiler to check the arguments in calls to a @code{printf},
@code{scanf}, @code{strftime} or @code{strfmon} type function, whose
format string argument is a call to the @code{my_dgettext} function, for
consistency with the format string argument @code{my_format}. If the
@code{format_arg} attribute had not been specified, all the compiler
could tell in such calls to format functions would be that the format
string argument is not constant; this would generate a warning when
@option{-Wformat-nonliteral} is used, but the calls could not be checked
without the attribute.
In calls to a function declared with more than one @code{format_arg}
attribute, each with a distinct argument value, the corresponding
actual function arguments are checked against all format strings
designated by the attributes. This capability is designed to support
the GNU @code{ngettext} family of functions.
The parameter @var{string-index} specifies which argument is the format
string argument (starting from one). Since non-static C++ methods have
an implicit @code{this} argument, the arguments of such methods should
be counted from two.
The @code{format_arg} attribute allows you to identify your own
functions that modify format strings, so that GCC can check the
calls to @code{printf}, @code{scanf}, @code{strftime} or @code{strfmon}
type function whose operands are a call to one of your own function.
The compiler always treats @code{gettext}, @code{dgettext}, and
@code{dcgettext} in this manner except when strict ISO C support is
requested by @option{-ansi} or an appropriate @option{-std} option, or
@option{-ffreestanding} or @option{-fno-builtin}
is used. @xref{C Dialect Options,,Options
Controlling C Dialect}.
For Objective-C dialects, the @code{format-arg} attribute may refer to an
@code{NSString} reference for compatibility with the @code{format} attribute
above.
The target may also allow additional types in @code{format-arg} attributes.
@xref{Target Format Checks,,Format Checks Specific to Particular
Target Machines}.
@item gnu_inline
@cindex @code{gnu_inline} function attribute
This attribute should be used with a function that is also declared
with the @code{inline} keyword. It directs GCC to treat the function
as if it were defined in gnu90 mode even when compiling in C99 or
gnu99 mode.
If the function is declared @code{extern}, then this definition of the
function is used only for inlining. In no case is the function
compiled as a standalone function, not even if you take its address
explicitly. Such an address becomes an external reference, as if you
had only declared the function, and had not defined it. This has
almost the effect of a macro. The way to use this is to put a
function definition in a header file with this attribute, and put
another copy of the function, without @code{extern}, in a library
file. The definition in the header file causes most calls to the
function to be inlined. If any uses of the function remain, they
refer to the single copy in the library. Note that the two
definitions of the functions need not be precisely the same, although
if they do not have the same effect your program may behave oddly.
In C, if the function is neither @code{extern} nor @code{static}, then
the function is compiled as a standalone function, as well as being
inlined where possible.
This is how GCC traditionally handled functions declared
@code{inline}. Since ISO C99 specifies a different semantics for
@code{inline}, this function attribute is provided as a transition
measure and as a useful feature in its own right. This attribute is
available in GCC 4.1.3 and later. It is available if either of the
preprocessor macros @code{__GNUC_GNU_INLINE__} or
@code{__GNUC_STDC_INLINE__} are defined. @xref{Inline,,An Inline
Function is As Fast As a Macro}.
In C++, this attribute does not depend on @code{extern} in any way,
but it still requires the @code{inline} keyword to enable its special
behavior.
@item hot
@cindex @code{hot} function attribute
The @code{hot} attribute on a function is used to inform the compiler that
the function is a hot spot of the compiled program. The function is
optimized more aggressively and on many targets it is placed into a special
subsection of the text section so all hot functions appear close together,
improving locality.
When profile feedback is available, via @option{-fprofile-use}, hot functions
are automatically detected and this attribute is ignored.
@item ifunc ("@var{resolver}")
@cindex @code{ifunc} function attribute
@cindex indirect functions
@cindex functions that are dynamically resolved
The @code{ifunc} attribute is used to mark a function as an indirect
function using the STT_GNU_IFUNC symbol type extension to the ELF
standard. This allows the resolution of the symbol value to be
determined dynamically at load time, and an optimized version of the
routine to be selected for the particular processor or other system
characteristics determined then. To use this attribute, first define
the implementation functions available, and a resolver function that
returns a pointer to the selected implementation function. The
implementation functions' declarations must match the API of the
function being implemented. The resolver should be declared to
be a function taking no arguments and returning a pointer to
a function of the same type as the implementation. For example:
@smallexample
void *my_memcpy (void *dst, const void *src, size_t len)
@{
@dots{}
return dst;
@}
static void * (*resolve_memcpy (void))(void *, const void *, size_t)
@{
return my_memcpy; // we will just always select this routine
@}
@end smallexample
@noindent
The exported header file declaring the function the user calls would
contain:
@smallexample
extern void *memcpy (void *, const void *, size_t);
@end smallexample
@noindent
allowing the user to call @code{memcpy} as a regular function, unaware of
the actual implementation. Finally, the indirect function needs to be
defined in the same translation unit as the resolver function:
@smallexample
void *memcpy (void *, const void *, size_t)
__attribute__ ((ifunc ("resolve_memcpy")));
@end smallexample
In C++, the @code{ifunc} attribute takes a string that is the mangled name
of the resolver function. A C++ resolver for a non-static member function
of class @code{C} should be declared to return a pointer to a non-member
function taking pointer to @code{C} as the first argument, followed by
the same arguments as of the implementation function. G++ checks
the signatures of the two functions and issues
a @option{-Wattribute-alias} warning for mismatches. To suppress a warning
for the necessary cast from a pointer to the implementation member function
to the type of the corresponding non-member function use
the @option{-Wno-pmf-conversions} option. For example:
@smallexample
class S
@{
private:
int debug_impl (int);
int optimized_impl (int);
typedef int Func (S*, int);
static Func* resolver ();
public:
int interface (int);
@};
int S::debug_impl (int) @{ /* @r{@dots{}} */ @}
int S::optimized_impl (int) @{ /* @r{@dots{}} */ @}
S::Func* S::resolver ()
@{
int (S::*pimpl) (int)
= getenv ("DEBUG") ? &S::debug_impl : &S::optimized_impl;
// Cast triggers -Wno-pmf-conversions.
return reinterpret_cast<Func*>(pimpl);
@}
int S::interface (int) __attribute__ ((ifunc ("_ZN1S8resolverEv")));
@end smallexample
Indirect functions cannot be weak. Binutils version 2.20.1 or higher
and GNU C Library version 2.11.1 are required to use this feature.
@item interrupt
@itemx interrupt_handler
Many GCC back ends support attributes to indicate that a function is
an interrupt handler, which tells the compiler to generate function
entry and exit sequences that differ from those from regular
functions. The exact syntax and behavior are target-specific;
refer to the following subsections for details.
@item leaf
@cindex @code{leaf} function attribute
Calls to external functions with this attribute must return to the
current compilation unit only by return or by exception handling. In
particular, a leaf function is not allowed to invoke callback functions
passed to it from the current compilation unit, directly call functions
exported by the unit, or @code{longjmp} into the unit. Leaf functions
might still call functions from other compilation units and thus they
are not necessarily leaf in the sense that they contain no function
calls at all.
The attribute is intended for library functions to improve dataflow
analysis. The compiler takes the hint that any data not escaping the
current compilation unit cannot be used or modified by the leaf
function. For example, the @code{sin} function is a leaf function, but
@code{qsort} is not.
Note that leaf functions might indirectly run a signal handler defined
in the current compilation unit that uses static variables. Similarly,
when lazy symbol resolution is in effect, leaf functions might invoke
indirect functions whose resolver function or implementation function is
defined in the current compilation unit and uses static variables. There
is no standard-compliant way to write such a signal handler, resolver
function, or implementation function, and the best that you can do is to
remove the @code{leaf} attribute or mark all such static variables
@code{volatile}. Lastly, for ELF-based systems that support symbol
interposition, care should be taken that functions defined in the
current compilation unit do not unexpectedly interpose other symbols
based on the defined standards mode and defined feature test macros;
otherwise an inadvertent callback would be added.
The attribute has no effect on functions defined within the current
compilation unit. This is to allow easy merging of multiple compilation
units into one, for example, by using the link-time optimization. For
this reason the attribute is not allowed on types to annotate indirect
calls.
@item malloc
@item malloc (@var{deallocator})
@item malloc (@var{deallocator}, @var{ptr-index})
@cindex @code{malloc} function attribute
@cindex functions that behave like malloc
Attribute @code{malloc} indicates that a function is @code{malloc}-like,
i.e., that the pointer @var{P} returned by the function cannot alias any
other pointer valid when the function returns, and moreover no
pointers to valid objects occur in any storage addressed by @var{P}. In
addition, the GCC predicts that a function with the attribute returns
non-null in most cases.
Independently, the form of the attribute with one or two arguments
associates @code{deallocator} as a suitable deallocation function for
pointers returned from the @code{malloc}-like function. @var{ptr-index}
denotes the positional argument to which when the pointer is passed in
calls to @code{deallocator} has the effect of deallocating it.
Using the attribute with no arguments is designed to improve optimization
by relying on the aliasing property it implies. Functions like @code{malloc}
and @code{calloc} have this property because they return a pointer to
uninitialized or zeroed-out, newly obtained storage. However, functions
like @code{realloc} do not have this property, as they may return pointers
to storage containing pointers to existing objects. Additionally, since
all such functions are assumed to return null only infrequently, callers
can be optimized based on that assumption.
Associating a function with a @var{deallocator} helps detect calls to
mismatched allocation and deallocation functions and diagnose them under
the control of options such as @option{-Wmismatched-dealloc}. It also
makes it possible to diagnose attempts to deallocate objects that were not
allocated dynamically, by @option{-Wfree-nonheap-object}. To indicate
that an allocation function both satisifies the nonaliasing property and
has a deallocator associated with it, both the plain form of the attribute
and the one with the @var{deallocator} argument must be used. The same
function can be both an allocator and a deallocator. Since inlining one
of the associated functions but not the other could result in apparent
mismatches, this form of attribute @code{malloc} is not accepted on inline
functions. For the same reason, using the attribute prevents both
the allocation and deallocation functions from being expanded inline.
For example, besides stating that the functions return pointers that do
not alias any others, the following declarations make @code{fclose}
a suitable deallocator for pointers returned from all functions except
@code{popen}, and @code{pclose} as the only suitable deallocator for
pointers returned from @code{popen}. The deallocator functions must
be declared before they can be referenced in the attribute.
@smallexample
int fclose (FILE*);
int pclose (FILE*);
__attribute__ ((malloc, malloc (fclose, 1)))
FILE* fdopen (int, const char*);
__attribute__ ((malloc, malloc (fclose, 1)))
FILE* fopen (const char*, const char*);
__attribute__ ((malloc, malloc (fclose, 1)))
FILE* fmemopen(void *, size_t, const char *);
__attribute__ ((malloc, malloc (pclose, 1)))
FILE* popen (const char*, const char*);
__attribute__ ((malloc, malloc (fclose, 1)))
FILE* tmpfile (void);
@end smallexample
The warnings guarded by @option{-fanalyzer} respect allocation and
deallocation pairs marked with the @code{malloc}. In particular:
@itemize @bullet
@item
The analyzer will emit a @option{-Wanalyzer-mismatching-deallocation}
diagnostic if there is an execution path in which the result of an
allocation call is passed to a different deallocator.
@item
The analyzer will emit a @option{-Wanalyzer-double-free}
diagnostic if there is an execution path in which a value is passed
more than once to a deallocation call.
@item
The analyzer will consider the possibility that an allocation function
could fail and return NULL. It will emit
@option{-Wanalyzer-possible-null-dereference} and
@option{-Wanalyzer-possible-null-argument} diagnostics if there are
execution paths in which an unchecked result of an allocation call is
dereferenced or passed to a function requiring a non-null argument.
If the allocator always returns non-null, use
@code{__attribute__ ((returns_nonnull))} to suppress these warnings.
For example:
@smallexample
char *xstrdup (const char *)
__attribute__((malloc (free), returns_nonnull));
@end smallexample
@item
The analyzer will emit a @option{-Wanalyzer-use-after-free}
diagnostic if there is an execution path in which the memory passed
by pointer to a deallocation call is used after the deallocation.
@item
The analyzer will emit a @option{-Wanalyzer-malloc-leak} diagnostic if
there is an execution path in which the result of an allocation call
is leaked (without being passed to the deallocation function).
@item
The analyzer will emit a @option{-Wanalyzer-free-of-non-heap} diagnostic
if a deallocation function is used on a global or on-stack variable.
@end itemize
The analyzer assumes that deallocators can gracefully handle the @code{NULL}
pointer. If this is not the case, the deallocator can be marked with
@code{__attribute__((nonnull))} so that @option{-fanalyzer} can emit
a @option{-Wanalyzer-possible-null-argument} diagnostic for code paths
in which the deallocator is called with NULL.
@item no_icf
@cindex @code{no_icf} function attribute
This function attribute prevents a functions from being merged with another
semantically equivalent function.
@item no_instrument_function
@cindex @code{no_instrument_function} function attribute
@opindex finstrument-functions
@opindex p
@opindex pg
If any of @option{-finstrument-functions}, @option{-p}, or @option{-pg} are
given, profiling function calls are
generated at entry and exit of most user-compiled functions.
Functions with this attribute are not so instrumented.
@item no_profile_instrument_function
@cindex @code{no_profile_instrument_function} function attribute
The @code{no_profile_instrument_function} attribute on functions is used
to inform the compiler that it should not process any profile feedback based
optimization code instrumentation.
@item no_reorder
@cindex @code{no_reorder} function attribute
Do not reorder functions or variables marked @code{no_reorder}
against each other or top level assembler statements the executable.
The actual order in the program will depend on the linker command
line. Static variables marked like this are also not removed.
This has a similar effect
as the @option{-fno-toplevel-reorder} option, but only applies to the
marked symbols.
@item no_sanitize ("@var{sanitize_option}")
@cindex @code{no_sanitize} function attribute
The @code{no_sanitize} attribute on functions is used
to inform the compiler that it should not do sanitization of any option
mentioned in @var{sanitize_option}. A list of values acceptable by
the @option{-fsanitize} option can be provided.
@smallexample
void __attribute__ ((no_sanitize ("alignment", "object-size")))
f () @{ /* @r{Do something.} */; @}
void __attribute__ ((no_sanitize ("alignment,object-size")))
g () @{ /* @r{Do something.} */; @}
@end smallexample
@item no_sanitize_address
@itemx no_address_safety_analysis
@cindex @code{no_sanitize_address} function attribute
The @code{no_sanitize_address} attribute on functions is used
to inform the compiler that it should not instrument memory accesses
in the function when compiling with the @option{-fsanitize=address} option.
The @code{no_address_safety_analysis} is a deprecated alias of the
@code{no_sanitize_address} attribute, new code should use
@code{no_sanitize_address}.
@item no_sanitize_thread
@cindex @code{no_sanitize_thread} function attribute
The @code{no_sanitize_thread} attribute on functions is used
to inform the compiler that it should not instrument memory accesses
in the function when compiling with the @option{-fsanitize=thread} option.
@item no_sanitize_undefined
@cindex @code{no_sanitize_undefined} function attribute
The @code{no_sanitize_undefined} attribute on functions is used
to inform the compiler that it should not check for undefined behavior
in the function when compiling with the @option{-fsanitize=undefined} option.
@item no_sanitize_coverage
@cindex @code{no_sanitize_coverage} function attribute
The @code{no_sanitize_coverage} attribute on functions is used
to inform the compiler that it should not do coverage-guided
fuzzing code instrumentation (@option{-fsanitize-coverage}).
@item no_split_stack
@cindex @code{no_split_stack} function attribute
@opindex fsplit-stack
If @option{-fsplit-stack} is given, functions have a small
prologue which decides whether to split the stack. Functions with the
@code{no_split_stack} attribute do not have that prologue, and thus
may run with only a small amount of stack space available.
@item no_stack_limit
@cindex @code{no_stack_limit} function attribute
This attribute locally overrides the @option{-fstack-limit-register}
and @option{-fstack-limit-symbol} command-line options; it has the effect
of disabling stack limit checking in the function it applies to.
@item noclone
@cindex @code{noclone} function attribute
This function attribute prevents a function from being considered for
cloning---a mechanism that produces specialized copies of functions
and which is (currently) performed by interprocedural constant
propagation.
@item noinline
@cindex @code{noinline} function attribute
This function attribute prevents a function from being considered for
inlining.
@c Don't enumerate the optimizations by name here; we try to be
@c future-compatible with this mechanism.
If the function does not have side effects, there are optimizations
other than inlining that cause function calls to be optimized away,
although the function call is live. To keep such calls from being
optimized away, put
@smallexample
asm ("");
@end smallexample
@noindent
(@pxref{Extended Asm}) in the called function, to serve as a special
side effect.
@item noipa
@cindex @code{noipa} function attribute
Disable interprocedural optimizations between the function with this
attribute and its callers, as if the body of the function is not available
when optimizing callers and the callers are unavailable when optimizing
the body. This attribute implies @code{noinline}, @code{noclone} and
@code{no_icf} attributes. However, this attribute is not equivalent
to a combination of other attributes, because its purpose is to suppress
existing and future optimizations employing interprocedural analysis,
including those that do not have an attribute suitable for disabling
them individually. This attribute is supported mainly for the purpose
of testing the compiler.
@item nonnull
@itemx nonnull (@var{arg-index}, @dots{})
@cindex @code{nonnull} function attribute
@cindex functions with non-null pointer arguments
The @code{nonnull} attribute may be applied to a function that takes at
least one argument of a pointer type. It indicates that the referenced
arguments must be non-null pointers. For instance, the declaration:
@smallexample
extern void *
my_memcpy (void *dest, const void *src, size_t len)
__attribute__((nonnull (1, 2)));
@end smallexample
@noindent
informs the compiler that, in calls to @code{my_memcpy}, arguments
@var{dest} and @var{src} must be non-null.
The attribute has an effect both on functions calls and function definitions.
For function calls:
@itemize @bullet
@item If the compiler determines that a null pointer is
passed in an argument slot marked as non-null, and the
@option{-Wnonnull} option is enabled, a warning is issued.
@xref{Warning Options}.
@item The @option{-fisolate-erroneous-paths-attribute} option can be
specified to have GCC transform calls with null arguments to non-null
functions into traps. @xref{Optimize Options}.
@item The compiler may also perform optimizations based on the
knowledge that certain function arguments cannot be null. These
optimizations can be disabled by the
@option{-fno-delete-null-pointer-checks} option. @xref{Optimize Options}.
@end itemize
For function definitions:
@itemize @bullet
@item If the compiler determines that a function parameter that is
marked with nonnull is compared with null, and
@option{-Wnonnull-compare} option is enabled, a warning is issued.
@xref{Warning Options}.
@item The compiler may also perform optimizations based on the
knowledge that @code{nonnul} parameters cannot be null. This can
currently not be disabled other than by removing the nonnull
attribute.
@end itemize
If no @var{arg-index} is given to the @code{nonnull} attribute,
all pointer arguments are marked as non-null. To illustrate, the
following declaration is equivalent to the previous example:
@smallexample
extern void *
my_memcpy (void *dest, const void *src, size_t len)
__attribute__((nonnull));
@end smallexample
@item noplt
@cindex @code{noplt} function attribute
The @code{noplt} attribute is the counterpart to option @option{-fno-plt}.
Calls to functions marked with this attribute in position-independent code
do not use the PLT.
@smallexample
@group
/* Externally defined function foo. */
int foo () __attribute__ ((noplt));
int
main (/* @r{@dots{}} */)
@{
/* @r{@dots{}} */
foo ();
/* @r{@dots{}} */
@}
@end group
@end smallexample
The @code{noplt} attribute on function @code{foo}
tells the compiler to assume that
the function @code{foo} is externally defined and that the call to
@code{foo} must avoid the PLT
in position-independent code.
In position-dependent code, a few targets also convert calls to
functions that are marked to not use the PLT to use the GOT instead.
@item noreturn
@cindex @code{noreturn} function attribute
@cindex functions that never return
A few standard library functions, such as @code{abort} and @code{exit},
cannot return. GCC knows this automatically. Some programs define
their own functions that never return. You can declare them
@code{noreturn} to tell the compiler this fact. For example,
@smallexample
@group
void fatal () __attribute__ ((noreturn));
void
fatal (/* @r{@dots{}} */)
@{
/* @r{@dots{}} */ /* @r{Print error message.} */ /* @r{@dots{}} */
exit (1);
@}
@end group
@end smallexample
The @code{noreturn} keyword tells the compiler to assume that
@code{fatal} cannot return. It can then optimize without regard to what
would happen if @code{fatal} ever did return. This makes slightly
better code. More importantly, it helps avoid spurious warnings of
uninitialized variables.
The @code{noreturn} keyword does not affect the exceptional path when that
applies: a @code{noreturn}-marked function may still return to the caller
by throwing an exception or calling @code{longjmp}.
In order to preserve backtraces, GCC will never turn calls to
@code{noreturn} functions into tail calls.
Do not assume that registers saved by the calling function are
restored before calling the @code{noreturn} function.
It does not make sense for a @code{noreturn} function to have a return
type other than @code{void}.
@item nothrow
@cindex @code{nothrow} function attribute
The @code{nothrow} attribute is used to inform the compiler that a
function cannot throw an exception. For example, most functions in
the standard C library can be guaranteed not to throw an exception
with the notable exceptions of @code{qsort} and @code{bsearch} that
take function pointer arguments.
@item optimize (@var{level}, @dots{})
@item optimize (@var{string}, @dots{})
@cindex @code{optimize} function attribute
The @code{optimize} attribute is used to specify that a function is to
be compiled with different optimization options than specified on the
command line. The optimize attribute arguments of a function behave
behave as if appended to the command-line.
Valid arguments are constant non-negative integers and
strings. Each numeric argument specifies an optimization @var{level}.
Each @var{string} argument consists of one or more comma-separated
substrings. Each substring that begins with the letter @code{O} refers
to an optimization option such as @option{-O0} or @option{-Os}. Other
substrings are taken as suffixes to the @code{-f} prefix jointly
forming the name of an optimization option. @xref{Optimize Options}.
@samp{#pragma GCC optimize} can be used to set optimization options
for more than one function. @xref{Function Specific Option Pragmas},
for details about the pragma.
Providing multiple strings as arguments separated by commas to specify
multiple options is equivalent to separating the option suffixes with
a comma (@samp{,}) within a single string. Spaces are not permitted
within the strings.
Not every optimization option that starts with the @var{-f} prefix
specified by the attribute necessarily has an effect on the function.
The @code{optimize} attribute should be used for debugging purposes only.
It is not suitable in production code.
@item patchable_function_entry
@cindex @code{patchable_function_entry} function attribute
@cindex extra NOP instructions at the function entry point
In case the target's text segment can be made writable at run time by
any means, padding the function entry with a number of NOPs can be
used to provide a universal tool for instrumentation.
The @code{patchable_function_entry} function attribute can be used to
change the number of NOPs to any desired value. The two-value syntax
is the same as for the command-line switch
@option{-fpatchable-function-entry=N,M}, generating @var{N} NOPs, with
the function entry point before the @var{M}th NOP instruction.
@var{M} defaults to 0 if omitted e.g.@: function entry point is before
the first NOP.
If patchable function entries are enabled globally using the command-line
option @option{-fpatchable-function-entry=N,M}, then you must disable
instrumentation on all functions that are part of the instrumentation
framework with the attribute @code{patchable_function_entry (0)}
to prevent recursion.
@item pure
@cindex @code{pure} function attribute
@cindex functions that have no side effects
Calls to functions that have no observable effects on the state of
the program other than to return a value may lend themselves to optimizations
such as common subexpression elimination. Declaring such functions with
the @code{pure} attribute allows GCC to avoid emitting some calls in repeated
invocations of the function with the same argument values.
The @code{pure} attribute prohibits a function from modifying the state
of the program that is observable by means other than inspecting
the function's return value. However, functions declared with the @code{pure}
attribute can safely read any non-volatile objects, and modify the value of
objects in a way that does not affect their return value or the observable
state of the program.
For example,
@smallexample
int hash (char *) __attribute__ ((pure));
@end smallexample
@noindent
tells GCC that subsequent calls to the function @code{hash} with the same
string can be replaced by the result of the first call provided the state
of the program observable by @code{hash}, including the contents of the array
itself, does not change in between. Even though @code{hash} takes a non-const
pointer argument it must not modify the array it points to, or any other object
whose value the rest of the program may depend on. However, the caller may
safely change the contents of the array between successive calls to
the function (doing so disables the optimization). The restriction also
applies to member objects referenced by the @code{this} pointer in C++
non-static member functions.
Some common examples of pure functions are @code{strlen} or @code{memcmp}.
Interesting non-pure functions are functions with infinite loops or those
depending on volatile memory or other system resource, that may change between
consecutive calls (such as the standard C @code{feof} function in
a multithreading environment).
The @code{pure} attribute imposes similar but looser restrictions on
a function's definition than the @code{const} attribute: @code{pure}
allows the function to read any non-volatile memory, even if it changes
in between successive invocations of the function. Declaring the same
function with both the @code{pure} and the @code{const} attribute is
diagnosed. Because a pure function cannot have any observable side
effects it does not make sense for such a function to return @code{void}.
Declaring such a function is diagnosed.
@item returns_nonnull
@cindex @code{returns_nonnull} function attribute
The @code{returns_nonnull} attribute specifies that the function
return value should be a non-null pointer. For instance, the declaration:
@smallexample
extern void *
mymalloc (size_t len) __attribute__((returns_nonnull));
@end smallexample
@noindent
lets the compiler optimize callers based on the knowledge
that the return value will never be null.
@item returns_twice
@cindex @code{returns_twice} function attribute
@cindex functions that return more than once
The @code{returns_twice} attribute tells the compiler that a function may
return more than one time. The compiler ensures that all registers
are dead before calling such a function and emits a warning about
the variables that may be clobbered after the second return from the
function. Examples of such functions are @code{setjmp} and @code{vfork}.
The @code{longjmp}-like counterpart of such function, if any, might need
to be marked with the @code{noreturn} attribute.
@item section ("@var{section-name}")
@cindex @code{section} function attribute
@cindex functions in arbitrary sections
Normally, the compiler places the code it generates in the @code{text} section.
Sometimes, however, you need additional sections, or you need certain
particular functions to appear in special sections. The @code{section}
attribute specifies that a function lives in a particular section.
For example, the declaration:
@smallexample
extern void foobar (void) __attribute__ ((section ("bar")));
@end smallexample
@noindent
puts the function @code{foobar} in the @code{bar} section.
Some file formats do not support arbitrary sections so the @code{section}
attribute is not available on all platforms.
If you need to map the entire contents of a module to a particular
section, consider using the facilities of the linker instead.
@item sentinel
@itemx sentinel (@var{position})
@cindex @code{sentinel} function attribute
This function attribute indicates that an argument in a call to the function
is expected to be an explicit @code{NULL}. The attribute is only valid on
variadic functions. By default, the sentinel is expected to be the last
argument of the function call. If the optional @var{position} argument
is specified to the attribute, the sentinel must be located at
@var{position} counting backwards from the end of the argument list.
@smallexample
__attribute__ ((sentinel))
is equivalent to
__attribute__ ((sentinel(0)))
@end smallexample
The attribute is automatically set with a position of 0 for the built-in
functions @code{execl} and @code{execlp}. The built-in function
@code{execle} has the attribute set with a position of 1.
A valid @code{NULL} in this context is defined as zero with any object
pointer type. If your system defines the @code{NULL} macro with
an integer type then you need to add an explicit cast. During
installation GCC replaces the system @code{<stddef.h>} header with
a copy that redefines NULL appropriately.
The warnings for missing or incorrect sentinels are enabled with
@option{-Wformat}.
@item simd
@itemx simd("@var{mask}")
@cindex @code{simd} function attribute
This attribute enables creation of one or more function versions that
can process multiple arguments using SIMD instructions from a
single invocation. Specifying this attribute allows compiler to
assume that such versions are available at link time (provided
in the same or another translation unit). Generated versions are
target-dependent and described in the corresponding Vector ABI document. For
x86_64 target this document can be found
@w{@uref{https://sourceware.org/glibc/wiki/libmvec?action=AttachFile&do=view&target=VectorABI.txt,here}}.
The optional argument @var{mask} may have the value
@code{notinbranch} or @code{inbranch},
and instructs the compiler to generate non-masked or masked
clones correspondingly. By default, all clones are generated.
If the attribute is specified and @code{#pragma omp declare simd} is
present on a declaration and the @option{-fopenmp} or @option{-fopenmp-simd}
switch is specified, then the attribute is ignored.
@item stack_protect
@cindex @code{stack_protect} function attribute
This attribute adds stack protection code to the function if
flags @option{-fstack-protector}, @option{-fstack-protector-strong}
or @option{-fstack-protector-explicit} are set.
@item no_stack_protector
@cindex @code{no_stack_protector} function attribute
This attribute prevents stack protection code for the function.
@item target (@var{string}, @dots{})
@cindex @code{target} function attribute
Multiple target back ends implement the @code{target} attribute
to specify that a function is to
be compiled with different target options than specified on the
command line. The original target command-line options are ignored.
One or more strings can be provided as arguments.
Each string consists of one or more comma-separated suffixes to
the @code{-m} prefix jointly forming the name of a machine-dependent
option. @xref{Submodel Options,,Machine-Dependent Options}.
The @code{target} attribute can be used for instance to have a function
compiled with a different ISA (instruction set architecture) than the
default. @samp{#pragma GCC target} can be used to specify target-specific
options for more than one function. @xref{Function Specific Option Pragmas},
for details about the pragma.
For instance, on an x86, you could declare one function with the
@code{target("sse4.1,arch=core2")} attribute and another with
@code{target("sse4a,arch=amdfam10")}. This is equivalent to
compiling the first function with @option{-msse4.1} and
@option{-march=core2} options, and the second function with
@option{-msse4a} and @option{-march=amdfam10} options. It is up to you
to make sure that a function is only invoked on a machine that
supports the particular ISA it is compiled for (for example by using
@code{cpuid} on x86 to determine what feature bits and architecture
family are used).
@smallexample
int core2_func (void) __attribute__ ((__target__ ("arch=core2")));
int sse3_func (void) __attribute__ ((__target__ ("sse3")));
@end smallexample
Providing multiple strings as arguments separated by commas to specify
multiple options is equivalent to separating the option suffixes with
a comma (@samp{,}) within a single string. Spaces are not permitted
within the strings.
The options supported are specific to each target; refer to @ref{x86
Function Attributes}, @ref{PowerPC Function Attributes},
@ref{ARM Function Attributes}, @ref{AArch64 Function Attributes},
@ref{Nios II Function Attributes}, and @ref{S/390 Function Attributes}
for details.
@item symver ("@var{name2}@@@var{nodename}")
@cindex @code{symver} function attribute
On ELF targets this attribute creates a symbol version. The @var{name2} part
of the parameter is the actual name of the symbol by which it will be
externally referenced. The @code{nodename} portion should be the name of a
node specified in the version script supplied to the linker when building a
shared library. Versioned symbol must be defined and must be exported with
default visibility.
@smallexample
__attribute__ ((__symver__ ("foo@@VERS_1"))) int
foo_v1 (void)
@{
@}
@end smallexample
Will produce a @code{.symver foo_v1, foo@@VERS_1} directive in the assembler
output.
One can also define multiple version for a given symbol
(starting from binutils 2.35).
@smallexample
__attribute__ ((__symver__ ("foo@@VERS_2"), __symver__ ("foo@@VERS_3")))
int symver_foo_v1 (void)
@{
@}
@end smallexample
This example creates a symbol name @code{symver_foo_v1}
which will be version @code{VERS_2} and @code{VERS_3} of @code{foo}.
If you have an older release of binutils, then symbol alias needs to
be used:
@smallexample
__attribute__ ((__symver__ ("foo@@VERS_2")))
int foo_v1 (void)
@{
return 0;
@}
__attribute__ ((__symver__ ("foo@@VERS_3")))
__attribute__ ((alias ("foo_v1")))
int symver_foo_v1 (void);
@end smallexample
Finally if the parameter is @code{"@var{name2}@@@@@var{nodename}"} then in
addition to creating a symbol version (as if
@code{"@var{name2}@@@var{nodename}"} was used) the version will be also used
to resolve @var{name2} by the linker.
@item tainted_args
@cindex @code{tainted_args} function attribute
The @code{tainted_args} attribute is used to specify that a function is called
in a way that requires sanitization of its arguments, such as a system
call in an operating system kernel. Such a function can be considered part
of the ``attack surface'' of the program. The attribute can be used both
on function declarations, and on field declarations containing function
pointers. In the latter case, any function used as an initializer of
such a callback field will be treated as being called with tainted
arguments.
The analyzer will pay particular attention to such functions when both
@option{-fanalyzer} and @option{-fanalyzer-checker=taint} are supplied,
potentially issuing warnings guarded by
@option{-Wanalyzer-tainted-allocation-size},
@option{-Wanalyzer-tainted-array-index},
@option{-Wanalyzer-tainted-divisor},
@option{-Wanalyzer-tainted-offset},
and @option{-Wanalyzer-tainted-size}.
@item target_clones (@var{options})
@cindex @code{target_clones} function attribute
The @code{target_clones} attribute is used to specify that a function
be cloned into multiple versions compiled with different target options
than specified on the command line. The supported options and restrictions
are the same as for @code{target} attribute.
For instance, on an x86, you could compile a function with
@code{target_clones("sse4.1,avx")}. GCC creates two function clones,
one compiled with @option{-msse4.1} and another with @option{-mavx}.
On a PowerPC, you can compile a function with
@code{target_clones("cpu=power9,default")}. GCC will create two
function clones, one compiled with @option{-mcpu=power9} and another
with the default options. GCC must be configured to use GLIBC 2.23 or
newer in order to use the @code{target_clones} attribute.
It also creates a resolver function (see
the @code{ifunc} attribute above) that dynamically selects a clone
suitable for current architecture. The resolver is created only if there
is a usage of a function with @code{target_clones} attribute.
Note that any subsequent call of a function without @code{target_clone}
from a @code{target_clone} caller will not lead to copying
(target clone) of the called function.
If you want to enforce such behaviour,
we recommend declaring the calling function with the @code{flatten} attribute?
@item unused
@cindex @code{unused} function attribute
This attribute, attached to a function, means that the function is meant
to be possibly unused. GCC does not produce a warning for this
function.
@item used
@cindex @code{used} function attribute
This attribute, attached to a function, means that code must be emitted
for the function even if it appears that the function is not referenced.
This is useful, for example, when the function is referenced only in
inline assembly.
When applied to a member function of a C++ class template, the
attribute also means that the function is instantiated if the
class itself is instantiated.
@item retain
@cindex @code{retain} function attribute
For ELF targets that support the GNU or FreeBSD OSABIs, this attribute
will save the function from linker garbage collection. To support
this behavior, functions that have not been placed in specific sections
(e.g. by the @code{section} attribute, or the @code{-ffunction-sections}
option), will be placed in new, unique sections.
This additional functionality requires Binutils version 2.36 or later.
@item visibility ("@var{visibility_type}")
@cindex @code{visibility} function attribute
This attribute affects the linkage of the declaration to which it is attached.
It can be applied to variables (@pxref{Common Variable Attributes}) and types
(@pxref{Common Type Attributes}) as well as functions.
There are four supported @var{visibility_type} values: default,
hidden, protected or internal visibility.
@smallexample
void __attribute__ ((visibility ("protected")))
f () @{ /* @r{Do something.} */; @}
int i __attribute__ ((visibility ("hidden")));
@end smallexample
The possible values of @var{visibility_type} correspond to the
visibility settings in the ELF gABI.
@table @code
@c keep this list of visibilities in alphabetical order.
@item default
Default visibility is the normal case for the object file format.
This value is available for the visibility attribute to override other
options that may change the assumed visibility of entities.
On ELF, default visibility means that the declaration is visible to other
modules and, in shared libraries, means that the declared entity may be
overridden.
On Darwin, default visibility means that the declaration is visible to
other modules.
Default visibility corresponds to ``external linkage'' in the language.
@item hidden
Hidden visibility indicates that the entity declared has a new
form of linkage, which we call ``hidden linkage''. Two
declarations of an object with hidden linkage refer to the same object
if they are in the same shared object.
@item internal
Internal visibility is like hidden visibility, but with additional
processor specific semantics. Unless otherwise specified by the
psABI, GCC defines internal visibility to mean that a function is
@emph{never} called from another module. Compare this with hidden
functions which, while they cannot be referenced directly by other
modules, can be referenced indirectly via function pointers. By
indicating that a function cannot be called from outside the module,
GCC may for instance omit the load of a PIC register since it is known
that the calling function loaded the correct value.
@item protected
Protected visibility is like default visibility except that it
indicates that references within the defining module bind to the
definition in that module. That is, the declared entity cannot be
overridden by another module.
@end table
All visibilities are supported on many, but not all, ELF targets
(supported when the assembler supports the @samp{.visibility}
pseudo-op). Default visibility is supported everywhere. Hidden
visibility is supported on Darwin targets.
The visibility attribute should be applied only to declarations that
would otherwise have external linkage. The attribute should be applied
consistently, so that the same entity should not be declared with
different settings of the attribute.
In C++, the visibility attribute applies to types as well as functions
and objects, because in C++ types have linkage. A class must not have
greater visibility than its non-static data member types and bases,
and class members default to the visibility of their class. Also, a
declaration without explicit visibility is limited to the visibility
of its type.
In C++, you can mark member functions and static member variables of a
class with the visibility attribute. This is useful if you know a
particular method or static member variable should only be used from
one shared object; then you can mark it hidden while the rest of the
class has default visibility. Care must be taken to avoid breaking
the One Definition Rule; for example, it is usually not useful to mark
an inline method as hidden without marking the whole class as hidden.
A C++ namespace declaration can also have the visibility attribute.
@smallexample
namespace nspace1 __attribute__ ((visibility ("protected")))
@{ /* @r{Do something.} */; @}
@end smallexample
This attribute applies only to the particular namespace body, not to
other definitions of the same namespace; it is equivalent to using
@samp{#pragma GCC visibility} before and after the namespace
definition (@pxref{Visibility Pragmas}).
In C++, if a template argument has limited visibility, this
restriction is implicitly propagated to the template instantiation.
Otherwise, template instantiations and specializations default to the
visibility of their template.
If both the template and enclosing class have explicit visibility, the
visibility from the template is used.
@item warn_unused_result
@cindex @code{warn_unused_result} function attribute
The @code{warn_unused_result} attribute causes a warning to be emitted
if a caller of the function with this attribute does not use its
return value. This is useful for functions where not checking
the result is either a security problem or always a bug, such as
@code{realloc}.
@smallexample
int fn () __attribute__ ((warn_unused_result));
int foo ()
@{
if (fn () < 0) return -1;
fn ();
return 0;
@}
@end smallexample
@noindent
results in warning on line 5.
@item weak
@cindex @code{weak} function attribute
The @code{weak} attribute causes a declaration of an external symbol
to be emitted as a weak symbol rather than a global. This is primarily
useful in defining library functions that can be overridden in user code,
though it can also be used with non-function declarations. The overriding
symbol must have the same type as the weak symbol. In addition, if it
designates a variable it must also have the same size and alignment as
the weak symbol. Weak symbols are supported for ELF targets, and also
for a.out targets when using the GNU assembler and linker.
@item weakref
@itemx weakref ("@var{target}")
@cindex @code{weakref} function attribute
The @code{weakref} attribute marks a declaration as a weak reference.
Without arguments, it should be accompanied by an @code{alias} attribute
naming the target symbol. Alternatively, @var{target} may be given as
an argument to @code{weakref} itself, naming the target definition of
the alias. The @var{target} must have the same type as the declaration.
In addition, if it designates a variable it must also have the same size
and alignment as the declaration. In either form of the declaration
@code{weakref} implicitly marks the declared symbol as @code{weak}. Without
a @var{target} given as an argument to @code{weakref} or to @code{alias},
@code{weakref} is equivalent to @code{weak} (in that case the declaration
may be @code{extern}).
@smallexample
/* Given the declaration: */
extern int y (void);
/* the following... */
static int x (void) __attribute__ ((weakref ("y")));
/* is equivalent to... */
static int x (void) __attribute__ ((weakref, alias ("y")));
/* or, alternatively, to... */
static int x (void) __attribute__ ((weakref));
static int x (void) __attribute__ ((alias ("y")));
@end smallexample
A weak reference is an alias that does not by itself require a
definition to be given for the target symbol. If the target symbol is
only referenced through weak references, then it becomes a @code{weak}
undefined symbol. If it is directly referenced, however, then such
strong references prevail, and a definition is required for the
symbol, not necessarily in the same translation unit.
The effect is equivalent to moving all references to the alias to a
separate translation unit, renaming the alias to the aliased symbol,
declaring it as weak, compiling the two separate translation units and
performing a link with relocatable output (i.e.@: @code{ld -r}) on them.
A declaration to which @code{weakref} is attached and that is associated
with a named @code{target} must be @code{static}.
@item zero_call_used_regs ("@var{choice}")
@cindex @code{zero_call_used_regs} function attribute
The @code{zero_call_used_regs} attribute causes the compiler to zero
a subset of all call-used registers@footnote{A ``call-used'' register
is a register whose contents can be changed by a function call;
therefore, a caller cannot assume that the register has the same contents
on return from the function as it had before calling the function. Such
registers are also called ``call-clobbered'', ``caller-saved'', or
``volatile''.} at function return.
This is used to increase program security by either mitigating
Return-Oriented Programming (ROP) attacks or preventing information leakage
through registers.
In order to satisfy users with different security needs and control the
run-time overhead at the same time, the @var{choice} parameter provides a
flexible way to choose the subset of the call-used registers to be zeroed.
The three basic values of @var{choice} are:
@itemize @bullet
@item
@samp{skip} doesn't zero any call-used registers.
@item
@samp{used} only zeros call-used registers that are used in the function.
A ``used'' register is one whose content has been set or referenced in
the function.
@item
@samp{all} zeros all call-used registers.
@end itemize
In addition to these three basic choices, it is possible to modify
@samp{used} or @samp{all} as follows:
@itemize @bullet
@item
Adding @samp{-gpr} restricts the zeroing to general-purpose registers.
@item
Adding @samp{-arg} restricts the zeroing to registers that can sometimes
be used to pass function arguments. This includes all argument registers
defined by the platform's calling conversion, regardless of whether the
function uses those registers for function arguments or not.
@end itemize
The modifiers can be used individually or together. If they are used
together, they must appear in the order above.
The full list of @var{choice}s is therefore:
@table @code
@item skip
doesn't zero any call-used register.
@item used
only zeros call-used registers that are used in the function.
@item used-gpr
only zeros call-used general purpose registers that are used in the function.
@item used-arg
only zeros call-used registers that are used in the function and pass arguments.
@item used-gpr-arg
only zeros call-used general purpose registers that are used in the function
and pass arguments.
@item all
zeros all call-used registers.
@item all-gpr
zeros all call-used general purpose registers.
@item all-arg
zeros all call-used registers that pass arguments.
@item all-gpr-arg
zeros all call-used general purpose registers that pass
arguments.
@end table
Of this list, @samp{used-arg}, @samp{used-gpr-arg}, @samp{all-arg},
and @samp{all-gpr-arg} are mainly used for ROP mitigation.
The default for the attribute is controlled by @option{-fzero-call-used-regs}.
@end table
@c This is the end of the target-independent attribute table
@node AArch64 Function Attributes
@subsection AArch64 Function Attributes
The following target-specific function attributes are available for the
AArch64 target. For the most part, these options mirror the behavior of
similar command-line options (@pxref{AArch64 Options}), but on a
per-function basis.
@table @code
@item general-regs-only
@cindex @code{general-regs-only} function attribute, AArch64
Indicates that no floating-point or Advanced SIMD registers should be
used when generating code for this function. If the function explicitly
uses floating-point code, then the compiler gives an error. This is
the same behavior as that of the command-line option
@option{-mgeneral-regs-only}.
@item fix-cortex-a53-835769
@cindex @code{fix-cortex-a53-835769} function attribute, AArch64
Indicates that the workaround for the Cortex-A53 erratum 835769 should be
applied to this function. To explicitly disable the workaround for this
function specify the negated form: @code{no-fix-cortex-a53-835769}.
This corresponds to the behavior of the command line options
@option{-mfix-cortex-a53-835769} and @option{-mno-fix-cortex-a53-835769}.
@item cmodel=
@cindex @code{cmodel=} function attribute, AArch64
Indicates that code should be generated for a particular code model for
this function. The behavior and permissible arguments are the same as
for the command line option @option{-mcmodel=}.
@item strict-align
@itemx no-strict-align
@cindex @code{strict-align} function attribute, AArch64
@code{strict-align} indicates that the compiler should not assume that unaligned
memory references are handled by the system. To allow the compiler to assume
that aligned memory references are handled by the system, the inverse attribute
@code{no-strict-align} can be specified. The behavior is same as for the
command-line option @option{-mstrict-align} and @option{-mno-strict-align}.
@item omit-leaf-frame-pointer
@cindex @code{omit-leaf-frame-pointer} function attribute, AArch64
Indicates that the frame pointer should be omitted for a leaf function call.
To keep the frame pointer, the inverse attribute
@code{no-omit-leaf-frame-pointer} can be specified. These attributes have
the same behavior as the command-line options @option{-momit-leaf-frame-pointer}
and @option{-mno-omit-leaf-frame-pointer}.
@item tls-dialect=
@cindex @code{tls-dialect=} function attribute, AArch64
Specifies the TLS dialect to use for this function. The behavior and
permissible arguments are the same as for the command-line option
@option{-mtls-dialect=}.
@item arch=
@cindex @code{arch=} function attribute, AArch64
Specifies the architecture version and architectural extensions to use
for this function. The behavior and permissible arguments are the same as
for the @option{-march=} command-line option.
@item tune=
@cindex @code{tune=} function attribute, AArch64
Specifies the core for which to tune the performance of this function.
The behavior and permissible arguments are the same as for the @option{-mtune=}
command-line option.
@item cpu=
@cindex @code{cpu=} function attribute, AArch64
Specifies the core for which to tune the performance of this function and also
whose architectural features to use. The behavior and valid arguments are the
same as for the @option{-mcpu=} command-line option.
@item sign-return-address
@cindex @code{sign-return-address} function attribute, AArch64
Select the function scope on which return address signing will be applied. The
behavior and permissible arguments are the same as for the command-line option
@option{-msign-return-address=}. The default value is @code{none}. This
attribute is deprecated. The @code{branch-protection} attribute should
be used instead.
@item branch-protection
@cindex @code{branch-protection} function attribute, AArch64
Select the function scope on which branch protection will be applied. The
behavior and permissible arguments are the same as for the command-line option
@option{-mbranch-protection=}. The default value is @code{none}.
@item outline-atomics
@cindex @code{outline-atomics} function attribute, AArch64
Enable or disable calls to out-of-line helpers to implement atomic operations.
This corresponds to the behavior of the command line options
@option{-moutline-atomics} and @option{-mno-outline-atomics}.
@end table
The above target attributes can be specified as follows:
@smallexample
__attribute__((target("@var{attr-string}")))
int
f (int a)
@{
return a + 5;
@}
@end smallexample
where @code{@var{attr-string}} is one of the attribute strings specified above.
Additionally, the architectural extension string may be specified on its
own. This can be used to turn on and off particular architectural extensions
without having to specify a particular architecture version or core. Example:
@smallexample
__attribute__((target("+crc+nocrypto")))
int
foo (int a)
@{
return a + 5;
@}
@end smallexample
In this example @code{target("+crc+nocrypto")} enables the @code{crc}
extension and disables the @code{crypto} extension for the function @code{foo}
without modifying an existing @option{-march=} or @option{-mcpu} option.
Multiple target function attributes can be specified by separating them with
a comma. For example:
@smallexample
__attribute__((target("arch=armv8-a+crc+crypto,tune=cortex-a53")))
int
foo (int a)
@{
return a + 5;
@}
@end smallexample
is valid and compiles function @code{foo} for ARMv8-A with @code{crc}
and @code{crypto} extensions and tunes it for @code{cortex-a53}.
@subsubsection Inlining rules
Specifying target attributes on individual functions or performing link-time
optimization across translation units compiled with different target options
can affect function inlining rules:
In particular, a caller function can inline a callee function only if the
architectural features available to the callee are a subset of the features
available to the caller.
For example: A function @code{foo} compiled with @option{-march=armv8-a+crc},
or tagged with the equivalent @code{arch=armv8-a+crc} attribute,
can inline a function @code{bar} compiled with @option{-march=armv8-a+nocrc}
because the all the architectural features that function @code{bar} requires
are available to function @code{foo}. Conversely, function @code{bar} cannot
inline function @code{foo}.
Additionally inlining a function compiled with @option{-mstrict-align} into a
function compiled without @code{-mstrict-align} is not allowed.
However, inlining a function compiled without @option{-mstrict-align} into a
function compiled with @option{-mstrict-align} is allowed.
Note that CPU tuning options and attributes such as the @option{-mcpu=},
@option{-mtune=} do not inhibit inlining unless the CPU specified by the
@option{-mcpu=} option or the @code{cpu=} attribute conflicts with the
architectural feature rules specified above.
@node AMD GCN Function Attributes
@subsection AMD GCN Function Attributes
These function attributes are supported by the AMD GCN back end:
@table @code
@item amdgpu_hsa_kernel
@cindex @code{amdgpu_hsa_kernel} function attribute, AMD GCN
This attribute indicates that the corresponding function should be compiled as
a kernel function, that is an entry point that can be invoked from the host
via the HSA runtime library. By default functions are only callable only from
other GCN functions.
This attribute is implicitly applied to any function named @code{main}, using
default parameters.
Kernel functions may return an integer value, which will be written to a
conventional place within the HSA "kernargs" region.
The attribute parameters configure what values are passed into the kernel
function by the GPU drivers, via the initial register state. Some values are
used by the compiler, and therefore forced on. Enabling other options may
break assumptions in the compiler and/or run-time libraries.
@table @code
@item private_segment_buffer
Set @code{enable_sgpr_private_segment_buffer} flag. Always on (required to
locate the stack).
@item dispatch_ptr
Set @code{enable_sgpr_dispatch_ptr} flag. Always on (required to locate the
launch dimensions).
@item queue_ptr
Set @code{enable_sgpr_queue_ptr} flag. Always on (required to convert address
spaces).
@item kernarg_segment_ptr
Set @code{enable_sgpr_kernarg_segment_ptr} flag. Always on (required to
locate the kernel arguments, "kernargs").
@item dispatch_id
Set @code{enable_sgpr_dispatch_id} flag.
@item flat_scratch_init
Set @code{enable_sgpr_flat_scratch_init} flag.
@item private_segment_size
Set @code{enable_sgpr_private_segment_size} flag.
@item grid_workgroup_count_X
Set @code{enable_sgpr_grid_workgroup_count_x} flag. Always on (required to
use OpenACC/OpenMP).
@item grid_workgroup_count_Y
Set @code{enable_sgpr_grid_workgroup_count_y} flag.
@item grid_workgroup_count_Z
Set @code{enable_sgpr_grid_workgroup_count_z} flag.
@item workgroup_id_X
Set @code{enable_sgpr_workgroup_id_x} flag.
@item workgroup_id_Y
Set @code{enable_sgpr_workgroup_id_y} flag.
@item workgroup_id_Z
Set @code{enable_sgpr_workgroup_id_z} flag.
@item workgroup_info
Set @code{enable_sgpr_workgroup_info} flag.
@item private_segment_wave_offset
Set @code{enable_sgpr_private_segment_wave_byte_offset} flag. Always on
(required to locate the stack).
@item work_item_id_X
Set @code{enable_vgpr_workitem_id} parameter. Always on (can't be disabled).
@item work_item_id_Y
Set @code{enable_vgpr_workitem_id} parameter. Always on (required to enable
vectorization.)
@item work_item_id_Z
Set @code{enable_vgpr_workitem_id} parameter. Always on (required to use
OpenACC/OpenMP).
@end table
@end table
@node ARC Function Attributes
@subsection ARC Function Attributes
These function attributes are supported by the ARC back end:
@table @code
@item interrupt
@cindex @code{interrupt} function attribute, ARC
Use this attribute to indicate
that the specified function is an interrupt handler. The compiler generates
function entry and exit sequences suitable for use in an interrupt handler
when this attribute is present.
On the ARC, you must specify the kind of interrupt to be handled
in a parameter to the interrupt attribute like this:
@smallexample
void f () __attribute__ ((interrupt ("ilink1")));
@end smallexample
Permissible values for this parameter are: @w{@code{ilink1}} and
@w{@code{ilink2}} for ARCv1 architecture, and @w{@code{ilink}} and
@w{@code{firq}} for ARCv2 architecture.
@item long_call
@itemx medium_call
@itemx short_call
@cindex @code{long_call} function attribute, ARC
@cindex @code{medium_call} function attribute, ARC
@cindex @code{short_call} function attribute, ARC
@cindex indirect calls, ARC
These attributes specify how a particular function is called.
These attributes override the
@option{-mlong-calls} and @option{-mmedium-calls} (@pxref{ARC Options})
command-line switches and @code{#pragma long_calls} settings.
For ARC, a function marked with the @code{long_call} attribute is
always called using register-indirect jump-and-link instructions,
thereby enabling the called function to be placed anywhere within the
32-bit address space. A function marked with the @code{medium_call}
attribute will always be close enough to be called with an unconditional
branch-and-link instruction, which has a 25-bit offset from
the call site. A function marked with the @code{short_call}
attribute will always be close enough to be called with a conditional
branch-and-link instruction, which has a 21-bit offset from
the call site.
@item jli_always
@cindex @code{jli_always} function attribute, ARC
Forces a particular function to be called using @code{jli}
instruction. The @code{jli} instruction makes use of a table stored
into @code{.jlitab} section, which holds the location of the functions
which are addressed using this instruction.
@item jli_fixed
@cindex @code{jli_fixed} function attribute, ARC
Identical like the above one, but the location of the function in the
@code{jli} table is known and given as an attribute parameter.
@item secure_call
@cindex @code{secure_call} function attribute, ARC
This attribute allows one to mark secure-code functions that are
callable from normal mode. The location of the secure call function
into the @code{sjli} table needs to be passed as argument.
@item naked
@cindex @code{naked} function attribute, ARC
This attribute allows the compiler to construct the requisite function
declaration, while allowing the body of the function to be assembly
code. The specified function will not have prologue/epilogue
sequences generated by the compiler. Only basic @code{asm} statements
can safely be included in naked functions (@pxref{Basic Asm}). While
using extended @code{asm} or a mixture of basic @code{asm} and C code
may appear to work, they cannot be depended upon to work reliably and
are not supported.
@end table
@node ARM Function Attributes
@subsection ARM Function Attributes
These function attributes are supported for ARM targets:
@table @code
@item general-regs-only
@cindex @code{general-regs-only} function attribute, ARM
Indicates that no floating-point or Advanced SIMD registers should be
used when generating code for this function. If the function explicitly
uses floating-point code, then the compiler gives an error. This is
the same behavior as that of the command-line option
@option{-mgeneral-regs-only}.
@item interrupt
@cindex @code{interrupt} function attribute, ARM
Use this attribute to indicate
that the specified function is an interrupt handler. The compiler generates
function entry and exit sequences suitable for use in an interrupt handler
when this attribute is present.
You can specify the kind of interrupt to be handled by
adding an optional parameter to the interrupt attribute like this:
@smallexample
void f () __attribute__ ((interrupt ("IRQ")));
@end smallexample
@noindent
Permissible values for this parameter are: @code{IRQ}, @code{FIQ},
@code{SWI}, @code{ABORT} and @code{UNDEF}.
On ARMv7-M the interrupt type is ignored, and the attribute means the function
may be called with a word-aligned stack pointer.
@item isr
@cindex @code{isr} function attribute, ARM
Use this attribute on ARM to write Interrupt Service Routines. This is an
alias to the @code{interrupt} attribute above.
@item long_call
@itemx short_call
@cindex @code{long_call} function attribute, ARM
@cindex @code{short_call} function attribute, ARM
@cindex indirect calls, ARM
These attributes specify how a particular function is called.
These attributes override the
@option{-mlong-calls} (@pxref{ARM Options})
command-line switch and @code{#pragma long_calls} settings. For ARM, the
@code{long_call} attribute indicates that the function might be far
away from the call site and require a different (more expensive)
calling sequence. The @code{short_call} attribute always places
the offset to the function from the call site into the @samp{BL}
instruction directly.
@item naked
@cindex @code{naked} function attribute, ARM
This attribute allows the compiler to construct the
requisite function declaration, while allowing the body of the
function to be assembly code. The specified function will not have
prologue/epilogue sequences generated by the compiler. Only basic
@code{asm} statements can safely be included in naked functions
(@pxref{Basic Asm}). While using extended @code{asm} or a mixture of
basic @code{asm} and C code may appear to work, they cannot be
depended upon to work reliably and are not supported.
@item pcs
@cindex @code{pcs} function attribute, ARM
The @code{pcs} attribute can be used to control the calling convention
used for a function on ARM. The attribute takes an argument that specifies
the calling convention to use.
When compiling using the AAPCS ABI (or a variant of it) then valid
values for the argument are @code{"aapcs"} and @code{"aapcs-vfp"}. In
order to use a variant other than @code{"aapcs"} then the compiler must
be permitted to use the appropriate co-processor registers (i.e., the
VFP registers must be available in order to use @code{"aapcs-vfp"}).
For example,
@smallexample
/* Argument passed in r0, and result returned in r0+r1. */
double f2d (float) __attribute__((pcs("aapcs")));
@end smallexample
Variadic functions always use the @code{"aapcs"} calling convention and
the compiler rejects attempts to specify an alternative.
@item target (@var{options})
@cindex @code{target} function attribute
As discussed in @ref{Common Function Attributes}, this attribute
allows specification of target-specific compilation options.
On ARM, the following options are allowed:
@table @samp
@item thumb
@cindex @code{target("thumb")} function attribute, ARM
Force code generation in the Thumb (T16/T32) ISA, depending on the
architecture level.
@item arm
@cindex @code{target("arm")} function attribute, ARM
Force code generation in the ARM (A32) ISA.
Functions from different modes can be inlined in the caller's mode.
@item fpu=
@cindex @code{target("fpu=")} function attribute, ARM
Specifies the fpu for which to tune the performance of this function.
The behavior and permissible arguments are the same as for the @option{-mfpu=}
command-line option.
@item arch=
@cindex @code{arch=} function attribute, ARM
Specifies the architecture version and architectural extensions to use
for this function. The behavior and permissible arguments are the same as
for the @option{-march=} command-line option.
The above target attributes can be specified as follows:
@smallexample
__attribute__((target("arch=armv8-a+crc")))
int
f (int a)
@{
return a + 5;
@}
@end smallexample
Additionally, the architectural extension string may be specified on its
own. This can be used to turn on and off particular architectural extensions
without having to specify a particular architecture version or core. Example:
@smallexample
__attribute__((target("+crc+nocrypto")))
int
foo (int a)
@{
return a + 5;
@}
@end smallexample
In this example @code{target("+crc+nocrypto")} enables the @code{crc}
extension and disables the @code{crypto} extension for the function @code{foo}
without modifying an existing @option{-march=} or @option{-mcpu} option.
@end table
@end table
@node AVR Function Attributes
@subsection AVR Function Attributes
These function attributes are supported by the AVR back end:
@table @code
@item interrupt
@cindex @code{interrupt} function attribute, AVR
Use this attribute to indicate
that the specified function is an interrupt handler. The compiler generates
function entry and exit sequences suitable for use in an interrupt handler
when this attribute is present.
On the AVR, the hardware globally disables interrupts when an
interrupt is executed. The first instruction of an interrupt handler
declared with this attribute is a @code{SEI} instruction to
re-enable interrupts. See also the @code{signal} function attribute
that does not insert a @code{SEI} instruction. If both @code{signal} and
@code{interrupt} are specified for the same function, @code{signal}
is silently ignored.
@item naked
@cindex @code{naked} function attribute, AVR
This attribute allows the compiler to construct the
requisite function declaration, while allowing the body of the
function to be assembly code. The specified function will not have
prologue/epilogue sequences generated by the compiler. Only basic
@code{asm} statements can safely be included in naked functions
(@pxref{Basic Asm}). While using extended @code{asm} or a mixture of
basic @code{asm} and C code may appear to work, they cannot be
depended upon to work reliably and are not supported.
@item no_gccisr
@cindex @code{no_gccisr} function attribute, AVR
Do not use @code{__gcc_isr} pseudo instructions in a function with
the @code{interrupt} or @code{signal} attribute aka. interrupt
service routine (ISR).
Use this attribute if the preamble of the ISR prologue should always read
@example
push __zero_reg__
push __tmp_reg__
in __tmp_reg__, __SREG__
push __tmp_reg__
clr __zero_reg__
@end example
and accordingly for the postamble of the epilogue --- no matter whether
the mentioned registers are actually used in the ISR or not.
Situations where you might want to use this attribute include:
@itemize @bullet
@item
Code that (effectively) clobbers bits of @code{SREG} other than the
@code{I}-flag by writing to the memory location of @code{SREG}.
@item
Code that uses inline assembler to jump to a different function which
expects (parts of) the prologue code as outlined above to be present.
@end itemize
To disable @code{__gcc_isr} generation for the whole compilation unit,
there is option @option{-mno-gas-isr-prologues}, @pxref{AVR Options}.
@item OS_main
@itemx OS_task
@cindex @code{OS_main} function attribute, AVR
@cindex @code{OS_task} function attribute, AVR
On AVR, functions with the @code{OS_main} or @code{OS_task} attribute
do not save/restore any call-saved register in their prologue/epilogue.
The @code{OS_main} attribute can be used when there @emph{is
guarantee} that interrupts are disabled at the time when the function
is entered. This saves resources when the stack pointer has to be
changed to set up a frame for local variables.
The @code{OS_task} attribute can be used when there is @emph{no
guarantee} that interrupts are disabled at that time when the function
is entered like for, e@.g@. task functions in a multi-threading operating
system. In that case, changing the stack pointer register is
guarded by save/clear/restore of the global interrupt enable flag.
The differences to the @code{naked} function attribute are:
@itemize @bullet
@item @code{naked} functions do not have a return instruction whereas
@code{OS_main} and @code{OS_task} functions have a @code{RET} or
@code{RETI} return instruction.
@item @code{naked} functions do not set up a frame for local variables
or a frame pointer whereas @code{OS_main} and @code{OS_task} do this
as needed.
@end itemize
@item signal
@cindex @code{signal} function attribute, AVR
Use this attribute on the AVR to indicate that the specified
function is an interrupt handler. The compiler generates function
entry and exit sequences suitable for use in an interrupt handler when this
attribute is present.
See also the @code{interrupt} function attribute.
The AVR hardware globally disables interrupts when an interrupt is executed.
Interrupt handler functions defined with the @code{signal} attribute
do not re-enable interrupts. It is save to enable interrupts in a
@code{signal} handler. This ``save'' only applies to the code
generated by the compiler and not to the IRQ layout of the
application which is responsibility of the application.
If both @code{signal} and @code{interrupt} are specified for the same
function, @code{signal} is silently ignored.
@end table
@node Blackfin Function Attributes
@subsection Blackfin Function Attributes
These function attributes are supported by the Blackfin back end:
@table @code
@item exception_handler
@cindex @code{exception_handler} function attribute
@cindex exception handler functions, Blackfin
Use this attribute on the Blackfin to indicate that the specified function
is an exception handler. The compiler generates function entry and
exit sequences suitable for use in an exception handler when this
attribute is present.
@item interrupt_handler
@cindex @code{interrupt_handler} function attribute, Blackfin
Use this attribute to
indicate that the specified function is an interrupt handler. The compiler
generates function entry and exit sequences suitable for use in an
interrupt handler when this attribute is present.
@item kspisusp
@cindex @code{kspisusp} function attribute, Blackfin
@cindex User stack pointer in interrupts on the Blackfin
When used together with @code{interrupt_handler}, @code{exception_handler}
or @code{nmi_handler}, code is generated to load the stack pointer
from the USP register in the function prologue.
@item l1_text
@cindex @code{l1_text} function attribute, Blackfin
This attribute specifies a function to be placed into L1 Instruction
SRAM@. The function is put into a specific section named @code{.l1.text}.
With @option{-mfdpic}, function calls with a such function as the callee
or caller uses inlined PLT.
@item l2
@cindex @code{l2} function attribute, Blackfin
This attribute specifies a function to be placed into L2
SRAM. The function is put into a specific section named
@code{.l2.text}. With @option{-mfdpic}, callers of such functions use
an inlined PLT.
@item longcall
@itemx shortcall
@cindex indirect calls, Blackfin
@cindex @code{longcall} function attribute, Blackfin
@cindex @code{shortcall} function attribute, Blackfin
The @code{longcall} attribute
indicates that the function might be far away from the call site and
require a different (more expensive) calling sequence. The
@code{shortcall} attribute indicates that the function is always close
enough for the shorter calling sequence to be used. These attributes
override the @option{-mlongcall} switch.
@item nesting
@cindex @code{nesting} function attribute, Blackfin
@cindex Allow nesting in an interrupt handler on the Blackfin processor
Use this attribute together with @code{interrupt_handler},
@code{exception_handler} or @code{nmi_handler} to indicate that the function
entry code should enable nested interrupts or exceptions.
@item nmi_handler
@cindex @code{nmi_handler} function attribute, Blackfin
@cindex NMI handler functions on the Blackfin processor
Use this attribute on the Blackfin to indicate that the specified function
is an NMI handler. The compiler generates function entry and
exit sequences suitable for use in an NMI handler when this
attribute is present.
@item saveall
@cindex @code{saveall} function attribute, Blackfin
@cindex save all registers on the Blackfin
Use this attribute to indicate that
all registers except the stack pointer should be saved in the prologue
regardless of whether they are used or not.
@end table
@node BPF Function Attributes
@subsection BPF Function Attributes
These function attributes are supported by the BPF back end:
@table @code
@item kernel_helper
@cindex @code{kernel helper}, function attribute, BPF
use this attribute to indicate the specified function declaration is a
kernel helper. The helper function is passed as an argument to the
attribute. Example:
@smallexample
int bpf_probe_read (void *dst, int size, const void *unsafe_ptr)
__attribute__ ((kernel_helper (4)));
@end smallexample
@end table
@node CR16 Function Attributes
@subsection CR16 Function Attributes
These function attributes are supported by the CR16 back end:
@table @code
@item interrupt
@cindex @code{interrupt} function attribute, CR16
Use this attribute to indicate
that the specified function is an interrupt handler. The compiler generates
function entry and exit sequences suitable for use in an interrupt handler
when this attribute is present.
@end table
@node C-SKY Function Attributes
@subsection C-SKY Function Attributes
These function attributes are supported by the C-SKY back end:
@table @code
@item interrupt
@itemx isr
@cindex @code{interrupt} function attribute, C-SKY
@cindex @code{isr} function attribute, C-SKY
Use these attributes to indicate that the specified function
is an interrupt handler.
The compiler generates function entry and exit sequences suitable for
use in an interrupt handler when either of these attributes are present.
Use of these options requires the @option{-mistack} command-line option
to enable support for the necessary interrupt stack instructions. They
are ignored with a warning otherwise. @xref{C-SKY Options}.
@item naked
@cindex @code{naked} function attribute, C-SKY
This attribute allows the compiler to construct the
requisite function declaration, while allowing the body of the
function to be assembly code. The specified function will not have
prologue/epilogue sequences generated by the compiler. Only basic
@code{asm} statements can safely be included in naked functions
(@pxref{Basic Asm}). While using extended @code{asm} or a mixture of
basic @code{asm} and C code may appear to work, they cannot be
depended upon to work reliably and are not supported.
@end table
@node Epiphany Function Attributes
@subsection Epiphany Function Attributes
These function attributes are supported by the Epiphany back end:
@table @code
@item disinterrupt
@cindex @code{disinterrupt} function attribute, Epiphany
This attribute causes the compiler to emit
instructions to disable interrupts for the duration of the given
function.
@item forwarder_section
@cindex @code{forwarder_section} function attribute, Epiphany
This attribute modifies the behavior of an interrupt handler.
The interrupt handler may be in external memory which cannot be
reached by a branch instruction, so generate a local memory trampoline
to transfer control. The single parameter identifies the section where
the trampoline is placed.
@item interrupt
@cindex @code{interrupt} function attribute, Epiphany
Use this attribute to indicate
that the specified function is an interrupt handler. The compiler generates
function entry and exit sequences suitable for use in an interrupt handler
when this attribute is present. It may also generate
a special section with code to initialize the interrupt vector table.
On Epiphany targets one or more optional parameters can be added like this:
@smallexample
void __attribute__ ((interrupt ("dma0, dma1"))) universal_dma_handler ();
@end smallexample
Permissible values for these parameters are: @w{@code{reset}},
@w{@code{software_exception}}, @w{@code{page_miss}},
@w{@code{timer0}}, @w{@code{timer1}}, @w{@code{message}},
@w{@code{dma0}}, @w{@code{dma1}}, @w{@code{wand}} and @w{@code{swi}}.
Multiple parameters indicate that multiple entries in the interrupt
vector table should be initialized for this function, i.e.@: for each
parameter @w{@var{name}}, a jump to the function is emitted in
the section @w{ivt_entry_@var{name}}. The parameter(s) may be omitted
entirely, in which case no interrupt vector table entry is provided.
Note that interrupts are enabled inside the function
unless the @code{disinterrupt} attribute is also specified.
The following examples are all valid uses of these attributes on
Epiphany targets:
@smallexample
void __attribute__ ((interrupt)) universal_handler ();
void __attribute__ ((interrupt ("dma1"))) dma1_handler ();
void __attribute__ ((interrupt ("dma0, dma1")))
universal_dma_handler ();
void __attribute__ ((interrupt ("timer0"), disinterrupt))
fast_timer_handler ();
void __attribute__ ((interrupt ("dma0, dma1"),
forwarder_section ("tramp")))
external_dma_handler ();
@end smallexample
@item long_call
@itemx short_call
@cindex @code{long_call} function attribute, Epiphany
@cindex @code{short_call} function attribute, Epiphany
@cindex indirect calls, Epiphany
These attributes specify how a particular function is called.
These attributes override the
@option{-mlong-calls} (@pxref{Adapteva Epiphany Options})
command-line switch and @code{#pragma long_calls} settings.
@end table
@node H8/300 Function Attributes
@subsection H8/300 Function Attributes
These function attributes are available for H8/300 targets:
@table @code
@item function_vector
@cindex @code{function_vector} function attribute, H8/300
Use this attribute on the H8/300, H8/300H, and H8S to indicate
that the specified function should be called through the function vector.
Calling a function through the function vector reduces code size; however,
the function vector has a limited size (maximum 128 entries on the H8/300
and 64 entries on the H8/300H and H8S)
and shares space with the interrupt vector.
@item interrupt_handler
@cindex @code{interrupt_handler} function attribute, H8/300
Use this attribute on the H8/300, H8/300H, and H8S to
indicate that the specified function is an interrupt handler. The compiler
generates function entry and exit sequences suitable for use in an
interrupt handler when this attribute is present.
@item saveall
@cindex @code{saveall} function attribute, H8/300
@cindex save all registers on the H8/300, H8/300H, and H8S
Use this attribute on the H8/300, H8/300H, and H8S to indicate that
all registers except the stack pointer should be saved in the prologue
regardless of whether they are used or not.
@end table
@node IA-64 Function Attributes
@subsection IA-64 Function Attributes
These function attributes are supported on IA-64 targets:
@table @code
@item syscall_linkage
@cindex @code{syscall_linkage} function attribute, IA-64
This attribute is used to modify the IA-64 calling convention by marking
all input registers as live at all function exits. This makes it possible
to restart a system call after an interrupt without having to save/restore
the input registers. This also prevents kernel data from leaking into
application code.
@item version_id
@cindex @code{version_id} function attribute, IA-64
This IA-64 HP-UX attribute, attached to a global variable or function, renames a
symbol to contain a version string, thus allowing for function level
versioning. HP-UX system header files may use function level versioning
for some system calls.
@smallexample
extern int foo () __attribute__((version_id ("20040821")));
@end smallexample
@noindent
Calls to @code{foo} are mapped to calls to @code{foo@{20040821@}}.
@end table
@node M32C Function Attributes
@subsection M32C Function Attributes
These function attributes are supported by the M32C back end:
@table @code
@item bank_switch
@cindex @code{bank_switch} function attribute, M32C
When added to an interrupt handler with the M32C port, causes the
prologue and epilogue to use bank switching to preserve the registers
rather than saving them on the stack.
@item fast_interrupt
@cindex @code{fast_interrupt} function attribute, M32C
Use this attribute on the M32C port to indicate that the specified
function is a fast interrupt handler. This is just like the
@code{interrupt} attribute, except that @code{freit} is used to return
instead of @code{reit}.
@item function_vector
@cindex @code{function_vector} function attribute, M16C/M32C
On M16C/M32C targets, the @code{function_vector} attribute declares a
special page subroutine call function. Use of this attribute reduces
the code size by 2 bytes for each call generated to the
subroutine. The argument to the attribute is the vector number entry
from the special page vector table which contains the 16 low-order
bits of the subroutine's entry address. Each vector table has special
page number (18 to 255) that is used in @code{jsrs} instructions.
Jump addresses of the routines are generated by adding 0x0F0000 (in
case of M16C targets) or 0xFF0000 (in case of M32C targets), to the
2-byte addresses set in the vector table. Therefore you need to ensure
that all the special page vector routines should get mapped within the
address range 0x0F0000 to 0x0FFFFF (for M16C) and 0xFF0000 to 0xFFFFFF
(for M32C).
In the following example 2 bytes are saved for each call to
function @code{foo}.
@smallexample
void foo (void) __attribute__((function_vector(0x18)));
void foo (void)
@{
@}
void bar (void)
@{
foo();
@}
@end smallexample
If functions are defined in one file and are called in another file,
then be sure to write this declaration in both files.
This attribute is ignored for R8C target.
@item interrupt
@cindex @code{interrupt} function attribute, M32C
Use this attribute to indicate
that the specified function is an interrupt handler. The compiler generates
function entry and exit sequences suitable for use in an interrupt handler
when this attribute is present.
@end table
@node M32R/D Function Attributes
@subsection M32R/D Function Attributes
These function attributes are supported by the M32R/D back end:
@table @code
@item interrupt
@cindex @code{interrupt} function attribute, M32R/D
Use this attribute to indicate
that the specified function is an interrupt handler. The compiler generates
function entry and exit sequences suitable for use in an interrupt handler
when this attribute is present.
@item model (@var{model-name})
@cindex @code{model} function attribute, M32R/D
@cindex function addressability on the M32R/D
On the M32R/D, use this attribute to set the addressability of an
object, and of the code generated for a function. The identifier
@var{model-name} is one of @code{small}, @code{medium}, or
@code{large}, representing each of the code models.
Small model objects live in the lower 16MB of memory (so that their
addresses can be loaded with the @code{ld24} instruction), and are
callable with the @code{bl} instruction.
Medium model objects may live anywhere in the 32-bit address space (the
compiler generates @code{seth/add3} instructions to load their addresses),
and are callable with the @code{bl} instruction.
Large model objects may live anywhere in the 32-bit address space (the
compiler generates @code{seth/add3} instructions to load their addresses),
and may not be reachable with the @code{bl} instruction (the compiler
generates the much slower @code{seth/add3/jl} instruction sequence).
@end table
@node m68k Function Attributes
@subsection m68k Function Attributes
These function attributes are supported by the m68k back end:
@table @code
@item interrupt
@itemx interrupt_handler
@cindex @code{interrupt} function attribute, m68k
@cindex @code{interrupt_handler} function attribute, m68k
Use this attribute to
indicate that the specified function is an interrupt handler. The compiler
generates function entry and exit sequences suitable for use in an
interrupt handler when this attribute is present. Either name may be used.
@item interrupt_thread
@cindex @code{interrupt_thread} function attribute, fido
Use this attribute on fido, a subarchitecture of the m68k, to indicate
that the specified function is an interrupt handler that is designed
to run as a thread. The compiler omits generate prologue/epilogue
sequences and replaces the return instruction with a @code{sleep}
instruction. This attribute is available only on fido.
@end table
@node MCORE Function Attributes
@subsection MCORE Function Attributes
These function attributes are supported by the MCORE back end:
@table @code
@item naked
@cindex @code{naked} function attribute, MCORE
This attribute allows the compiler to construct the
requisite function declaration, while allowing the body of the
function to be assembly code. The specified function will not have
prologue/epilogue sequences generated by the compiler. Only basic
@code{asm} statements can safely be included in naked functions
(@pxref{Basic Asm}). While using extended @code{asm} or a mixture of
basic @code{asm} and C code may appear to work, they cannot be
depended upon to work reliably and are not supported.
@end table
@node MeP Function Attributes
@subsection MeP Function Attributes
These function attributes are supported by the MeP back end:
@table @code
@item disinterrupt
@cindex @code{disinterrupt} function attribute, MeP
On MeP targets, this attribute causes the compiler to emit
instructions to disable interrupts for the duration of the given
function.
@item interrupt
@cindex @code{interrupt} function attribute, MeP
Use this attribute to indicate
that the specified function is an interrupt handler. The compiler generates
function entry and exit sequences suitable for use in an interrupt handler
when this attribute is present.
@item near
@cindex @code{near} function attribute, MeP
This attribute causes the compiler to assume the called
function is close enough to use the normal calling convention,
overriding the @option{-mtf} command-line option.
@item far
@cindex @code{far} function attribute, MeP
On MeP targets this causes the compiler to use a calling convention
that assumes the called function is too far away for the built-in
addressing modes.
@item vliw
@cindex @code{vliw} function attribute, MeP
The @code{vliw} attribute tells the compiler to emit
instructions in VLIW mode instead of core mode. Note that this
attribute is not allowed unless a VLIW coprocessor has been configured
and enabled through command-line options.
@end table
@node MicroBlaze Function Attributes
@subsection MicroBlaze Function Attributes
These function attributes are supported on MicroBlaze targets:
@table @code
@item save_volatiles
@cindex @code{save_volatiles} function attribute, MicroBlaze
Use this attribute to indicate that the function is
an interrupt handler. All volatile registers (in addition to non-volatile
registers) are saved in the function prologue. If the function is a leaf
function, only volatiles used by the function are saved. A normal function
return is generated instead of a return from interrupt.
@item break_handler
@cindex @code{break_handler} function attribute, MicroBlaze
@cindex break handler functions
Use this attribute to indicate that
the specified function is a break handler. The compiler generates function
entry and exit sequences suitable for use in an break handler when this
attribute is present. The return from @code{break_handler} is done through
the @code{rtbd} instead of @code{rtsd}.
@smallexample
void f () __attribute__ ((break_handler));
@end smallexample
@item interrupt_handler
@itemx fast_interrupt
@cindex @code{interrupt_handler} function attribute, MicroBlaze
@cindex @code{fast_interrupt} function attribute, MicroBlaze
These attributes indicate that the specified function is an interrupt
handler. Use the @code{fast_interrupt} attribute to indicate handlers
used in low-latency interrupt mode, and @code{interrupt_handler} for
interrupts that do not use low-latency handlers. In both cases, GCC
emits appropriate prologue code and generates a return from the handler
using @code{rtid} instead of @code{rtsd}.
@end table
@node Microsoft Windows Function Attributes
@subsection Microsoft Windows Function Attributes
The following attributes are available on Microsoft Windows and Symbian OS
targets.
@table @code
@item dllexport
@cindex @code{dllexport} function attribute
@cindex @code{__declspec(dllexport)}
On Microsoft Windows targets and Symbian OS targets the
@code{dllexport} attribute causes the compiler to provide a global
pointer to a pointer in a DLL, so that it can be referenced with the
@code{dllimport} attribute. On Microsoft Windows targets, the pointer
name is formed by combining @code{_imp__} and the function or variable
name.
You can use @code{__declspec(dllexport)} as a synonym for
@code{__attribute__ ((dllexport))} for compatibility with other
compilers.
On systems that support the @code{visibility} attribute, this
attribute also implies ``default'' visibility. It is an error to
explicitly specify any other visibility.
GCC's default behavior is to emit all inline functions with the
@code{dllexport} attribute. Since this can cause object file-size bloat,
you can use @option{-fno-keep-inline-dllexport}, which tells GCC to
ignore the attribute for inlined functions unless the
@option{-fkeep-inline-functions} flag is used instead.
The attribute is ignored for undefined symbols.
When applied to C++ classes, the attribute marks defined non-inlined
member functions and static data members as exports. Static consts
initialized in-class are not marked unless they are also defined
out-of-class.
For Microsoft Windows targets there are alternative methods for
including the symbol in the DLL's export table such as using a
@file{.def} file with an @code{EXPORTS} section or, with GNU ld, using
the @option{--export-all} linker flag.
@item dllimport
@cindex @code{dllimport} function attribute
@cindex @code{__declspec(dllimport)}
On Microsoft Windows and Symbian OS targets, the @code{dllimport}
attribute causes the compiler to reference a function or variable via
a global pointer to a pointer that is set up by the DLL exporting the
symbol. The attribute implies @code{extern}. On Microsoft Windows
targets, the pointer name is formed by combining @code{_imp__} and the
function or variable name.
You can use @code{__declspec(dllimport)} as a synonym for
@code{__attribute__ ((dllimport))} for compatibility with other
compilers.
On systems that support the @code{visibility} attribute, this
attribute also implies ``default'' visibility. It is an error to
explicitly specify any other visibility.
Currently, the attribute is ignored for inlined functions. If the
attribute is applied to a symbol @emph{definition}, an error is reported.
If a symbol previously declared @code{dllimport} is later defined, the
attribute is ignored in subsequent references, and a warning is emitted.
The attribute is also overridden by a subsequent declaration as
@code{dllexport}.
When applied to C++ classes, the attribute marks non-inlined
member functions and static data members as imports. However, the
attribute is ignored for virtual methods to allow creation of vtables
using thunks.
On the SH Symbian OS target the @code{dllimport} attribute also has
another affect---it can cause the vtable and run-time type information
for a class to be exported. This happens when the class has a
dllimported constructor or a non-inline, non-pure virtual function
and, for either of those two conditions, the class also has an inline
constructor or destructor and has a key function that is defined in
the current translation unit.
For Microsoft Windows targets the use of the @code{dllimport}
attribute on functions is not necessary, but provides a small
performance benefit by eliminating a thunk in the DLL@. The use of the
@code{dllimport} attribute on imported variables can be avoided by passing the
@option{--enable-auto-import} switch to the GNU linker. As with
functions, using the attribute for a variable eliminates a thunk in
the DLL@.
One drawback to using this attribute is that a pointer to a
@emph{variable} marked as @code{dllimport} cannot be used as a constant
address. However, a pointer to a @emph{function} with the
@code{dllimport} attribute can be used as a constant initializer; in
this case, the address of a stub function in the import lib is
referenced. On Microsoft Windows targets, the attribute can be disabled
for functions by setting the @option{-mnop-fun-dllimport} flag.
@end table
@node MIPS Function Attributes
@subsection MIPS Function Attributes
These function attributes are supported by the MIPS back end:
@table @code
@item interrupt
@cindex @code{interrupt} function attribute, MIPS
Use this attribute to indicate that the specified function is an interrupt
handler. The compiler generates function entry and exit sequences suitable
for use in an interrupt handler when this attribute is present.
An optional argument is supported for the interrupt attribute which allows
the interrupt mode to be described. By default GCC assumes the external
interrupt controller (EIC) mode is in use, this can be explicitly set using
@code{eic}. When interrupts are non-masked then the requested Interrupt
Priority Level (IPL) is copied to the current IPL which has the effect of only
enabling higher priority interrupts. To use vectored interrupt mode use
the argument @code{vector=[sw0|sw1|hw0|hw1|hw2|hw3|hw4|hw5]}, this will change
the behavior of the non-masked interrupt support and GCC will arrange to mask
all interrupts from sw0 up to and including the specified interrupt vector.
You can use the following attributes to modify the behavior
of an interrupt handler:
@table @code
@item use_shadow_register_set
@cindex @code{use_shadow_register_set} function attribute, MIPS
Assume that the handler uses a shadow register set, instead of
the main general-purpose registers. An optional argument @code{intstack} is
supported to indicate that the shadow register set contains a valid stack
pointer.
@item keep_interrupts_masked
@cindex @code{keep_interrupts_masked} function attribute, MIPS
Keep interrupts masked for the whole function. Without this attribute,
GCC tries to reenable interrupts for as much of the function as it can.
@item use_debug_exception_return
@cindex @code{use_debug_exception_return} function attribute, MIPS
Return using the @code{deret} instruction. Interrupt handlers that don't
have this attribute return using @code{eret} instead.
@end table
You can use any combination of these attributes, as shown below:
@smallexample
void __attribute__ ((interrupt)) v0 ();
void __attribute__ ((interrupt, use_shadow_register_set)) v1 ();
void __attribute__ ((interrupt, keep_interrupts_masked)) v2 ();
void __attribute__ ((interrupt, use_debug_exception_return)) v3 ();
void __attribute__ ((interrupt, use_shadow_register_set,
keep_interrupts_masked)) v4 ();
void __attribute__ ((interrupt, use_shadow_register_set,
use_debug_exception_return)) v5 ();
void __attribute__ ((interrupt, keep_interrupts_masked,
use_debug_exception_return)) v6 ();
void __attribute__ ((interrupt, use_shadow_register_set,
keep_interrupts_masked,
use_debug_exception_return)) v7 ();
void __attribute__ ((interrupt("eic"))) v8 ();
void __attribute__ ((interrupt("vector=hw3"))) v9 ();
@end smallexample
@item long_call
@itemx short_call
@itemx near
@itemx far
@cindex indirect calls, MIPS
@cindex @code{long_call} function attribute, MIPS
@cindex @code{short_call} function attribute, MIPS
@cindex @code{near} function attribute, MIPS
@cindex @code{far} function attribute, MIPS
These attributes specify how a particular function is called on MIPS@.
The attributes override the @option{-mlong-calls} (@pxref{MIPS Options})
command-line switch. The @code{long_call} and @code{far} attributes are
synonyms, and cause the compiler to always call
the function by first loading its address into a register, and then using
the contents of that register. The @code{short_call} and @code{near}
attributes are synonyms, and have the opposite
effect; they specify that non-PIC calls should be made using the more
efficient @code{jal} instruction.
@item mips16
@itemx nomips16
@cindex @code{mips16} function attribute, MIPS
@cindex @code{nomips16} function attribute, MIPS
On MIPS targets, you can use the @code{mips16} and @code{nomips16}
function attributes to locally select or turn off MIPS16 code generation.
A function with the @code{mips16} attribute is emitted as MIPS16 code,
while MIPS16 code generation is disabled for functions with the
@code{nomips16} attribute. These attributes override the
@option{-mips16} and @option{-mno-mips16} options on the command line
(@pxref{MIPS Options}).
When compiling files containing mixed MIPS16 and non-MIPS16 code, the
preprocessor symbol @code{__mips16} reflects the setting on the command line,
not that within individual functions. Mixed MIPS16 and non-MIPS16 code
may interact badly with some GCC extensions such as @code{__builtin_apply}
(@pxref{Constructing Calls}).
@item micromips, MIPS
@itemx nomicromips, MIPS
@cindex @code{micromips} function attribute
@cindex @code{nomicromips} function attribute
On MIPS targets, you can use the @code{micromips} and @code{nomicromips}
function attributes to locally select or turn off microMIPS code generation.
A function with the @code{micromips} attribute is emitted as microMIPS code,
while microMIPS code generation is disabled for functions with the
@code{nomicromips} attribute. These attributes override the
@option{-mmicromips} and @option{-mno-micromips} options on the command line
(@pxref{MIPS Options}).
When compiling files containing mixed microMIPS and non-microMIPS code, the
preprocessor symbol @code{__mips_micromips} reflects the setting on the
command line,
not that within individual functions. Mixed microMIPS and non-microMIPS code
may interact badly with some GCC extensions such as @code{__builtin_apply}
(@pxref{Constructing Calls}).
@item nocompression
@cindex @code{nocompression} function attribute, MIPS
On MIPS targets, you can use the @code{nocompression} function attribute
to locally turn off MIPS16 and microMIPS code generation. This attribute
overrides the @option{-mips16} and @option{-mmicromips} options on the
command line (@pxref{MIPS Options}).
@end table
@node MSP430 Function Attributes
@subsection MSP430 Function Attributes
These function attributes are supported by the MSP430 back end:
@table @code
@item critical
@cindex @code{critical} function attribute, MSP430
Critical functions disable interrupts upon entry and restore the
previous interrupt state upon exit. Critical functions cannot also
have the @code{naked}, @code{reentrant} or @code{interrupt} attributes.
The MSP430 hardware ensures that interrupts are disabled on entry to
@code{interrupt} functions, and restores the previous interrupt state
on exit. The @code{critical} attribute is therefore redundant on
@code{interrupt} functions.
@item interrupt
@cindex @code{interrupt} function attribute, MSP430
Use this attribute to indicate
that the specified function is an interrupt handler. The compiler generates
function entry and exit sequences suitable for use in an interrupt handler
when this attribute is present.
You can provide an argument to the interrupt
attribute which specifies a name or number. If the argument is a
number it indicates the slot in the interrupt vector table (0 - 31) to
which this handler should be assigned. If the argument is a name it
is treated as a symbolic name for the vector slot. These names should
match up with appropriate entries in the linker script. By default
the names @code{watchdog} for vector 26, @code{nmi} for vector 30 and
@code{reset} for vector 31 are recognized.
@item naked
@cindex @code{naked} function attribute, MSP430
This attribute allows the compiler to construct the
requisite function declaration, while allowing the body of the
function to be assembly code. The specified function will not have
prologue/epilogue sequences generated by the compiler. Only basic
@code{asm} statements can safely be included in naked functions
(@pxref{Basic Asm}). While using extended @code{asm} or a mixture of
basic @code{asm} and C code may appear to work, they cannot be
depended upon to work reliably and are not supported.
@item reentrant
@cindex @code{reentrant} function attribute, MSP430
Reentrant functions disable interrupts upon entry and enable them
upon exit. Reentrant functions cannot also have the @code{naked}
or @code{critical} attributes. They can have the @code{interrupt}
attribute.
@item wakeup
@cindex @code{wakeup} function attribute, MSP430
This attribute only applies to interrupt functions. It is silently
ignored if applied to a non-interrupt function. A wakeup interrupt
function will rouse the processor from any low-power state that it
might be in when the function exits.
@item lower
@itemx upper
@itemx either
@cindex @code{lower} function attribute, MSP430
@cindex @code{upper} function attribute, MSP430
@cindex @code{either} function attribute, MSP430
On the MSP430 target these attributes can be used to specify whether
the function or variable should be placed into low memory, high
memory, or the placement should be left to the linker to decide. The
attributes are only significant if compiling for the MSP430X
architecture in the large memory model.
The attributes work in conjunction with a linker script that has been
augmented to specify where to place sections with a @code{.lower} and
a @code{.upper} prefix. So, for example, as well as placing the
@code{.data} section, the script also specifies the placement of a
@code{.lower.data} and a @code{.upper.data} section. The intention
is that @code{lower} sections are placed into a small but easier to
access memory region and the upper sections are placed into a larger, but
slower to access, region.
The @code{either} attribute is special. It tells the linker to place
the object into the corresponding @code{lower} section if there is
room for it. If there is insufficient room then the object is placed
into the corresponding @code{upper} section instead. Note that the
placement algorithm is not very sophisticated. It does not attempt to
find an optimal packing of the @code{lower} sections. It just makes
one pass over the objects and does the best that it can. Using the
@option{-ffunction-sections} and @option{-fdata-sections} command-line
options can help the packing, however, since they produce smaller,
easier to pack regions.
@end table
@node NDS32 Function Attributes
@subsection NDS32 Function Attributes
These function attributes are supported by the NDS32 back end:
@table @code
@item exception
@cindex @code{exception} function attribute
@cindex exception handler functions, NDS32
Use this attribute on the NDS32 target to indicate that the specified function
is an exception handler. The compiler will generate corresponding sections
for use in an exception handler.
@item interrupt
@cindex @code{interrupt} function attribute, NDS32
On NDS32 target, this attribute indicates that the specified function
is an interrupt handler. The compiler generates corresponding sections
for use in an interrupt handler. You can use the following attributes
to modify the behavior:
@table @code
@item nested
@cindex @code{nested} function attribute, NDS32
This interrupt service routine is interruptible.
@item not_nested
@cindex @code{not_nested} function attribute, NDS32
This interrupt service routine is not interruptible.
@item nested_ready
@cindex @code{nested_ready} function attribute, NDS32
This interrupt service routine is interruptible after @code{PSW.GIE}
(global interrupt enable) is set. This allows interrupt service routine to
finish some short critical code before enabling interrupts.
@item save_all
@cindex @code{save_all} function attribute, NDS32
The system will help save all registers into stack before entering
interrupt handler.
@item partial_save
@cindex @code{partial_save} function attribute, NDS32
The system will help save caller registers into stack before entering
interrupt handler.
@end table
@item naked
@cindex @code{naked} function attribute, NDS32
This attribute allows the compiler to construct the
requisite function declaration, while allowing the body of the
function to be assembly code. The specified function will not have
prologue/epilogue sequences generated by the compiler. Only basic
@code{asm} statements can safely be included in naked functions
(@pxref{Basic Asm}). While using extended @code{asm} or a mixture of
basic @code{asm} and C code may appear to work, they cannot be
depended upon to work reliably and are not supported.
@item reset
@cindex @code{reset} function attribute, NDS32
@cindex reset handler functions
Use this attribute on the NDS32 target to indicate that the specified function
is a reset handler. The compiler will generate corresponding sections
for use in a reset handler. You can use the following attributes
to provide extra exception handling:
@table @code
@item nmi
@cindex @code{nmi} function attribute, NDS32
Provide a user-defined function to handle NMI exception.
@item warm
@cindex @code{warm} function attribute, NDS32
Provide a user-defined function to handle warm reset exception.
@end table
@end table
@node Nios II Function Attributes
@subsection Nios II Function Attributes
These function attributes are supported by the Nios II back end:
@table @code
@item target (@var{options})
@cindex @code{target} function attribute
As discussed in @ref{Common Function Attributes}, this attribute
allows specification of target-specific compilation options.
When compiling for Nios II, the following options are allowed:
@table @samp
@item custom-@var{insn}=@var{N}
@itemx no-custom-@var{insn}
@cindex @code{target("custom-@var{insn}=@var{N}")} function attribute, Nios II
@cindex @code{target("no-custom-@var{insn}")} function attribute, Nios II
Each @samp{custom-@var{insn}=@var{N}} attribute locally enables use of a
custom instruction with encoding @var{N} when generating code that uses
@var{insn}. Similarly, @samp{no-custom-@var{insn}} locally inhibits use of
the custom instruction @var{insn}.
These target attributes correspond to the
@option{-mcustom-@var{insn}=@var{N}} and @option{-mno-custom-@var{insn}}
command-line options, and support the same set of @var{insn} keywords.
@xref{Nios II Options}, for more information.
@item custom-fpu-cfg=@var{name}
@cindex @code{target("custom-fpu-cfg=@var{name}")} function attribute, Nios II
This attribute corresponds to the @option{-mcustom-fpu-cfg=@var{name}}
command-line option, to select a predefined set of custom instructions
named @var{name}.
@xref{Nios II Options}, for more information.
@end table
@end table
@node Nvidia PTX Function Attributes
@subsection Nvidia PTX Function Attributes
These function attributes are supported by the Nvidia PTX back end:
@table @code
@item kernel
@cindex @code{kernel} attribute, Nvidia PTX
This attribute indicates that the corresponding function should be compiled
as a kernel function, which can be invoked from the host via the CUDA RT
library.
By default functions are only callable only from other PTX functions.
Kernel functions must have @code{void} return type.
@end table
@node PowerPC Function Attributes
@subsection PowerPC Function Attributes
These function attributes are supported by the PowerPC back end:
@table @code
@item longcall
@itemx shortcall
@cindex indirect calls, PowerPC
@cindex @code{longcall} function attribute, PowerPC
@cindex @code{shortcall} function attribute, PowerPC
The @code{longcall} attribute
indicates that the function might be far away from the call site and
require a different (more expensive) calling sequence. The
@code{shortcall} attribute indicates that the function is always close
enough for the shorter calling sequence to be used. These attributes
override both the @option{-mlongcall} switch and
the @code{#pragma longcall} setting.
@xref{RS/6000 and PowerPC Options}, for more information on whether long
calls are necessary.
@item target (@var{options})
@cindex @code{target} function attribute
As discussed in @ref{Common Function Attributes}, this attribute
allows specification of target-specific compilation options.
On the PowerPC, the following options are allowed:
@table @samp
@item altivec
@itemx no-altivec
@cindex @code{target("altivec")} function attribute, PowerPC
Generate code that uses (does not use) AltiVec instructions. In
32-bit code, you cannot enable AltiVec instructions unless
@option{-mabi=altivec} is used on the command line.
@item cmpb
@itemx no-cmpb
@cindex @code{target("cmpb")} function attribute, PowerPC
Generate code that uses (does not use) the compare bytes instruction
implemented on the POWER6 processor and other processors that support
the PowerPC V2.05 architecture.
@item dlmzb
@itemx no-dlmzb
@cindex @code{target("dlmzb")} function attribute, PowerPC
Generate code that uses (does not use) the string-search @samp{dlmzb}
instruction on the IBM 405, 440, 464 and 476 processors. This instruction is
generated by default when targeting those processors.
@item fprnd
@itemx no-fprnd
@cindex @code{target("fprnd")} function attribute, PowerPC
Generate code that uses (does not use) the FP round to integer
instructions implemented on the POWER5+ processor and other processors
that support the PowerPC V2.03 architecture.
@item hard-dfp
@itemx no-hard-dfp
@cindex @code{target("hard-dfp")} function attribute, PowerPC
Generate code that uses (does not use) the decimal floating-point
instructions implemented on some POWER processors.
@item isel
@itemx no-isel
@cindex @code{target("isel")} function attribute, PowerPC
Generate code that uses (does not use) ISEL instruction.
@item mfcrf
@itemx no-mfcrf
@cindex @code{target("mfcrf")} function attribute, PowerPC
Generate code that uses (does not use) the move from condition
register field instruction implemented on the POWER4 processor and
other processors that support the PowerPC V2.01 architecture.
@item mulhw
@itemx no-mulhw
@cindex @code{target("mulhw")} function attribute, PowerPC
Generate code that uses (does not use) the half-word multiply and
multiply-accumulate instructions on the IBM 405, 440, 464 and 476 processors.
These instructions are generated by default when targeting those
processors.
@item multiple
@itemx no-multiple
@cindex @code{target("multiple")} function attribute, PowerPC
Generate code that uses (does not use) the load multiple word
instructions and the store multiple word instructions.
@item update
@itemx no-update
@cindex @code{target("update")} function attribute, PowerPC
Generate code that uses (does not use) the load or store instructions
that update the base register to the address of the calculated memory
location.
@item popcntb
@itemx no-popcntb
@cindex @code{target("popcntb")} function attribute, PowerPC
Generate code that uses (does not use) the popcount and double-precision
FP reciprocal estimate instruction implemented on the POWER5
processor and other processors that support the PowerPC V2.02
architecture.
@item popcntd
@itemx no-popcntd
@cindex @code{target("popcntd")} function attribute, PowerPC
Generate code that uses (does not use) the popcount instruction
implemented on the POWER7 processor and other processors that support
the PowerPC V2.06 architecture.
@item powerpc-gfxopt
@itemx no-powerpc-gfxopt
@cindex @code{target("powerpc-gfxopt")} function attribute, PowerPC
Generate code that uses (does not use) the optional PowerPC
architecture instructions in the Graphics group, including
floating-point select.
@item powerpc-gpopt
@itemx no-powerpc-gpopt
@cindex @code{target("powerpc-gpopt")} function attribute, PowerPC
Generate code that uses (does not use) the optional PowerPC
architecture instructions in the General Purpose group, including
floating-point square root.
@item recip-precision
@itemx no-recip-precision
@cindex @code{target("recip-precision")} function attribute, PowerPC
Assume (do not assume) that the reciprocal estimate instructions
provide higher-precision estimates than is mandated by the PowerPC
ABI.
@item string
@itemx no-string
@cindex @code{target("string")} function attribute, PowerPC
Generate code that uses (does not use) the load string instructions
and the store string word instructions to save multiple registers and
do small block moves.
@item vsx
@itemx no-vsx
@cindex @code{target("vsx")} function attribute, PowerPC
Generate code that uses (does not use) vector/scalar (VSX)
instructions, and also enable the use of built-in functions that allow
more direct access to the VSX instruction set. In 32-bit code, you
cannot enable VSX or AltiVec instructions unless
@option{-mabi=altivec} is used on the command line.
@item friz
@itemx no-friz
@cindex @code{target("friz")} function attribute, PowerPC
Generate (do not generate) the @code{friz} instruction when the
@option{-funsafe-math-optimizations} option is used to optimize
rounding a floating-point value to 64-bit integer and back to floating
point. The @code{friz} instruction does not return the same value if
the floating-point number is too large to fit in an integer.
@item avoid-indexed-addresses
@itemx no-avoid-indexed-addresses
@cindex @code{target("avoid-indexed-addresses")} function attribute, PowerPC
Generate code that tries to avoid (not avoid) the use of indexed load
or store instructions.
@item paired
@itemx no-paired
@cindex @code{target("paired")} function attribute, PowerPC
Generate code that uses (does not use) the generation of PAIRED simd
instructions.
@item longcall
@itemx no-longcall
@cindex @code{target("longcall")} function attribute, PowerPC
Generate code that assumes (does not assume) that all calls are far
away so that a longer more expensive calling sequence is required.
@item cpu=@var{CPU}
@cindex @code{target("cpu=@var{CPU}")} function attribute, PowerPC
Specify the architecture to generate code for when compiling the
function. If you select the @code{target("cpu=power7")} attribute when
generating 32-bit code, VSX and AltiVec instructions are not generated
unless you use the @option{-mabi=altivec} option on the command line.
@item tune=@var{TUNE}
@cindex @code{target("tune=@var{TUNE}")} function attribute, PowerPC
Specify the architecture to tune for when compiling the function. If
you do not specify the @code{target("tune=@var{TUNE}")} attribute and
you do specify the @code{target("cpu=@var{CPU}")} attribute,
compilation tunes for the @var{CPU} architecture, and not the
default tuning specified on the command line.
@end table
On the PowerPC, the inliner does not inline a
function that has different target options than the caller, unless the
callee has a subset of the target options of the caller.
@end table
@node RISC-V Function Attributes
@subsection RISC-V Function Attributes
These function attributes are supported by the RISC-V back end:
@table @code
@item naked
@cindex @code{naked} function attribute, RISC-V
This attribute allows the compiler to construct the
requisite function declaration, while allowing the body of the
function to be assembly code. The specified function will not have
prologue/epilogue sequences generated by the compiler. Only basic
@code{asm} statements can safely be included in naked functions
(@pxref{Basic Asm}). While using extended @code{asm} or a mixture of
basic @code{asm} and C code may appear to work, they cannot be
depended upon to work reliably and are not supported.
@item interrupt
@cindex @code{interrupt} function attribute, RISC-V
Use this attribute to indicate that the specified function is an interrupt
handler. The compiler generates function entry and exit sequences suitable
for use in an interrupt handler when this attribute is present.
You can specify the kind of interrupt to be handled by adding an optional
parameter to the interrupt attribute like this:
@smallexample
void f (void) __attribute__ ((interrupt ("user")));
@end smallexample
Permissible values for this parameter are @code{user}, @code{supervisor},
and @code{machine}. If there is no parameter, then it defaults to
@code{machine}.
@end table
@node RL78 Function Attributes
@subsection RL78 Function Attributes
These function attributes are supported by the RL78 back end:
@table @code
@item interrupt
@itemx brk_interrupt
@cindex @code{interrupt} function attribute, RL78
@cindex @code{brk_interrupt} function attribute, RL78
These attributes indicate
that the specified function is an interrupt handler. The compiler generates
function entry and exit sequences suitable for use in an interrupt handler
when this attribute is present.
Use @code{brk_interrupt} instead of @code{interrupt} for
handlers intended to be used with the @code{BRK} opcode (i.e.@: those
that must end with @code{RETB} instead of @code{RETI}).
@item naked
@cindex @code{naked} function attribute, RL78
This attribute allows the compiler to construct the
requisite function declaration, while allowing the body of the
function to be assembly code. The specified function will not have
prologue/epilogue sequences generated by the compiler. Only basic
@code{asm} statements can safely be included in naked functions
(@pxref{Basic Asm}). While using extended @code{asm} or a mixture of
basic @code{asm} and C code may appear to work, they cannot be
depended upon to work reliably and are not supported.
@end table
@node RX Function Attributes
@subsection RX Function Attributes
These function attributes are supported by the RX back end:
@table @code
@item fast_interrupt
@cindex @code{fast_interrupt} function attribute, RX
Use this attribute on the RX port to indicate that the specified
function is a fast interrupt handler. This is just like the
@code{interrupt} attribute, except that @code{freit} is used to return
instead of @code{reit}.
@item interrupt
@cindex @code{interrupt} function attribute, RX
Use this attribute to indicate
that the specified function is an interrupt handler. The compiler generates
function entry and exit sequences suitable for use in an interrupt handler
when this attribute is present.
On RX and RL78 targets, you may specify one or more vector numbers as arguments
to the attribute, as well as naming an alternate table name.
Parameters are handled sequentially, so one handler can be assigned to
multiple entries in multiple tables. One may also pass the magic
string @code{"$default"} which causes the function to be used for any
unfilled slots in the current table.
This example shows a simple assignment of a function to one vector in
the default table (note that preprocessor macros may be used for
chip-specific symbolic vector names):
@smallexample
void __attribute__ ((interrupt (5))) txd1_handler ();
@end smallexample
This example assigns a function to two slots in the default table
(using preprocessor macros defined elsewhere) and makes it the default
for the @code{dct} table:
@smallexample
void __attribute__ ((interrupt (RXD1_VECT,RXD2_VECT,"dct","$default")))
txd1_handler ();
@end smallexample
@item naked
@cindex @code{naked} function attribute, RX
This attribute allows the compiler to construct the
requisite function declaration, while allowing the body of the
function to be assembly code. The specified function will not have
prologue/epilogue sequences generated by the compiler. Only basic
@code{asm} statements can safely be included in naked functions
(@pxref{Basic Asm}). While using extended @code{asm} or a mixture of
basic @code{asm} and C code may appear to work, they cannot be
depended upon to work reliably and are not supported.
@item vector
@cindex @code{vector} function attribute, RX
This RX attribute is similar to the @code{interrupt} attribute, including its
parameters, but does not make the function an interrupt-handler type
function (i.e.@: it retains the normal C function calling ABI). See the
@code{interrupt} attribute for a description of its arguments.
@end table
@node S/390 Function Attributes
@subsection S/390 Function Attributes
These function attributes are supported on the S/390:
@table @code
@item hotpatch (@var{halfwords-before-function-label},@var{halfwords-after-function-label})
@cindex @code{hotpatch} function attribute, S/390
On S/390 System z targets, you can use this function attribute to
make GCC generate a ``hot-patching'' function prologue. If the
@option{-mhotpatch=} command-line option is used at the same time,
the @code{hotpatch} attribute takes precedence. The first of the
two arguments specifies the number of halfwords to be added before
the function label. A second argument can be used to specify the
number of halfwords to be added after the function label. For
both arguments the maximum allowed value is 1000000.
If both arguments are zero, hotpatching is disabled.
@item target (@var{options})
@cindex @code{target} function attribute
As discussed in @ref{Common Function Attributes}, this attribute
allows specification of target-specific compilation options.
On S/390, the following options are supported:
@table @samp
@item arch=
@item tune=
@item stack-guard=
@item stack-size=
@item branch-cost=
@item warn-framesize=
@item backchain
@itemx no-backchain
@item hard-dfp
@itemx no-hard-dfp
@item hard-float
@itemx soft-float
@item htm
@itemx no-htm
@item vx
@itemx no-vx
@item packed-stack
@itemx no-packed-stack
@item small-exec
@itemx no-small-exec
@item mvcle
@itemx no-mvcle
@item warn-dynamicstack
@itemx no-warn-dynamicstack
@end table
The options work exactly like the S/390 specific command line
options (without the prefix @option{-m}) except that they do not
change any feature macros. For example,
@smallexample
@code{target("no-vx")}
@end smallexample
does not undefine the @code{__VEC__} macro.
@end table
@node SH Function Attributes
@subsection SH Function Attributes
These function attributes are supported on the SH family of processors:
@table @code
@item function_vector
@cindex @code{function_vector} function attribute, SH
@cindex calling functions through the function vector on SH2A
On SH2A targets, this attribute declares a function to be called using the
TBR relative addressing mode. The argument to this attribute is the entry
number of the same function in a vector table containing all the TBR
relative addressable functions. For correct operation the TBR must be setup
accordingly to point to the start of the vector table before any functions with
this attribute are invoked. Usually a good place to do the initialization is
the startup routine. The TBR relative vector table can have at max 256 function
entries. The jumps to these functions are generated using a SH2A specific,
non delayed branch instruction JSR/N @@(disp8,TBR). You must use GAS and GLD
from GNU binutils version 2.7 or later for this attribute to work correctly.
In an application, for a function being called once, this attribute
saves at least 8 bytes of code; and if other successive calls are being
made to the same function, it saves 2 bytes of code per each of these
calls.
@item interrupt_handler
@cindex @code{interrupt_handler} function attribute, SH
Use this attribute to
indicate that the specified function is an interrupt handler. The compiler
generates function entry and exit sequences suitable for use in an
interrupt handler when this attribute is present.
@item nosave_low_regs
@cindex @code{nosave_low_regs} function attribute, SH
Use this attribute on SH targets to indicate that an @code{interrupt_handler}
function should not save and restore registers R0..R7. This can be used on SH3*
and SH4* targets that have a second R0..R7 register bank for non-reentrant
interrupt handlers.
@item renesas
@cindex @code{renesas} function attribute, SH
On SH targets this attribute specifies that the function or struct follows the
Renesas ABI.
@item resbank
@cindex @code{resbank} function attribute, SH
On the SH2A target, this attribute enables the high-speed register
saving and restoration using a register bank for @code{interrupt_handler}
routines. Saving to the bank is performed automatically after the CPU
accepts an interrupt that uses a register bank.
The nineteen 32-bit registers comprising general register R0 to R14,
control register GBR, and system registers MACH, MACL, and PR and the
vector table address offset are saved into a register bank. Register
banks are stacked in first-in last-out (FILO) sequence. Restoration
from the bank is executed by issuing a RESBANK instruction.
@item sp_switch
@cindex @code{sp_switch} function attribute, SH
Use this attribute on the SH to indicate an @code{interrupt_handler}
function should switch to an alternate stack. It expects a string
argument that names a global variable holding the address of the
alternate stack.
@smallexample
void *alt_stack;
void f () __attribute__ ((interrupt_handler,
sp_switch ("alt_stack")));
@end smallexample
@item trap_exit
@cindex @code{trap_exit} function attribute, SH
Use this attribute on the SH for an @code{interrupt_handler} to return using
@code{trapa} instead of @code{rte}. This attribute expects an integer
argument specifying the trap number to be used.
@item trapa_handler
@cindex @code{trapa_handler} function attribute, SH
On SH targets this function attribute is similar to @code{interrupt_handler}
but it does not save and restore all registers.
@end table
@node Symbian OS Function Attributes
@subsection Symbian OS Function Attributes
@xref{Microsoft Windows Function Attributes}, for discussion of the
@code{dllexport} and @code{dllimport} attributes.
@node V850 Function Attributes
@subsection V850 Function Attributes
The V850 back end supports these function attributes:
@table @code
@item interrupt
@itemx interrupt_handler
@cindex @code{interrupt} function attribute, V850
@cindex @code{interrupt_handler} function attribute, V850
Use these attributes to indicate
that the specified function is an interrupt handler. The compiler generates
function entry and exit sequences suitable for use in an interrupt handler
when either attribute is present.
@end table
@node Visium Function Attributes
@subsection Visium Function Attributes
These function attributes are supported by the Visium back end:
@table @code
@item interrupt
@cindex @code{interrupt} function attribute, Visium
Use this attribute to indicate
that the specified function is an interrupt handler. The compiler generates
function entry and exit sequences suitable for use in an interrupt handler
when this attribute is present.
@end table
@node x86 Function Attributes
@subsection x86 Function Attributes
These function attributes are supported by the x86 back end:
@table @code
@item cdecl
@cindex @code{cdecl} function attribute, x86-32
@cindex functions that pop the argument stack on x86-32
@opindex mrtd
On the x86-32 targets, the @code{cdecl} attribute causes the compiler to
assume that the calling function pops off the stack space used to
pass arguments. This is
useful to override the effects of the @option{-mrtd} switch.
@item fastcall
@cindex @code{fastcall} function attribute, x86-32
@cindex functions that pop the argument stack on x86-32
On x86-32 targets, the @code{fastcall} attribute causes the compiler to
pass the first argument (if of integral type) in the register ECX and
the second argument (if of integral type) in the register EDX@. Subsequent
and other typed arguments are passed on the stack. The called function
pops the arguments off the stack. If the number of arguments is variable all
arguments are pushed on the stack.
@item thiscall
@cindex @code{thiscall} function attribute, x86-32
@cindex functions that pop the argument stack on x86-32
On x86-32 targets, the @code{thiscall} attribute causes the compiler to
pass the first argument (if of integral type) in the register ECX.
Subsequent and other typed arguments are passed on the stack. The called
function pops the arguments off the stack.
If the number of arguments is variable all arguments are pushed on the
stack.
The @code{thiscall} attribute is intended for C++ non-static member functions.
As a GCC extension, this calling convention can be used for C functions
and for static member methods.
@item ms_abi
@itemx sysv_abi
@cindex @code{ms_abi} function attribute, x86
@cindex @code{sysv_abi} function attribute, x86
On 32-bit and 64-bit x86 targets, you can use an ABI attribute
to indicate which calling convention should be used for a function. The
@code{ms_abi} attribute tells the compiler to use the Microsoft ABI,
while the @code{sysv_abi} attribute tells the compiler to use the System V
ELF ABI, which is used on GNU/Linux and other systems. The default is to use
the Microsoft ABI when targeting Windows. On all other systems, the default
is the System V ELF ABI.
Note, the @code{ms_abi} attribute for Microsoft Windows 64-bit targets currently
requires the @option{-maccumulate-outgoing-args} option.
@item callee_pop_aggregate_return (@var{number})
@cindex @code{callee_pop_aggregate_return} function attribute, x86
On x86-32 targets, you can use this attribute to control how
aggregates are returned in memory. If the caller is responsible for
popping the hidden pointer together with the rest of the arguments, specify
@var{number} equal to zero. If callee is responsible for popping the
hidden pointer, specify @var{number} equal to one.
The default x86-32 ABI assumes that the callee pops the
stack for hidden pointer. However, on x86-32 Microsoft Windows targets,
the compiler assumes that the
caller pops the stack for hidden pointer.
@item ms_hook_prologue
@cindex @code{ms_hook_prologue} function attribute, x86
On 32-bit and 64-bit x86 targets, you can use
this function attribute to make GCC generate the ``hot-patching'' function
prologue used in Win32 API functions in Microsoft Windows XP Service Pack 2
and newer.
@item naked
@cindex @code{naked} function attribute, x86
This attribute allows the compiler to construct the
requisite function declaration, while allowing the body of the
function to be assembly code. The specified function will not have
prologue/epilogue sequences generated by the compiler. Only basic
@code{asm} statements can safely be included in naked functions
(@pxref{Basic Asm}). While using extended @code{asm} or a mixture of
basic @code{asm} and C code may appear to work, they cannot be
depended upon to work reliably and are not supported.
@item regparm (@var{number})
@cindex @code{regparm} function attribute, x86
@cindex functions that are passed arguments in registers on x86-32
On x86-32 targets, the @code{regparm} attribute causes the compiler to
pass arguments number one to @var{number} if they are of integral type
in registers EAX, EDX, and ECX instead of on the stack. Functions that
take a variable number of arguments continue to be passed all of their
arguments on the stack.
Beware that on some ELF systems this attribute is unsuitable for
global functions in shared libraries with lazy binding (which is the
default). Lazy binding sends the first call via resolving code in
the loader, which might assume EAX, EDX and ECX can be clobbered, as
per the standard calling conventions. Solaris 8 is affected by this.
Systems with the GNU C Library version 2.1 or higher
and FreeBSD are believed to be
safe since the loaders there save EAX, EDX and ECX. (Lazy binding can be
disabled with the linker or the loader if desired, to avoid the
problem.)
@item sseregparm
@cindex @code{sseregparm} function attribute, x86
On x86-32 targets with SSE support, the @code{sseregparm} attribute
causes the compiler to pass up to 3 floating-point arguments in
SSE registers instead of on the stack. Functions that take a
variable number of arguments continue to pass all of their
floating-point arguments on the stack.
@item force_align_arg_pointer
@cindex @code{force_align_arg_pointer} function attribute, x86
On x86 targets, the @code{force_align_arg_pointer} attribute may be
applied to individual function definitions, generating an alternate
prologue and epilogue that realigns the run-time stack if necessary.
This supports mixing legacy codes that run with a 4-byte aligned stack
with modern codes that keep a 16-byte stack for SSE compatibility.
@item stdcall
@cindex @code{stdcall} function attribute, x86-32
@cindex functions that pop the argument stack on x86-32
On x86-32 targets, the @code{stdcall} attribute causes the compiler to
assume that the called function pops off the stack space used to
pass arguments, unless it takes a variable number of arguments.
@item no_caller_saved_registers
@cindex @code{no_caller_saved_registers} function attribute, x86
Use this attribute to indicate that the specified function has no
caller-saved registers. That is, all registers are callee-saved. For
example, this attribute can be used for a function called from an
interrupt handler. The compiler generates proper function entry and
exit sequences to save and restore any modified registers, except for
the EFLAGS register. Since GCC doesn't preserve SSE, MMX nor x87
states, the GCC option @option{-mgeneral-regs-only} should be used to
compile functions with @code{no_caller_saved_registers} attribute.
@item interrupt
@cindex @code{interrupt} function attribute, x86
Use this attribute to indicate that the specified function is an
interrupt handler or an exception handler (depending on parameters passed
to the function, explained further). The compiler generates function
entry and exit sequences suitable for use in an interrupt handler when
this attribute is present. The @code{IRET} instruction, instead of the
@code{RET} instruction, is used to return from interrupt handlers. All
registers, except for the EFLAGS register which is restored by the
@code{IRET} instruction, are preserved by the compiler. Since GCC
doesn't preserve SSE, MMX nor x87 states, the GCC option
@option{-mgeneral-regs-only} should be used to compile interrupt and
exception handlers.
Any interruptible-without-stack-switch code must be compiled with
@option{-mno-red-zone} since interrupt handlers can and will, because
of the hardware design, touch the red zone.
An interrupt handler must be declared with a mandatory pointer
argument:
@smallexample
struct interrupt_frame;
__attribute__ ((interrupt))
void
f (struct interrupt_frame *frame)
@{
@}
@end smallexample
@noindent
and you must define @code{struct interrupt_frame} as described in the
processor's manual.
Exception handlers differ from interrupt handlers because the system
pushes an error code on the stack. An exception handler declaration is
similar to that for an interrupt handler, but with a different mandatory
function signature. The compiler arranges to pop the error code off the
stack before the @code{IRET} instruction.
@smallexample
#ifdef __x86_64__
typedef unsigned long long int uword_t;
#else
typedef unsigned int uword_t;
#endif
struct interrupt_frame;
__attribute__ ((interrupt))
void
f (struct interrupt_frame *frame, uword_t error_code)
@{
...
@}
@end smallexample
Exception handlers should only be used for exceptions that push an error
code; you should use an interrupt handler in other cases. The system
will crash if the wrong kind of handler is used.
@item target (@var{options})
@cindex @code{target} function attribute
As discussed in @ref{Common Function Attributes}, this attribute
allows specification of target-specific compilation options.
On the x86, the following options are allowed:
@table @samp
@item 3dnow
@itemx no-3dnow
@cindex @code{target("3dnow")} function attribute, x86
Enable/disable the generation of the 3DNow!@: instructions.
@item 3dnowa
@itemx no-3dnowa
@cindex @code{target("3dnowa")} function attribute, x86
Enable/disable the generation of the enhanced 3DNow!@: instructions.
@item abm
@itemx no-abm
@cindex @code{target("abm")} function attribute, x86
Enable/disable the generation of the advanced bit instructions.
@item adx
@itemx no-adx
@cindex @code{target("adx")} function attribute, x86
Enable/disable the generation of the ADX instructions.
@item aes
@itemx no-aes
@cindex @code{target("aes")} function attribute, x86
Enable/disable the generation of the AES instructions.
@item avx
@itemx no-avx
@cindex @code{target("avx")} function attribute, x86
Enable/disable the generation of the AVX instructions.
@item avx2
@itemx no-avx2
@cindex @code{target("avx2")} function attribute, x86
Enable/disable the generation of the AVX2 instructions.
@item avx5124fmaps
@itemx no-avx5124fmaps
@cindex @code{target("avx5124fmaps")} function attribute, x86
Enable/disable the generation of the AVX5124FMAPS instructions.
@item avx5124vnniw
@itemx no-avx5124vnniw
@cindex @code{target("avx5124vnniw")} function attribute, x86
Enable/disable the generation of the AVX5124VNNIW instructions.
@item avx512bitalg
@itemx no-avx512bitalg
@cindex @code{target("avx512bitalg")} function attribute, x86
Enable/disable the generation of the AVX512BITALG instructions.
@item avx512bw
@itemx no-avx512bw
@cindex @code{target("avx512bw")} function attribute, x86
Enable/disable the generation of the AVX512BW instructions.
@item avx512cd
@itemx no-avx512cd
@cindex @code{target("avx512cd")} function attribute, x86
Enable/disable the generation of the AVX512CD instructions.
@item avx512dq
@itemx no-avx512dq
@cindex @code{target("avx512dq")} function attribute, x86
Enable/disable the generation of the AVX512DQ instructions.
@item avx512er
@itemx no-avx512er
@cindex @code{target("avx512er")} function attribute, x86
Enable/disable the generation of the AVX512ER instructions.
@item avx512f
@itemx no-avx512f
@cindex @code{target("avx512f")} function attribute, x86
Enable/disable the generation of the AVX512F instructions.
@item avx512ifma
@itemx no-avx512ifma
@cindex @code{target("avx512ifma")} function attribute, x86
Enable/disable the generation of the AVX512IFMA instructions.
@item avx512pf
@itemx no-avx512pf
@cindex @code{target("avx512pf")} function attribute, x86
Enable/disable the generation of the AVX512PF instructions.
@item avx512vbmi
@itemx no-avx512vbmi
@cindex @code{target("avx512vbmi")} function attribute, x86
Enable/disable the generation of the AVX512VBMI instructions.
@item avx512vbmi2
@itemx no-avx512vbmi2
@cindex @code{target("avx512vbmi2")} function attribute, x86
Enable/disable the generation of the AVX512VBMI2 instructions.
@item avx512vl
@itemx no-avx512vl
@cindex @code{target("avx512vl")} function attribute, x86
Enable/disable the generation of the AVX512VL instructions.
@item avx512vnni
@itemx no-avx512vnni
@cindex @code{target("avx512vnni")} function attribute, x86
Enable/disable the generation of the AVX512VNNI instructions.
@item avx512vpopcntdq
@itemx no-avx512vpopcntdq
@cindex @code{target("avx512vpopcntdq")} function attribute, x86
Enable/disable the generation of the AVX512VPOPCNTDQ instructions.
@item bmi
@itemx no-bmi
@cindex @code{target("bmi")} function attribute, x86
Enable/disable the generation of the BMI instructions.
@item bmi2
@itemx no-bmi2
@cindex @code{target("bmi2")} function attribute, x86
Enable/disable the generation of the BMI2 instructions.
@item cldemote
@itemx no-cldemote
@cindex @code{target("cldemote")} function attribute, x86
Enable/disable the generation of the CLDEMOTE instructions.
@item clflushopt
@itemx no-clflushopt
@cindex @code{target("clflushopt")} function attribute, x86
Enable/disable the generation of the CLFLUSHOPT instructions.
@item clwb
@itemx no-clwb
@cindex @code{target("clwb")} function attribute, x86
Enable/disable the generation of the CLWB instructions.
@item clzero
@itemx no-clzero
@cindex @code{target("clzero")} function attribute, x86
Enable/disable the generation of the CLZERO instructions.
@item crc32
@itemx no-crc32
@cindex @code{target("crc32")} function attribute, x86
Enable/disable the generation of the CRC32 instructions.
@item cx16
@itemx no-cx16
@cindex @code{target("cx16")} function attribute, x86
Enable/disable the generation of the CMPXCHG16B instructions.
@item default
@cindex @code{target("default")} function attribute, x86
@xref{Function Multiversioning}, where it is used to specify the
default function version.
@item f16c
@itemx no-f16c
@cindex @code{target("f16c")} function attribute, x86
Enable/disable the generation of the F16C instructions.
@item fma
@itemx no-fma
@cindex @code{target("fma")} function attribute, x86
Enable/disable the generation of the FMA instructions.
@item fma4
@itemx no-fma4
@cindex @code{target("fma4")} function attribute, x86
Enable/disable the generation of the FMA4 instructions.
@item fsgsbase
@itemx no-fsgsbase
@cindex @code{target("fsgsbase")} function attribute, x86
Enable/disable the generation of the FSGSBASE instructions.
@item fxsr
@itemx no-fxsr
@cindex @code{target("fxsr")} function attribute, x86
Enable/disable the generation of the FXSR instructions.
@item gfni
@itemx no-gfni
@cindex @code{target("gfni")} function attribute, x86
Enable/disable the generation of the GFNI instructions.
@item hle
@itemx no-hle
@cindex @code{target("hle")} function attribute, x86
Enable/disable the generation of the HLE instruction prefixes.
@item lwp
@itemx no-lwp
@cindex @code{target("lwp")} function attribute, x86
Enable/disable the generation of the LWP instructions.
@item lzcnt
@itemx no-lzcnt
@cindex @code{target("lzcnt")} function attribute, x86
Enable/disable the generation of the LZCNT instructions.
@item mmx
@itemx no-mmx
@cindex @code{target("mmx")} function attribute, x86
Enable/disable the generation of the MMX instructions.
@item movbe
@itemx no-movbe
@cindex @code{target("movbe")} function attribute, x86
Enable/disable the generation of the MOVBE instructions.
@item movdir64b
@itemx no-movdir64b
@cindex @code{target("movdir64b")} function attribute, x86
Enable/disable the generation of the MOVDIR64B instructions.
@item movdiri
@itemx no-movdiri
@cindex @code{target("movdiri")} function attribute, x86
Enable/disable the generation of the MOVDIRI instructions.
@item mwait
@itemx no-mwait
@cindex @code{target("mwait")} function attribute, x86
Enable/disable the generation of the MWAIT and MONITOR instructions.
@item mwaitx
@itemx no-mwaitx
@cindex @code{target("mwaitx")} function attribute, x86
Enable/disable the generation of the MWAITX instructions.
@item pclmul
@itemx no-pclmul
@cindex @code{target("pclmul")} function attribute, x86
Enable/disable the generation of the PCLMUL instructions.
@item pconfig
@itemx no-pconfig
@cindex @code{target("pconfig")} function attribute, x86
Enable/disable the generation of the PCONFIG instructions.
@item pku
@itemx no-pku
@cindex @code{target("pku")} function attribute, x86
Enable/disable the generation of the PKU instructions.
@item popcnt
@itemx no-popcnt
@cindex @code{target("popcnt")} function attribute, x86
Enable/disable the generation of the POPCNT instruction.
@item prefetchwt1
@itemx no-prefetchwt1
@cindex @code{target("prefetchwt1")} function attribute, x86
Enable/disable the generation of the PREFETCHWT1 instructions.
@item prfchw
@itemx no-prfchw
@cindex @code{target("prfchw")} function attribute, x86
Enable/disable the generation of the PREFETCHW instruction.
@item ptwrite
@itemx no-ptwrite
@cindex @code{target("ptwrite")} function attribute, x86
Enable/disable the generation of the PTWRITE instructions.
@item rdpid
@itemx no-rdpid
@cindex @code{target("rdpid")} function attribute, x86
Enable/disable the generation of the RDPID instructions.
@item rdrnd
@itemx no-rdrnd
@cindex @code{target("rdrnd")} function attribute, x86
Enable/disable the generation of the RDRND instructions.
@item rdseed
@itemx no-rdseed
@cindex @code{target("rdseed")} function attribute, x86
Enable/disable the generation of the RDSEED instructions.
@item rtm
@itemx no-rtm
@cindex @code{target("rtm")} function attribute, x86
Enable/disable the generation of the RTM instructions.
@item sahf
@itemx no-sahf
@cindex @code{target("sahf")} function attribute, x86
Enable/disable the generation of the SAHF instructions.
@item sgx
@itemx no-sgx
@cindex @code{target("sgx")} function attribute, x86
Enable/disable the generation of the SGX instructions.
@item sha
@itemx no-sha
@cindex @code{target("sha")} function attribute, x86
Enable/disable the generation of the SHA instructions.
@item shstk
@itemx no-shstk
@cindex @code{target("shstk")} function attribute, x86
Enable/disable the shadow stack built-in functions from CET.
@item sse
@itemx no-sse
@cindex @code{target("sse")} function attribute, x86
Enable/disable the generation of the SSE instructions.
@item sse2
@itemx no-sse2
@cindex @code{target("sse2")} function attribute, x86
Enable/disable the generation of the SSE2 instructions.
@item sse3
@itemx no-sse3
@cindex @code{target("sse3")} function attribute, x86
Enable/disable the generation of the SSE3 instructions.
@item sse4
@itemx no-sse4
@cindex @code{target("sse4")} function attribute, x86
Enable/disable the generation of the SSE4 instructions (both SSE4.1
and SSE4.2).
@item sse4.1
@itemx no-sse4.1
@cindex @code{target("sse4.1")} function attribute, x86
Enable/disable the generation of the SSE4.1 instructions.
@item sse4.2
@itemx no-sse4.2
@cindex @code{target("sse4.2")} function attribute, x86
Enable/disable the generation of the SSE4.2 instructions.
@item sse4a
@itemx no-sse4a
@cindex @code{target("sse4a")} function attribute, x86
Enable/disable the generation of the SSE4A instructions.
@item ssse3
@itemx no-ssse3
@cindex @code{target("ssse3")} function attribute, x86
Enable/disable the generation of the SSSE3 instructions.
@item tbm
@itemx no-tbm
@cindex @code{target("tbm")} function attribute, x86
Enable/disable the generation of the TBM instructions.
@item vaes
@itemx no-vaes
@cindex @code{target("vaes")} function attribute, x86
Enable/disable the generation of the VAES instructions.
@item vpclmulqdq
@itemx no-vpclmulqdq
@cindex @code{target("vpclmulqdq")} function attribute, x86
Enable/disable the generation of the VPCLMULQDQ instructions.
@item waitpkg
@itemx no-waitpkg
@cindex @code{target("waitpkg")} function attribute, x86
Enable/disable the generation of the WAITPKG instructions.
@item wbnoinvd
@itemx no-wbnoinvd
@cindex @code{target("wbnoinvd")} function attribute, x86
Enable/disable the generation of the WBNOINVD instructions.
@item xop
@itemx no-xop
@cindex @code{target("xop")} function attribute, x86
Enable/disable the generation of the XOP instructions.
@item xsave
@itemx no-xsave
@cindex @code{target("xsave")} function attribute, x86
Enable/disable the generation of the XSAVE instructions.
@item xsavec
@itemx no-xsavec
@cindex @code{target("xsavec")} function attribute, x86
Enable/disable the generation of the XSAVEC instructions.
@item xsaveopt
@itemx no-xsaveopt
@cindex @code{target("xsaveopt")} function attribute, x86
Enable/disable the generation of the XSAVEOPT instructions.
@item xsaves
@itemx no-xsaves
@cindex @code{target("xsaves")} function attribute, x86
Enable/disable the generation of the XSAVES instructions.
@item amx-tile
@itemx no-amx-tile
@cindex @code{target("amx-tile")} function attribute, x86
Enable/disable the generation of the AMX-TILE instructions.
@item amx-int8
@itemx no-amx-int8
@cindex @code{target("amx-int8")} function attribute, x86
Enable/disable the generation of the AMX-INT8 instructions.
@item amx-bf16
@itemx no-amx-bf16
@cindex @code{target("amx-bf16")} function attribute, x86
Enable/disable the generation of the AMX-BF16 instructions.
@item uintr
@itemx no-uintr
@cindex @code{target("uintr")} function attribute, x86
Enable/disable the generation of the UINTR instructions.
@item hreset
@itemx no-hreset
@cindex @code{target("hreset")} function attribute, x86
Enable/disable the generation of the HRESET instruction.
@item kl
@itemx no-kl
@cindex @code{target("kl")} function attribute, x86
Enable/disable the generation of the KEYLOCKER instructions.
@item widekl
@itemx no-widekl
@cindex @code{target("widekl")} function attribute, x86
Enable/disable the generation of the WIDEKL instructions.
@item avxvnni
@itemx no-avxvnni
@cindex @code{target("avxvnni")} function attribute, x86
Enable/disable the generation of the AVXVNNI instructions.
@item cld
@itemx no-cld
@cindex @code{target("cld")} function attribute, x86
Enable/disable the generation of the CLD before string moves.
@item fancy-math-387
@itemx no-fancy-math-387
@cindex @code{target("fancy-math-387")} function attribute, x86
Enable/disable the generation of the @code{sin}, @code{cos}, and
@code{sqrt} instructions on the 387 floating-point unit.
@item ieee-fp
@itemx no-ieee-fp
@cindex @code{target("ieee-fp")} function attribute, x86
Enable/disable the generation of floating point that depends on IEEE arithmetic.
@item inline-all-stringops
@itemx no-inline-all-stringops
@cindex @code{target("inline-all-stringops")} function attribute, x86
Enable/disable inlining of string operations.
@item inline-stringops-dynamically
@itemx no-inline-stringops-dynamically
@cindex @code{target("inline-stringops-dynamically")} function attribute, x86
Enable/disable the generation of the inline code to do small string
operations and calling the library routines for large operations.
@item align-stringops
@itemx no-align-stringops
@cindex @code{target("align-stringops")} function attribute, x86
Do/do not align destination of inlined string operations.
@item recip
@itemx no-recip
@cindex @code{target("recip")} function attribute, x86
Enable/disable the generation of RCPSS, RCPPS, RSQRTSS and RSQRTPS
instructions followed an additional Newton-Raphson step instead of
doing a floating-point division.
@item general-regs-only
@cindex @code{target("general-regs-only")} function attribute, x86
Generate code which uses only the general registers.
@item arch=@var{ARCH}
@cindex @code{target("arch=@var{ARCH}")} function attribute, x86
Specify the architecture to generate code for in compiling the function.
@item tune=@var{TUNE}
@cindex @code{target("tune=@var{TUNE}")} function attribute, x86
Specify the architecture to tune for in compiling the function.
@item fpmath=@var{FPMATH}
@cindex @code{target("fpmath=@var{FPMATH}")} function attribute, x86
Specify which floating-point unit to use. You must specify the
@code{target("fpmath=sse,387")} option as
@code{target("fpmath=sse+387")} because the comma would separate
different options.
@item prefer-vector-width=@var{OPT}
@cindex @code{prefer-vector-width} function attribute, x86
On x86 targets, the @code{prefer-vector-width} attribute informs the
compiler to use @var{OPT}-bit vector width in instructions
instead of the default on the selected platform.
Valid @var{OPT} values are:
@table @samp
@item none
No extra limitations applied to GCC other than defined by the selected platform.
@item 128
Prefer 128-bit vector width for instructions.
@item 256
Prefer 256-bit vector width for instructions.
@item 512
Prefer 512-bit vector width for instructions.
@end table
On the x86, the inliner does not inline a
function that has different target options than the caller, unless the
callee has a subset of the target options of the caller. For example
a function declared with @code{target("sse3")} can inline a function
with @code{target("sse2")}, since @code{-msse3} implies @code{-msse2}.
@end table
@item indirect_branch("@var{choice}")
@cindex @code{indirect_branch} function attribute, x86
On x86 targets, the @code{indirect_branch} attribute causes the compiler
to convert indirect call and jump with @var{choice}. @samp{keep}
keeps indirect call and jump unmodified. @samp{thunk} converts indirect
call and jump to call and return thunk. @samp{thunk-inline} converts
indirect call and jump to inlined call and return thunk.
@samp{thunk-extern} converts indirect call and jump to external call
and return thunk provided in a separate object file.
@item function_return("@var{choice}")
@cindex @code{function_return} function attribute, x86
On x86 targets, the @code{function_return} attribute causes the compiler
to convert function return with @var{choice}. @samp{keep} keeps function
return unmodified. @samp{thunk} converts function return to call and
return thunk. @samp{thunk-inline} converts function return to inlined
call and return thunk. @samp{thunk-extern} converts function return to
external call and return thunk provided in a separate object file.
@item nocf_check
@cindex @code{nocf_check} function attribute
The @code{nocf_check} attribute on a function is used to inform the
compiler that the function's prologue should not be instrumented when
compiled with the @option{-fcf-protection=branch} option. The
compiler assumes that the function's address is a valid target for a
control-flow transfer.
The @code{nocf_check} attribute on a type of pointer to function is
used to inform the compiler that a call through the pointer should
not be instrumented when compiled with the
@option{-fcf-protection=branch} option. The compiler assumes
that the function's address from the pointer is a valid target for
a control-flow transfer. A direct function call through a function
name is assumed to be a safe call thus direct calls are not
instrumented by the compiler.
The @code{nocf_check} attribute is applied to an object's type.
In case of assignment of a function address or a function pointer to
another pointer, the attribute is not carried over from the right-hand
object's type; the type of left-hand object stays unchanged. The
compiler checks for @code{nocf_check} attribute mismatch and reports
a warning in case of mismatch.
@smallexample
@{
int foo (void) __attribute__(nocf_check);
void (*foo1)(void) __attribute__(nocf_check);
void (*foo2)(void);
/* foo's address is assumed to be valid. */
int
foo (void)
/* This call site is not checked for control-flow
validity. */
(*foo1)();
/* A warning is issued about attribute mismatch. */
foo1 = foo2;
/* This call site is still not checked. */
(*foo1)();
/* This call site is checked. */
(*foo2)();
/* A warning is issued about attribute mismatch. */
foo2 = foo1;
/* This call site is still checked. */
(*foo2)();
return 0;
@}
@end smallexample
@item cf_check
@cindex @code{cf_check} function attribute, x86
The @code{cf_check} attribute on a function is used to inform the
compiler that ENDBR instruction should be placed at the function
entry when @option{-fcf-protection=branch} is enabled.
@item indirect_return
@cindex @code{indirect_return} function attribute, x86
The @code{indirect_return} attribute can be applied to a function,
as well as variable or type of function pointer to inform the
compiler that the function may return via indirect branch.
@item fentry_name("@var{name}")
@cindex @code{fentry_name} function attribute, x86
On x86 targets, the @code{fentry_name} attribute sets the function to
call on function entry when function instrumentation is enabled
with @option{-pg -mfentry}. When @var{name} is nop then a 5 byte
nop sequence is generated.
@item fentry_section("@var{name}")
@cindex @code{fentry_section} function attribute, x86
On x86 targets, the @code{fentry_section} attribute sets the name
of the section to record function entry instrumentation calls in when
enabled with @option{-pg -mrecord-mcount}
@item nodirect_extern_access
@cindex @code{nodirect_extern_access} function attribute
@opindex mno-direct-extern-access
This attribute, attached to a global variable or function, is the
counterpart to option @option{-mno-direct-extern-access}.
@end table
@node Xstormy16 Function Attributes
@subsection Xstormy16 Function Attributes
These function attributes are supported by the Xstormy16 back end:
@table @code
@item interrupt
@cindex @code{interrupt} function attribute, Xstormy16
Use this attribute to indicate
that the specified function is an interrupt handler. The compiler generates
function entry and exit sequences suitable for use in an interrupt handler
when this attribute is present.
@end table
@node Variable Attributes
@section Specifying Attributes of Variables
@cindex attribute of variables
@cindex variable attributes
The keyword @code{__attribute__} allows you to specify special properties
of variables, function parameters, or structure, union, and, in C++, class
members. This @code{__attribute__} keyword is followed by an attribute
specification enclosed in double parentheses. Some attributes are currently
defined generically for variables. Other attributes are defined for
variables on particular target systems. Other attributes are available
for functions (@pxref{Function Attributes}), labels (@pxref{Label Attributes}),
enumerators (@pxref{Enumerator Attributes}), statements
(@pxref{Statement Attributes}), and for types (@pxref{Type Attributes}).
Other front ends might define more attributes
(@pxref{C++ Extensions,,Extensions to the C++ Language}).
@xref{Attribute Syntax}, for details of the exact syntax for using
attributes.
@menu
* Common Variable Attributes::
* ARC Variable Attributes::
* AVR Variable Attributes::
* Blackfin Variable Attributes::
* H8/300 Variable Attributes::
* IA-64 Variable Attributes::
* M32R/D Variable Attributes::
* MeP Variable Attributes::
* Microsoft Windows Variable Attributes::
* MSP430 Variable Attributes::
* Nvidia PTX Variable Attributes::
* PowerPC Variable Attributes::
* RL78 Variable Attributes::
* V850 Variable Attributes::
* x86 Variable Attributes::
* Xstormy16 Variable Attributes::
@end menu
@node Common Variable Attributes
@subsection Common Variable Attributes
The following attributes are supported on most targets.
@table @code
@item alias ("@var{target}")
@cindex @code{alias} variable attribute
The @code{alias} variable attribute causes the declaration to be emitted
as an alias for another symbol known as an @dfn{alias target}. Except
for top-level qualifiers the alias target must have the same type as
the alias. For instance, the following
@smallexample
int var_target;
extern int __attribute__ ((alias ("var_target"))) var_alias;
@end smallexample
@noindent
defines @code{var_alias} to be an alias for the @code{var_target} variable.
It is an error if the alias target is not defined in the same translation
unit as the alias.
Note that in the absence of the attribute GCC assumes that distinct
declarations with external linkage denote distinct objects. Using both
the alias and the alias target to access the same object is undefined
in a translation unit without a declaration of the alias with the attribute.
This attribute requires assembler and object file support, and may not be
available on all targets.
@cindex @code{aligned} variable attribute
@item aligned
@itemx aligned (@var{alignment})
The @code{aligned} attribute specifies a minimum alignment for the variable
or structure field, measured in bytes. When specified, @var{alignment} must
be an integer constant power of 2. Specifying no @var{alignment} argument
implies the maximum alignment for the target, which is often, but by no
means always, 8 or 16 bytes.
For example, the declaration:
@smallexample
int x __attribute__ ((aligned (16))) = 0;
@end smallexample
@noindent
causes the compiler to allocate the global variable @code{x} on a
16-byte boundary. On a 68040, this could be used in conjunction with
an @code{asm} expression to access the @code{move16} instruction which
requires 16-byte aligned operands.
You can also specify the alignment of structure fields. For example, to
create a double-word aligned @code{int} pair, you could write:
@smallexample
struct foo @{ int x[2] __attribute__ ((aligned (8))); @};
@end smallexample
@noindent
This is an alternative to creating a union with a @code{double} member,
which forces the union to be double-word aligned.
As in the preceding examples, you can explicitly specify the alignment
(in bytes) that you wish the compiler to use for a given variable or
structure field. Alternatively, you can leave out the alignment factor
and just ask the compiler to align a variable or field to the
default alignment for the target architecture you are compiling for.
The default alignment is sufficient for all scalar types, but may not be
enough for all vector types on a target that supports vector operations.
The default alignment is fixed for a particular target ABI.
GCC also provides a target specific macro @code{__BIGGEST_ALIGNMENT__},
which is the largest alignment ever used for any data type on the
target machine you are compiling for. For example, you could write:
@smallexample
short array[3] __attribute__ ((aligned (__BIGGEST_ALIGNMENT__)));
@end smallexample
The compiler automatically sets the alignment for the declared
variable or field to @code{__BIGGEST_ALIGNMENT__}. Doing this can
often make copy operations more efficient, because the compiler can
use whatever instructions copy the biggest chunks of memory when
performing copies to or from the variables or fields that you have
aligned this way. Note that the value of @code{__BIGGEST_ALIGNMENT__}
may change depending on command-line options.
When used on a struct, or struct member, the @code{aligned} attribute can
only increase the alignment; in order to decrease it, the @code{packed}
attribute must be specified as well. When used as part of a typedef, the
@code{aligned} attribute can both increase and decrease alignment, and
specifying the @code{packed} attribute generates a warning.
Note that the effectiveness of @code{aligned} attributes for static
variables may be limited by inherent limitations in the system linker
and/or object file format. On some systems, the linker is
only able to arrange for variables to be aligned up to a certain maximum
alignment. (For some linkers, the maximum supported alignment may
be very very small.) If your linker is only able to align variables
up to a maximum of 8-byte alignment, then specifying @code{aligned(16)}
in an @code{__attribute__} still only provides you with 8-byte
alignment. See your linker documentation for further information.
Stack variables are not affected by linker restrictions; GCC can properly
align them on any target.
The @code{aligned} attribute can also be used for functions
(@pxref{Common Function Attributes}.)
@cindex @code{warn_if_not_aligned} variable attribute
@item warn_if_not_aligned (@var{alignment})
This attribute specifies a threshold for the structure field, measured
in bytes. If the structure field is aligned below the threshold, a
warning will be issued. For example, the declaration:
@smallexample
struct foo
@{
int i1;
int i2;
unsigned long long x __attribute__ ((warn_if_not_aligned (16)));
@};
@end smallexample
@noindent
causes the compiler to issue an warning on @code{struct foo}, like
@samp{warning: alignment 8 of 'struct foo' is less than 16}.
The compiler also issues a warning, like @samp{warning: 'x' offset
8 in 'struct foo' isn't aligned to 16}, when the structure field has
the misaligned offset:
@smallexample
struct __attribute__ ((aligned (16))) foo
@{
int i1;
int i2;
unsigned long long x __attribute__ ((warn_if_not_aligned (16)));
@};
@end smallexample
This warning can be disabled by @option{-Wno-if-not-aligned}.
The @code{warn_if_not_aligned} attribute can also be used for types
(@pxref{Common Type Attributes}.)
@item alloc_size (@var{position})
@itemx alloc_size (@var{position-1}, @var{position-2})
@cindex @code{alloc_size} variable attribute
The @code{alloc_size} variable attribute may be applied to the declaration
of a pointer to a function that returns a pointer and takes at least one
argument of an integer type. It indicates that the returned pointer points
to an object whose size is given by the function argument at @var{position},
or by the product of the arguments at @var{position-1} and @var{position-2}.
Meaningful sizes are positive values less than @code{PTRDIFF_MAX}. Other
sizes are diagnosed when detected. GCC uses this information to improve
the results of @code{__builtin_object_size}.
For instance, the following declarations
@smallexample
typedef __attribute__ ((alloc_size (1, 2))) void*
(*calloc_ptr) (size_t, size_t);
typedef __attribute__ ((alloc_size (1))) void*
(*malloc_ptr) (size_t);
@end smallexample
@noindent
specify that @code{calloc_ptr} is a pointer of a function that, like
the standard C function @code{calloc}, returns an object whose size
is given by the product of arguments 1 and 2, and similarly, that
@code{malloc_ptr}, like the standard C function @code{malloc},
returns an object whose size is given by argument 1 to the function.
@item cleanup (@var{cleanup_function})
@cindex @code{cleanup} variable attribute
The @code{cleanup} attribute runs a function when the variable goes
out of scope. This attribute can only be applied to auto function
scope variables; it may not be applied to parameters or variables
with static storage duration. The function must take one parameter,
a pointer to a type compatible with the variable. The return value
of the function (if any) is ignored.
If @option{-fexceptions} is enabled, then @var{cleanup_function}
is run during the stack unwinding that happens during the
processing of the exception. Note that the @code{cleanup} attribute
does not allow the exception to be caught, only to perform an action.
It is undefined what happens if @var{cleanup_function} does not
return normally.
@item common
@itemx nocommon
@cindex @code{common} variable attribute
@cindex @code{nocommon} variable attribute
@opindex fcommon
@opindex fno-common
The @code{common} attribute requests GCC to place a variable in
``common'' storage. The @code{nocommon} attribute requests the
opposite---to allocate space for it directly.
These attributes override the default chosen by the
@option{-fno-common} and @option{-fcommon} flags respectively.
@item copy
@itemx copy (@var{variable})
@cindex @code{copy} variable attribute
The @code{copy} attribute applies the set of attributes with which
@var{variable} has been declared to the declaration of the variable
to which the attribute is applied. The attribute is designed for
libraries that define aliases that are expected to specify the same
set of attributes as the aliased symbols. The @code{copy} attribute
can be used with variables, functions or types. However, the kind
of symbol to which the attribute is applied (either varible or
function) must match the kind of symbol to which the argument refers.
The @code{copy} attribute copies only syntactic and semantic attributes
but not attributes that affect a symbol's linkage or visibility such as
@code{alias}, @code{visibility}, or @code{weak}. The @code{deprecated}
attribute is also not copied. @xref{Common Function Attributes}.
@xref{Common Type Attributes}.
@item deprecated
@itemx deprecated (@var{msg})
@cindex @code{deprecated} variable attribute
The @code{deprecated} attribute results in a warning if the variable
is used anywhere in the source file. This is useful when identifying
variables that are expected to be removed in a future version of a
program. The warning also includes the location of the declaration
of the deprecated variable, to enable users to easily find further
information about why the variable is deprecated, or what they should
do instead. Note that the warning only occurs for uses:
@smallexample
extern int old_var __attribute__ ((deprecated));
extern int old_var;
int new_fn () @{ return old_var; @}
@end smallexample
@noindent
results in a warning on line 3 but not line 2. The optional @var{msg}
argument, which must be a string, is printed in the warning if
present.
The @code{deprecated} attribute can also be used for functions and
types (@pxref{Common Function Attributes},
@pxref{Common Type Attributes}).
The message attached to the attribute is affected by the setting of
the @option{-fmessage-length} option.
@item unavailable
@itemx unavailable (@var{msg})
@cindex @code{unavailable} variable attribute
The @code{unavailable} attribute indicates that the variable so marked
is not available, if it is used anywhere in the source file. It behaves
in the same manner as the @code{deprecated} attribute except that the
compiler will emit an error rather than a warning.
It is expected that items marked as @code{deprecated} will eventually be
withdrawn from interfaces, and then become unavailable. This attribute
allows for marking them appropriately.
The @code{unavailable} attribute can also be used for functions and
types (@pxref{Common Function Attributes},
@pxref{Common Type Attributes}).
@item mode (@var{mode})
@cindex @code{mode} variable attribute
This attribute specifies the data type for the declaration---whichever
type corresponds to the mode @var{mode}. This in effect lets you
request an integer or floating-point type according to its width.
@xref{Machine Modes,,, gccint, GNU Compiler Collection (GCC) Internals},
for a list of the possible keywords for @var{mode}.
You may also specify a mode of @code{byte} or @code{__byte__} to
indicate the mode corresponding to a one-byte integer, @code{word} or
@code{__word__} for the mode of a one-word integer, and @code{pointer}
or @code{__pointer__} for the mode used to represent pointers.
@item nonstring
@cindex @code{nonstring} variable attribute
The @code{nonstring} variable attribute specifies that an object or member
declaration with type array of @code{char}, @code{signed char}, or
@code{unsigned char}, or pointer to such a type is intended to store
character arrays that do not necessarily contain a terminating @code{NUL}.
This is useful in detecting uses of such arrays or pointers with functions
that expect @code{NUL}-terminated strings, and to avoid warnings when such
an array or pointer is used as an argument to a bounded string manipulation
function such as @code{strncpy}. For example, without the attribute, GCC
will issue a warning for the @code{strncpy} call below because it may
truncate the copy without appending the terminating @code{NUL} character.
Using the attribute makes it possible to suppress the warning. However,
when the array is declared with the attribute the call to @code{strlen} is
diagnosed because when the array doesn't contain a @code{NUL}-terminated
string the call is undefined. To copy, compare, of search non-string
character arrays use the @code{memcpy}, @code{memcmp}, @code{memchr},
and other functions that operate on arrays of bytes. In addition,
calling @code{strnlen} and @code{strndup} with such arrays is safe
provided a suitable bound is specified, and not diagnosed.
@smallexample
struct Data
@{
char name [32] __attribute__ ((nonstring));
@};
int f (struct Data *pd, const char *s)
@{
strncpy (pd->name, s, sizeof pd->name);
@dots{}
return strlen (pd->name); // unsafe, gets a warning
@}
@end smallexample
@item packed
@cindex @code{packed} variable attribute
The @code{packed} attribute specifies that a structure member should have
the smallest possible alignment---one bit for a bit-field and one byte
otherwise, unless a larger value is specified with the @code{aligned}
attribute. The attribute does not apply to non-member objects.
For example in the structure below, the member array @code{x} is packed
so that it immediately follows @code{a} with no intervening padding:
@smallexample
struct foo
@{
char a;
int x[2] __attribute__ ((packed));
@};
@end smallexample
@emph{Note:} The 4.1, 4.2 and 4.3 series of GCC ignore the
@code{packed} attribute on bit-fields of type @code{char}. This has
been fixed in GCC 4.4 but the change can lead to differences in the
structure layout. See the documentation of
@option{-Wpacked-bitfield-compat} for more information.
@item section ("@var{section-name}")
@cindex @code{section} variable attribute
Normally, the compiler places the objects it generates in sections like
@code{data} and @code{bss}. Sometimes, however, you need additional sections,
or you need certain particular variables to appear in special sections,
for example to map to special hardware. The @code{section}
attribute specifies that a variable (or function) lives in a particular
section. For example, this small program uses several specific section names:
@smallexample
struct duart a __attribute__ ((section ("DUART_A"))) = @{ 0 @};
struct duart b __attribute__ ((section ("DUART_B"))) = @{ 0 @};
char stack[10000] __attribute__ ((section ("STACK"))) = @{ 0 @};
int init_data __attribute__ ((section ("INITDATA")));
main()
@{
/* @r{Initialize stack pointer} */
init_sp (stack + sizeof (stack));
/* @r{Initialize initialized data} */
memcpy (&init_data, &data, &edata - &data);
/* @r{Turn on the serial ports} */
init_duart (&a);
init_duart (&b);
@}
@end smallexample
@noindent
Use the @code{section} attribute with
@emph{global} variables and not @emph{local} variables,
as shown in the example.
You may use the @code{section} attribute with initialized or
uninitialized global variables but the linker requires
each object be defined once, with the exception that uninitialized
variables tentatively go in the @code{common} (or @code{bss}) section
and can be multiply ``defined''. Using the @code{section} attribute
changes what section the variable goes into and may cause the
linker to issue an error if an uninitialized variable has multiple
definitions. You can force a variable to be initialized with the
@option{-fno-common} flag or the @code{nocommon} attribute.
Some file formats do not support arbitrary sections so the @code{section}
attribute is not available on all platforms.
If you need to map the entire contents of a module to a particular
section, consider using the facilities of the linker instead.
@item tls_model ("@var{tls_model}")
@cindex @code{tls_model} variable attribute
The @code{tls_model} attribute sets thread-local storage model
(@pxref{Thread-Local}) of a particular @code{__thread} variable,
overriding @option{-ftls-model=} command-line switch on a per-variable
basis.
The @var{tls_model} argument should be one of @code{global-dynamic},
@code{local-dynamic}, @code{initial-exec} or @code{local-exec}.
Not all targets support this attribute.
@item unused
@cindex @code{unused} variable attribute
This attribute, attached to a variable or structure field, means that
the variable or field is meant to be possibly unused. GCC does not
produce a warning for this variable or field.
@item used
@cindex @code{used} variable attribute
This attribute, attached to a variable with static storage, means that
the variable must be emitted even if it appears that the variable is not
referenced.
When applied to a static data member of a C++ class template, the
attribute also means that the member is instantiated if the
class itself is instantiated.
@item retain
@cindex @code{retain} variable attribute
For ELF targets that support the GNU or FreeBSD OSABIs, this attribute
will save the variable from linker garbage collection. To support
this behavior, variables that have not been placed in specific sections
(e.g. by the @code{section} attribute, or the @code{-fdata-sections} option),
will be placed in new, unique sections.
This additional functionality requires Binutils version 2.36 or later.
@item uninitialized
@cindex @code{uninitialized} variable attribute
This attribute, attached to a variable with automatic storage, means that
the variable should not be automatically initialized by the compiler when
the option @code{-ftrivial-auto-var-init} presents.
With the option @code{-ftrivial-auto-var-init}, all the automatic variables
that do not have explicit initializers will be initialized by the compiler.
These additional compiler initializations might incur run-time overhead,
sometimes dramatically. This attribute can be used to mark some variables
to be excluded from such automatical initialization in order to reduce runtime
overhead.
This attribute has no effect when the option @code{-ftrivial-auto-var-init}
does not present.
@item vector_size (@var{bytes})
@cindex @code{vector_size} variable attribute
This attribute specifies the vector size for the type of the declared
variable, measured in bytes. The type to which it applies is known as
the @dfn{base type}. The @var{bytes} argument must be a positive
power-of-two multiple of the base type size. For example, the declaration:
@smallexample
int foo __attribute__ ((vector_size (16)));
@end smallexample
@noindent
causes the compiler to set the mode for @code{foo}, to be 16 bytes,
divided into @code{int} sized units. Assuming a 32-bit @code{int},
@code{foo}'s type is a vector of four units of four bytes each, and
the corresponding mode of @code{foo} is @code{V4SI}.
@xref{Vector Extensions}, for details of manipulating vector variables.
This attribute is only applicable to integral and floating scalars,
although arrays, pointers, and function return values are allowed in
conjunction with this construct.
Aggregates with this attribute are invalid, even if they are of the same
size as a corresponding scalar. For example, the declaration:
@smallexample
struct S @{ int a; @};
struct S __attribute__ ((vector_size (16))) foo;
@end smallexample
@noindent
is invalid even if the size of the structure is the same as the size of
the @code{int}.
@item visibility ("@var{visibility_type}")
@cindex @code{visibility} variable attribute
This attribute affects the linkage of the declaration to which it is attached.
The @code{visibility} attribute is described in
@ref{Common Function Attributes}.
@item weak
@cindex @code{weak} variable attribute
The @code{weak} attribute is described in
@ref{Common Function Attributes}.
@item noinit
@cindex @code{noinit} variable attribute
Any data with the @code{noinit} attribute will not be initialized by
the C runtime startup code, or the program loader. Not initializing
data in this way can reduce program startup times.
This attribute is specific to ELF targets and relies on the linker
script to place sections with the @code{.noinit} prefix in the right
location.
@item persistent
@cindex @code{persistent} variable attribute
Any data with the @code{persistent} attribute will not be initialized by
the C runtime startup code, but will be initialized by the program
loader. This enables the value of the variable to @samp{persist}
between processor resets.
This attribute is specific to ELF targets and relies on the linker
script to place the sections with the @code{.persistent} prefix in the
right location. Specifically, some type of non-volatile, writeable
memory is required.
@item objc_nullability (@var{nullability kind}) @r{(Objective-C and Objective-C++ only)}
@cindex @code{objc_nullability} variable attribute
This attribute applies to pointer variables only. It allows marking the
pointer with one of four possible values describing the conditions under
which the pointer might have a @code{nil} value. In most cases, the
attribute is intended to be an internal representation for property and
method nullability (specified by language keywords); it is not recommended
to use it directly.
When @var{nullability kind} is @code{"unspecified"} or @code{0}, nothing is
known about the conditions in which the pointer might be @code{nil}. Making
this state specific serves to avoid false positives in diagnostics.
When @var{nullability kind} is @code{"nonnull"} or @code{1}, the pointer has
no meaning if it is @code{nil} and thus the compiler is free to emit
diagnostics if it can be determined that the value will be @code{nil}.
When @var{nullability kind} is @code{"nullable"} or @code{2}, the pointer might
be @code{nil} and carry meaning as such.
When @var{nullability kind} is @code{"resettable"} or @code{3} (used only in
the context of property attribute lists) this describes the case in which a
property setter may take the value @code{nil} (which perhaps causes the
property to be reset in some manner to a default) but for which the property
getter will never validly return @code{nil}.
@end table
@node ARC Variable Attributes
@subsection ARC Variable Attributes
@table @code
@item aux
@cindex @code{aux} variable attribute, ARC
The @code{aux} attribute is used to directly access the ARC's
auxiliary register space from C. The auxilirary register number is
given via attribute argument.
@end table
@node AVR Variable Attributes
@subsection AVR Variable Attributes
@table @code
@item progmem
@cindex @code{progmem} variable attribute, AVR
The @code{progmem} attribute is used on the AVR to place read-only
data in the non-volatile program memory (flash). The @code{progmem}
attribute accomplishes this by putting respective variables into a
section whose name starts with @code{.progmem}.
This attribute works similar to the @code{section} attribute
but adds additional checking.
@table @asis
@item @bullet{}@tie{} Ordinary AVR cores with 32 general purpose registers:
@code{progmem} affects the location
of the data but not how this data is accessed.
In order to read data located with the @code{progmem} attribute
(inline) assembler must be used.
@smallexample
/* Use custom macros from @w{@uref{http://nongnu.org/avr-libc/user-manual/,AVR-LibC}} */
#include <avr/pgmspace.h>
/* Locate var in flash memory */
const int var[2] PROGMEM = @{ 1, 2 @};
int read_var (int i)
@{
/* Access var[] by accessor macro from avr/pgmspace.h */
return (int) pgm_read_word (& var[i]);
@}
@end smallexample
AVR is a Harvard architecture processor and data and read-only data
normally resides in the data memory (RAM).
See also the @ref{AVR Named Address Spaces} section for
an alternate way to locate and access data in flash memory.
@item @bullet{}@tie{} AVR cores with flash memory visible in the RAM address range:
On such devices, there is no need for attribute @code{progmem} or
@ref{AVR Named Address Spaces,,@code{__flash}} qualifier at all.
Just use standard C / C++. The compiler will generate @code{LD*}
instructions. As flash memory is visible in the RAM address range,
and the default linker script does @emph{not} locate @code{.rodata} in
RAM, no special features are needed in order not to waste RAM for
read-only data or to read from flash. You might even get slightly better
performance by
avoiding @code{progmem} and @code{__flash}. This applies to devices from
families @code{avrtiny} and @code{avrxmega3}, see @ref{AVR Options} for
an overview.
@item @bullet{}@tie{}Reduced AVR Tiny cores like ATtiny40:
The compiler adds @code{0x4000}
to the addresses of objects and declarations in @code{progmem} and locates
the objects in flash memory, namely in section @code{.progmem.data}.
The offset is needed because the flash memory is visible in the RAM
address space starting at address @code{0x4000}.
Data in @code{progmem} can be accessed by means of ordinary C@tie{}code,
no special functions or macros are needed.
@smallexample
/* var is located in flash memory */
extern const int var[2] __attribute__((progmem));
int read_var (int i)
@{
return var[i];
@}
@end smallexample
Please notice that on these devices, there is no need for @code{progmem}
at all.
@end table
@item io
@itemx io (@var{addr})
@cindex @code{io} variable attribute, AVR
Variables with the @code{io} attribute are used to address
memory-mapped peripherals in the io address range.
If an address is specified, the variable
is assigned that address, and the value is interpreted as an
address in the data address space.
Example:
@smallexample
volatile int porta __attribute__((io (0x22)));
@end smallexample
The address specified in the address in the data address range.
Otherwise, the variable it is not assigned an address, but the
compiler will still use in/out instructions where applicable,
assuming some other module assigns an address in the io address range.
Example:
@smallexample
extern volatile int porta __attribute__((io));
@end smallexample
@item io_low
@itemx io_low (@var{addr})
@cindex @code{io_low} variable attribute, AVR
This is like the @code{io} attribute, but additionally it informs the
compiler that the object lies in the lower half of the I/O area,
allowing the use of @code{cbi}, @code{sbi}, @code{sbic} and @code{sbis}
instructions.
@item address
@itemx address (@var{addr})
@cindex @code{address} variable attribute, AVR
Variables with the @code{address} attribute are used to address
memory-mapped peripherals that may lie outside the io address range.
@smallexample
volatile int porta __attribute__((address (0x600)));
@end smallexample
@item absdata
@cindex @code{absdata} variable attribute, AVR
Variables in static storage and with the @code{absdata} attribute can
be accessed by the @code{LDS} and @code{STS} instructions which take
absolute addresses.
@itemize @bullet
@item
This attribute is only supported for the reduced AVR Tiny core
like ATtiny40.
@item
You must make sure that respective data is located in the
address range @code{0x40}@dots{}@code{0xbf} accessible by
@code{LDS} and @code{STS}. One way to achieve this as an
appropriate linker description file.
@item
If the location does not fit the address range of @code{LDS}
and @code{STS}, there is currently (Binutils 2.26) just an unspecific
warning like
@quotation
@code{module.cc:(.text+0x1c): warning: internal error: out of range error}
@end quotation
@end itemize
See also the @option{-mabsdata} @ref{AVR Options,command-line option}.
@end table
@node Blackfin Variable Attributes
@subsection Blackfin Variable Attributes
Three attributes are currently defined for the Blackfin.
@table @code
@item l1_data
@itemx l1_data_A
@itemx l1_data_B
@cindex @code{l1_data} variable attribute, Blackfin
@cindex @code{l1_data_A} variable attribute, Blackfin
@cindex @code{l1_data_B} variable attribute, Blackfin
Use these attributes on the Blackfin to place the variable into L1 Data SRAM.
Variables with @code{l1_data} attribute are put into the specific section
named @code{.l1.data}. Those with @code{l1_data_A} attribute are put into
the specific section named @code{.l1.data.A}. Those with @code{l1_data_B}
attribute are put into the specific section named @code{.l1.data.B}.
@item l2
@cindex @code{l2} variable attribute, Blackfin
Use this attribute on the Blackfin to place the variable into L2 SRAM.
Variables with @code{l2} attribute are put into the specific section
named @code{.l2.data}.
@end table
@node H8/300 Variable Attributes
@subsection H8/300 Variable Attributes
These variable attributes are available for H8/300 targets:
@table @code
@item eightbit_data
@cindex @code{eightbit_data} variable attribute, H8/300
@cindex eight-bit data on the H8/300, H8/300H, and H8S
Use this attribute on the H8/300, H8/300H, and H8S to indicate that the specified
variable should be placed into the eight-bit data section.
The compiler generates more efficient code for certain operations
on data in the eight-bit data area. Note the eight-bit data area is limited to
256 bytes of data.
You must use GAS and GLD from GNU binutils version 2.7 or later for
this attribute to work correctly.
@item tiny_data
@cindex @code{tiny_data} variable attribute, H8/300
@cindex tiny data section on the H8/300H and H8S
Use this attribute on the H8/300H and H8S to indicate that the specified
variable should be placed into the tiny data section.
The compiler generates more efficient code for loads and stores
on data in the tiny data section. Note the tiny data area is limited to
slightly under 32KB of data.
@end table
@node IA-64 Variable Attributes
@subsection IA-64 Variable Attributes
The IA-64 back end supports the following variable attribute:
@table @code
@item model (@var{model-name})
@cindex @code{model} variable attribute, IA-64
On IA-64, use this attribute to set the addressability of an object.
At present, the only supported identifier for @var{model-name} is
@code{small}, indicating addressability via ``small'' (22-bit)
addresses (so that their addresses can be loaded with the @code{addl}
instruction). Caveat: such addressing is by definition not position
independent and hence this attribute must not be used for objects
defined by shared libraries.
@end table
@node M32R/D Variable Attributes
@subsection M32R/D Variable Attributes
One attribute is currently defined for the M32R/D@.
@table @code
@item model (@var{model-name})
@cindex @code{model-name} variable attribute, M32R/D
@cindex variable addressability on the M32R/D
Use this attribute on the M32R/D to set the addressability of an object.
The identifier @var{model-name} is one of @code{small}, @code{medium},
or @code{large}, representing each of the code models.
Small model objects live in the lower 16MB of memory (so that their
addresses can be loaded with the @code{ld24} instruction).
Medium and large model objects may live anywhere in the 32-bit address space
(the compiler generates @code{seth/add3} instructions to load their
addresses).
@end table
@node MeP Variable Attributes
@subsection MeP Variable Attributes
The MeP target has a number of addressing modes and busses. The
@code{near} space spans the standard memory space's first 16 megabytes
(24 bits). The @code{far} space spans the entire 32-bit memory space.
The @code{based} space is a 128-byte region in the memory space that
is addressed relative to the @code{$tp} register. The @code{tiny}
space is a 65536-byte region relative to the @code{$gp} register. In
addition to these memory regions, the MeP target has a separate 16-bit
control bus which is specified with @code{cb} attributes.
@table @code
@item based
@cindex @code{based} variable attribute, MeP
Any variable with the @code{based} attribute is assigned to the
@code{.based} section, and is accessed with relative to the
@code{$tp} register.
@item tiny
@cindex @code{tiny} variable attribute, MeP
Likewise, the @code{tiny} attribute assigned variables to the
@code{.tiny} section, relative to the @code{$gp} register.
@item near
@cindex @code{near} variable attribute, MeP
Variables with the @code{near} attribute are assumed to have addresses
that fit in a 24-bit addressing mode. This is the default for large
variables (@code{-mtiny=4} is the default) but this attribute can
override @code{-mtiny=} for small variables, or override @code{-ml}.
@item far
@cindex @code{far} variable attribute, MeP
Variables with the @code{far} attribute are addressed using a full
32-bit address. Since this covers the entire memory space, this
allows modules to make no assumptions about where variables might be
stored.
@item io
@cindex @code{io} variable attribute, MeP
@itemx io (@var{addr})
Variables with the @code{io} attribute are used to address
memory-mapped peripherals. If an address is specified, the variable
is assigned that address, else it is not assigned an address (it is
assumed some other module assigns an address). Example:
@smallexample
int timer_count __attribute__((io(0x123)));
@end smallexample
@item cb
@itemx cb (@var{addr})
@cindex @code{cb} variable attribute, MeP
Variables with the @code{cb} attribute are used to access the control
bus, using special instructions. @code{addr} indicates the control bus
address. Example:
@smallexample
int cpu_clock __attribute__((cb(0x123)));
@end smallexample
@end table
@node Microsoft Windows Variable Attributes
@subsection Microsoft Windows Variable Attributes
You can use these attributes on Microsoft Windows targets.
@ref{x86 Variable Attributes} for additional Windows compatibility
attributes available on all x86 targets.
@table @code
@item dllimport
@itemx dllexport
@cindex @code{dllimport} variable attribute
@cindex @code{dllexport} variable attribute
The @code{dllimport} and @code{dllexport} attributes are described in
@ref{Microsoft Windows Function Attributes}.
@item selectany
@cindex @code{selectany} variable attribute
The @code{selectany} attribute causes an initialized global variable to
have link-once semantics. When multiple definitions of the variable are
encountered by the linker, the first is selected and the remainder are
discarded. Following usage by the Microsoft compiler, the linker is told
@emph{not} to warn about size or content differences of the multiple
definitions.
Although the primary usage of this attribute is for POD types, the
attribute can also be applied to global C++ objects that are initialized
by a constructor. In this case, the static initialization and destruction
code for the object is emitted in each translation defining the object,
but the calls to the constructor and destructor are protected by a
link-once guard variable.
The @code{selectany} attribute is only available on Microsoft Windows
targets. You can use @code{__declspec (selectany)} as a synonym for
@code{__attribute__ ((selectany))} for compatibility with other
compilers.
@item shared
@cindex @code{shared} variable attribute
On Microsoft Windows, in addition to putting variable definitions in a named
section, the section can also be shared among all running copies of an
executable or DLL@. For example, this small program defines shared data
by putting it in a named section @code{shared} and marking the section
shareable:
@smallexample
int foo __attribute__((section ("shared"), shared)) = 0;
int
main()
@{
/* @r{Read and write foo. All running
copies see the same value.} */
return 0;
@}
@end smallexample
@noindent
You may only use the @code{shared} attribute along with @code{section}
attribute with a fully-initialized global definition because of the way
linkers work. See @code{section} attribute for more information.
The @code{shared} attribute is only available on Microsoft Windows@.
@end table
@node MSP430 Variable Attributes
@subsection MSP430 Variable Attributes
@table @code
@item upper
@itemx either
@cindex @code{upper} variable attribute, MSP430
@cindex @code{either} variable attribute, MSP430
These attributes are the same as the MSP430 function attributes of the
same name (@pxref{MSP430 Function Attributes}).
@item lower
@cindex @code{lower} variable attribute, MSP430
This option behaves mostly the same as the MSP430 function attribute of the
same name (@pxref{MSP430 Function Attributes}), but it has some additional
functionality.
If @option{-mdata-region=}@{@code{upper,either,none}@} has been passed, or
the @code{section} attribute is applied to a variable, the compiler will
generate 430X instructions to handle it. This is because the compiler has
to assume that the variable could get placed in the upper memory region
(above address 0xFFFF). Marking the variable with the @code{lower} attribute
informs the compiler that the variable will be placed in lower memory so it
is safe to use 430 instructions to handle it.
In the case of the @code{section} attribute, the section name given
will be used, and the @code{.lower} prefix will not be added.
@end table
@node Nvidia PTX Variable Attributes
@subsection Nvidia PTX Variable Attributes
These variable attributes are supported by the Nvidia PTX back end:
@table @code
@item shared
@cindex @code{shared} attribute, Nvidia PTX
Use this attribute to place a variable in the @code{.shared} memory space.
This memory space is private to each cooperative thread array; only threads
within one thread block refer to the same instance of the variable.
The runtime does not initialize variables in this memory space.
@end table
@node PowerPC Variable Attributes
@subsection PowerPC Variable Attributes
Three attributes currently are defined for PowerPC configurations:
@code{altivec}, @code{ms_struct} and @code{gcc_struct}.
@cindex @code{ms_struct} variable attribute, PowerPC
@cindex @code{gcc_struct} variable attribute, PowerPC
For full documentation of the struct attributes please see the
documentation in @ref{x86 Variable Attributes}.
@cindex @code{altivec} variable attribute, PowerPC
For documentation of @code{altivec} attribute please see the
documentation in @ref{PowerPC Type Attributes}.
@node RL78 Variable Attributes
@subsection RL78 Variable Attributes
@cindex @code{saddr} variable attribute, RL78
The RL78 back end supports the @code{saddr} variable attribute. This
specifies placement of the corresponding variable in the SADDR area,
which can be accessed more efficiently than the default memory region.
@node V850 Variable Attributes
@subsection V850 Variable Attributes
These variable attributes are supported by the V850 back end:
@table @code
@item sda
@cindex @code{sda} variable attribute, V850
Use this attribute to explicitly place a variable in the small data area,
which can hold up to 64 kilobytes.
@item tda
@cindex @code{tda} variable attribute, V850
Use this attribute to explicitly place a variable in the tiny data area,
which can hold up to 256 bytes in total.
@item zda
@cindex @code{zda} variable attribute, V850
Use this attribute to explicitly place a variable in the first 32 kilobytes
of memory.
@end table
@node x86 Variable Attributes
@subsection x86 Variable Attributes
Two attributes are currently defined for x86 configurations:
@code{ms_struct} and @code{gcc_struct}.
@table @code
@item ms_struct
@itemx gcc_struct
@cindex @code{ms_struct} variable attribute, x86
@cindex @code{gcc_struct} variable attribute, x86
If @code{packed} is used on a structure, or if bit-fields are used,
it may be that the Microsoft ABI lays out the structure differently
than the way GCC normally does. Particularly when moving packed
data between functions compiled with GCC and the native Microsoft compiler
(either via function call or as data in a file), it may be necessary to access
either format.
The @code{ms_struct} and @code{gcc_struct} attributes correspond
to the @option{-mms-bitfields} and @option{-mno-ms-bitfields}
command-line options, respectively;
see @ref{x86 Options}, for details of how structure layout is affected.
@xref{x86 Type Attributes}, for information about the corresponding
attributes on types.
@end table
@node Xstormy16 Variable Attributes
@subsection Xstormy16 Variable Attributes
One attribute is currently defined for xstormy16 configurations:
@code{below100}.
@table @code
@item below100
@cindex @code{below100} variable attribute, Xstormy16
If a variable has the @code{below100} attribute (@code{BELOW100} is
allowed also), GCC places the variable in the first 0x100 bytes of
memory and use special opcodes to access it. Such variables are
placed in either the @code{.bss_below100} section or the
@code{.data_below100} section.
@end table
@node Type Attributes
@section Specifying Attributes of Types
@cindex attribute of types
@cindex type attributes
The keyword @code{__attribute__} allows you to specify various special
properties of types. Some type attributes apply only to structure and
union types, and in C++, also class types, while others can apply to
any type defined via a @code{typedef} declaration. Unless otherwise
specified, the same restrictions and effects apply to attributes regardless
of whether a type is a trivial structure or a C++ class with user-defined
constructors, destructors, or a copy assignment.
Other attributes are defined for functions (@pxref{Function Attributes}),
labels (@pxref{Label Attributes}), enumerators (@pxref{Enumerator
Attributes}), statements (@pxref{Statement Attributes}), and for variables
(@pxref{Variable Attributes}).
The @code{__attribute__} keyword is followed by an attribute specification
enclosed in double parentheses.
You may specify type attributes in an enum, struct or union type
declaration or definition by placing them immediately after the
@code{struct}, @code{union} or @code{enum} keyword. You can also place
them just past the closing curly brace of the definition, but this is less
preferred because logically the type should be fully defined at
the closing brace.
You can also include type attributes in a @code{typedef} declaration.
@xref{Attribute Syntax}, for details of the exact syntax for using
attributes.
@menu
* Common Type Attributes::
* ARC Type Attributes::
* ARM Type Attributes::
* BPF Type Attributes::
* MeP Type Attributes::
* PowerPC Type Attributes::
* x86 Type Attributes::
@end menu
@node Common Type Attributes
@subsection Common Type Attributes
The following type attributes are supported on most targets.
@table @code
@cindex @code{aligned} type attribute
@item aligned
@itemx aligned (@var{alignment})
The @code{aligned} attribute specifies a minimum alignment (in bytes) for
variables of the specified type. When specified, @var{alignment} must be
a power of 2. Specifying no @var{alignment} argument implies the maximum
alignment for the target, which is often, but by no means always, 8 or 16
bytes. For example, the declarations:
@smallexample
struct __attribute__ ((aligned (8))) S @{ short f[3]; @};
typedef int more_aligned_int __attribute__ ((aligned (8)));
@end smallexample
@noindent
force the compiler to ensure (as far as it can) that each variable whose
type is @code{struct S} or @code{more_aligned_int} is allocated and
aligned @emph{at least} on a 8-byte boundary. On a SPARC, having all
variables of type @code{struct S} aligned to 8-byte boundaries allows
the compiler to use the @code{ldd} and @code{std} (doubleword load and
store) instructions when copying one variable of type @code{struct S} to
another, thus improving run-time efficiency.
Note that the alignment of any given @code{struct} or @code{union} type
is required by the ISO C standard to be at least a perfect multiple of
the lowest common multiple of the alignments of all of the members of
the @code{struct} or @code{union} in question. This means that you @emph{can}
effectively adjust the alignment of a @code{struct} or @code{union}
type by attaching an @code{aligned} attribute to any one of the members
of such a type, but the notation illustrated in the example above is a
more obvious, intuitive, and readable way to request the compiler to
adjust the alignment of an entire @code{struct} or @code{union} type.
As in the preceding example, you can explicitly specify the alignment
(in bytes) that you wish the compiler to use for a given @code{struct}
or @code{union} type. Alternatively, you can leave out the alignment factor
and just ask the compiler to align a type to the maximum
useful alignment for the target machine you are compiling for. For
example, you could write:
@smallexample
struct __attribute__ ((aligned)) S @{ short f[3]; @};
@end smallexample
Whenever you leave out the alignment factor in an @code{aligned}
attribute specification, the compiler automatically sets the alignment
for the type to the largest alignment that is ever used for any data
type on the target machine you are compiling for. Doing this can often
make copy operations more efficient, because the compiler can use
whatever instructions copy the biggest chunks of memory when performing
copies to or from the variables that have types that you have aligned
this way.
In the example above, if the size of each @code{short} is 2 bytes, then
the size of the entire @code{struct S} type is 6 bytes. The smallest
power of two that is greater than or equal to that is 8, so the
compiler sets the alignment for the entire @code{struct S} type to 8
bytes.
Note that although you can ask the compiler to select a time-efficient
alignment for a given type and then declare only individual stand-alone
objects of that type, the compiler's ability to select a time-efficient
alignment is primarily useful only when you plan to create arrays of
variables having the relevant (efficiently aligned) type. If you
declare or use arrays of variables of an efficiently-aligned type, then
it is likely that your program also does pointer arithmetic (or
subscripting, which amounts to the same thing) on pointers to the
relevant type, and the code that the compiler generates for these
pointer arithmetic operations is often more efficient for
efficiently-aligned types than for other types.
Note that the effectiveness of @code{aligned} attributes may be limited
by inherent limitations in your linker. On many systems, the linker is
only able to arrange for variables to be aligned up to a certain maximum
alignment. (For some linkers, the maximum supported alignment may
be very very small.) If your linker is only able to align variables
up to a maximum of 8-byte alignment, then specifying @code{aligned (16)}
in an @code{__attribute__} still only provides you with 8-byte
alignment. See your linker documentation for further information.
When used on a struct, or struct member, the @code{aligned} attribute can
only increase the alignment; in order to decrease it, the @code{packed}
attribute must be specified as well. When used as part of a typedef, the
@code{aligned} attribute can both increase and decrease alignment, and
specifying the @code{packed} attribute generates a warning.
@cindex @code{warn_if_not_aligned} type attribute
@item warn_if_not_aligned (@var{alignment})
This attribute specifies a threshold for the structure field, measured
in bytes. If the structure field is aligned below the threshold, a
warning will be issued. For example, the declaration:
@smallexample
typedef unsigned long long __u64
__attribute__((aligned (4), warn_if_not_aligned (8)));
struct foo
@{
int i1;
int i2;
__u64 x;
@};
@end smallexample
@noindent
causes the compiler to issue an warning on @code{struct foo}, like
@samp{warning: alignment 4 of 'struct foo' is less than 8}.
It is used to define @code{struct foo} in such a way that
@code{struct foo} has the same layout and the structure field @code{x}
has the same alignment when @code{__u64} is aligned at either 4 or
8 bytes. Align @code{struct foo} to 8 bytes:
@smallexample
struct __attribute__ ((aligned (8))) foo
@{
int i1;
int i2;
__u64 x;
@};
@end smallexample
@noindent
silences the warning. The compiler also issues a warning, like
@samp{warning: 'x' offset 12 in 'struct foo' isn't aligned to 8},
when the structure field has the misaligned offset:
@smallexample
struct __attribute__ ((aligned (8))) foo
@{
int i1;
int i2;
int i3;
__u64 x;
@};
@end smallexample
This warning can be disabled by @option{-Wno-if-not-aligned}.
@item alloc_size (@var{position})
@itemx alloc_size (@var{position-1}, @var{position-2})
@cindex @code{alloc_size} type attribute
The @code{alloc_size} type attribute may be applied to the definition
of a type of a function that returns a pointer and takes at least one
argument of an integer type. It indicates that the returned pointer
points to an object whose size is given by the function argument at
@var{position-1}, or by the product of the arguments at @var{position-1}
and @var{position-2}. Meaningful sizes are positive values less than
@code{PTRDIFF_MAX}. Other sizes are disagnosed when detected. GCC uses
this information to improve the results of @code{__builtin_object_size}.
For instance, the following declarations
@smallexample
typedef __attribute__ ((alloc_size (1, 2))) void*
calloc_type (size_t, size_t);
typedef __attribute__ ((alloc_size (1))) void*
malloc_type (size_t);
@end smallexample
@noindent
specify that @code{calloc_type} is a type of a function that, like
the standard C function @code{calloc}, returns an object whose size
is given by the product of arguments 1 and 2, and that
@code{malloc_type}, like the standard C function @code{malloc},
returns an object whose size is given by argument 1 to the function.
@item copy
@itemx copy (@var{expression})
@cindex @code{copy} type attribute
The @code{copy} attribute applies the set of attributes with which
the type of the @var{expression} has been declared to the declaration
of the type to which the attribute is applied. The attribute is
designed for libraries that define aliases that are expected to
specify the same set of attributes as the aliased symbols.
The @code{copy} attribute can be used with types, variables, or
functions. However, the kind of symbol to which the attribute is
applied (either varible or function) must match the kind of symbol
to which the argument refers.
The @code{copy} attribute copies only syntactic and semantic attributes
but not attributes that affect a symbol's linkage or visibility such as
@code{alias}, @code{visibility}, or @code{weak}. The @code{deprecated}
attribute is also not copied. @xref{Common Function Attributes}.
@xref{Common Variable Attributes}.
For example, suppose @code{struct A} below is defined in some third
party library header to have the alignment requirement @code{N} and
to force a warning whenever a variable of the type is not so aligned
due to attribute @code{packed}. Specifying the @code{copy} attribute
on the definition on the unrelated @code{struct B} has the effect of
copying all relevant attributes from the type referenced by the pointer
expression to @code{struct B}.
@smallexample
struct __attribute__ ((aligned (N), warn_if_not_aligned (N)))
A @{ /* @r{@dots{}} */ @};
struct __attribute__ ((copy ( (struct A *)0)) B @{ /* @r{@dots{}} */ @};
@end smallexample
@item deprecated
@itemx deprecated (@var{msg})
@cindex @code{deprecated} type attribute
The @code{deprecated} attribute results in a warning if the type
is used anywhere in the source file. This is useful when identifying
types that are expected to be removed in a future version of a program.
If possible, the warning also includes the location of the declaration
of the deprecated type, to enable users to easily find further
information about why the type is deprecated, or what they should do
instead. Note that the warnings only occur for uses and then only
if the type is being applied to an identifier that itself is not being
declared as deprecated.
@smallexample
typedef int T1 __attribute__ ((deprecated));
T1 x;
typedef T1 T2;
T2 y;
typedef T1 T3 __attribute__ ((deprecated));
T3 z __attribute__ ((deprecated));
@end smallexample
@noindent
results in a warning on line 2 and 3 but not lines 4, 5, or 6. No
warning is issued for line 4 because T2 is not explicitly
deprecated. Line 5 has no warning because T3 is explicitly
deprecated. Similarly for line 6. The optional @var{msg}
argument, which must be a string, is printed in the warning if
present. Control characters in the string will be replaced with
escape sequences, and if the @option{-fmessage-length} option is set
to 0 (its default value) then any newline characters will be ignored.
The @code{deprecated} attribute can also be used for functions and
variables (@pxref{Function Attributes}, @pxref{Variable Attributes}.)
The message attached to the attribute is affected by the setting of
the @option{-fmessage-length} option.
@item unavailable
@itemx unavailable (@var{msg})
@cindex @code{unavailable} type attribute
The @code{unavailable} attribute behaves in the same manner as the
@code{deprecated} one, but emits an error rather than a warning. It is
used to indicate that a (perhaps previously @code{deprecated}) type is
no longer usable.
The @code{unavailable} attribute can also be used for functions and
variables (@pxref{Function Attributes}, @pxref{Variable Attributes}.)
@item designated_init
@cindex @code{designated_init} type attribute
This attribute may only be applied to structure types. It indicates
that any initialization of an object of this type must use designated
initializers rather than positional initializers. The intent of this
attribute is to allow the programmer to indicate that a structure's
layout may change, and that therefore relying on positional
initialization will result in future breakage.
GCC emits warnings based on this attribute by default; use
@option{-Wno-designated-init} to suppress them.
@item may_alias
@cindex @code{may_alias} type attribute
Accesses through pointers to types with this attribute are not subject
to type-based alias analysis, but are instead assumed to be able to alias
any other type of objects.
In the context of section 6.5 paragraph 7 of the C99 standard,
an lvalue expression
dereferencing such a pointer is treated like having a character type.
See @option{-fstrict-aliasing} for more information on aliasing issues.
This extension exists to support some vector APIs, in which pointers to
one vector type are permitted to alias pointers to a different vector type.
Note that an object of a type with this attribute does not have any
special semantics.
Example of use:
@smallexample
typedef short __attribute__ ((__may_alias__)) short_a;
int
main (void)
@{
int a = 0x12345678;
short_a *b = (short_a *) &a;
b[1] = 0;
if (a == 0x12345678)
abort();
exit(0);
@}
@end smallexample
@noindent
If you replaced @code{short_a} with @code{short} in the variable
declaration, the above program would abort when compiled with
@option{-fstrict-aliasing}, which is on by default at @option{-O2} or
above.
@item mode (@var{mode})
@cindex @code{mode} type attribute
This attribute specifies the data type for the declaration---whichever
type corresponds to the mode @var{mode}. This in effect lets you
request an integer or floating-point type according to its width.
@xref{Machine Modes,,, gccint, GNU Compiler Collection (GCC) Internals},
for a list of the possible keywords for @var{mode}.
You may also specify a mode of @code{byte} or @code{__byte__} to
indicate the mode corresponding to a one-byte integer, @code{word} or
@code{__word__} for the mode of a one-word integer, and @code{pointer}
or @code{__pointer__} for the mode used to represent pointers.
@item packed
@cindex @code{packed} type attribute
This attribute, attached to a @code{struct}, @code{union}, or C++ @code{class}
type definition, specifies that each of its members (other than zero-width
bit-fields) is placed to minimize the memory required. This is equivalent
to specifying the @code{packed} attribute on each of the members.
@opindex fshort-enums
When attached to an @code{enum} definition, the @code{packed} attribute
indicates that the smallest integral type should be used.
Specifying the @option{-fshort-enums} flag on the command line
is equivalent to specifying the @code{packed}
attribute on all @code{enum} definitions.
In the following example @code{struct my_packed_struct}'s members are
packed closely together, but the internal layout of its @code{s} member
is not packed---to do that, @code{struct my_unpacked_struct} needs to
be packed too.
@smallexample
struct my_unpacked_struct
@{
char c;
int i;
@};
struct __attribute__ ((__packed__)) my_packed_struct
@{
char c;
int i;
struct my_unpacked_struct s;
@};
@end smallexample
You may only specify the @code{packed} attribute on the definition
of an @code{enum}, @code{struct}, @code{union}, or @code{class},
not on a @code{typedef} that does not also define the enumerated type,
structure, union, or class.
@item scalar_storage_order ("@var{endianness}")
@cindex @code{scalar_storage_order} type attribute
When attached to a @code{union} or a @code{struct}, this attribute sets
the storage order, aka endianness, of the scalar fields of the type, as
well as the array fields whose component is scalar. The supported
endiannesses are @code{big-endian} and @code{little-endian}. The attribute
has no effects on fields which are themselves a @code{union}, a @code{struct}
or an array whose component is a @code{union} or a @code{struct}, and it is
possible for these fields to have a different scalar storage order than the
enclosing type.
Note that neither pointer nor vector fields are considered scalar fields in
this context, so the attribute has no effects on these fields.
This attribute is supported only for targets that use a uniform default
scalar storage order (fortunately, most of them), i.e.@: targets that store
the scalars either all in big-endian or all in little-endian.
Additional restrictions are enforced for types with the reverse scalar
storage order with regard to the scalar storage order of the target:
@itemize
@item Taking the address of a scalar field of a @code{union} or a
@code{struct} with reverse scalar storage order is not permitted and yields
an error.
@item Taking the address of an array field, whose component is scalar, of
a @code{union} or a @code{struct} with reverse scalar storage order is
permitted but yields a warning, unless @option{-Wno-scalar-storage-order}
is specified.
@item Taking the address of a @code{union} or a @code{struct} with reverse
scalar storage order is permitted.
@end itemize
These restrictions exist because the storage order attribute is lost when
the address of a scalar or the address of an array with scalar component is
taken, so storing indirectly through this address generally does not work.
The second case is nevertheless allowed to be able to perform a block copy
from or to the array.
Moreover, the use of type punning or aliasing to toggle the storage order
is not supported; that is to say, if a given scalar object can be accessed
through distinct types that assign a different storage order to it, then the
behavior is undefined.
@item transparent_union
@cindex @code{transparent_union} type attribute
This attribute, attached to a @code{union} type definition, indicates
that any function parameter having that union type causes calls to that
function to be treated in a special way.
First, the argument corresponding to a transparent union type can be of
any type in the union; no cast is required. Also, if the union contains
a pointer type, the corresponding argument can be a null pointer
constant or a void pointer expression; and if the union contains a void
pointer type, the corresponding argument can be any pointer expression.
If the union member type is a pointer, qualifiers like @code{const} on
the referenced type must be respected, just as with normal pointer
conversions.
Second, the argument is passed to the function using the calling
conventions of the first member of the transparent union, not the calling
conventions of the union itself. All members of the union must have the
same machine representation; this is necessary for this argument passing
to work properly.
Transparent unions are designed for library functions that have multiple
interfaces for compatibility reasons. For example, suppose the
@code{wait} function must accept either a value of type @code{int *} to
comply with POSIX, or a value of type @code{union wait *} to comply with
the 4.1BSD interface. If @code{wait}'s parameter were @code{void *},
@code{wait} would accept both kinds of arguments, but it would also
accept any other pointer type and this would make argument type checking
less useful. Instead, @code{<sys/wait.h>} might define the interface
as follows:
@smallexample
typedef union __attribute__ ((__transparent_union__))
@{
int *__ip;
union wait *__up;
@} wait_status_ptr_t;
pid_t wait (wait_status_ptr_t);
@end smallexample
@noindent
This interface allows either @code{int *} or @code{union wait *}
arguments to be passed, using the @code{int *} calling convention.
The program can call @code{wait} with arguments of either type:
@smallexample
int w1 () @{ int w; return wait (&w); @}
int w2 () @{ union wait w; return wait (&w); @}
@end smallexample
@noindent
With this interface, @code{wait}'s implementation might look like this:
@smallexample
pid_t wait (wait_status_ptr_t p)
@{
return waitpid (-1, p.__ip, 0);
@}
@end smallexample
@item unused
@cindex @code{unused} type attribute
When attached to a type (including a @code{union} or a @code{struct}),
this attribute means that variables of that type are meant to appear
possibly unused. GCC does not produce a warning for any variables of
that type, even if the variable appears to do nothing. This is often
the case with lock or thread classes, which are usually defined and then
not referenced, but contain constructors and destructors that have
nontrivial bookkeeping functions.
@item vector_size (@var{bytes})
@cindex @code{vector_size} type attribute
This attribute specifies the vector size for the type, measured in bytes.
The type to which it applies is known as the @dfn{base type}. The @var{bytes}
argument must be a positive power-of-two multiple of the base type size. For
example, the following declarations:
@smallexample
typedef __attribute__ ((vector_size (32))) int int_vec32_t ;
typedef __attribute__ ((vector_size (32))) int* int_vec32_ptr_t;
typedef __attribute__ ((vector_size (32))) int int_vec32_arr3_t[3];
@end smallexample
@noindent
define @code{int_vec32_t} to be a 32-byte vector type composed of @code{int}
sized units. With @code{int} having a size of 4 bytes, the type defines
a vector of eight units, four bytes each. The mode of variables of type
@code{int_vec32_t} is @code{V8SI}. @code{int_vec32_ptr_t} is then defined
to be a pointer to such a vector type, and @code{int_vec32_arr3_t} to be
an array of three such vectors. @xref{Vector Extensions}, for details of
manipulating objects of vector types.
This attribute is only applicable to integral and floating scalar types.
In function declarations the attribute applies to the function return
type.
For example, the following:
@smallexample
__attribute__ ((vector_size (16))) float get_flt_vec16 (void);
@end smallexample
declares @code{get_flt_vec16} to be a function returning a 16-byte vector
with the base type @code{float}.
@item visibility
@cindex @code{visibility} type attribute
In C++, attribute visibility (@pxref{Function Attributes}) can also be
applied to class, struct, union and enum types. Unlike other type
attributes, the attribute must appear between the initial keyword and
the name of the type; it cannot appear after the body of the type.
Note that the type visibility is applied to vague linkage entities
associated with the class (vtable, typeinfo node, etc.). In
particular, if a class is thrown as an exception in one shared object
and caught in another, the class must have default visibility.
Otherwise the two shared objects are unable to use the same
typeinfo node and exception handling will break.
@item objc_root_class @r{(Objective-C and Objective-C++ only)}
@cindex @code{objc_root_class} type attribute
This attribute marks a class as being a root class, and thus allows
the compiler to elide any warnings about a missing superclass and to
make additional checks for mandatory methods as needed.
@end table
To specify multiple attributes, separate them by commas within the
double parentheses: for example, @samp{__attribute__ ((aligned (16),
packed))}.
@node ARC Type Attributes
@subsection ARC Type Attributes
@cindex @code{uncached} type attribute, ARC
Declaring objects with @code{uncached} allows you to exclude
data-cache participation in load and store operations on those objects
without involving the additional semantic implications of
@code{volatile}. The @code{.di} instruction suffix is used for all
loads and stores of data declared @code{uncached}.
@node ARM Type Attributes
@subsection ARM Type Attributes
@cindex @code{notshared} type attribute, ARM
On those ARM targets that support @code{dllimport} (such as Symbian
OS), you can use the @code{notshared} attribute to indicate that the
virtual table and other similar data for a class should not be
exported from a DLL@. For example:
@smallexample
class __declspec(notshared) C @{
public:
__declspec(dllimport) C();
virtual void f();
@}
__declspec(dllexport)
C::C() @{@}
@end smallexample
@noindent
In this code, @code{C::C} is exported from the current DLL, but the
virtual table for @code{C} is not exported. (You can use
@code{__attribute__} instead of @code{__declspec} if you prefer, but
most Symbian OS code uses @code{__declspec}.)
@node BPF Type Attributes
@subsection BPF Type Attributes
@cindex @code{preserve_access_index} type attribute, BPF
BPF Compile Once - Run Everywhere (CO-RE) support. When attached to a
@code{struct} or @code{union} type definition, indicates that CO-RE
relocation information should be generated for any access to a variable
of that type. The behavior is equivalent to the programmer manually
wrapping every such access with @code{__builtin_preserve_access_index}.
@node MeP Type Attributes
@subsection MeP Type Attributes
@cindex @code{based} type attribute, MeP
@cindex @code{tiny} type attribute, MeP
@cindex @code{near} type attribute, MeP
@cindex @code{far} type attribute, MeP
Many of the MeP variable attributes may be applied to types as well.
Specifically, the @code{based}, @code{tiny}, @code{near}, and
@code{far} attributes may be applied to either. The @code{io} and
@code{cb} attributes may not be applied to types.
@node PowerPC Type Attributes
@subsection PowerPC Type Attributes
Three attributes currently are defined for PowerPC configurations:
@code{altivec}, @code{ms_struct} and @code{gcc_struct}.
@cindex @code{ms_struct} type attribute, PowerPC
@cindex @code{gcc_struct} type attribute, PowerPC
For full documentation of the @code{ms_struct} and @code{gcc_struct}
attributes please see the documentation in @ref{x86 Type Attributes}.
@cindex @code{altivec} type attribute, PowerPC
The @code{altivec} attribute allows one to declare AltiVec vector data
types supported by the AltiVec Programming Interface Manual. The
attribute requires an argument to specify one of three vector types:
@code{vector__}, @code{pixel__} (always followed by unsigned short),
and @code{bool__} (always followed by unsigned).
@smallexample
__attribute__((altivec(vector__)))
__attribute__((altivec(pixel__))) unsigned short
__attribute__((altivec(bool__))) unsigned
@end smallexample
These attributes mainly are intended to support the @code{__vector},
@code{__pixel}, and @code{__bool} AltiVec keywords.
@node x86 Type Attributes
@subsection x86 Type Attributes
Two attributes are currently defined for x86 configurations:
@code{ms_struct} and @code{gcc_struct}.
@table @code
@item ms_struct
@itemx gcc_struct
@cindex @code{ms_struct} type attribute, x86
@cindex @code{gcc_struct} type attribute, x86
If @code{packed} is used on a structure, or if bit-fields are used
it may be that the Microsoft ABI packs them differently
than GCC normally packs them. Particularly when moving packed
data between functions compiled with GCC and the native Microsoft compiler
(either via function call or as data in a file), it may be necessary to access
either format.
The @code{ms_struct} and @code{gcc_struct} attributes correspond
to the @option{-mms-bitfields} and @option{-mno-ms-bitfields}
command-line options, respectively;
see @ref{x86 Options}, for details of how structure layout is affected.
@xref{x86 Variable Attributes}, for information about the corresponding
attributes on variables.
@end table
@node Label Attributes
@section Label Attributes
@cindex Label Attributes
GCC allows attributes to be set on C labels. @xref{Attribute Syntax}, for
details of the exact syntax for using attributes. Other attributes are
available for functions (@pxref{Function Attributes}), variables
(@pxref{Variable Attributes}), enumerators (@pxref{Enumerator Attributes}),
statements (@pxref{Statement Attributes}), and for types
(@pxref{Type Attributes}). A label attribute followed
by a declaration appertains to the label and not the declaration.
This example uses the @code{cold} label attribute to indicate the
@code{ErrorHandling} branch is unlikely to be taken and that the
@code{ErrorHandling} label is unused:
@smallexample
asm goto ("some asm" : : : : NoError);
/* This branch (the fall-through from the asm) is less commonly used */
ErrorHandling:
__attribute__((cold, unused)); /* Semi-colon is required here */
printf("error\n");
return 0;
NoError:
printf("no error\n");
return 1;
@end smallexample
@table @code
@item unused
@cindex @code{unused} label attribute
This feature is intended for program-generated code that may contain
unused labels, but which is compiled with @option{-Wall}. It is
not normally appropriate to use in it human-written code, though it
could be useful in cases where the code that jumps to the label is
contained within an @code{#ifdef} conditional.
@item hot
@cindex @code{hot} label attribute
The @code{hot} attribute on a label is used to inform the compiler that
the path following the label is more likely than paths that are not so
annotated. This attribute is used in cases where @code{__builtin_expect}
cannot be used, for instance with computed goto or @code{asm goto}.
@item cold
@cindex @code{cold} label attribute
The @code{cold} attribute on labels is used to inform the compiler that
the path following the label is unlikely to be executed. This attribute
is used in cases where @code{__builtin_expect} cannot be used, for instance
with computed goto or @code{asm goto}.
@end table
@node Enumerator Attributes
@section Enumerator Attributes
@cindex Enumerator Attributes
GCC allows attributes to be set on enumerators. @xref{Attribute Syntax}, for
details of the exact syntax for using attributes. Other attributes are
available for functions (@pxref{Function Attributes}), variables
(@pxref{Variable Attributes}), labels (@pxref{Label Attributes}), statements
(@pxref{Statement Attributes}), and for types (@pxref{Type Attributes}).
This example uses the @code{deprecated} enumerator attribute to indicate the
@code{oldval} enumerator is deprecated:
@smallexample
enum E @{
oldval __attribute__((deprecated)),
newval
@};
int
fn (void)
@{
return oldval;
@}
@end smallexample
@table @code
@item deprecated
@cindex @code{deprecated} enumerator attribute
The @code{deprecated} attribute results in a warning if the enumerator
is used anywhere in the source file. This is useful when identifying
enumerators that are expected to be removed in a future version of a
program. The warning also includes the location of the declaration
of the deprecated enumerator, to enable users to easily find further
information about why the enumerator is deprecated, or what they should
do instead. Note that the warnings only occurs for uses.
@item unavailable
@cindex @code{unavailable} enumerator attribute
The @code{unavailable} attribute results in an error if the enumerator
is used anywhere in the source file. In other respects it behaves in the
same manner as the @code{deprecated} attribute.
@end table
@node Statement Attributes
@section Statement Attributes
@cindex Statement Attributes
GCC allows attributes to be set on null statements. @xref{Attribute Syntax},
for details of the exact syntax for using attributes. Other attributes are
available for functions (@pxref{Function Attributes}), variables
(@pxref{Variable Attributes}), labels (@pxref{Label Attributes}), enumerators
(@pxref{Enumerator Attributes}), and for types (@pxref{Type Attributes}).
This example uses the @code{fallthrough} statement attribute to indicate that
the @option{-Wimplicit-fallthrough} warning should not be emitted:
@smallexample
switch (cond)
@{
case 1:
bar (1);
__attribute__((fallthrough));
case 2:
@dots{}
@}
@end smallexample
@table @code
@item fallthrough
@cindex @code{fallthrough} statement attribute
The @code{fallthrough} attribute with a null statement serves as a
fallthrough statement. It hints to the compiler that a statement
that falls through to another case label, or user-defined label
in a switch statement is intentional and thus the
@option{-Wimplicit-fallthrough} warning must not trigger. The
fallthrough attribute may appear at most once in each attribute
list, and may not be mixed with other attributes. It can only
be used in a switch statement (the compiler will issue an error
otherwise), after a preceding statement and before a logically
succeeding case label, or user-defined label.
@end table
@node Attribute Syntax
@section Attribute Syntax
@cindex attribute syntax
This section describes the syntax with which @code{__attribute__} may be
used, and the constructs to which attribute specifiers bind, for the C
language. Some details may vary for C++ and Objective-C@. Because of
infelicities in the grammar for attributes, some forms described here
may not be successfully parsed in all cases.
There are some problems with the semantics of attributes in C++. For
example, there are no manglings for attributes, although they may affect
code generation, so problems may arise when attributed types are used in
conjunction with templates or overloading. Similarly, @code{typeid}
does not distinguish between types with different attributes. Support
for attributes in C++ may be restricted in future to attributes on
declarations only, but not on nested declarators.
@xref{Function Attributes}, for details of the semantics of attributes
applying to functions. @xref{Variable Attributes}, for details of the
semantics of attributes applying to variables. @xref{Type Attributes},
for details of the semantics of attributes applying to structure, union
and enumerated types.
@xref{Label Attributes}, for details of the semantics of attributes
applying to labels.
@xref{Enumerator Attributes}, for details of the semantics of attributes
applying to enumerators.
@xref{Statement Attributes}, for details of the semantics of attributes
applying to statements.
An @dfn{attribute specifier} is of the form
@code{__attribute__ ((@var{attribute-list}))}. An @dfn{attribute list}
is a possibly empty comma-separated sequence of @dfn{attributes}, where
each attribute is one of the following:
@itemize @bullet
@item
Empty. Empty attributes are ignored.
@item
An attribute name
(which may be an identifier such as @code{unused}, or a reserved
word such as @code{const}).
@item
An attribute name followed by a parenthesized list of
parameters for the attribute.
These parameters take one of the following forms:
@itemize @bullet
@item
An identifier. For example, @code{mode} attributes use this form.
@item
An identifier followed by a comma and a non-empty comma-separated list
of expressions. For example, @code{format} attributes use this form.
@item
A possibly empty comma-separated list of expressions. For example,
@code{format_arg} attributes use this form with the list being a single
integer constant expression, and @code{alias} attributes use this form
with the list being a single string constant.
@end itemize
@end itemize
An @dfn{attribute specifier list} is a sequence of one or more attribute
specifiers, not separated by any other tokens.
You may optionally specify attribute names with @samp{__}
preceding and following the name.
This allows you to use them in header files without
being concerned about a possible macro of the same name. For example,
you may use the attribute name @code{__noreturn__} instead of @code{noreturn}.
@subsubheading Label Attributes
In GNU C, an attribute specifier list may appear after the colon following a
label, other than a @code{case} or @code{default} label. GNU C++ only permits
attributes on labels if the attribute specifier is immediately
followed by a semicolon (i.e., the label applies to an empty
statement). If the semicolon is missing, C++ label attributes are
ambiguous, as it is permissible for a declaration, which could begin
with an attribute list, to be labelled in C++. Declarations cannot be
labelled in C90 or C99, so the ambiguity does not arise there.
@subsubheading Enumerator Attributes
In GNU C, an attribute specifier list may appear as part of an enumerator.
The attribute goes after the enumeration constant, before @code{=}, if
present. The optional attribute in the enumerator appertains to the
enumeration constant. It is not possible to place the attribute after
the constant expression, if present.
@subsubheading Statement Attributes
In GNU C, an attribute specifier list may appear as part of a null
statement. The attribute goes before the semicolon.
@subsubheading Type Attributes
An attribute specifier list may appear as part of a @code{struct},
@code{union} or @code{enum} specifier. It may go either immediately
after the @code{struct}, @code{union} or @code{enum} keyword, or after
the closing brace. The former syntax is preferred.
Where attribute specifiers follow the closing brace, they are considered
to relate to the structure, union or enumerated type defined, not to any
enclosing declaration the type specifier appears in, and the type
defined is not complete until after the attribute specifiers.
@c Otherwise, there would be the following problems: a shift/reduce
@c conflict between attributes binding the struct/union/enum and
@c binding to the list of specifiers/qualifiers; and "aligned"
@c attributes could use sizeof for the structure, but the size could be
@c changed later by "packed" attributes.
@subsubheading All other attributes
Otherwise, an attribute specifier appears as part of a declaration,
counting declarations of unnamed parameters and type names, and relates
to that declaration (which may be nested in another declaration, for
example in the case of a parameter declaration), or to a particular declarator
within a declaration. Where an
attribute specifier is applied to a parameter declared as a function or
an array, it should apply to the function or array rather than the
pointer to which the parameter is implicitly converted, but this is not
yet correctly implemented.
Any list of specifiers and qualifiers at the start of a declaration may
contain attribute specifiers, whether or not such a list may in that
context contain storage class specifiers. (Some attributes, however,
are essentially in the nature of storage class specifiers, and only make
sense where storage class specifiers may be used; for example,
@code{section}.) There is one necessary limitation to this syntax: the
first old-style parameter declaration in a function definition cannot
begin with an attribute specifier, because such an attribute applies to
the function instead by syntax described below (which, however, is not
yet implemented in this case). In some other cases, attribute
specifiers are permitted by this grammar but not yet supported by the
compiler. All attribute specifiers in this place relate to the
declaration as a whole. In the obsolescent usage where a type of
@code{int} is implied by the absence of type specifiers, such a list of
specifiers and qualifiers may be an attribute specifier list with no
other specifiers or qualifiers.
At present, the first parameter in a function prototype must have some
type specifier that is not an attribute specifier; this resolves an
ambiguity in the interpretation of @code{void f(int
(__attribute__((foo)) x))}, but is subject to change. At present, if
the parentheses of a function declarator contain only attributes then
those attributes are ignored, rather than yielding an error or warning
or implying a single parameter of type int, but this is subject to
change.
An attribute specifier list may appear immediately before a declarator
(other than the first) in a comma-separated list of declarators in a
declaration of more than one identifier using a single list of
specifiers and qualifiers. Such attribute specifiers apply
only to the identifier before whose declarator they appear. For
example, in
@smallexample
__attribute__((noreturn)) void d0 (void),
__attribute__((format(printf, 1, 2))) d1 (const char *, ...),
d2 (void);
@end smallexample
@noindent
the @code{noreturn} attribute applies to all the functions
declared; the @code{format} attribute only applies to @code{d1}.
An attribute specifier list may appear immediately before the comma,
@code{=} or semicolon terminating the declaration of an identifier other
than a function definition. Such attribute specifiers apply
to the declared object or function. Where an
assembler name for an object or function is specified (@pxref{Asm
Labels}), the attribute must follow the @code{asm}
specification.
An attribute specifier list may, in future, be permitted to appear after
the declarator in a function definition (before any old-style parameter
declarations or the function body).
Attribute specifiers may be mixed with type qualifiers appearing inside
the @code{[]} of a parameter array declarator, in the C99 construct by
which such qualifiers are applied to the pointer to which the array is
implicitly converted. Such attribute specifiers apply to the pointer,
not to the array, but at present this is not implemented and they are
ignored.
An attribute specifier list may appear at the start of a nested
declarator. At present, there are some limitations in this usage: the
attributes correctly apply to the declarator, but for most individual
attributes the semantics this implies are not implemented.
When attribute specifiers follow the @code{*} of a pointer
declarator, they may be mixed with any type qualifiers present.
The following describes the formal semantics of this syntax. It makes the
most sense if you are familiar with the formal specification of
declarators in the ISO C standard.
Consider (as in C99 subclause 6.7.5 paragraph 4) a declaration @code{T
D1}, where @code{T} contains declaration specifiers that specify a type
@var{Type} (such as @code{int}) and @code{D1} is a declarator that
contains an identifier @var{ident}. The type specified for @var{ident}
for derived declarators whose type does not include an attribute
specifier is as in the ISO C standard.
If @code{D1} has the form @code{( @var{attribute-specifier-list} D )},
and the declaration @code{T D} specifies the type
``@var{derived-declarator-type-list} @var{Type}'' for @var{ident}, then
@code{T D1} specifies the type ``@var{derived-declarator-type-list}
@var{attribute-specifier-list} @var{Type}'' for @var{ident}.
If @code{D1} has the form @code{*
@var{type-qualifier-and-attribute-specifier-list} D}, and the
declaration @code{T D} specifies the type
``@var{derived-declarator-type-list} @var{Type}'' for @var{ident}, then
@code{T D1} specifies the type ``@var{derived-declarator-type-list}
@var{type-qualifier-and-attribute-specifier-list} pointer to @var{Type}'' for
@var{ident}.
For example,
@smallexample
void (__attribute__((noreturn)) ****f) (void);
@end smallexample
@noindent
specifies the type ``pointer to pointer to pointer to pointer to
non-returning function returning @code{void}''. As another example,
@smallexample
char *__attribute__((aligned(8))) *f;
@end smallexample
@noindent
specifies the type ``pointer to 8-byte-aligned pointer to @code{char}''.
Note again that this does not work with most attributes; for example,
the usage of @samp{aligned} and @samp{noreturn} attributes given above
is not yet supported.
For compatibility with existing code written for compiler versions that
did not implement attributes on nested declarators, some laxity is
allowed in the placing of attributes. If an attribute that only applies
to types is applied to a declaration, it is treated as applying to
the type of that declaration. If an attribute that only applies to
declarations is applied to the type of a declaration, it is treated
as applying to that declaration; and, for compatibility with code
placing the attributes immediately before the identifier declared, such
an attribute applied to a function return type is treated as
applying to the function type, and such an attribute applied to an array
element type is treated as applying to the array type. If an
attribute that only applies to function types is applied to a
pointer-to-function type, it is treated as applying to the pointer
target type; if such an attribute is applied to a function return type
that is not a pointer-to-function type, it is treated as applying
to the function type.
@node Function Prototypes
@section Prototypes and Old-Style Function Definitions
@cindex function prototype declarations
@cindex old-style function definitions
@cindex promotion of formal parameters
GNU C extends ISO C to allow a function prototype to override a later
old-style non-prototype definition. Consider the following example:
@smallexample
/* @r{Use prototypes unless the compiler is old-fashioned.} */
#ifdef __STDC__
#define P(x) x
#else
#define P(x) ()
#endif
/* @r{Prototype function declaration.} */
int isroot P((uid_t));
/* @r{Old-style function definition.} */
int
isroot (x) /* @r{??? lossage here ???} */
uid_t x;
@{
return x == 0;
@}
@end smallexample
Suppose the type @code{uid_t} happens to be @code{short}. ISO C does
not allow this example, because subword arguments in old-style
non-prototype definitions are promoted. Therefore in this example the
function definition's argument is really an @code{int}, which does not
match the prototype argument type of @code{short}.
This restriction of ISO C makes it hard to write code that is portable
to traditional C compilers, because the programmer does not know
whether the @code{uid_t} type is @code{short}, @code{int}, or
@code{long}. Therefore, in cases like these GNU C allows a prototype
to override a later old-style definition. More precisely, in GNU C, a
function prototype argument type overrides the argument type specified
by a later old-style definition if the former type is the same as the
latter type before promotion. Thus in GNU C the above example is
equivalent to the following:
@smallexample
int isroot (uid_t);
int
isroot (uid_t x)
@{
return x == 0;
@}
@end smallexample
@noindent
GNU C++ does not support old-style function definitions, so this
extension is irrelevant.
@node C++ Comments
@section C++ Style Comments
@cindex @code{//}
@cindex C++ comments
@cindex comments, C++ style
In GNU C, you may use C++ style comments, which start with @samp{//} and
continue until the end of the line. Many other C implementations allow
such comments, and they are included in the 1999 C standard. However,
C++ style comments are not recognized if you specify an @option{-std}
option specifying a version of ISO C before C99, or @option{-ansi}
(equivalent to @option{-std=c90}).
@node Dollar Signs
@section Dollar Signs in Identifier Names
@cindex $
@cindex dollar signs in identifier names
@cindex identifier names, dollar signs in
In GNU C, you may normally use dollar signs in identifier names.
This is because many traditional C implementations allow such identifiers.
However, dollar signs in identifiers are not supported on a few target
machines, typically because the target assembler does not allow them.
@node Character Escapes
@section The Character @key{ESC} in Constants
You can use the sequence @samp{\e} in a string or character constant to
stand for the ASCII character @key{ESC}.
@node Alignment
@section Determining the Alignment of Functions, Types or Variables
@cindex alignment
@cindex type alignment
@cindex variable alignment
The keyword @code{__alignof__} determines the alignment requirement of
a function, object, or a type, or the minimum alignment usually required
by a type. Its syntax is just like @code{sizeof} and C11 @code{_Alignof}.
For example, if the target machine requires a @code{double} value to be
aligned on an 8-byte boundary, then @code{__alignof__ (double)} is 8.
This is true on many RISC machines. On more traditional machine
designs, @code{__alignof__ (double)} is 4 or even 2.
Some machines never actually require alignment; they allow references to any
data type even at an odd address. For these machines, @code{__alignof__}
reports the smallest alignment that GCC gives the data type, usually as
mandated by the target ABI.
If the operand of @code{__alignof__} is an lvalue rather than a type,
its value is the required alignment for its type, taking into account
any minimum alignment specified by attribute @code{aligned}
(@pxref{Common Variable Attributes}). For example, after this
declaration:
@smallexample
struct foo @{ int x; char y; @} foo1;
@end smallexample
@noindent
the value of @code{__alignof__ (foo1.y)} is 1, even though its actual
alignment is probably 2 or 4, the same as @code{__alignof__ (int)}.
It is an error to ask for the alignment of an incomplete type other
than @code{void}.
If the operand of the @code{__alignof__} expression is a function,
the expression evaluates to the alignment of the function which may
be specified by attribute @code{aligned} (@pxref{Common Function Attributes}).
@node Inline
@section An Inline Function is As Fast As a Macro
@cindex inline functions
@cindex integrating function code
@cindex open coding
@cindex macros, inline alternative
By declaring a function inline, you can direct GCC to make
calls to that function faster. One way GCC can achieve this is to
integrate that function's code into the code for its callers. This
makes execution faster by eliminating the function-call overhead; in
addition, if any of the actual argument values are constant, their
known values may permit simplifications at compile time so that not
all of the inline function's code needs to be included. The effect on
code size is less predictable; object code may be larger or smaller
with function inlining, depending on the particular case. You can
also direct GCC to try to integrate all ``simple enough'' functions
into their callers with the option @option{-finline-functions}.
GCC implements three different semantics of declaring a function
inline. One is available with @option{-std=gnu89} or
@option{-fgnu89-inline} or when @code{gnu_inline} attribute is present
on all inline declarations, another when
@option{-std=c99},
@option{-std=gnu99} or an option for a later C version is used
(without @option{-fgnu89-inline}), and the third
is used when compiling C++.
To declare a function inline, use the @code{inline} keyword in its
declaration, like this:
@smallexample
static inline int
inc (int *a)
@{
return (*a)++;
@}
@end smallexample
If you are writing a header file to be included in ISO C90 programs, write
@code{__inline__} instead of @code{inline}. @xref{Alternate Keywords}.
The three types of inlining behave similarly in two important cases:
when the @code{inline} keyword is used on a @code{static} function,
like the example above, and when a function is first declared without
using the @code{inline} keyword and then is defined with
@code{inline}, like this:
@smallexample
extern int inc (int *a);
inline int
inc (int *a)
@{
return (*a)++;
@}
@end smallexample
In both of these common cases, the program behaves the same as if you
had not used the @code{inline} keyword, except for its speed.
@cindex inline functions, omission of
@opindex fkeep-inline-functions
When a function is both inline and @code{static}, if all calls to the
function are integrated into the caller, and the function's address is
never used, then the function's own assembler code is never referenced.
In this case, GCC does not actually output assembler code for the
function, unless you specify the option @option{-fkeep-inline-functions}.
If there is a nonintegrated call, then the function is compiled to
assembler code as usual. The function must also be compiled as usual if
the program refers to its address, because that cannot be inlined.
@opindex Winline
Note that certain usages in a function definition can make it unsuitable
for inline substitution. Among these usages are: variadic functions,
use of @code{alloca}, use of computed goto (@pxref{Labels as Values}),
use of nonlocal goto, use of nested functions, use of @code{setjmp}, use
of @code{__builtin_longjmp} and use of @code{__builtin_return} or
@code{__builtin_apply_args}. Using @option{-Winline} warns when a
function marked @code{inline} could not be substituted, and gives the
reason for the failure.
@cindex automatic @code{inline} for C++ member fns
@cindex @code{inline} automatic for C++ member fns
@cindex member fns, automatically @code{inline}
@cindex C++ member fns, automatically @code{inline}
@opindex fno-default-inline
As required by ISO C++, GCC considers member functions defined within
the body of a class to be marked inline even if they are
not explicitly declared with the @code{inline} keyword. You can
override this with @option{-fno-default-inline}; @pxref{C++ Dialect
Options,,Options Controlling C++ Dialect}.
GCC does not inline any functions when not optimizing unless you specify
the @samp{always_inline} attribute for the function, like this:
@smallexample
/* @r{Prototype.} */
inline void foo (const char) __attribute__((always_inline));
@end smallexample
The remainder of this section is specific to GNU C90 inlining.
@cindex non-static inline function
When an inline function is not @code{static}, then the compiler must assume
that there may be calls from other source files; since a global symbol can
be defined only once in any program, the function must not be defined in
the other source files, so the calls therein cannot be integrated.
Therefore, a non-@code{static} inline function is always compiled on its
own in the usual fashion.
If you specify both @code{inline} and @code{extern} in the function
definition, then the definition is used only for inlining. In no case
is the function compiled on its own, not even if you refer to its
address explicitly. Such an address becomes an external reference, as
if you had only declared the function, and had not defined it.
This combination of @code{inline} and @code{extern} has almost the
effect of a macro. The way to use it is to put a function definition in
a header file with these keywords, and put another copy of the
definition (lacking @code{inline} and @code{extern}) in a library file.
The definition in the header file causes most calls to the function
to be inlined. If any uses of the function remain, they refer to
the single copy in the library.
@node Volatiles
@section When is a Volatile Object Accessed?
@cindex accessing volatiles
@cindex volatile read
@cindex volatile write
@cindex volatile access
C has the concept of volatile objects. These are normally accessed by
pointers and used for accessing hardware or inter-thread
communication. The standard encourages compilers to refrain from
optimizations concerning accesses to volatile objects, but leaves it
implementation defined as to what constitutes a volatile access. The
minimum requirement is that at a sequence point all previous accesses
to volatile objects have stabilized and no subsequent accesses have
occurred. Thus an implementation is free to reorder and combine
volatile accesses that occur between sequence points, but cannot do
so for accesses across a sequence point. The use of volatile does
not allow you to violate the restriction on updating objects multiple
times between two sequence points.
Accesses to non-volatile objects are not ordered with respect to
volatile accesses. You cannot use a volatile object as a memory
barrier to order a sequence of writes to non-volatile memory. For
instance:
@smallexample
int *ptr = @var{something};
volatile int vobj;
*ptr = @var{something};
vobj = 1;
@end smallexample
@noindent
Unless @var{*ptr} and @var{vobj} can be aliased, it is not guaranteed
that the write to @var{*ptr} occurs by the time the update
of @var{vobj} happens. If you need this guarantee, you must use
a stronger memory barrier such as:
@smallexample
int *ptr = @var{something};
volatile int vobj;
*ptr = @var{something};
asm volatile ("" : : : "memory");
vobj = 1;
@end smallexample
A scalar volatile object is read when it is accessed in a void context:
@smallexample
volatile int *src = @var{somevalue};
*src;
@end smallexample
Such expressions are rvalues, and GCC implements this as a
read of the volatile object being pointed to.
Assignments are also expressions and have an rvalue. However when
assigning to a scalar volatile, the volatile object is not reread,
regardless of whether the assignment expression's rvalue is used or
not. If the assignment's rvalue is used, the value is that assigned
to the volatile object. For instance, there is no read of @var{vobj}
in all the following cases:
@smallexample
int obj;
volatile int vobj;
vobj = @var{something};
obj = vobj = @var{something};
obj ? vobj = @var{onething} : vobj = @var{anotherthing};
obj = (@var{something}, vobj = @var{anotherthing});
@end smallexample
If you need to read the volatile object after an assignment has
occurred, you must use a separate expression with an intervening
sequence point.
As bit-fields are not individually addressable, volatile bit-fields may
be implicitly read when written to, or when adjacent bit-fields are
accessed. Bit-field operations may be optimized such that adjacent
bit-fields are only partially accessed, if they straddle a storage unit
boundary. For these reasons it is unwise to use volatile bit-fields to
access hardware.
@node Using Assembly Language with C
@section How to Use Inline Assembly Language in C Code
@cindex @code{asm} keyword
@cindex assembly language in C
@cindex inline assembly language
@cindex mixing assembly language and C
The @code{asm} keyword allows you to embed assembler instructions
within C code. GCC provides two forms of inline @code{asm}
statements. A @dfn{basic @code{asm}} statement is one with no
operands (@pxref{Basic Asm}), while an @dfn{extended @code{asm}}
statement (@pxref{Extended Asm}) includes one or more operands.
The extended form is preferred for mixing C and assembly language
within a function, but to include assembly language at
top level you must use basic @code{asm}.
You can also use the @code{asm} keyword to override the assembler name
for a C symbol, or to place a C variable in a specific register.
@menu
* Basic Asm:: Inline assembler without operands.
* Extended Asm:: Inline assembler with operands.
* Constraints:: Constraints for @code{asm} operands
* Asm Labels:: Specifying the assembler name to use for a C symbol.
* Explicit Register Variables:: Defining variables residing in specified
registers.
* Size of an asm:: How GCC calculates the size of an @code{asm} block.
@end menu
@node Basic Asm
@subsection Basic Asm --- Assembler Instructions Without Operands
@cindex basic @code{asm}
@cindex assembly language in C, basic
A basic @code{asm} statement has the following syntax:
@example
asm @var{asm-qualifiers} ( @var{AssemblerInstructions} )
@end example
For the C language, the @code{asm} keyword is a GNU extension.
When writing C code that can be compiled with @option{-ansi} and the
@option{-std} options that select C dialects without GNU extensions, use
@code{__asm__} instead of @code{asm} (@pxref{Alternate Keywords}). For
the C++ language, @code{asm} is a standard keyword, but @code{__asm__}
can be used for code compiled with @option{-fno-asm}.
@subsubheading Qualifiers
@table @code
@item volatile
The optional @code{volatile} qualifier has no effect.
All basic @code{asm} blocks are implicitly volatile.
@item inline
If you use the @code{inline} qualifier, then for inlining purposes the size
of the @code{asm} statement is taken as the smallest size possible (@pxref{Size
of an asm}).
@end table
@subsubheading Parameters
@table @var
@item AssemblerInstructions
This is a literal string that specifies the assembler code. The string can
contain any instructions recognized by the assembler, including directives.
GCC does not parse the assembler instructions themselves and
does not know what they mean or even whether they are valid assembler input.
You may place multiple assembler instructions together in a single @code{asm}
string, separated by the characters normally used in assembly code for the
system. A combination that works in most places is a newline to break the
line, plus a tab character (written as @samp{\n\t}).
Some assemblers allow semicolons as a line separator. However,
note that some assembler dialects use semicolons to start a comment.
@end table
@subsubheading Remarks
Using extended @code{asm} (@pxref{Extended Asm}) typically produces
smaller, safer, and more efficient code, and in most cases it is a
better solution than basic @code{asm}. However, there are two
situations where only basic @code{asm} can be used:
@itemize @bullet
@item
Extended @code{asm} statements have to be inside a C
function, so to write inline assembly language at file scope (``top-level''),
outside of C functions, you must use basic @code{asm}.
You can use this technique to emit assembler directives,
define assembly language macros that can be invoked elsewhere in the file,
or write entire functions in assembly language.
Basic @code{asm} statements outside of functions may not use any
qualifiers.
@item
Functions declared
with the @code{naked} attribute also require basic @code{asm}
(@pxref{Function Attributes}).
@end itemize
Safely accessing C data and calling functions from basic @code{asm} is more
complex than it may appear. To access C data, it is better to use extended
@code{asm}.
Do not expect a sequence of @code{asm} statements to remain perfectly
consecutive after compilation. If certain instructions need to remain
consecutive in the output, put them in a single multi-instruction @code{asm}
statement. Note that GCC's optimizers can move @code{asm} statements
relative to other code, including across jumps.
@code{asm} statements may not perform jumps into other @code{asm} statements.
GCC does not know about these jumps, and therefore cannot take
account of them when deciding how to optimize. Jumps from @code{asm} to C
labels are only supported in extended @code{asm}.
Under certain circumstances, GCC may duplicate (or remove duplicates of) your
assembly code when optimizing. This can lead to unexpected duplicate
symbol errors during compilation if your assembly code defines symbols or
labels.
@strong{Warning:} The C standards do not specify semantics for @code{asm},
making it a potential source of incompatibilities between compilers. These
incompatibilities may not produce compiler warnings/errors.
GCC does not parse basic @code{asm}'s @var{AssemblerInstructions}, which
means there is no way to communicate to the compiler what is happening
inside them. GCC has no visibility of symbols in the @code{asm} and may
discard them as unreferenced. It also does not know about side effects of
the assembler code, such as modifications to memory or registers. Unlike
some compilers, GCC assumes that no changes to general purpose registers
occur. This assumption may change in a future release.
To avoid complications from future changes to the semantics and the
compatibility issues between compilers, consider replacing basic @code{asm}
with extended @code{asm}. See
@uref{https://gcc.gnu.org/wiki/ConvertBasicAsmToExtended, How to convert
from basic asm to extended asm} for information about how to perform this
conversion.
The compiler copies the assembler instructions in a basic @code{asm}
verbatim to the assembly language output file, without
processing dialects or any of the @samp{%} operators that are available with
extended @code{asm}. This results in minor differences between basic
@code{asm} strings and extended @code{asm} templates. For example, to refer to
registers you might use @samp{%eax} in basic @code{asm} and
@samp{%%eax} in extended @code{asm}.
On targets such as x86 that support multiple assembler dialects,
all basic @code{asm} blocks use the assembler dialect specified by the
@option{-masm} command-line option (@pxref{x86 Options}).
Basic @code{asm} provides no
mechanism to provide different assembler strings for different dialects.
For basic @code{asm} with non-empty assembler string GCC assumes
the assembler block does not change any general purpose registers,
but it may read or write any globally accessible variable.
Here is an example of basic @code{asm} for i386:
@example
/* Note that this code will not compile with -masm=intel */
#define DebugBreak() asm("int $3")
@end example
@node Extended Asm
@subsection Extended Asm - Assembler Instructions with C Expression Operands
@cindex extended @code{asm}
@cindex assembly language in C, extended
With extended @code{asm} you can read and write C variables from
assembler and perform jumps from assembler code to C labels.
Extended @code{asm} syntax uses colons (@samp{:}) to delimit
the operand parameters after the assembler template:
@example
asm @var{asm-qualifiers} ( @var{AssemblerTemplate}
: @var{OutputOperands}
@r{[} : @var{InputOperands}
@r{[} : @var{Clobbers} @r{]} @r{]})
asm @var{asm-qualifiers} ( @var{AssemblerTemplate}
: @var{OutputOperands}
: @var{InputOperands}
: @var{Clobbers}
: @var{GotoLabels})
@end example
where in the last form, @var{asm-qualifiers} contains @code{goto} (and in the
first form, not).
The @code{asm} keyword is a GNU extension.
When writing code that can be compiled with @option{-ansi} and the
various @option{-std} options, use @code{__asm__} instead of
@code{asm} (@pxref{Alternate Keywords}).
@subsubheading Qualifiers
@table @code
@item volatile
The typical use of extended @code{asm} statements is to manipulate input
values to produce output values. However, your @code{asm} statements may
also produce side effects. If so, you may need to use the @code{volatile}
qualifier to disable certain optimizations. @xref{Volatile}.
@item inline
If you use the @code{inline} qualifier, then for inlining purposes the size
of the @code{asm} statement is taken as the smallest size possible
(@pxref{Size of an asm}).
@item goto
This qualifier informs the compiler that the @code{asm} statement may
perform a jump to one of the labels listed in the @var{GotoLabels}.
@xref{GotoLabels}.
@end table
@subsubheading Parameters
@table @var
@item AssemblerTemplate
This is a literal string that is the template for the assembler code. It is a
combination of fixed text and tokens that refer to the input, output,
and goto parameters. @xref{AssemblerTemplate}.
@item OutputOperands
A comma-separated list of the C variables modified by the instructions in the
@var{AssemblerTemplate}. An empty list is permitted. @xref{OutputOperands}.
@item InputOperands
A comma-separated list of C expressions read by the instructions in the
@var{AssemblerTemplate}. An empty list is permitted. @xref{InputOperands}.
@item Clobbers
A comma-separated list of registers or other values changed by the
@var{AssemblerTemplate}, beyond those listed as outputs.
An empty list is permitted. @xref{Clobbers and Scratch Registers}.
@item GotoLabels
When you are using the @code{goto} form of @code{asm}, this section contains
the list of all C labels to which the code in the
@var{AssemblerTemplate} may jump.
@xref{GotoLabels}.
@code{asm} statements may not perform jumps into other @code{asm} statements,
only to the listed @var{GotoLabels}.
GCC's optimizers do not know about other jumps; therefore they cannot take
account of them when deciding how to optimize.
@end table
The total number of input + output + goto operands is limited to 30.
@subsubheading Remarks
The @code{asm} statement allows you to include assembly instructions directly
within C code. This may help you to maximize performance in time-sensitive
code or to access assembly instructions that are not readily available to C
programs.
Note that extended @code{asm} statements must be inside a function. Only
basic @code{asm} may be outside functions (@pxref{Basic Asm}).
Functions declared with the @code{naked} attribute also require basic
@code{asm} (@pxref{Function Attributes}).
While the uses of @code{asm} are many and varied, it may help to think of an
@code{asm} statement as a series of low-level instructions that convert input
parameters to output parameters. So a simple (if not particularly useful)
example for i386 using @code{asm} might look like this:
@example
int src = 1;
int dst;
asm ("mov %1, %0\n\t"
"add $1, %0"
: "=r" (dst)
: "r" (src));
printf("%d\n", dst);
@end example
This code copies @code{src} to @code{dst} and add 1 to @code{dst}.
@anchor{Volatile}
@subsubsection Volatile
@cindex volatile @code{asm}
@cindex @code{asm} volatile
GCC's optimizers sometimes discard @code{asm} statements if they determine
there is no need for the output variables. Also, the optimizers may move
code out of loops if they believe that the code will always return the same
result (i.e.@: none of its input values change between calls). Using the
@code{volatile} qualifier disables these optimizations. @code{asm} statements
that have no output operands and @code{asm goto} statements,
are implicitly volatile.
This i386 code demonstrates a case that does not use (or require) the
@code{volatile} qualifier. If it is performing assertion checking, this code
uses @code{asm} to perform the validation. Otherwise, @code{dwRes} is
unreferenced by any code. As a result, the optimizers can discard the
@code{asm} statement, which in turn removes the need for the entire
@code{DoCheck} routine. By omitting the @code{volatile} qualifier when it
isn't needed you allow the optimizers to produce the most efficient code
possible.
@example
void DoCheck(uint32_t dwSomeValue)
@{
uint32_t dwRes;
// Assumes dwSomeValue is not zero.
asm ("bsfl %1,%0"
: "=r" (dwRes)
: "r" (dwSomeValue)
: "cc");
assert(dwRes > 3);
@}
@end example
The next example shows a case where the optimizers can recognize that the input
(@code{dwSomeValue}) never changes during the execution of the function and can
therefore move the @code{asm} outside the loop to produce more efficient code.
Again, using the @code{volatile} qualifier disables this type of optimization.
@example
void do_print(uint32_t dwSomeValue)
@{
uint32_t dwRes;
for (uint32_t x=0; x < 5; x++)
@{
// Assumes dwSomeValue is not zero.
asm ("bsfl %1,%0"
: "=r" (dwRes)
: "r" (dwSomeValue)
: "cc");
printf("%u: %u %u\n", x, dwSomeValue, dwRes);
@}
@}
@end example
The following example demonstrates a case where you need to use the
@code{volatile} qualifier.
It uses the x86 @code{rdtsc} instruction, which reads
the computer's time-stamp counter. Without the @code{volatile} qualifier,
the optimizers might assume that the @code{asm} block will always return the
same value and therefore optimize away the second call.
@example
uint64_t msr;
asm volatile ( "rdtsc\n\t" // Returns the time in EDX:EAX.
"shl $32, %%rdx\n\t" // Shift the upper bits left.
"or %%rdx, %0" // 'Or' in the lower bits.
: "=a" (msr)
:
: "rdx");
printf("msr: %llx\n", msr);
// Do other work...
// Reprint the timestamp
asm volatile ( "rdtsc\n\t" // Returns the time in EDX:EAX.
"shl $32, %%rdx\n\t" // Shift the upper bits left.
"or %%rdx, %0" // 'Or' in the lower bits.
: "=a" (msr)
:
: "rdx");
printf("msr: %llx\n", msr);
@end example
GCC's optimizers do not treat this code like the non-volatile code in the
earlier examples. They do not move it out of loops or omit it on the
assumption that the result from a previous call is still valid.
Note that the compiler can move even @code{volatile asm} instructions relative
to other code, including across jump instructions. For example, on many
targets there is a system register that controls the rounding mode of
floating-point operations. Setting it with a @code{volatile asm} statement,
as in the following PowerPC example, does not work reliably.
@example
asm volatile("mtfsf 255, %0" : : "f" (fpenv));
sum = x + y;
@end example
The compiler may move the addition back before the @code{volatile asm}
statement. To make it work as expected, add an artificial dependency to
the @code{asm} by referencing a variable in the subsequent code, for
example:
@example
asm volatile ("mtfsf 255,%1" : "=X" (sum) : "f" (fpenv));
sum = x + y;
@end example
Under certain circumstances, GCC may duplicate (or remove duplicates of) your
assembly code when optimizing. This can lead to unexpected duplicate symbol
errors during compilation if your @code{asm} code defines symbols or labels.
Using @samp{%=}
(@pxref{AssemblerTemplate}) may help resolve this problem.
@anchor{AssemblerTemplate}
@subsubsection Assembler Template
@cindex @code{asm} assembler template
An assembler template is a literal string containing assembler instructions.
The compiler replaces tokens in the template that refer
to inputs, outputs, and goto labels,
and then outputs the resulting string to the assembler. The
string can contain any instructions recognized by the assembler, including
directives. GCC does not parse the assembler instructions
themselves and does not know what they mean or even whether they are valid
assembler input. However, it does count the statements
(@pxref{Size of an asm}).
You may place multiple assembler instructions together in a single @code{asm}
string, separated by the characters normally used in assembly code for the
system. A combination that works in most places is a newline to break the
line, plus a tab character to move to the instruction field (written as
@samp{\n\t}).
Some assemblers allow semicolons as a line separator. However, note
that some assembler dialects use semicolons to start a comment.
Do not expect a sequence of @code{asm} statements to remain perfectly
consecutive after compilation, even when you are using the @code{volatile}
qualifier. If certain instructions need to remain consecutive in the output,
put them in a single multi-instruction @code{asm} statement.
Accessing data from C programs without using input/output operands (such as
by using global symbols directly from the assembler template) may not work as
expected. Similarly, calling functions directly from an assembler template
requires a detailed understanding of the target assembler and ABI.
Since GCC does not parse the assembler template,
it has no visibility of any
symbols it references. This may result in GCC discarding those symbols as
unreferenced unless they are also listed as input, output, or goto operands.
@subsubheading Special format strings
In addition to the tokens described by the input, output, and goto operands,
these tokens have special meanings in the assembler template:
@table @samp
@item %%
Outputs a single @samp{%} into the assembler code.
@item %=
Outputs a number that is unique to each instance of the @code{asm}
statement in the entire compilation. This option is useful when creating local
labels and referring to them multiple times in a single template that
generates multiple assembler instructions.
@item %@{
@itemx %|
@itemx %@}
Outputs @samp{@{}, @samp{|}, and @samp{@}} characters (respectively)
into the assembler code. When unescaped, these characters have special
meaning to indicate multiple assembler dialects, as described below.
@end table
@subsubheading Multiple assembler dialects in @code{asm} templates
On targets such as x86, GCC supports multiple assembler dialects.
The @option{-masm} option controls which dialect GCC uses as its
default for inline assembler. The target-specific documentation for the
@option{-masm} option contains the list of supported dialects, as well as the
default dialect if the option is not specified. This information may be
important to understand, since assembler code that works correctly when
compiled using one dialect will likely fail if compiled using another.
@xref{x86 Options}.
If your code needs to support multiple assembler dialects (for example, if
you are writing public headers that need to support a variety of compilation
options), use constructs of this form:
@example
@{ dialect0 | dialect1 | dialect2... @}
@end example
This construct outputs @code{dialect0}
when using dialect #0 to compile the code,
@code{dialect1} for dialect #1, etc. If there are fewer alternatives within the
braces than the number of dialects the compiler supports, the construct
outputs nothing.
For example, if an x86 compiler supports two dialects
(@samp{att}, @samp{intel}), an
assembler template such as this:
@example
"bt@{l %[Offset],%[Base] | %[Base],%[Offset]@}; jc %l2"
@end example
@noindent
is equivalent to one of
@example
"btl %[Offset],%[Base] ; jc %l2" @r{/* att dialect */}
"bt %[Base],%[Offset]; jc %l2" @r{/* intel dialect */}
@end example
Using that same compiler, this code:
@example
"xchg@{l@}\t@{%%@}ebx, %1"
@end example
@noindent
corresponds to either
@example
"xchgl\t%%ebx, %1" @r{/* att dialect */}
"xchg\tebx, %1" @r{/* intel dialect */}
@end example
There is no support for nesting dialect alternatives.
@anchor{OutputOperands}
@subsubsection Output Operands
@cindex @code{asm} output operands
An @code{asm} statement has zero or more output operands indicating the names
of C variables modified by the assembler code.
In this i386 example, @code{old} (referred to in the template string as
@code{%0}) and @code{*Base} (as @code{%1}) are outputs and @code{Offset}
(@code{%2}) is an input:
@example
bool old;
__asm__ ("btsl %2,%1\n\t" // Turn on zero-based bit #Offset in Base.
"sbb %0,%0" // Use the CF to calculate old.
: "=r" (old), "+rm" (*Base)
: "Ir" (Offset)
: "cc");
return old;
@end example
Operands are separated by commas. Each operand has this format:
@example
@r{[} [@var{asmSymbolicName}] @r{]} @var{constraint} (@var{cvariablename})
@end example
@table @var
@item asmSymbolicName
Specifies a symbolic name for the operand.
Reference the name in the assembler template
by enclosing it in square brackets
(i.e.@: @samp{%[Value]}). The scope of the name is the @code{asm} statement
that contains the definition. Any valid C variable name is acceptable,
including names already defined in the surrounding code. No two operands
within the same @code{asm} statement can use the same symbolic name.
When not using an @var{asmSymbolicName}, use the (zero-based) position
of the operand
in the list of operands in the assembler template. For example if there are
three output operands, use @samp{%0} in the template to refer to the first,
@samp{%1} for the second, and @samp{%2} for the third.
@item constraint
A string constant specifying constraints on the placement of the operand;
@xref{Constraints}, for details.
Output constraints must begin with either @samp{=} (a variable overwriting an
existing value) or @samp{+} (when reading and writing). When using
@samp{=}, do not assume the location contains the existing value
on entry to the @code{asm}, except
when the operand is tied to an input; @pxref{InputOperands,,Input Operands}.
After the prefix, there must be one or more additional constraints
(@pxref{Constraints}) that describe where the value resides. Common
constraints include @samp{r} for register and @samp{m} for memory.
When you list more than one possible location (for example, @code{"=rm"}),
the compiler chooses the most efficient one based on the current context.
If you list as many alternates as the @code{asm} statement allows, you permit
the optimizers to produce the best possible code.
If you must use a specific register, but your Machine Constraints do not
provide sufficient control to select the specific register you want,
local register variables may provide a solution (@pxref{Local Register
Variables}).
@item cvariablename
Specifies a C lvalue expression to hold the output, typically a variable name.
The enclosing parentheses are a required part of the syntax.
@end table
When the compiler selects the registers to use to
represent the output operands, it does not use any of the clobbered registers
(@pxref{Clobbers and Scratch Registers}).
Output operand expressions must be lvalues. The compiler cannot check whether
the operands have data types that are reasonable for the instruction being
executed. For output expressions that are not directly addressable (for
example a bit-field), the constraint must allow a register. In that case, GCC
uses the register as the output of the @code{asm}, and then stores that
register into the output.
Operands using the @samp{+} constraint modifier count as two operands
(that is, both as input and output) towards the total maximum of 30 operands
per @code{asm} statement.
Use the @samp{&} constraint modifier (@pxref{Modifiers}) on all output
operands that must not overlap an input. Otherwise,
GCC may allocate the output operand in the same register as an unrelated
input operand, on the assumption that the assembler code consumes its
inputs before producing outputs. This assumption may be false if the assembler
code actually consists of more than one instruction.
The same problem can occur if one output parameter (@var{a}) allows a register
constraint and another output parameter (@var{b}) allows a memory constraint.
The code generated by GCC to access the memory address in @var{b} can contain
registers which @emph{might} be shared by @var{a}, and GCC considers those
registers to be inputs to the asm. As above, GCC assumes that such input
registers are consumed before any outputs are written. This assumption may
result in incorrect behavior if the @code{asm} statement writes to @var{a}
before using
@var{b}. Combining the @samp{&} modifier with the register constraint on @var{a}
ensures that modifying @var{a} does not affect the address referenced by
@var{b}. Otherwise, the location of @var{b}
is undefined if @var{a} is modified before using @var{b}.
@code{asm} supports operand modifiers on operands (for example @samp{%k2}
instead of simply @samp{%2}). Typically these qualifiers are hardware
dependent. The list of supported modifiers for x86 is found at
@ref{x86Operandmodifiers,x86 Operand modifiers}.
If the C code that follows the @code{asm} makes no use of any of the output
operands, use @code{volatile} for the @code{asm} statement to prevent the
optimizers from discarding the @code{asm} statement as unneeded
(see @ref{Volatile}).
This code makes no use of the optional @var{asmSymbolicName}. Therefore it
references the first output operand as @code{%0} (were there a second, it
would be @code{%1}, etc). The number of the first input operand is one greater
than that of the last output operand. In this i386 example, that makes
@code{Mask} referenced as @code{%1}:
@example
uint32_t Mask = 1234;
uint32_t Index;
asm ("bsfl %1, %0"
: "=r" (Index)
: "r" (Mask)
: "cc");
@end example
That code overwrites the variable @code{Index} (@samp{=}),
placing the value in a register (@samp{r}).
Using the generic @samp{r} constraint instead of a constraint for a specific
register allows the compiler to pick the register to use, which can result
in more efficient code. This may not be possible if an assembler instruction
requires a specific register.
The following i386 example uses the @var{asmSymbolicName} syntax.
It produces the
same result as the code above, but some may consider it more readable or more
maintainable since reordering index numbers is not necessary when adding or
removing operands. The names @code{aIndex} and @code{aMask}
are only used in this example to emphasize which
names get used where.
It is acceptable to reuse the names @code{Index} and @code{Mask}.
@example
uint32_t Mask = 1234;
uint32_t Index;
asm ("bsfl %[aMask], %[aIndex]"
: [aIndex] "=r" (Index)
: [aMask] "r" (Mask)
: "cc");
@end example
Here are some more examples of output operands.
@example
uint32_t c = 1;
uint32_t d;
uint32_t *e = &c;
asm ("mov %[e], %[d]"
: [d] "=rm" (d)
: [e] "rm" (*e));
@end example
Here, @code{d} may either be in a register or in memory. Since the compiler
might already have the current value of the @code{uint32_t} location
pointed to by @code{e}
in a register, you can enable it to choose the best location
for @code{d} by specifying both constraints.
@anchor{FlagOutputOperands}
@subsubsection Flag Output Operands
@cindex @code{asm} flag output operands
Some targets have a special register that holds the ``flags'' for the
result of an operation or comparison. Normally, the contents of that
register are either unmodifed by the asm, or the @code{asm} statement is
considered to clobber the contents.
On some targets, a special form of output operand exists by which
conditions in the flags register may be outputs of the asm. The set of
conditions supported are target specific, but the general rule is that
the output variable must be a scalar integer, and the value is boolean.
When supported, the target defines the preprocessor symbol
@code{__GCC_ASM_FLAG_OUTPUTS__}.
Because of the special nature of the flag output operands, the constraint
may not include alternatives.
Most often, the target has only one flags register, and thus is an implied
operand of many instructions. In this case, the operand should not be
referenced within the assembler template via @code{%0} etc, as there's
no corresponding text in the assembly language.
@table @asis
@item ARM
@itemx AArch64
The flag output constraints for the ARM family are of the form
@samp{=@@cc@var{cond}} where @var{cond} is one of the standard
conditions defined in the ARM ARM for @code{ConditionHolds}.
@table @code
@item eq
Z flag set, or equal
@item ne
Z flag clear or not equal
@item cs
@itemx hs
C flag set or unsigned greater than equal
@item cc
@itemx lo
C flag clear or unsigned less than
@item mi
N flag set or ``minus''
@item pl
N flag clear or ``plus''
@item vs
V flag set or signed overflow
@item vc
V flag clear
@item hi
unsigned greater than
@item ls
unsigned less than equal
@item ge
signed greater than equal
@item lt
signed less than
@item gt
signed greater than
@item le
signed less than equal
@end table
The flag output constraints are not supported in thumb1 mode.
@item x86 family
The flag output constraints for the x86 family are of the form
@samp{=@@cc@var{cond}} where @var{cond} is one of the standard
conditions defined in the ISA manual for @code{j@var{cc}} or
@code{set@var{cc}}.
@table @code
@item a
``above'' or unsigned greater than
@item ae
``above or equal'' or unsigned greater than or equal
@item b
``below'' or unsigned less than
@item be
``below or equal'' or unsigned less than or equal
@item c
carry flag set
@item e
@itemx z
``equal'' or zero flag set
@item g
signed greater than
@item ge
signed greater than or equal
@item l
signed less than
@item le
signed less than or equal
@item o
overflow flag set
@item p
parity flag set
@item s
sign flag set
@item na
@itemx nae
@itemx nb
@itemx nbe
@itemx nc
@itemx ne
@itemx ng
@itemx nge
@itemx nl
@itemx nle
@itemx no
@itemx np
@itemx ns
@itemx nz
``not'' @var{flag}, or inverted versions of those above
@end table
@end table
@anchor{InputOperands}
@subsubsection Input Operands
@cindex @code{asm} input operands
@cindex @code{asm} expressions
Input operands make values from C variables and expressions available to the
assembly code.
Operands are separated by commas. Each operand has this format:
@example
@r{[} [@var{asmSymbolicName}] @r{]} @var{constraint} (@var{cexpression})
@end example
@table @var
@item asmSymbolicName
Specifies a symbolic name for the operand.
Reference the name in the assembler template
by enclosing it in square brackets
(i.e.@: @samp{%[Value]}). The scope of the name is the @code{asm} statement
that contains the definition. Any valid C variable name is acceptable,
including names already defined in the surrounding code. No two operands
within the same @code{asm} statement can use the same symbolic name.
When not using an @var{asmSymbolicName}, use the (zero-based) position
of the operand
in the list of operands in the assembler template. For example if there are
two output operands and three inputs,
use @samp{%2} in the template to refer to the first input operand,
@samp{%3} for the second, and @samp{%4} for the third.
@item constraint
A string constant specifying constraints on the placement of the operand;
@xref{Constraints}, for details.
Input constraint strings may not begin with either @samp{=} or @samp{+}.
When you list more than one possible location (for example, @samp{"irm"}),
the compiler chooses the most efficient one based on the current context.
If you must use a specific register, but your Machine Constraints do not
provide sufficient control to select the specific register you want,
local register variables may provide a solution (@pxref{Local Register
Variables}).
Input constraints can also be digits (for example, @code{"0"}). This indicates
that the specified input must be in the same place as the output constraint
at the (zero-based) index in the output constraint list.
When using @var{asmSymbolicName} syntax for the output operands,
you may use these names (enclosed in brackets @samp{[]}) instead of digits.
@item cexpression
This is the C variable or expression being passed to the @code{asm} statement
as input. The enclosing parentheses are a required part of the syntax.
@end table
When the compiler selects the registers to use to represent the input
operands, it does not use any of the clobbered registers
(@pxref{Clobbers and Scratch Registers}).
If there are no output operands but there are input operands, place two
consecutive colons where the output operands would go:
@example
__asm__ ("some instructions"
: /* No outputs. */
: "r" (Offset / 8));
@end example
@strong{Warning:} Do @emph{not} modify the contents of input-only operands
(except for inputs tied to outputs). The compiler assumes that on exit from
the @code{asm} statement these operands contain the same values as they
had before executing the statement.
It is @emph{not} possible to use clobbers
to inform the compiler that the values in these inputs are changing. One
common work-around is to tie the changing input variable to an output variable
that never gets used. Note, however, that if the code that follows the
@code{asm} statement makes no use of any of the output operands, the GCC
optimizers may discard the @code{asm} statement as unneeded
(see @ref{Volatile}).
@code{asm} supports operand modifiers on operands (for example @samp{%k2}
instead of simply @samp{%2}). Typically these qualifiers are hardware
dependent. The list of supported modifiers for x86 is found at
@ref{x86Operandmodifiers,x86 Operand modifiers}.
In this example using the fictitious @code{combine} instruction, the
constraint @code{"0"} for input operand 1 says that it must occupy the same
location as output operand 0. Only input operands may use numbers in
constraints, and they must each refer to an output operand. Only a number (or
the symbolic assembler name) in the constraint can guarantee that one operand
is in the same place as another. The mere fact that @code{foo} is the value of
both operands is not enough to guarantee that they are in the same place in
the generated assembler code.
@example
asm ("combine %2, %0"
: "=r" (foo)
: "0" (foo), "g" (bar));
@end example
Here is an example using symbolic names.
@example
asm ("cmoveq %1, %2, %[result]"
: [result] "=r"(result)
: "r" (test), "r" (new), "[result]" (old));
@end example
@anchor{Clobbers and Scratch Registers}
@subsubsection Clobbers and Scratch Registers
@cindex @code{asm} clobbers
@cindex @code{asm} scratch registers
While the compiler is aware of changes to entries listed in the output
operands, the inline @code{asm} code may modify more than just the outputs. For
example, calculations may require additional registers, or the processor may
overwrite a register as a side effect of a particular assembler instruction.
In order to inform the compiler of these changes, list them in the clobber
list. Clobber list items are either register names or the special clobbers
(listed below). Each clobber list item is a string constant
enclosed in double quotes and separated by commas.
Clobber descriptions may not in any way overlap with an input or output
operand. For example, you may not have an operand describing a register class
with one member when listing that register in the clobber list. Variables
declared to live in specific registers (@pxref{Explicit Register
Variables}) and used
as @code{asm} input or output operands must have no part mentioned in the
clobber description. In particular, there is no way to specify that input
operands get modified without also specifying them as output operands.
When the compiler selects which registers to use to represent input and output
operands, it does not use any of the clobbered registers. As a result,
clobbered registers are available for any use in the assembler code.
Another restriction is that the clobber list should not contain the
stack pointer register. This is because the compiler requires the
value of the stack pointer to be the same after an @code{asm}
statement as it was on entry to the statement. However, previous
versions of GCC did not enforce this rule and allowed the stack
pointer to appear in the list, with unclear semantics. This behavior
is deprecated and listing the stack pointer may become an error in
future versions of GCC@.
Here is a realistic example for the VAX showing the use of clobbered
registers:
@example
asm volatile ("movc3 %0, %1, %2"
: /* No outputs. */
: "g" (from), "g" (to), "g" (count)
: "r0", "r1", "r2", "r3", "r4", "r5", "memory");
@end example
Also, there are two special clobber arguments:
@table @code
@item "cc"
The @code{"cc"} clobber indicates that the assembler code modifies the flags
register. On some machines, GCC represents the condition codes as a specific
hardware register; @code{"cc"} serves to name this register.
On other machines, condition code handling is different,
and specifying @code{"cc"} has no effect. But
it is valid no matter what the target.
@item "memory"
The @code{"memory"} clobber tells the compiler that the assembly code
performs memory
reads or writes to items other than those listed in the input and output
operands (for example, accessing the memory pointed to by one of the input
parameters). To ensure memory contains correct values, GCC may need to flush
specific register values to memory before executing the @code{asm}. Further,
the compiler does not assume that any values read from memory before an
@code{asm} remain unchanged after that @code{asm}; it reloads them as
needed.
Using the @code{"memory"} clobber effectively forms a read/write
memory barrier for the compiler.
Note that this clobber does not prevent the @emph{processor} from doing
speculative reads past the @code{asm} statement. To prevent that, you need
processor-specific fence instructions.
@end table
Flushing registers to memory has performance implications and may be
an issue for time-sensitive code. You can provide better information
to GCC to avoid this, as shown in the following examples. At a
minimum, aliasing rules allow GCC to know what memory @emph{doesn't}
need to be flushed.
Here is a fictitious sum of squares instruction, that takes two
pointers to floating point values in memory and produces a floating
point register output.
Notice that @code{x}, and @code{y} both appear twice in the @code{asm}
parameters, once to specify memory accessed, and once to specify a
base register used by the @code{asm}. You won't normally be wasting a
register by doing this as GCC can use the same register for both
purposes. However, it would be foolish to use both @code{%1} and
@code{%3} for @code{x} in this @code{asm} and expect them to be the
same. In fact, @code{%3} may well not be a register. It might be a
symbolic memory reference to the object pointed to by @code{x}.
@smallexample
asm ("sumsq %0, %1, %2"
: "+f" (result)
: "r" (x), "r" (y), "m" (*x), "m" (*y));
@end smallexample
Here is a fictitious @code{*z++ = *x++ * *y++} instruction.
Notice that the @code{x}, @code{y} and @code{z} pointer registers
must be specified as input/output because the @code{asm} modifies
them.
@smallexample
asm ("vecmul %0, %1, %2"
: "+r" (z), "+r" (x), "+r" (y), "=m" (*z)
: "m" (*x), "m" (*y));
@end smallexample
An x86 example where the string memory argument is of unknown length.
@smallexample
asm("repne scasb"
: "=c" (count), "+D" (p)
: "m" (*(const char (*)[]) p), "0" (-1), "a" (0));
@end smallexample
If you know the above will only be reading a ten byte array then you
could instead use a memory input like:
@code{"m" (*(const char (*)[10]) p)}.
Here is an example of a PowerPC vector scale implemented in assembly,
complete with vector and condition code clobbers, and some initialized
offset registers that are unchanged by the @code{asm}.
@smallexample
void
dscal (size_t n, double *x, double alpha)
@{
asm ("/* lots of asm here */"
: "+m" (*(double (*)[n]) x), "+&r" (n), "+b" (x)
: "d" (alpha), "b" (32), "b" (48), "b" (64),
"b" (80), "b" (96), "b" (112)
: "cr0",
"vs32","vs33","vs34","vs35","vs36","vs37","vs38","vs39",
"vs40","vs41","vs42","vs43","vs44","vs45","vs46","vs47");
@}
@end smallexample
Rather than allocating fixed registers via clobbers to provide scratch
registers for an @code{asm} statement, an alternative is to define a
variable and make it an early-clobber output as with @code{a2} and
@code{a3} in the example below. This gives the compiler register
allocator more freedom. You can also define a variable and make it an
output tied to an input as with @code{a0} and @code{a1}, tied
respectively to @code{ap} and @code{lda}. Of course, with tied
outputs your @code{asm} can't use the input value after modifying the
output register since they are one and the same register. What's
more, if you omit the early-clobber on the output, it is possible that
GCC might allocate the same register to another of the inputs if GCC
could prove they had the same value on entry to the @code{asm}. This
is why @code{a1} has an early-clobber. Its tied input, @code{lda}
might conceivably be known to have the value 16 and without an
early-clobber share the same register as @code{%11}. On the other
hand, @code{ap} can't be the same as any of the other inputs, so an
early-clobber on @code{a0} is not needed. It is also not desirable in
this case. An early-clobber on @code{a0} would cause GCC to allocate
a separate register for the @code{"m" (*(const double (*)[]) ap)}
input. Note that tying an input to an output is the way to set up an
initialized temporary register modified by an @code{asm} statement.
An input not tied to an output is assumed by GCC to be unchanged, for
example @code{"b" (16)} below sets up @code{%11} to 16, and GCC might
use that register in following code if the value 16 happened to be
needed. You can even use a normal @code{asm} output for a scratch if
all inputs that might share the same register are consumed before the
scratch is used. The VSX registers clobbered by the @code{asm}
statement could have used this technique except for GCC's limit on the
number of @code{asm} parameters.
@smallexample
static void
dgemv_kernel_4x4 (long n, const double *ap, long lda,
const double *x, double *y, double alpha)
@{
double *a0;
double *a1;
double *a2;
double *a3;
__asm__
(
/* lots of asm here */
"#n=%1 ap=%8=%12 lda=%13 x=%7=%10 y=%0=%2 alpha=%9 o16=%11\n"
"#a0=%3 a1=%4 a2=%5 a3=%6"
:
"+m" (*(double (*)[n]) y),
"+&r" (n), // 1
"+b" (y), // 2
"=b" (a0), // 3
"=&b" (a1), // 4
"=&b" (a2), // 5
"=&b" (a3) // 6
:
"m" (*(const double (*)[n]) x),
"m" (*(const double (*)[]) ap),
"d" (alpha), // 9
"r" (x), // 10
"b" (16), // 11
"3" (ap), // 12
"4" (lda) // 13
:
"cr0",
"vs32","vs33","vs34","vs35","vs36","vs37",
"vs40","vs41","vs42","vs43","vs44","vs45","vs46","vs47"
);
@}
@end smallexample
@anchor{GotoLabels}
@subsubsection Goto Labels
@cindex @code{asm} goto labels
@code{asm goto} allows assembly code to jump to one or more C labels. The
@var{GotoLabels} section in an @code{asm goto} statement contains
a comma-separated
list of all C labels to which the assembler code may jump. GCC assumes that
@code{asm} execution falls through to the next statement (if this is not the
case, consider using the @code{__builtin_unreachable} intrinsic after the
@code{asm} statement). Optimization of @code{asm goto} may be improved by
using the @code{hot} and @code{cold} label attributes (@pxref{Label
Attributes}).
If the assembler code does modify anything, use the @code{"memory"} clobber
to force the
optimizers to flush all register values to memory and reload them if
necessary after the @code{asm} statement.
Also note that an @code{asm goto} statement is always implicitly
considered volatile.
Be careful when you set output operands inside @code{asm goto} only on
some possible control flow paths. If you don't set up the output on
given path and never use it on this path, it is okay. Otherwise, you
should use @samp{+} constraint modifier meaning that the operand is
input and output one. With this modifier you will have the correct
values on all possible paths from the @code{asm goto}.
To reference a label in the assembler template, prefix it with
@samp{%l} (lowercase @samp{L}) followed by its (zero-based) position
in @var{GotoLabels} plus the number of input and output operands.
Output operand with constraint modifier @samp{+} is counted as two
operands because it is considered as one output and one input operand.
For example, if the @code{asm} has three inputs, one output operand
with constraint modifier @samp{+} and one output operand with
constraint modifier @samp{=} and references two labels, refer to the
first label as @samp{%l6} and the second as @samp{%l7}).
Alternately, you can reference labels using the actual C label name
enclosed in brackets. For example, to reference a label named
@code{carry}, you can use @samp{%l[carry]}. The label must still be
listed in the @var{GotoLabels} section when using this approach. It
is better to use the named references for labels as in this case you
can avoid counting input and output operands and special treatment of
output operands with constraint modifier @samp{+}.
Here is an example of @code{asm goto} for i386:
@example
asm goto (
"btl %1, %0\n\t"
"jc %l2"
: /* No outputs. */
: "r" (p1), "r" (p2)
: "cc"
: carry);
return 0;
carry:
return 1;
@end example
The following example shows an @code{asm goto} that uses a memory clobber.
@example
int frob(int x)
@{
int y;
asm goto ("frob %%r5, %1; jc %l[error]; mov (%2), %%r5"
: /* No outputs. */
: "r"(x), "r"(&y)
: "r5", "memory"
: error);
return y;
error:
return -1;
@}
@end example
The following example shows an @code{asm goto} that uses an output.
@example
int foo(int count)
@{
asm goto ("dec %0; jb %l[stop]"
: "+r" (count)
:
:
: stop);
return count;
stop:
return 0;
@}
@end example
The following artificial example shows an @code{asm goto} that sets
up an output only on one path inside the @code{asm goto}. Usage of
constraint modifier @code{=} instead of @code{+} would be wrong as
@code{factor} is used on all paths from the @code{asm goto}.
@example
int foo(int inp)
@{
int factor = 0;
asm goto ("cmp %1, 10; jb %l[lab]; mov 2, %0"
: "+r" (factor)
: "r" (inp)
:
: lab);
lab:
return inp * factor; /* return 2 * inp or 0 if inp < 10 */
@}
@end example
@anchor{x86Operandmodifiers}
@subsubsection x86 Operand Modifiers
References to input, output, and goto operands in the assembler template
of extended @code{asm} statements can use
modifiers to affect the way the operands are formatted in
the code output to the assembler. For example, the
following code uses the @samp{h} and @samp{b} modifiers for x86:
@example
uint16_t num;
asm volatile ("xchg %h0, %b0" : "+a" (num) );
@end example
@noindent
These modifiers generate this assembler code:
@example
xchg %ah, %al
@end example
The rest of this discussion uses the following code for illustrative purposes.
@example
int main()
@{
int iInt = 1;
top:
asm volatile goto ("some assembler instructions here"
: /* No outputs. */
: "q" (iInt), "X" (sizeof(unsigned char) + 1), "i" (42)
: /* No clobbers. */
: top);
@}
@end example
With no modifiers, this is what the output from the operands would be
for the @samp{att} and @samp{intel} dialects of assembler:
@multitable {Operand} {$.L2} {OFFSET FLAT:.L2}
@headitem Operand @tab @samp{att} @tab @samp{intel}
@item @code{%0}
@tab @code{%eax}
@tab @code{eax}
@item @code{%1}
@tab @code{$2}
@tab @code{2}
@item @code{%3}
@tab @code{$.L3}
@tab @code{OFFSET FLAT:.L3}
@item @code{%4}
@tab @code{$8}
@tab @code{8}
@item @code{%5}
@tab @code{%xmm0}
@tab @code{xmm0}
@item @code{%7}
@tab @code{$0}
@tab @code{0}
@end multitable
The table below shows the list of supported modifiers and their effects.
@multitable {Modifier} {Print the opcode suffix for the size of th} {Operand} {@samp{att}} {@samp{intel}}
@headitem Modifier @tab Description @tab Operand @tab @samp{att} @tab @samp{intel}
@item @code{A}
@tab Print an absolute memory reference.
@tab @code{%A0}
@tab @code{*%rax}
@tab @code{rax}
@item @code{b}
@tab Print the QImode name of the register.
@tab @code{%b0}
@tab @code{%al}
@tab @code{al}
@item @code{B}
@tab print the opcode suffix of b.
@tab @code{%B0}
@tab @code{b}
@tab
@item @code{c}
@tab Require a constant operand and print the constant expression with no punctuation.
@tab @code{%c1}
@tab @code{2}
@tab @code{2}
@item @code{d}
@tab print duplicated register operand for AVX instruction.
@tab @code{%d5}
@tab @code{%xmm0, %xmm0}
@tab @code{xmm0, xmm0}
@item @code{E}
@tab Print the address in Double Integer (DImode) mode (8 bytes) when the target is 64-bit.
Otherwise mode is unspecified (VOIDmode).
@tab @code{%E1}
@tab @code{%(rax)}
@tab @code{[rax]}
@item @code{g}
@tab Print the V16SFmode name of the register.
@tab @code{%g0}
@tab @code{%zmm0}
@tab @code{zmm0}
@item @code{h}
@tab Print the QImode name for a ``high'' register.
@tab @code{%h0}
@tab @code{%ah}
@tab @code{ah}
@item @code{H}
@tab Add 8 bytes to an offsettable memory reference. Useful when accessing the
high 8 bytes of SSE values. For a memref in (%rax), it generates
@tab @code{%H0}
@tab @code{8(%rax)}
@tab @code{8[rax]}
@item @code{k}
@tab Print the SImode name of the register.
@tab @code{%k0}
@tab @code{%eax}
@tab @code{eax}
@item @code{l}
@tab Print the label name with no punctuation.
@tab @code{%l3}
@tab @code{.L3}
@tab @code{.L3}
@item @code{L}
@tab print the opcode suffix of l.
@tab @code{%L0}
@tab @code{l}
@tab
@item @code{N}
@tab print maskz.
@tab @code{%N7}
@tab @code{@{z@}}
@tab @code{@{z@}}
@item @code{p}
@tab Print raw symbol name (without syntax-specific prefixes).
@tab @code{%p2}
@tab @code{42}
@tab @code{42}
@item @code{P}
@tab If used for a function, print the PLT suffix and generate PIC code.
For example, emit @code{foo@@PLT} instead of 'foo' for the function
foo(). If used for a constant, drop all syntax-specific prefixes and
issue the bare constant. See @code{p} above.
@item @code{q}
@tab Print the DImode name of the register.
@tab @code{%q0}
@tab @code{%rax}
@tab @code{rax}
@item @code{Q}
@tab print the opcode suffix of q.
@tab @code{%Q0}
@tab @code{q}
@tab
@item @code{R}
@tab print embedded rounding and sae.
@tab @code{%R4}
@tab @code{@{rn-sae@}, }
@tab @code{, @{rn-sae@}}
@item @code{r}
@tab print only sae.
@tab @code{%r4}
@tab @code{@{sae@}, }
@tab @code{, @{sae@}}
@item @code{s}
@tab print a shift double count, followed by the assemblers argument
delimiterprint the opcode suffix of s.
@tab @code{%s1}
@tab @code{$2, }
@tab @code{2, }
@item @code{S}
@tab print the opcode suffix of s.
@tab @code{%S0}
@tab @code{s}
@tab
@item @code{t}
@tab print the V8SFmode name of the register.
@tab @code{%t5}
@tab @code{%ymm0}
@tab @code{ymm0}
@item @code{T}
@tab print the opcode suffix of t.
@tab @code{%T0}
@tab @code{t}
@tab
@item @code{V}
@tab print naked full integer register name without %.
@tab @code{%V0}
@tab @code{eax}
@tab @code{eax}
@item @code{w}
@tab Print the HImode name of the register.
@tab @code{%w0}
@tab @code{%ax}
@tab @code{ax}
@item @code{W}
@tab print the opcode suffix of w.
@tab @code{%W0}
@tab @code{w}
@tab
@item @code{x}
@tab print the V4SFmode name of the register.
@tab @code{%x5}
@tab @code{%xmm0}
@tab @code{xmm0}
@item @code{y}
@tab print "st(0)" instead of "st" as a register.
@tab @code{%y6}
@tab @code{%st(0)}
@tab @code{st(0)}
@item @code{z}
@tab Print the opcode suffix for the size of the current integer operand (one of @code{b}/@code{w}/@code{l}/@code{q}).
@tab @code{%z0}
@tab @code{l}
@tab
@item @code{Z}
@tab Like @code{z}, with special suffixes for x87 instructions.
@end multitable
@anchor{x86floatingpointasmoperands}
@subsubsection x86 Floating-Point @code{asm} Operands
On x86 targets, there are several rules on the usage of stack-like registers
in the operands of an @code{asm}. These rules apply only to the operands
that are stack-like registers:
@enumerate
@item
Given a set of input registers that die in an @code{asm}, it is
necessary to know which are implicitly popped by the @code{asm}, and
which must be explicitly popped by GCC@.
An input register that is implicitly popped by the @code{asm} must be
explicitly clobbered, unless it is constrained to match an
output operand.
@item
For any input register that is implicitly popped by an @code{asm}, it is
necessary to know how to adjust the stack to compensate for the pop.
If any non-popped input is closer to the top of the reg-stack than
the implicitly popped register, it would not be possible to know what the
stack looked like---it's not clear how the rest of the stack ``slides
up''.
All implicitly popped input registers must be closer to the top of
the reg-stack than any input that is not implicitly popped.
It is possible that if an input dies in an @code{asm}, the compiler might
use the input register for an output reload. Consider this example:
@smallexample
asm ("foo" : "=t" (a) : "f" (b));
@end smallexample
@noindent
This code says that input @code{b} is not popped by the @code{asm}, and that
the @code{asm} pushes a result onto the reg-stack, i.e., the stack is one
deeper after the @code{asm} than it was before. But, it is possible that
reload may think that it can use the same register for both the input and
the output.
To prevent this from happening,
if any input operand uses the @samp{f} constraint, all output register
constraints must use the @samp{&} early-clobber modifier.
The example above is correctly written as:
@smallexample
asm ("foo" : "=&t" (a) : "f" (b));
@end smallexample
@item
Some operands need to be in particular places on the stack. All
output operands fall in this category---GCC has no other way to
know which registers the outputs appear in unless you indicate
this in the constraints.
Output operands must specifically indicate which register an output
appears in after an @code{asm}. @samp{=f} is not allowed: the operand
constraints must select a class with a single register.
@item
Output operands may not be ``inserted'' between existing stack registers.
Since no 387 opcode uses a read/write operand, all output operands
are dead before the @code{asm}, and are pushed by the @code{asm}.
It makes no sense to push anywhere but the top of the reg-stack.
Output operands must start at the top of the reg-stack: output
operands may not ``skip'' a register.
@item
Some @code{asm} statements may need extra stack space for internal
calculations. This can be guaranteed by clobbering stack registers
unrelated to the inputs and outputs.
@end enumerate
This @code{asm}
takes one input, which is internally popped, and produces two outputs.
@smallexample
asm ("fsincos" : "=t" (cos), "=u" (sin) : "0" (inp));
@end smallexample
@noindent
This @code{asm} takes two inputs, which are popped by the @code{fyl2xp1} opcode,
and replaces them with one output. The @code{st(1)} clobber is necessary
for the compiler to know that @code{fyl2xp1} pops both inputs.
@smallexample
asm ("fyl2xp1" : "=t" (result) : "0" (x), "u" (y) : "st(1)");
@end smallexample
@anchor{msp430Operandmodifiers}
@subsubsection MSP430 Operand Modifiers
The list below describes the supported modifiers and their effects for MSP430.
@multitable @columnfractions .10 .90
@headitem Modifier @tab Description
@item @code{A} @tab Select low 16-bits of the constant/register/memory operand.
@item @code{B} @tab Select high 16-bits of the constant/register/memory
operand.
@item @code{C} @tab Select bits 32-47 of the constant/register/memory operand.
@item @code{D} @tab Select bits 48-63 of the constant/register/memory operand.
@item @code{H} @tab Equivalent to @code{B} (for backwards compatibility).
@item @code{I} @tab Print the inverse (logical @code{NOT}) of the constant
value.
@item @code{J} @tab Print an integer without a @code{#} prefix.
@item @code{L} @tab Equivalent to @code{A} (for backwards compatibility).
@item @code{O} @tab Offset of the current frame from the top of the stack.
@item @code{Q} @tab Use the @code{A} instruction postfix.
@item @code{R} @tab Inverse of condition code, for unsigned comparisons.
@item @code{W} @tab Subtract 16 from the constant value.
@item @code{X} @tab Use the @code{X} instruction postfix.
@item @code{Y} @tab Subtract 4 from the constant value.
@item @code{Z} @tab Subtract 1 from the constant value.
@item @code{b} @tab Append @code{.B}, @code{.W} or @code{.A} to the
instruction, depending on the mode.
@item @code{d} @tab Offset 1 byte of a memory reference or constant value.
@item @code{e} @tab Offset 3 bytes of a memory reference or constant value.
@item @code{f} @tab Offset 5 bytes of a memory reference or constant value.
@item @code{g} @tab Offset 7 bytes of a memory reference or constant value.
@item @code{p} @tab Print the value of 2, raised to the power of the given
constant. Used to select the specified bit position.
@item @code{r} @tab Inverse of condition code, for signed comparisons.
@item @code{x} @tab Equivialent to @code{X}, but only for pointers.
@end multitable
@lowersections
@include md.texi
@raisesections
@node Asm Labels
@subsection Controlling Names Used in Assembler Code
@cindex assembler names for identifiers
@cindex names used in assembler code
@cindex identifiers, names in assembler code
You can specify the name to be used in the assembler code for a C
function or variable by writing the @code{asm} (or @code{__asm__})
keyword after the declarator.
It is up to you to make sure that the assembler names you choose do not
conflict with any other assembler symbols, or reference registers.
@subsubheading Assembler names for data:
This sample shows how to specify the assembler name for data:
@smallexample
int foo asm ("myfoo") = 2;
@end smallexample
@noindent
This specifies that the name to be used for the variable @code{foo} in
the assembler code should be @samp{myfoo} rather than the usual
@samp{_foo}.
On systems where an underscore is normally prepended to the name of a C
variable, this feature allows you to define names for the
linker that do not start with an underscore.
GCC does not support using this feature with a non-static local variable
since such variables do not have assembler names. If you are
trying to put the variable in a particular register, see
@ref{Explicit Register Variables}.
@subsubheading Assembler names for functions:
To specify the assembler name for functions, write a declaration for the
function before its definition and put @code{asm} there, like this:
@smallexample
int func (int x, int y) asm ("MYFUNC");
int func (int x, int y)
@{
/* @r{@dots{}} */
@end smallexample
@noindent
This specifies that the name to be used for the function @code{func} in
the assembler code should be @code{MYFUNC}.
@node Explicit Register Variables
@subsection Variables in Specified Registers
@anchor{Explicit Reg Vars}
@cindex explicit register variables
@cindex variables in specified registers
@cindex specified registers
GNU C allows you to associate specific hardware registers with C
variables. In almost all cases, allowing the compiler to assign
registers produces the best code. However under certain unusual
circumstances, more precise control over the variable storage is
required.
Both global and local variables can be associated with a register. The
consequences of performing this association are very different between
the two, as explained in the sections below.
@menu
* Global Register Variables:: Variables declared at global scope.
* Local Register Variables:: Variables declared within a function.
@end menu
@node Global Register Variables
@subsubsection Defining Global Register Variables
@anchor{Global Reg Vars}
@cindex global register variables
@cindex registers, global variables in
@cindex registers, global allocation
You can define a global register variable and associate it with a specified
register like this:
@smallexample
register int *foo asm ("r12");
@end smallexample
@noindent
Here @code{r12} is the name of the register that should be used. Note that
this is the same syntax used for defining local register variables, but for
a global variable the declaration appears outside a function. The
@code{register} keyword is required, and cannot be combined with
@code{static}. The register name must be a valid register name for the
target platform.
Do not use type qualifiers such as @code{const} and @code{volatile}, as
the outcome may be contrary to expectations. In particular, using the
@code{volatile} qualifier does not fully prevent the compiler from
optimizing accesses to the register.
Registers are a scarce resource on most systems and allowing the
compiler to manage their usage usually results in the best code. However,
under special circumstances it can make sense to reserve some globally.
For example this may be useful in programs such as programming language
interpreters that have a couple of global variables that are accessed
very often.
After defining a global register variable, for the current compilation
unit:
@itemize @bullet
@item If the register is a call-saved register, call ABI is affected:
the register will not be restored in function epilogue sequences after
the variable has been assigned. Therefore, functions cannot safely
return to callers that assume standard ABI.
@item Conversely, if the register is a call-clobbered register, making
calls to functions that use standard ABI may lose contents of the variable.
Such calls may be created by the compiler even if none are evident in
the original program, for example when libgcc functions are used to
make up for unavailable instructions.
@item Accesses to the variable may be optimized as usual and the register
remains available for allocation and use in any computations, provided that
observable values of the variable are not affected.
@item If the variable is referenced in inline assembly, the type of access
must be provided to the compiler via constraints (@pxref{Constraints}).
Accesses from basic asms are not supported.
@end itemize
Note that these points @emph{only} apply to code that is compiled with the
definition. The behavior of code that is merely linked in (for example
code from libraries) is not affected.
If you want to recompile source files that do not actually use your global
register variable so they do not use the specified register for any other
purpose, you need not actually add the global register declaration to
their source code. It suffices to specify the compiler option
@option{-ffixed-@var{reg}} (@pxref{Code Gen Options}) to reserve the
register.
@subsubheading Declaring the variable
Global register variables cannot have initial values, because an
executable file has no means to supply initial contents for a register.
When selecting a register, choose one that is normally saved and
restored by function calls on your machine. This ensures that code
which is unaware of this reservation (such as library routines) will
restore it before returning.
On machines with register windows, be sure to choose a global
register that is not affected magically by the function call mechanism.
@subsubheading Using the variable
@cindex @code{qsort}, and global register variables
When calling routines that are not aware of the reservation, be
cautious if those routines call back into code which uses them. As an
example, if you call the system library version of @code{qsort}, it may
clobber your registers during execution, but (if you have selected
appropriate registers) it will restore them before returning. However
it will @emph{not} restore them before calling @code{qsort}'s comparison
function. As a result, global values will not reliably be available to
the comparison function unless the @code{qsort} function itself is rebuilt.
Similarly, it is not safe to access the global register variables from signal
handlers or from more than one thread of control. Unless you recompile
them specially for the task at hand, the system library routines may
temporarily use the register for other things. Furthermore, since the register
is not reserved exclusively for the variable, accessing it from handlers of
asynchronous signals may observe unrelated temporary values residing in the
register.
@cindex register variable after @code{longjmp}
@cindex global register after @code{longjmp}
@cindex value after @code{longjmp}
@findex longjmp
@findex setjmp
On most machines, @code{longjmp} restores to each global register
variable the value it had at the time of the @code{setjmp}. On some
machines, however, @code{longjmp} does not change the value of global
register variables. To be portable, the function that called @code{setjmp}
should make other arrangements to save the values of the global register
variables, and to restore them in a @code{longjmp}. This way, the same
thing happens regardless of what @code{longjmp} does.
@node Local Register Variables
@subsubsection Specifying Registers for Local Variables
@anchor{Local Reg Vars}
@cindex local variables, specifying registers
@cindex specifying registers for local variables
@cindex registers for local variables
You can define a local register variable and associate it with a specified
register like this:
@smallexample
register int *foo asm ("r12");
@end smallexample
@noindent
Here @code{r12} is the name of the register that should be used. Note
that this is the same syntax used for defining global register variables,
but for a local variable the declaration appears within a function. The
@code{register} keyword is required, and cannot be combined with
@code{static}. The register name must be a valid register name for the
target platform.
Do not use type qualifiers such as @code{const} and @code{volatile}, as
the outcome may be contrary to expectations. In particular, when the
@code{const} qualifier is used, the compiler may substitute the
variable with its initializer in @code{asm} statements, which may cause
the corresponding operand to appear in a different register.
As with global register variables, it is recommended that you choose
a register that is normally saved and restored by function calls on your
machine, so that calls to library routines will not clobber it.
The only supported use for this feature is to specify registers
for input and output operands when calling Extended @code{asm}
(@pxref{Extended Asm}). This may be necessary if the constraints for a
particular machine don't provide sufficient control to select the desired
register. To force an operand into a register, create a local variable
and specify the register name after the variable's declaration. Then use
the local variable for the @code{asm} operand and specify any constraint
letter that matches the register:
@smallexample
register int *p1 asm ("r0") = @dots{};
register int *p2 asm ("r1") = @dots{};
register int *result asm ("r0");
asm ("sysint" : "=r" (result) : "0" (p1), "r" (p2));
@end smallexample
@emph{Warning:} In the above example, be aware that a register (for example
@code{r0}) can be call-clobbered by subsequent code, including function
calls and library calls for arithmetic operators on other variables (for
example the initialization of @code{p2}). In this case, use temporary
variables for expressions between the register assignments:
@smallexample
int t1 = @dots{};
register int *p1 asm ("r0") = @dots{};
register int *p2 asm ("r1") = t1;
register int *result asm ("r0");
asm ("sysint" : "=r" (result) : "0" (p1), "r" (p2));
@end smallexample
Defining a register variable does not reserve the register. Other than
when invoking the Extended @code{asm}, the contents of the specified
register are not guaranteed. For this reason, the following uses
are explicitly @emph{not} supported. If they appear to work, it is only
happenstance, and may stop working as intended due to (seemingly)
unrelated changes in surrounding code, or even minor changes in the
optimization of a future version of gcc:
@itemize @bullet
@item Passing parameters to or from Basic @code{asm}
@item Passing parameters to or from Extended @code{asm} without using input
or output operands.
@item Passing parameters to or from routines written in assembler (or
other languages) using non-standard calling conventions.
@end itemize
Some developers use Local Register Variables in an attempt to improve
gcc's allocation of registers, especially in large functions. In this
case the register name is essentially a hint to the register allocator.
While in some instances this can generate better code, improvements are
subject to the whims of the allocator/optimizers. Since there are no
guarantees that your improvements won't be lost, this usage of Local
Register Variables is discouraged.
On the MIPS platform, there is related use for local register variables
with slightly different characteristics (@pxref{MIPS Coprocessors,,
Defining coprocessor specifics for MIPS targets, gccint,
GNU Compiler Collection (GCC) Internals}).
@node Size of an asm
@subsection Size of an @code{asm}
Some targets require that GCC track the size of each instruction used
in order to generate correct code. Because the final length of the
code produced by an @code{asm} statement is only known by the
assembler, GCC must make an estimate as to how big it will be. It
does this by counting the number of instructions in the pattern of the
@code{asm} and multiplying that by the length of the longest
instruction supported by that processor. (When working out the number
of instructions, it assumes that any occurrence of a newline or of
whatever statement separator character is supported by the assembler ---
typically @samp{;} --- indicates the end of an instruction.)
Normally, GCC's estimate is adequate to ensure that correct
code is generated, but it is possible to confuse the compiler if you use
pseudo instructions or assembler macros that expand into multiple real
instructions, or if you use assembler directives that expand to more
space in the object file than is needed for a single instruction.
If this happens then the assembler may produce a diagnostic saying that
a label is unreachable.
@cindex @code{asm inline}
This size is also used for inlining decisions. If you use @code{asm inline}
instead of just @code{asm}, then for inlining purposes the size of the asm
is taken as the minimum size, ignoring how many instructions GCC thinks it is.
@node Alternate Keywords
@section Alternate Keywords
@cindex alternate keywords
@cindex keywords, alternate
@option{-ansi} and the various @option{-std} options disable certain
keywords. This causes trouble when you want to use GNU C extensions, or
a general-purpose header file that should be usable by all programs,
including ISO C programs. The keywords @code{asm}, @code{typeof} and
@code{inline} are not available in programs compiled with
@option{-ansi} or @option{-std} (although @code{inline} can be used in a
program compiled with @option{-std=c99} or a later standard). The
ISO C99 keyword
@code{restrict} is only available when @option{-std=gnu99} (which will
eventually be the default) or @option{-std=c99} (or the equivalent
@option{-std=iso9899:1999}), or an option for a later standard
version, is used.
The way to solve these problems is to put @samp{__} at the beginning and
end of each problematical keyword. For example, use @code{__asm__}
instead of @code{asm}, and @code{__inline__} instead of @code{inline}.
Other C compilers won't accept these alternative keywords; if you want to
compile with another compiler, you can define the alternate keywords as
macros to replace them with the customary keywords. It looks like this:
@smallexample
#ifndef __GNUC__
#define __asm__ asm
#endif
@end smallexample
@findex __extension__
@opindex pedantic
@option{-pedantic} and other options cause warnings for many GNU C extensions.
You can
prevent such warnings within one expression by writing
@code{__extension__} before the expression. @code{__extension__} has no
effect aside from this.
@node Incomplete Enums
@section Incomplete @code{enum} Types
You can define an @code{enum} tag without specifying its possible values.
This results in an incomplete type, much like what you get if you write
@code{struct foo} without describing the elements. A later declaration
that does specify the possible values completes the type.
You cannot allocate variables or storage using the type while it is
incomplete. However, you can work with pointers to that type.
This extension may not be very useful, but it makes the handling of
@code{enum} more consistent with the way @code{struct} and @code{union}
are handled.
This extension is not supported by GNU C++.
@node Function Names
@section Function Names as Strings
@cindex @code{__func__} identifier
@cindex @code{__FUNCTION__} identifier
@cindex @code{__PRETTY_FUNCTION__} identifier
GCC provides three magic constants that hold the name of the current
function as a string. In C++11 and later modes, all three are treated
as constant expressions and can be used in @code{constexpr} constexts.
The first of these constants is @code{__func__}, which is part of
the C99 standard:
The identifier @code{__func__} is implicitly declared by the translator
as if, immediately following the opening brace of each function
definition, the declaration
@smallexample
static const char __func__[] = "function-name";
@end smallexample
@noindent
appeared, where function-name is the name of the lexically-enclosing
function. This name is the unadorned name of the function. As an
extension, at file (or, in C++, namespace scope), @code{__func__}
evaluates to the empty string.
@code{__FUNCTION__} is another name for @code{__func__}, provided for
backward compatibility with old versions of GCC.
In C, @code{__PRETTY_FUNCTION__} is yet another name for
@code{__func__}, except that at file scope (or, in C++, namespace scope),
it evaluates to the string @code{"top level"}. In addition, in C++,
@code{__PRETTY_FUNCTION__} contains the signature of the function as
well as its bare name. For example, this program:
@smallexample
extern "C" int printf (const char *, ...);
class a @{
public:
void sub (int i)
@{
printf ("__FUNCTION__ = %s\n", __FUNCTION__);
printf ("__PRETTY_FUNCTION__ = %s\n", __PRETTY_FUNCTION__);
@}
@};
int
main (void)
@{
a ax;
ax.sub (0);
return 0;
@}
@end smallexample
@noindent
gives this output:
@smallexample
__FUNCTION__ = sub
__PRETTY_FUNCTION__ = void a::sub(int)
@end smallexample
These identifiers are variables, not preprocessor macros, and may not
be used to initialize @code{char} arrays or be concatenated with string
literals.
@node Return Address
@section Getting the Return or Frame Address of a Function
These functions may be used to get information about the callers of a
function.
@deftypefn {Built-in Function} {void *} __builtin_return_address (unsigned int @var{level})
This function returns the return address of the current function, or of
one of its callers. The @var{level} argument is number of frames to
scan up the call stack. A value of @code{0} yields the return address
of the current function, a value of @code{1} yields the return address
of the caller of the current function, and so forth. When inlining
the expected behavior is that the function returns the address of
the function that is returned to. To work around this behavior use
the @code{noinline} function attribute.
The @var{level} argument must be a constant integer.
On some machines it may be impossible to determine the return address of
any function other than the current one; in such cases, or when the top
of the stack has been reached, this function returns an unspecified
value. In addition, @code{__builtin_frame_address} may be used
to determine if the top of the stack has been reached.
Additional post-processing of the returned value may be needed, see
@code{__builtin_extract_return_addr}.
The stored representation of the return address in memory may be different
from the address returned by @code{__builtin_return_address}. For example,
on AArch64 the stored address may be mangled with return address signing
whereas the address returned by @code{__builtin_return_address} is not.
Calling this function with a nonzero argument can have unpredictable
effects, including crashing the calling program. As a result, calls
that are considered unsafe are diagnosed when the @option{-Wframe-address}
option is in effect. Such calls should only be made in debugging
situations.
On targets where code addresses are representable as @code{void *},
@smallexample
void *addr = __builtin_extract_return_addr (__builtin_return_address (0));
@end smallexample
gives the code address where the current function would return. For example,
such an address may be used with @code{dladdr} or other interfaces that work
with code addresses.
@end deftypefn
@deftypefn {Built-in Function} {void *} __builtin_extract_return_addr (void *@var{addr})
The address as returned by @code{__builtin_return_address} may have to be fed
through this function to get the actual encoded address. For example, on the
31-bit S/390 platform the highest bit has to be masked out, or on SPARC
platforms an offset has to be added for the true next instruction to be
executed.
If no fixup is needed, this function simply passes through @var{addr}.
@end deftypefn
@deftypefn {Built-in Function} {void *} __builtin_frob_return_addr (void *@var{addr})
This function does the reverse of @code{__builtin_extract_return_addr}.
@end deftypefn
@deftypefn {Built-in Function} {void *} __builtin_frame_address (unsigned int @var{level})
This function is similar to @code{__builtin_return_address}, but it
returns the address of the function frame rather than the return address
of the function. Calling @code{__builtin_frame_address} with a value of
@code{0} yields the frame address of the current function, a value of
@code{1} yields the frame address of the caller of the current function,
and so forth.
The frame is the area on the stack that holds local variables and saved
registers. The frame address is normally the address of the first word
pushed on to the stack by the function. However, the exact definition
depends upon the processor and the calling convention. If the processor
has a dedicated frame pointer register, and the function has a frame,
then @code{__builtin_frame_address} returns the value of the frame
pointer register.
On some machines it may be impossible to determine the frame address of
any function other than the current one; in such cases, or when the top
of the stack has been reached, this function returns @code{0} if
the first frame pointer is properly initialized by the startup code.
Calling this function with a nonzero argument can have unpredictable
effects, including crashing the calling program. As a result, calls
that are considered unsafe are diagnosed when the @option{-Wframe-address}
option is in effect. Such calls should only be made in debugging
situations.
@end deftypefn
@node Vector Extensions
@section Using Vector Instructions through Built-in Functions
On some targets, the instruction set contains SIMD vector instructions which
operate on multiple values contained in one large register at the same time.
For example, on the x86 the MMX, 3DNow!@: and SSE extensions can be used
this way.
The first step in using these extensions is to provide the necessary data
types. This should be done using an appropriate @code{typedef}:
@smallexample
typedef int v4si __attribute__ ((vector_size (16)));
@end smallexample
@noindent
The @code{int} type specifies the @dfn{base type}, while the attribute specifies
the vector size for the variable, measured in bytes. For example, the
declaration above causes the compiler to set the mode for the @code{v4si}
type to be 16 bytes wide and divided into @code{int} sized units. For
a 32-bit @code{int} this means a vector of 4 units of 4 bytes, and the
corresponding mode of @code{foo} is @acronym{V4SI}.
The @code{vector_size} attribute is only applicable to integral and
floating scalars, although arrays, pointers, and function return values
are allowed in conjunction with this construct. Only sizes that are
positive power-of-two multiples of the base type size are currently allowed.
All the basic integer types can be used as base types, both as signed
and as unsigned: @code{char}, @code{short}, @code{int}, @code{long},
@code{long long}. In addition, @code{float} and @code{double} can be
used to build floating-point vector types.
Specifying a combination that is not valid for the current architecture
causes GCC to synthesize the instructions using a narrower mode.
For example, if you specify a variable of type @code{V4SI} and your
architecture does not allow for this specific SIMD type, GCC
produces code that uses 4 @code{SIs}.
The types defined in this manner can be used with a subset of normal C
operations. Currently, GCC allows using the following operators
on these types: @code{+, -, *, /, unary minus, ^, |, &, ~, %}@.
The operations behave like C++ @code{valarrays}. Addition is defined as
the addition of the corresponding elements of the operands. For
example, in the code below, each of the 4 elements in @var{a} is
added to the corresponding 4 elements in @var{b} and the resulting
vector is stored in @var{c}.
@smallexample
typedef int v4si __attribute__ ((vector_size (16)));
v4si a, b, c;
c = a + b;
@end smallexample
Subtraction, multiplication, division, and the logical operations
operate in a similar manner. Likewise, the result of using the unary
minus or complement operators on a vector type is a vector whose
elements are the negative or complemented values of the corresponding
elements in the operand.
It is possible to use shifting operators @code{<<}, @code{>>} on
integer-type vectors. The operation is defined as following: @code{@{a0,
a1, @dots{}, an@} >> @{b0, b1, @dots{}, bn@} == @{a0 >> b0, a1 >> b1,
@dots{}, an >> bn@}}@. Vector operands must have the same number of
elements.
For convenience, it is allowed to use a binary vector operation
where one operand is a scalar. In that case the compiler transforms
the scalar operand into a vector where each element is the scalar from
the operation. The transformation happens only if the scalar could be
safely converted to the vector-element type.
Consider the following code.
@smallexample
typedef int v4si __attribute__ ((vector_size (16)));
v4si a, b, c;
long l;
a = b + 1; /* a = b + @{1,1,1,1@}; */
a = 2 * b; /* a = @{2,2,2,2@} * b; */
a = l + a; /* Error, cannot convert long to int. */
@end smallexample
Vectors can be subscripted as if the vector were an array with
the same number of elements and base type. Out of bound accesses
invoke undefined behavior at run time. Warnings for out of bound
accesses for vector subscription can be enabled with
@option{-Warray-bounds}.
Vector comparison is supported with standard comparison
operators: @code{==, !=, <, <=, >, >=}. Comparison operands can be
vector expressions of integer-type or real-type. Comparison between
integer-type vectors and real-type vectors are not supported. The
result of the comparison is a vector of the same width and number of
elements as the comparison operands with a signed integral element
type.
Vectors are compared element-wise producing 0 when comparison is false
and -1 (constant of the appropriate type where all bits are set)
otherwise. Consider the following example.
@smallexample
typedef int v4si __attribute__ ((vector_size (16)));
v4si a = @{1,2,3,4@};
v4si b = @{3,2,1,4@};
v4si c;
c = a > b; /* The result would be @{0, 0,-1, 0@} */
c = a == b; /* The result would be @{0,-1, 0,-1@} */
@end smallexample
In C++, the ternary operator @code{?:} is available. @code{a?b:c}, where
@code{b} and @code{c} are vectors of the same type and @code{a} is an
integer vector with the same number of elements of the same size as @code{b}
and @code{c}, computes all three arguments and creates a vector
@code{@{a[0]?b[0]:c[0], a[1]?b[1]:c[1], @dots{}@}}. Note that unlike in
OpenCL, @code{a} is thus interpreted as @code{a != 0} and not @code{a < 0}.
As in the case of binary operations, this syntax is also accepted when
one of @code{b} or @code{c} is a scalar that is then transformed into a
vector. If both @code{b} and @code{c} are scalars and the type of
@code{true?b:c} has the same size as the element type of @code{a}, then
@code{b} and @code{c} are converted to a vector type whose elements have
this type and with the same number of elements as @code{a}.
In C++, the logic operators @code{!, &&, ||} are available for vectors.
@code{!v} is equivalent to @code{v == 0}, @code{a && b} is equivalent to
@code{a!=0 & b!=0} and @code{a || b} is equivalent to @code{a!=0 | b!=0}.
For mixed operations between a scalar @code{s} and a vector @code{v},
@code{s && v} is equivalent to @code{s?v!=0:0} (the evaluation is
short-circuit) and @code{v && s} is equivalent to @code{v!=0 & (s?-1:0)}.
@findex __builtin_shuffle
Vector shuffling is available using functions
@code{__builtin_shuffle (vec, mask)} and
@code{__builtin_shuffle (vec0, vec1, mask)}.
Both functions construct a permutation of elements from one or two
vectors and return a vector of the same type as the input vector(s).
The @var{mask} is an integral vector with the same width (@var{W})
and element count (@var{N}) as the output vector.
The elements of the input vectors are numbered in memory ordering of
@var{vec0} beginning at 0 and @var{vec1} beginning at @var{N}. The
elements of @var{mask} are considered modulo @var{N} in the single-operand
case and modulo @math{2*@var{N}} in the two-operand case.
Consider the following example,
@smallexample
typedef int v4si __attribute__ ((vector_size (16)));
v4si a = @{1,2,3,4@};
v4si b = @{5,6,7,8@};
v4si mask1 = @{0,1,1,3@};
v4si mask2 = @{0,4,2,5@};
v4si res;
res = __builtin_shuffle (a, mask1); /* res is @{1,2,2,4@} */
res = __builtin_shuffle (a, b, mask2); /* res is @{1,5,3,6@} */
@end smallexample
Note that @code{__builtin_shuffle} is intentionally semantically
compatible with the OpenCL @code{shuffle} and @code{shuffle2} functions.
You can declare variables and use them in function calls and returns, as
well as in assignments and some casts. You can specify a vector type as
a return type for a function. Vector types can also be used as function
arguments. It is possible to cast from one vector type to another,
provided they are of the same size (in fact, you can also cast vectors
to and from other datatypes of the same size).
You cannot operate between vectors of different lengths or different
signedness without a cast.
@findex __builtin_shufflevector
Vector shuffling is available using the
@code{__builtin_shufflevector (vec1, vec2, index...)}
function. @var{vec1} and @var{vec2} must be expressions with
vector type with a compatible element type. The result of
@code{__builtin_shufflevector} is a vector with the same element type
as @var{vec1} and @var{vec2} but that has an element count equal to
the number of indices specified.
The @var{index} arguments are a list of integers that specify the
elements indices of the first two vectors that should be extracted and
returned in a new vector. These element indices are numbered sequentially
starting with the first vector, continuing into the second vector.
An index of -1 can be used to indicate that the corresponding element in
the returned vector is a don't care and can be freely chosen to optimized
the generated code sequence performing the shuffle operation.
Consider the following example,
@smallexample
typedef int v4si __attribute__ ((vector_size (16)));
typedef int v8si __attribute__ ((vector_size (32)));
v8si a = @{1,-2,3,-4,5,-6,7,-8@};
v4si b = __builtin_shufflevector (a, a, 0, 2, 4, 6); /* b is @{1,3,5,7@} */
v4si c = @{-2,-4,-6,-8@};
v8si d = __builtin_shufflevector (c, b, 4, 0, 5, 1, 6, 2, 7, 3); /* d is a */
@end smallexample
@findex __builtin_convertvector
Vector conversion is available using the
@code{__builtin_convertvector (vec, vectype)}
function. @var{vec} must be an expression with integral or floating
vector type and @var{vectype} an integral or floating vector type with the
same number of elements. The result has @var{vectype} type and value of
a C cast of every element of @var{vec} to the element type of @var{vectype}.
Consider the following example,
@smallexample
typedef int v4si __attribute__ ((vector_size (16)));
typedef float v4sf __attribute__ ((vector_size (16)));
typedef double v4df __attribute__ ((vector_size (32)));
typedef unsigned long long v4di __attribute__ ((vector_size (32)));
v4si a = @{1,-2,3,-4@};
v4sf b = @{1.5f,-2.5f,3.f,7.f@};
v4di c = @{1ULL,5ULL,0ULL,10ULL@};
v4sf d = __builtin_convertvector (a, v4sf); /* d is @{1.f,-2.f,3.f,-4.f@} */
/* Equivalent of:
v4sf d = @{ (float)a[0], (float)a[1], (float)a[2], (float)a[3] @}; */
v4df e = __builtin_convertvector (a, v4df); /* e is @{1.,-2.,3.,-4.@} */
v4df f = __builtin_convertvector (b, v4df); /* f is @{1.5,-2.5,3.,7.@} */
v4si g = __builtin_convertvector (f, v4si); /* g is @{1,-2,3,7@} */
v4si h = __builtin_convertvector (c, v4si); /* h is @{1,5,0,10@} */
@end smallexample
@cindex vector types, using with x86 intrinsics
Sometimes it is desirable to write code using a mix of generic vector
operations (for clarity) and machine-specific vector intrinsics (to
access vector instructions that are not exposed via generic built-ins).
On x86, intrinsic functions for integer vectors typically use the same
vector type @code{__m128i} irrespective of how they interpret the vector,
making it necessary to cast their arguments and return values from/to
other vector types. In C, you can make use of a @code{union} type:
@c In C++ such type punning via a union is not allowed by the language
@smallexample
#include <immintrin.h>
typedef unsigned char u8x16 __attribute__ ((vector_size (16)));
typedef unsigned int u32x4 __attribute__ ((vector_size (16)));
typedef union @{
__m128i mm;
u8x16 u8;
u32x4 u32;
@} v128;
@end smallexample
@noindent
for variables that can be used with both built-in operators and x86
intrinsics:
@smallexample
v128 x, y = @{ 0 @};
memcpy (&x, ptr, sizeof x);
y.u8 += 0x80;
x.mm = _mm_adds_epu8 (x.mm, y.mm);
x.u32 &= 0xffffff;
/* Instead of a variable, a compound literal may be used to pass the
return value of an intrinsic call to a function expecting the union: */
v128 foo (v128);
x = foo ((v128) @{_mm_adds_epu8 (x.mm, y.mm)@});
@c This could be done implicitly with __attribute__((transparent_union)),
@c but GCC does not accept it for unions of vector types (PR 88955).
@end smallexample
@node Offsetof
@section Support for @code{offsetof}
@findex __builtin_offsetof
GCC implements for both C and C++ a syntactic extension to implement
the @code{offsetof} macro.
@smallexample
primary:
"__builtin_offsetof" "(" @code{typename} "," offsetof_member_designator ")"
offsetof_member_designator:
@code{identifier}
| offsetof_member_designator "." @code{identifier}
| offsetof_member_designator "[" @code{expr} "]"
@end smallexample
This extension is sufficient such that
@smallexample
#define offsetof(@var{type}, @var{member}) __builtin_offsetof (@var{type}, @var{member})
@end smallexample
@noindent
is a suitable definition of the @code{offsetof} macro. In C++, @var{type}
may be dependent. In either case, @var{member} may consist of a single
identifier, or a sequence of member accesses and array references.
@node __sync Builtins
@section Legacy @code{__sync} Built-in Functions for Atomic Memory Access
The following built-in functions
are intended to be compatible with those described
in the @cite{Intel Itanium Processor-specific Application Binary Interface},
section 7.4. As such, they depart from normal GCC practice by not using
the @samp{__builtin_} prefix and also by being overloaded so that they
work on multiple types.
The definition given in the Intel documentation allows only for the use of
the types @code{int}, @code{long}, @code{long long} or their unsigned
counterparts. GCC allows any scalar type that is 1, 2, 4 or 8 bytes in
size other than the C type @code{_Bool} or the C++ type @code{bool}.
Operations on pointer arguments are performed as if the operands were
of the @code{uintptr_t} type. That is, they are not scaled by the size
of the type to which the pointer points.
These functions are implemented in terms of the @samp{__atomic}
builtins (@pxref{__atomic Builtins}). They should not be used for new
code which should use the @samp{__atomic} builtins instead.
Not all operations are supported by all target processors. If a particular
operation cannot be implemented on the target processor, a warning is
generated and a call to an external function is generated. The external
function carries the same name as the built-in version,
with an additional suffix
@samp{_@var{n}} where @var{n} is the size of the data type.
@c ??? Should we have a mechanism to suppress this warning? This is almost
@c useful for implementing the operation under the control of an external
@c mutex.
In most cases, these built-in functions are considered a @dfn{full barrier}.
That is,
no memory operand is moved across the operation, either forward or
backward. Further, instructions are issued as necessary to prevent the
processor from speculating loads across the operation and from queuing stores
after the operation.
All of the routines are described in the Intel documentation to take
``an optional list of variables protected by the memory barrier''. It's
not clear what is meant by that; it could mean that @emph{only} the
listed variables are protected, or it could mean a list of additional
variables to be protected. The list is ignored by GCC which treats it as
empty. GCC interprets an empty list as meaning that all globally
accessible variables should be protected.
@table @code
@item @var{type} __sync_fetch_and_add (@var{type} *ptr, @var{type} value, ...)
@itemx @var{type} __sync_fetch_and_sub (@var{type} *ptr, @var{type} value, ...)
@itemx @var{type} __sync_fetch_and_or (@var{type} *ptr, @var{type} value, ...)
@itemx @var{type} __sync_fetch_and_and (@var{type} *ptr, @var{type} value, ...)
@itemx @var{type} __sync_fetch_and_xor (@var{type} *ptr, @var{type} value, ...)
@itemx @var{type} __sync_fetch_and_nand (@var{type} *ptr, @var{type} value, ...)
@findex __sync_fetch_and_add
@findex __sync_fetch_and_sub
@findex __sync_fetch_and_or
@findex __sync_fetch_and_and
@findex __sync_fetch_and_xor
@findex __sync_fetch_and_nand
These built-in functions perform the operation suggested by the name, and
returns the value that had previously been in memory. That is, operations
on integer operands have the following semantics. Operations on pointer
arguments are performed as if the operands were of the @code{uintptr_t}
type. That is, they are not scaled by the size of the type to which
the pointer points.
@smallexample
@{ tmp = *ptr; *ptr @var{op}= value; return tmp; @}
@{ tmp = *ptr; *ptr = ~(tmp & value); return tmp; @} // nand
@end smallexample
The object pointed to by the first argument must be of integer or pointer
type. It must not be a boolean type.
@emph{Note:} GCC 4.4 and later implement @code{__sync_fetch_and_nand}
as @code{*ptr = ~(tmp & value)} instead of @code{*ptr = ~tmp & value}.
@item @var{type} __sync_add_and_fetch (@var{type} *ptr, @var{type} value, ...)
@itemx @var{type} __sync_sub_and_fetch (@var{type} *ptr, @var{type} value, ...)
@itemx @var{type} __sync_or_and_fetch (@var{type} *ptr, @var{type} value, ...)
@itemx @var{type} __sync_and_and_fetch (@var{type} *ptr, @var{type} value, ...)
@itemx @var{type} __sync_xor_and_fetch (@var{type} *ptr, @var{type} value, ...)
@itemx @var{type} __sync_nand_and_fetch (@var{type} *ptr, @var{type} value, ...)
@findex __sync_add_and_fetch
@findex __sync_sub_and_fetch
@findex __sync_or_and_fetch
@findex __sync_and_and_fetch
@findex __sync_xor_and_fetch
@findex __sync_nand_and_fetch
These built-in functions perform the operation suggested by the name, and
return the new value. That is, operations on integer operands have
the following semantics. Operations on pointer operands are performed as
if the operand's type were @code{uintptr_t}.
@smallexample
@{ *ptr @var{op}= value; return *ptr; @}
@{ *ptr = ~(*ptr & value); return *ptr; @} // nand
@end smallexample
The same constraints on arguments apply as for the corresponding
@code{__sync_op_and_fetch} built-in functions.
@emph{Note:} GCC 4.4 and later implement @code{__sync_nand_and_fetch}
as @code{*ptr = ~(*ptr & value)} instead of
@code{*ptr = ~*ptr & value}.
@item bool __sync_bool_compare_and_swap (@var{type} *ptr, @var{type} oldval, @var{type} newval, ...)
@itemx @var{type} __sync_val_compare_and_swap (@var{type} *ptr, @var{type} oldval, @var{type} newval, ...)
@findex __sync_bool_compare_and_swap
@findex __sync_val_compare_and_swap
These built-in functions perform an atomic compare and swap.
That is, if the current
value of @code{*@var{ptr}} is @var{oldval}, then write @var{newval} into
@code{*@var{ptr}}.
The ``bool'' version returns @code{true} if the comparison is successful and
@var{newval} is written. The ``val'' version returns the contents
of @code{*@var{ptr}} before the operation.
@item __sync_synchronize (...)
@findex __sync_synchronize
This built-in function issues a full memory barrier.
@item @var{type} __sync_lock_test_and_set (@var{type} *ptr, @var{type} value, ...)
@findex __sync_lock_test_and_set
This built-in function, as described by Intel, is not a traditional test-and-set
operation, but rather an atomic exchange operation. It writes @var{value}
into @code{*@var{ptr}}, and returns the previous contents of
@code{*@var{ptr}}.
Many targets have only minimal support for such locks, and do not support
a full exchange operation. In this case, a target may support reduced
functionality here by which the @emph{only} valid value to store is the
immediate constant 1. The exact value actually stored in @code{*@var{ptr}}
is implementation defined.
This built-in function is not a full barrier,
but rather an @dfn{acquire barrier}.
This means that references after the operation cannot move to (or be
speculated to) before the operation, but previous memory stores may not
be globally visible yet, and previous memory loads may not yet be
satisfied.
@item void __sync_lock_release (@var{type} *ptr, ...)
@findex __sync_lock_release
This built-in function releases the lock acquired by
@code{__sync_lock_test_and_set}.
Normally this means writing the constant 0 to @code{*@var{ptr}}.
This built-in function is not a full barrier,
but rather a @dfn{release barrier}.
This means that all previous memory stores are globally visible, and all
previous memory loads have been satisfied, but following memory reads
are not prevented from being speculated to before the barrier.
@end table
@node __atomic Builtins
@section Built-in Functions for Memory Model Aware Atomic Operations
The following built-in functions approximately match the requirements
for the C++11 memory model. They are all
identified by being prefixed with @samp{__atomic} and most are
overloaded so that they work with multiple types.
These functions are intended to replace the legacy @samp{__sync}
builtins. The main difference is that the memory order that is requested
is a parameter to the functions. New code should always use the
@samp{__atomic} builtins rather than the @samp{__sync} builtins.
Note that the @samp{__atomic} builtins assume that programs will
conform to the C++11 memory model. In particular, they assume
that programs are free of data races. See the C++11 standard for
detailed requirements.
The @samp{__atomic} builtins can be used with any integral scalar or
pointer type that is 1, 2, 4, or 8 bytes in length. 16-byte integral
types are also allowed if @samp{__int128} (@pxref{__int128}) is
supported by the architecture.
The four non-arithmetic functions (load, store, exchange, and
compare_exchange) all have a generic version as well. This generic
version works on any data type. It uses the lock-free built-in function
if the specific data type size makes that possible; otherwise, an
external call is left to be resolved at run time. This external call is
the same format with the addition of a @samp{size_t} parameter inserted
as the first parameter indicating the size of the object being pointed to.
All objects must be the same size.
There are 6 different memory orders that can be specified. These map
to the C++11 memory orders with the same names, see the C++11 standard
or the @uref{https://gcc.gnu.org/wiki/Atomic/GCCMM/AtomicSync,GCC wiki
on atomic synchronization} for detailed definitions. Individual
targets may also support additional memory orders for use on specific
architectures. Refer to the target documentation for details of
these.
An atomic operation can both constrain code motion and
be mapped to hardware instructions for synchronization between threads
(e.g., a fence). To which extent this happens is controlled by the
memory orders, which are listed here in approximately ascending order of
strength. The description of each memory order is only meant to roughly
illustrate the effects and is not a specification; see the C++11
memory model for precise semantics.
@table @code
@item __ATOMIC_RELAXED
Implies no inter-thread ordering constraints.
@item __ATOMIC_CONSUME
This is currently implemented using the stronger @code{__ATOMIC_ACQUIRE}
memory order because of a deficiency in C++11's semantics for
@code{memory_order_consume}.
@item __ATOMIC_ACQUIRE
Creates an inter-thread happens-before constraint from the release (or
stronger) semantic store to this acquire load. Can prevent hoisting
of code to before the operation.
@item __ATOMIC_RELEASE
Creates an inter-thread happens-before constraint to acquire (or stronger)
semantic loads that read from this release store. Can prevent sinking
of code to after the operation.
@item __ATOMIC_ACQ_REL
Combines the effects of both @code{__ATOMIC_ACQUIRE} and
@code{__ATOMIC_RELEASE}.
@item __ATOMIC_SEQ_CST
Enforces total ordering with all other @code{__ATOMIC_SEQ_CST} operations.
@end table
Note that in the C++11 memory model, @emph{fences} (e.g.,
@samp{__atomic_thread_fence}) take effect in combination with other
atomic operations on specific memory locations (e.g., atomic loads);
operations on specific memory locations do not necessarily affect other
operations in the same way.
Target architectures are encouraged to provide their own patterns for
each of the atomic built-in functions. If no target is provided, the original
non-memory model set of @samp{__sync} atomic built-in functions are
used, along with any required synchronization fences surrounding it in
order to achieve the proper behavior. Execution in this case is subject
to the same restrictions as those built-in functions.
If there is no pattern or mechanism to provide a lock-free instruction
sequence, a call is made to an external routine with the same parameters
to be resolved at run time.
When implementing patterns for these built-in functions, the memory order
parameter can be ignored as long as the pattern implements the most
restrictive @code{__ATOMIC_SEQ_CST} memory order. Any of the other memory
orders execute correctly with this memory order but they may not execute as
efficiently as they could with a more appropriate implementation of the
relaxed requirements.
Note that the C++11 standard allows for the memory order parameter to be
determined at run time rather than at compile time. These built-in
functions map any run-time value to @code{__ATOMIC_SEQ_CST} rather
than invoke a runtime library call or inline a switch statement. This is
standard compliant, safe, and the simplest approach for now.
The memory order parameter is a signed int, but only the lower 16 bits are
reserved for the memory order. The remainder of the signed int is reserved
for target use and should be 0. Use of the predefined atomic values
ensures proper usage.
@deftypefn {Built-in Function} @var{type} __atomic_load_n (@var{type} *ptr, int memorder)
This built-in function implements an atomic load operation. It returns the
contents of @code{*@var{ptr}}.
The valid memory order variants are
@code{__ATOMIC_RELAXED}, @code{__ATOMIC_SEQ_CST}, @code{__ATOMIC_ACQUIRE},
and @code{__ATOMIC_CONSUME}.
@end deftypefn
@deftypefn {Built-in Function} void __atomic_load (@var{type} *ptr, @var{type} *ret, int memorder)
This is the generic version of an atomic load. It returns the
contents of @code{*@var{ptr}} in @code{*@var{ret}}.
@end deftypefn
@deftypefn {Built-in Function} void __atomic_store_n (@var{type} *ptr, @var{type} val, int memorder)
This built-in function implements an atomic store operation. It writes
@code{@var{val}} into @code{*@var{ptr}}.
The valid memory order variants are
@code{__ATOMIC_RELAXED}, @code{__ATOMIC_SEQ_CST}, and @code{__ATOMIC_RELEASE}.
@end deftypefn
@deftypefn {Built-in Function} void __atomic_store (@var{type} *ptr, @var{type} *val, int memorder)
This is the generic version of an atomic store. It stores the value
of @code{*@var{val}} into @code{*@var{ptr}}.
@end deftypefn
@deftypefn {Built-in Function} @var{type} __atomic_exchange_n (@var{type} *ptr, @var{type} val, int memorder)
This built-in function implements an atomic exchange operation. It writes
@var{val} into @code{*@var{ptr}}, and returns the previous contents of
@code{*@var{ptr}}.
All memory order variants are valid.
@end deftypefn
@deftypefn {Built-in Function} void __atomic_exchange (@var{type} *ptr, @var{type} *val, @var{type} *ret, int memorder)
This is the generic version of an atomic exchange. It stores the
contents of @code{*@var{val}} into @code{*@var{ptr}}. The original value
of @code{*@var{ptr}} is copied into @code{*@var{ret}}.
@end deftypefn
@deftypefn {Built-in Function} bool __atomic_compare_exchange_n (@var{type} *ptr, @var{type} *expected, @var{type} desired, bool weak, int success_memorder, int failure_memorder)
This built-in function implements an atomic compare and exchange operation.
This compares the contents of @code{*@var{ptr}} with the contents of
@code{*@var{expected}}. If equal, the operation is a @emph{read-modify-write}
operation that writes @var{desired} into @code{*@var{ptr}}. If they are not
equal, the operation is a @emph{read} and the current contents of
@code{*@var{ptr}} are written into @code{*@var{expected}}. @var{weak} is @code{true}
for weak compare_exchange, which may fail spuriously, and @code{false} for
the strong variation, which never fails spuriously. Many targets
only offer the strong variation and ignore the parameter. When in doubt, use
the strong variation.
If @var{desired} is written into @code{*@var{ptr}} then @code{true} is returned
and memory is affected according to the
memory order specified by @var{success_memorder}. There are no
restrictions on what memory order can be used here.
Otherwise, @code{false} is returned and memory is affected according
to @var{failure_memorder}. This memory order cannot be
@code{__ATOMIC_RELEASE} nor @code{__ATOMIC_ACQ_REL}. It also cannot be a
stronger order than that specified by @var{success_memorder}.
@end deftypefn
@deftypefn {Built-in Function} bool __atomic_compare_exchange (@var{type} *ptr, @var{type} *expected, @var{type} *desired, bool weak, int success_memorder, int failure_memorder)
This built-in function implements the generic version of
@code{__atomic_compare_exchange}. The function is virtually identical to
@code{__atomic_compare_exchange_n}, except the desired value is also a
pointer.
@end deftypefn
@deftypefn {Built-in Function} @var{type} __atomic_add_fetch (@var{type} *ptr, @var{type} val, int memorder)
@deftypefnx {Built-in Function} @var{type} __atomic_sub_fetch (@var{type} *ptr, @var{type} val, int memorder)
@deftypefnx {Built-in Function} @var{type} __atomic_and_fetch (@var{type} *ptr, @var{type} val, int memorder)
@deftypefnx {Built-in Function} @var{type} __atomic_xor_fetch (@var{type} *ptr, @var{type} val, int memorder)
@deftypefnx {Built-in Function} @var{type} __atomic_or_fetch (@var{type} *ptr, @var{type} val, int memorder)
@deftypefnx {Built-in Function} @var{type} __atomic_nand_fetch (@var{type} *ptr, @var{type} val, int memorder)
These built-in functions perform the operation suggested by the name, and
return the result of the operation. Operations on pointer arguments are
performed as if the operands were of the @code{uintptr_t} type. That is,
they are not scaled by the size of the type to which the pointer points.
@smallexample
@{ *ptr @var{op}= val; return *ptr; @}
@{ *ptr = ~(*ptr & val); return *ptr; @} // nand
@end smallexample
The object pointed to by the first argument must be of integer or pointer
type. It must not be a boolean type. All memory orders are valid.
@end deftypefn
@deftypefn {Built-in Function} @var{type} __atomic_fetch_add (@var{type} *ptr, @var{type} val, int memorder)
@deftypefnx {Built-in Function} @var{type} __atomic_fetch_sub (@var{type} *ptr, @var{type} val, int memorder)
@deftypefnx {Built-in Function} @var{type} __atomic_fetch_and (@var{type} *ptr, @var{type} val, int memorder)
@deftypefnx {Built-in Function} @var{type} __atomic_fetch_xor (@var{type} *ptr, @var{type} val, int memorder)
@deftypefnx {Built-in Function} @var{type} __atomic_fetch_or (@var{type} *ptr, @var{type} val, int memorder)
@deftypefnx {Built-in Function} @var{type} __atomic_fetch_nand (@var{type} *ptr, @var{type} val, int memorder)
These built-in functions perform the operation suggested by the name, and
return the value that had previously been in @code{*@var{ptr}}. Operations
on pointer arguments are performed as if the operands were of
the @code{uintptr_t} type. That is, they are not scaled by the size of
the type to which the pointer points.
@smallexample
@{ tmp = *ptr; *ptr @var{op}= val; return tmp; @}
@{ tmp = *ptr; *ptr = ~(*ptr & val); return tmp; @} // nand
@end smallexample
The same constraints on arguments apply as for the corresponding
@code{__atomic_op_fetch} built-in functions. All memory orders are valid.
@end deftypefn
@deftypefn {Built-in Function} bool __atomic_test_and_set (void *ptr, int memorder)
This built-in function performs an atomic test-and-set operation on
the byte at @code{*@var{ptr}}. The byte is set to some implementation
defined nonzero ``set'' value and the return value is @code{true} if and only
if the previous contents were ``set''.
It should be only used for operands of type @code{bool} or @code{char}. For
other types only part of the value may be set.
All memory orders are valid.
@end deftypefn
@deftypefn {Built-in Function} void __atomic_clear (bool *ptr, int memorder)
This built-in function performs an atomic clear operation on
@code{*@var{ptr}}. After the operation, @code{*@var{ptr}} contains 0.
It should be only used for operands of type @code{bool} or @code{char} and
in conjunction with @code{__atomic_test_and_set}.
For other types it may only clear partially. If the type is not @code{bool}
prefer using @code{__atomic_store}.
The valid memory order variants are
@code{__ATOMIC_RELAXED}, @code{__ATOMIC_SEQ_CST}, and
@code{__ATOMIC_RELEASE}.
@end deftypefn
@deftypefn {Built-in Function} void __atomic_thread_fence (int memorder)
This built-in function acts as a synchronization fence between threads
based on the specified memory order.
All memory orders are valid.
@end deftypefn
@deftypefn {Built-in Function} void __atomic_signal_fence (int memorder)
This built-in function acts as a synchronization fence between a thread
and signal handlers based in the same thread.
All memory orders are valid.
@end deftypefn
@deftypefn {Built-in Function} bool __atomic_always_lock_free (size_t size, void *ptr)
This built-in function returns @code{true} if objects of @var{size} bytes always
generate lock-free atomic instructions for the target architecture.
@var{size} must resolve to a compile-time constant and the result also
resolves to a compile-time constant.
@var{ptr} is an optional pointer to the object that may be used to determine
alignment. A value of 0 indicates typical alignment should be used. The
compiler may also ignore this parameter.
@smallexample
if (__atomic_always_lock_free (sizeof (long long), 0))
@end smallexample
@end deftypefn
@deftypefn {Built-in Function} bool __atomic_is_lock_free (size_t size, void *ptr)
This built-in function returns @code{true} if objects of @var{size} bytes always
generate lock-free atomic instructions for the target architecture. If
the built-in function is not known to be lock-free, a call is made to a
runtime routine named @code{__atomic_is_lock_free}.
@var{ptr} is an optional pointer to the object that may be used to determine
alignment. A value of 0 indicates typical alignment should be used. The
compiler may also ignore this parameter.
@end deftypefn
@node Integer Overflow Builtins
@section Built-in Functions to Perform Arithmetic with Overflow Checking
The following built-in functions allow performing simple arithmetic operations
together with checking whether the operations overflowed.
@deftypefn {Built-in Function} bool __builtin_add_overflow (@var{type1} a, @var{type2} b, @var{type3} *res)
@deftypefnx {Built-in Function} bool __builtin_sadd_overflow (int a, int b, int *res)
@deftypefnx {Built-in Function} bool __builtin_saddl_overflow (long int a, long int b, long int *res)
@deftypefnx {Built-in Function} bool __builtin_saddll_overflow (long long int a, long long int b, long long int *res)
@deftypefnx {Built-in Function} bool __builtin_uadd_overflow (unsigned int a, unsigned int b, unsigned int *res)
@deftypefnx {Built-in Function} bool __builtin_uaddl_overflow (unsigned long int a, unsigned long int b, unsigned long int *res)
@deftypefnx {Built-in Function} bool __builtin_uaddll_overflow (unsigned long long int a, unsigned long long int b, unsigned long long int *res)
These built-in functions promote the first two operands into infinite precision signed
type and perform addition on those promoted operands. The result is then
cast to the type the third pointer argument points to and stored there.
If the stored result is equal to the infinite precision result, the built-in
functions return @code{false}, otherwise they return @code{true}. As the addition is
performed in infinite signed precision, these built-in functions have fully defined
behavior for all argument values.
The first built-in function allows arbitrary integral types for operands and
the result type must be pointer to some integral type other than enumerated or
boolean type, the rest of the built-in functions have explicit integer types.
The compiler will attempt to use hardware instructions to implement
these built-in functions where possible, like conditional jump on overflow
after addition, conditional jump on carry etc.
@end deftypefn
@deftypefn {Built-in Function} bool __builtin_sub_overflow (@var{type1} a, @var{type2} b, @var{type3} *res)
@deftypefnx {Built-in Function} bool __builtin_ssub_overflow (int a, int b, int *res)
@deftypefnx {Built-in Function} bool __builtin_ssubl_overflow (long int a, long int b, long int *res)
@deftypefnx {Built-in Function} bool __builtin_ssubll_overflow (long long int a, long long int b, long long int *res)
@deftypefnx {Built-in Function} bool __builtin_usub_overflow (unsigned int a, unsigned int b, unsigned int *res)
@deftypefnx {Built-in Function} bool __builtin_usubl_overflow (unsigned long int a, unsigned long int b, unsigned long int *res)
@deftypefnx {Built-in Function} bool __builtin_usubll_overflow (unsigned long long int a, unsigned long long int b, unsigned long long int *res)
These built-in functions are similar to the add overflow checking built-in
functions above, except they perform subtraction, subtract the second argument
from the first one, instead of addition.
@end deftypefn
@deftypefn {Built-in Function} bool __builtin_mul_overflow (@var{type1} a, @var{type2} b, @var{type3} *res)
@deftypefnx {Built-in Function} bool __builtin_smul_overflow (int a, int b, int *res)
@deftypefnx {Built-in Function} bool __builtin_smull_overflow (long int a, long int b, long int *res)
@deftypefnx {Built-in Function} bool __builtin_smulll_overflow (long long int a, long long int b, long long int *res)
@deftypefnx {Built-in Function} bool __builtin_umul_overflow (unsigned int a, unsigned int b, unsigned int *res)
@deftypefnx {Built-in Function} bool __builtin_umull_overflow (unsigned long int a, unsigned long int b, unsigned long int *res)
@deftypefnx {Built-in Function} bool __builtin_umulll_overflow (unsigned long long int a, unsigned long long int b, unsigned long long int *res)
These built-in functions are similar to the add overflow checking built-in
functions above, except they perform multiplication, instead of addition.
@end deftypefn
The following built-in functions allow checking if simple arithmetic operation
would overflow.
@deftypefn {Built-in Function} bool __builtin_add_overflow_p (@var{type1} a, @var{type2} b, @var{type3} c)
@deftypefnx {Built-in Function} bool __builtin_sub_overflow_p (@var{type1} a, @var{type2} b, @var{type3} c)
@deftypefnx {Built-in Function} bool __builtin_mul_overflow_p (@var{type1} a, @var{type2} b, @var{type3} c)
These built-in functions are similar to @code{__builtin_add_overflow},
@code{__builtin_sub_overflow}, or @code{__builtin_mul_overflow}, except that
they don't store the result of the arithmetic operation anywhere and the
last argument is not a pointer, but some expression with integral type other
than enumerated or boolean type.
The built-in functions promote the first two operands into infinite precision signed type
and perform addition on those promoted operands. The result is then
cast to the type of the third argument. If the cast result is equal to the infinite
precision result, the built-in functions return @code{false}, otherwise they return @code{true}.
The value of the third argument is ignored, just the side effects in the third argument
are evaluated, and no integral argument promotions are performed on the last argument.
If the third argument is a bit-field, the type used for the result cast has the
precision and signedness of the given bit-field, rather than precision and signedness
of the underlying type.
For example, the following macro can be used to portably check, at
compile-time, whether or not adding two constant integers will overflow,
and perform the addition only when it is known to be safe and not to trigger
a @option{-Woverflow} warning.
@smallexample
#define INT_ADD_OVERFLOW_P(a, b) \
__builtin_add_overflow_p (a, b, (__typeof__ ((a) + (b))) 0)
enum @{
A = INT_MAX, B = 3,
C = INT_ADD_OVERFLOW_P (A, B) ? 0 : A + B,
D = __builtin_add_overflow_p (1, SCHAR_MAX, (signed char) 0)
@};
@end smallexample
The compiler will attempt to use hardware instructions to implement
these built-in functions where possible, like conditional jump on overflow
after addition, conditional jump on carry etc.
@end deftypefn
@node x86 specific memory model extensions for transactional memory
@section x86-Specific Memory Model Extensions for Transactional Memory
The x86 architecture supports additional memory ordering flags
to mark critical sections for hardware lock elision.
These must be specified in addition to an existing memory order to
atomic intrinsics.
@table @code
@item __ATOMIC_HLE_ACQUIRE
Start lock elision on a lock variable.
Memory order must be @code{__ATOMIC_ACQUIRE} or stronger.
@item __ATOMIC_HLE_RELEASE
End lock elision on a lock variable.
Memory order must be @code{__ATOMIC_RELEASE} or stronger.
@end table
When a lock acquire fails, it is required for good performance to abort
the transaction quickly. This can be done with a @code{_mm_pause}.
@smallexample
#include <immintrin.h> // For _mm_pause
int lockvar;
/* Acquire lock with lock elision */
while (__atomic_exchange_n(&lockvar, 1, __ATOMIC_ACQUIRE|__ATOMIC_HLE_ACQUIRE))
_mm_pause(); /* Abort failed transaction */
...
/* Free lock with lock elision */
__atomic_store_n(&lockvar, 0, __ATOMIC_RELEASE|__ATOMIC_HLE_RELEASE);
@end smallexample
@node Object Size Checking
@section Object Size Checking Built-in Functions
@findex __builtin_object_size
@findex __builtin_dynamic_object_size
@findex __builtin___memcpy_chk
@findex __builtin___mempcpy_chk
@findex __builtin___memmove_chk
@findex __builtin___memset_chk
@findex __builtin___strcpy_chk
@findex __builtin___stpcpy_chk
@findex __builtin___strncpy_chk
@findex __builtin___strcat_chk
@findex __builtin___strncat_chk
@findex __builtin___sprintf_chk
@findex __builtin___snprintf_chk
@findex __builtin___vsprintf_chk
@findex __builtin___vsnprintf_chk
@findex __builtin___printf_chk
@findex __builtin___vprintf_chk
@findex __builtin___fprintf_chk
@findex __builtin___vfprintf_chk
GCC implements a limited buffer overflow protection mechanism that can
prevent some buffer overflow attacks by determining the sizes of objects
into which data is about to be written and preventing the writes when
the size isn't sufficient. The built-in functions described below yield
the best results when used together and when optimization is enabled.
For example, to detect object sizes across function boundaries or to
follow pointer assignments through non-trivial control flow they rely
on various optimization passes enabled with @option{-O2}. However, to
a limited extent, they can be used without optimization as well.
@deftypefn {Built-in Function} {size_t} __builtin_object_size (const void * @var{ptr}, int @var{type})
is a built-in construct that returns a constant number of bytes from
@var{ptr} to the end of the object @var{ptr} pointer points to
(if known at compile time). To determine the sizes of dynamically allocated
objects the function relies on the allocation functions called to obtain
the storage to be declared with the @code{alloc_size} attribute (@pxref{Common
Function Attributes}). @code{__builtin_object_size} never evaluates
its arguments for side effects. If there are any side effects in them, it
returns @code{(size_t) -1} for @var{type} 0 or 1 and @code{(size_t) 0}
for @var{type} 2 or 3. If there are multiple objects @var{ptr} can
point to and all of them are known at compile time, the returned number
is the maximum of remaining byte counts in those objects if @var{type} & 2 is
0 and minimum if nonzero. If it is not possible to determine which objects
@var{ptr} points to at compile time, @code{__builtin_object_size} should
return @code{(size_t) -1} for @var{type} 0 or 1 and @code{(size_t) 0}
for @var{type} 2 or 3.
@var{type} is an integer constant from 0 to 3. If the least significant
bit is clear, objects are whole variables, if it is set, a closest
surrounding subobject is considered the object a pointer points to.
The second bit determines if maximum or minimum of remaining bytes
is computed.
@smallexample
struct V @{ char buf1[10]; int b; char buf2[10]; @} var;
char *p = &var.buf1[1], *q = &var.b;
/* Here the object p points to is var. */
assert (__builtin_object_size (p, 0) == sizeof (var) - 1);
/* The subobject p points to is var.buf1. */
assert (__builtin_object_size (p, 1) == sizeof (var.buf1) - 1);
/* The object q points to is var. */
assert (__builtin_object_size (q, 0)
== (char *) (&var + 1) - (char *) &var.b);
/* The subobject q points to is var.b. */
assert (__builtin_object_size (q, 1) == sizeof (var.b));
@end smallexample
@end deftypefn
@deftypefn {Built-in Function} {size_t} __builtin_dynamic_object_size (const void * @var{ptr}, int @var{type})
is similar to @code{__builtin_object_size} in that it returns a number of bytes
from @var{ptr} to the end of the object @var{ptr} pointer points to, except
that the size returned may not be a constant. This results in successful
evaluation of object size estimates in a wider range of use cases and can be
more precise than @code{__builtin_object_size}, but it incurs a performance
penalty since it may add a runtime overhead on size computation. Semantics of
@var{type} as well as return values in case it is not possible to determine
which objects @var{ptr} points to at compile time are the same as in the case
of @code{__builtin_object_size}.
@end deftypefn
There are built-in functions added for many common string operation
functions, e.g., for @code{memcpy} @code{__builtin___memcpy_chk}
built-in is provided. This built-in has an additional last argument,
which is the number of bytes remaining in the object the @var{dest}
argument points to or @code{(size_t) -1} if the size is not known.
The built-in functions are optimized into the normal string functions
like @code{memcpy} if the last argument is @code{(size_t) -1} or if
it is known at compile time that the destination object will not
be overflowed. If the compiler can determine at compile time that the
object will always be overflowed, it issues a warning.
The intended use can be e.g.@:
@smallexample
#undef memcpy
#define bos0(dest) __builtin_object_size (dest, 0)
#define memcpy(dest, src, n) \
__builtin___memcpy_chk (dest, src, n, bos0 (dest))
char *volatile p;
char buf[10];
/* It is unknown what object p points to, so this is optimized
into plain memcpy - no checking is possible. */
memcpy (p, "abcde", n);
/* Destination is known and length too. It is known at compile
time there will be no overflow. */
memcpy (&buf[5], "abcde", 5);
/* Destination is known, but the length is not known at compile time.
This will result in __memcpy_chk call that can check for overflow
at run time. */
memcpy (&buf[5], "abcde", n);
/* Destination is known and it is known at compile time there will
be overflow. There will be a warning and __memcpy_chk call that
will abort the program at run time. */
memcpy (&buf[6], "abcde", 5);
@end smallexample
Such built-in functions are provided for @code{memcpy}, @code{mempcpy},
@code{memmove}, @code{memset}, @code{strcpy}, @code{stpcpy}, @code{strncpy},
@code{strcat} and @code{strncat}.
There are also checking built-in functions for formatted output functions.
@smallexample
int __builtin___sprintf_chk (char *s, int flag, size_t os, const char *fmt, ...);
int __builtin___snprintf_chk (char *s, size_t maxlen, int flag, size_t os,
const char *fmt, ...);
int __builtin___vsprintf_chk (char *s, int flag, size_t os, const char *fmt,
va_list ap);
int __builtin___vsnprintf_chk (char *s, size_t maxlen, int flag, size_t os,
const char *fmt, va_list ap);
@end smallexample
The added @var{flag} argument is passed unchanged to @code{__sprintf_chk}
etc.@: functions and can contain implementation specific flags on what
additional security measures the checking function might take, such as
handling @code{%n} differently.
The @var{os} argument is the object size @var{s} points to, like in the
other built-in functions. There is a small difference in the behavior
though, if @var{os} is @code{(size_t) -1}, the built-in functions are
optimized into the non-checking functions only if @var{flag} is 0, otherwise
the checking function is called with @var{os} argument set to
@code{(size_t) -1}.
In addition to this, there are checking built-in functions
@code{__builtin___printf_chk}, @code{__builtin___vprintf_chk},
@code{__builtin___fprintf_chk} and @code{__builtin___vfprintf_chk}.
These have just one additional argument, @var{flag}, right before
format string @var{fmt}. If the compiler is able to optimize them to
@code{fputc} etc.@: functions, it does, otherwise the checking function
is called and the @var{flag} argument passed to it.
@node Other Builtins
@section Other Built-in Functions Provided by GCC
@cindex built-in functions
@findex __builtin_alloca
@findex __builtin_alloca_with_align
@findex __builtin_alloca_with_align_and_max
@findex __builtin_call_with_static_chain
@findex __builtin_extend_pointer
@findex __builtin_fpclassify
@findex __builtin_has_attribute
@findex __builtin_isfinite
@findex __builtin_isnormal
@findex __builtin_isgreater
@findex __builtin_isgreaterequal
@findex __builtin_isinf_sign
@findex __builtin_isless
@findex __builtin_islessequal
@findex __builtin_islessgreater
@findex __builtin_isunordered
@findex __builtin_object_size
@findex __builtin_powi
@findex __builtin_powif
@findex __builtin_powil
@findex __builtin_speculation_safe_value
@findex _Exit
@findex _exit
@findex abort
@findex abs
@findex acos
@findex acosf
@findex acosh
@findex acoshf
@findex acoshl
@findex acosl
@findex alloca
@findex asin
@findex asinf
@findex asinh
@findex asinhf
@findex asinhl
@findex asinl
@findex atan
@findex atan2
@findex atan2f
@findex atan2l
@findex atanf
@findex atanh
@findex atanhf
@findex atanhl
@findex atanl
@findex bcmp
@findex bzero
@findex cabs
@findex cabsf
@findex cabsl
@findex cacos
@findex cacosf
@findex cacosh
@findex cacoshf
@findex cacoshl
@findex cacosl
@findex calloc
@findex carg
@findex cargf
@findex cargl
@findex casin
@findex casinf
@findex casinh
@findex casinhf
@findex casinhl
@findex casinl
@findex catan
@findex catanf
@findex catanh
@findex catanhf
@findex catanhl
@findex catanl
@findex cbrt
@findex cbrtf
@findex cbrtl
@findex ccos
@findex ccosf
@findex ccosh
@findex ccoshf
@findex ccoshl
@findex ccosl
@findex ceil
@findex ceilf
@findex ceill
@findex cexp
@findex cexpf
@findex cexpl
@findex cimag
@findex cimagf
@findex cimagl
@findex clog
@findex clogf
@findex clogl
@findex clog10
@findex clog10f
@findex clog10l
@findex conj
@findex conjf
@findex conjl
@findex copysign
@findex copysignf
@findex copysignl
@findex cos
@findex cosf
@findex cosh
@findex coshf
@findex coshl
@findex cosl
@findex cpow
@findex cpowf
@findex cpowl
@findex cproj
@findex cprojf
@findex cprojl
@findex creal
@findex crealf
@findex creall
@findex csin
@findex csinf
@findex csinh
@findex csinhf
@findex csinhl
@findex csinl
@findex csqrt
@findex csqrtf
@findex csqrtl
@findex ctan
@findex ctanf
@findex ctanh
@findex ctanhf
@findex ctanhl
@findex ctanl
@findex dcgettext
@findex dgettext
@findex drem
@findex dremf
@findex dreml
@findex erf
@findex erfc
@findex erfcf
@findex erfcl
@findex erff
@findex erfl
@findex exit
@findex exp
@findex exp10
@findex exp10f
@findex exp10l
@findex exp2
@findex exp2f
@findex exp2l
@findex expf
@findex expl
@findex expm1
@findex expm1f
@findex expm1l
@findex fabs
@findex fabsf
@findex fabsl
@findex fdim
@findex fdimf
@findex fdiml
@findex ffs
@findex floor
@findex floorf
@findex floorl
@findex fma
@findex fmaf
@findex fmal
@findex fmax
@findex fmaxf
@findex fmaxl
@findex fmin
@findex fminf
@findex fminl
@findex fmod
@findex fmodf
@findex fmodl
@findex fprintf
@findex fprintf_unlocked
@findex fputs
@findex fputs_unlocked
@findex free
@findex frexp
@findex frexpf
@findex frexpl
@findex fscanf
@findex gamma
@findex gammaf
@findex gammal
@findex gamma_r
@findex gammaf_r
@findex gammal_r
@findex gettext
@findex hypot
@findex hypotf
@findex hypotl
@findex ilogb
@findex ilogbf
@findex ilogbl
@findex imaxabs
@findex index
@findex isalnum
@findex isalpha
@findex isascii
@findex isblank
@findex iscntrl
@findex isdigit
@findex isgraph
@findex islower
@findex isprint
@findex ispunct
@findex isspace
@findex isupper
@findex iswalnum
@findex iswalpha
@findex iswblank
@findex iswcntrl
@findex iswdigit
@findex iswgraph
@findex iswlower
@findex iswprint
@findex iswpunct
@findex iswspace
@findex iswupper
@findex iswxdigit
@findex isxdigit
@findex j0
@findex j0f
@findex j0l
@findex j1
@findex j1f
@findex j1l
@findex jn
@findex jnf
@findex jnl
@findex labs
@findex ldexp
@findex ldexpf
@findex ldexpl
@findex lgamma
@findex lgammaf
@findex lgammal
@findex lgamma_r
@findex lgammaf_r
@findex lgammal_r
@findex llabs
@findex llrint
@findex llrintf
@findex llrintl
@findex llround
@findex llroundf
@findex llroundl
@findex log
@findex log10
@findex log10f
@findex log10l
@findex log1p
@findex log1pf
@findex log1pl
@findex log2
@findex log2f
@findex log2l
@findex logb
@findex logbf
@findex logbl
@findex logf
@findex logl
@findex lrint
@findex lrintf
@findex lrintl
@findex lround
@findex lroundf
@findex lroundl
@findex malloc
@findex memchr
@findex memcmp
@findex memcpy
@findex mempcpy
@findex memset
@findex modf
@findex modff
@findex modfl
@findex nearbyint
@findex nearbyintf
@findex nearbyintl
@findex nextafter
@findex nextafterf
@findex nextafterl
@findex nexttoward
@findex nexttowardf
@findex nexttowardl
@findex pow
@findex pow10
@findex pow10f
@findex pow10l
@findex powf
@findex powl
@findex printf
@findex printf_unlocked
@findex putchar
@findex puts
@findex realloc
@findex remainder
@findex remainderf
@findex remainderl
@findex remquo
@findex remquof
@findex remquol
@findex rindex
@findex rint
@findex rintf
@findex rintl
@findex round
@findex roundf
@findex roundl
@findex scalb
@findex scalbf
@findex scalbl
@findex scalbln
@findex scalblnf
@findex scalblnf
@findex scalbn
@findex scalbnf
@findex scanfnl
@findex signbit
@findex signbitf
@findex signbitl
@findex signbitd32
@findex signbitd64
@findex signbitd128
@findex significand
@findex significandf
@findex significandl
@findex sin
@findex sincos
@findex sincosf
@findex sincosl
@findex sinf
@findex sinh
@findex sinhf
@findex sinhl
@findex sinl
@findex snprintf
@findex sprintf
@findex sqrt
@findex sqrtf
@findex sqrtl
@findex sscanf
@findex stpcpy
@findex stpncpy
@findex strcasecmp
@findex strcat
@findex strchr
@findex strcmp
@findex strcpy
@findex strcspn
@findex strdup
@findex strfmon
@findex strftime
@findex strlen
@findex strncasecmp
@findex strncat
@findex strncmp
@findex strncpy
@findex strndup
@findex strnlen
@findex strpbrk
@findex strrchr
@findex strspn
@findex strstr
@findex tan
@findex tanf
@findex tanh
@findex tanhf
@findex tanhl
@findex tanl
@findex tgamma
@findex tgammaf
@findex tgammal
@findex toascii
@findex tolower
@findex toupper
@findex towlower
@findex towupper
@findex trunc
@findex truncf
@findex truncl
@findex vfprintf
@findex vfscanf
@findex vprintf
@findex vscanf
@findex vsnprintf
@findex vsprintf
@findex vsscanf
@findex y0
@findex y0f
@findex y0l
@findex y1
@findex y1f
@findex y1l
@findex yn
@findex ynf
@findex ynl
GCC provides a large number of built-in functions other than the ones
mentioned above. Some of these are for internal use in the processing
of exceptions or variable-length argument lists and are not
documented here because they may change from time to time; we do not
recommend general use of these functions.
The remaining functions are provided for optimization purposes.
With the exception of built-ins that have library equivalents such as
the standard C library functions discussed below, or that expand to
library calls, GCC built-in functions are always expanded inline and
thus do not have corresponding entry points and their address cannot
be obtained. Attempting to use them in an expression other than
a function call results in a compile-time error.
@opindex fno-builtin
GCC includes built-in versions of many of the functions in the standard
C library. These functions come in two forms: one whose names start with
the @code{__builtin_} prefix, and the other without. Both forms have the
same type (including prototype), the same address (when their address is
taken), and the same meaning as the C library functions even if you specify
the @option{-fno-builtin} option @pxref{C Dialect Options}). Many of these
functions are only optimized in certain cases; if they are not optimized in
a particular case, a call to the library function is emitted.
@opindex ansi
@opindex std
Outside strict ISO C mode (@option{-ansi}, @option{-std=c90},
@option{-std=c99} or @option{-std=c11}), the functions
@code{_exit}, @code{alloca}, @code{bcmp}, @code{bzero},
@code{dcgettext}, @code{dgettext}, @code{dremf}, @code{dreml},
@code{drem}, @code{exp10f}, @code{exp10l}, @code{exp10}, @code{ffsll},
@code{ffsl}, @code{ffs}, @code{fprintf_unlocked},
@code{fputs_unlocked}, @code{gammaf}, @code{gammal}, @code{gamma},
@code{gammaf_r}, @code{gammal_r}, @code{gamma_r}, @code{gettext},
@code{index}, @code{isascii}, @code{j0f}, @code{j0l}, @code{j0},
@code{j1f}, @code{j1l}, @code{j1}, @code{jnf}, @code{jnl}, @code{jn},
@code{lgammaf_r}, @code{lgammal_r}, @code{lgamma_r}, @code{mempcpy},
@code{pow10f}, @code{pow10l}, @code{pow10}, @code{printf_unlocked},
@code{rindex}, @code{roundeven}, @code{roundevenf}, @code{roundevenl},
@code{scalbf}, @code{scalbl}, @code{scalb},
@code{signbit}, @code{signbitf}, @code{signbitl}, @code{signbitd32},
@code{signbitd64}, @code{signbitd128}, @code{significandf},
@code{significandl}, @code{significand}, @code{sincosf},
@code{sincosl}, @code{sincos}, @code{stpcpy}, @code{stpncpy},
@code{strcasecmp}, @code{strdup}, @code{strfmon}, @code{strncasecmp},
@code{strndup}, @code{strnlen}, @code{toascii}, @code{y0f}, @code{y0l},
@code{y0}, @code{y1f}, @code{y1l}, @code{y1}, @code{ynf}, @code{ynl} and
@code{yn}
may be handled as built-in functions.
All these functions have corresponding versions
prefixed with @code{__builtin_}, which may be used even in strict C90
mode.
The ISO C99 functions
@code{_Exit}, @code{acoshf}, @code{acoshl}, @code{acosh}, @code{asinhf},
@code{asinhl}, @code{asinh}, @code{atanhf}, @code{atanhl}, @code{atanh},
@code{cabsf}, @code{cabsl}, @code{cabs}, @code{cacosf}, @code{cacoshf},
@code{cacoshl}, @code{cacosh}, @code{cacosl}, @code{cacos},
@code{cargf}, @code{cargl}, @code{carg}, @code{casinf}, @code{casinhf},
@code{casinhl}, @code{casinh}, @code{casinl}, @code{casin},
@code{catanf}, @code{catanhf}, @code{catanhl}, @code{catanh},
@code{catanl}, @code{catan}, @code{cbrtf}, @code{cbrtl}, @code{cbrt},
@code{ccosf}, @code{ccoshf}, @code{ccoshl}, @code{ccosh}, @code{ccosl},
@code{ccos}, @code{cexpf}, @code{cexpl}, @code{cexp}, @code{cimagf},
@code{cimagl}, @code{cimag}, @code{clogf}, @code{clogl}, @code{clog},
@code{conjf}, @code{conjl}, @code{conj}, @code{copysignf}, @code{copysignl},
@code{copysign}, @code{cpowf}, @code{cpowl}, @code{cpow}, @code{cprojf},
@code{cprojl}, @code{cproj}, @code{crealf}, @code{creall}, @code{creal},
@code{csinf}, @code{csinhf}, @code{csinhl}, @code{csinh}, @code{csinl},
@code{csin}, @code{csqrtf}, @code{csqrtl}, @code{csqrt}, @code{ctanf},
@code{ctanhf}, @code{ctanhl}, @code{ctanh}, @code{ctanl}, @code{ctan},
@code{erfcf}, @code{erfcl}, @code{erfc}, @code{erff}, @code{erfl},
@code{erf}, @code{exp2f}, @code{exp2l}, @code{exp2}, @code{expm1f},
@code{expm1l}, @code{expm1}, @code{fdimf}, @code{fdiml}, @code{fdim},
@code{fmaf}, @code{fmal}, @code{fmaxf}, @code{fmaxl}, @code{fmax},
@code{fma}, @code{fminf}, @code{fminl}, @code{fmin}, @code{hypotf},
@code{hypotl}, @code{hypot}, @code{ilogbf}, @code{ilogbl}, @code{ilogb},
@code{imaxabs}, @code{isblank}, @code{iswblank}, @code{lgammaf},
@code{lgammal}, @code{lgamma}, @code{llabs}, @code{llrintf}, @code{llrintl},
@code{llrint}, @code{llroundf}, @code{llroundl}, @code{llround},
@code{log1pf}, @code{log1pl}, @code{log1p}, @code{log2f}, @code{log2l},
@code{log2}, @code{logbf}, @code{logbl}, @code{logb}, @code{lrintf},
@code{lrintl}, @code{lrint}, @code{lroundf}, @code{lroundl},
@code{lround}, @code{nearbyintf}, @code{nearbyintl}, @code{nearbyint},
@code{nextafterf}, @code{nextafterl}, @code{nextafter},
@code{nexttowardf}, @code{nexttowardl}, @code{nexttoward},
@code{remainderf}, @code{remainderl}, @code{remainder}, @code{remquof},
@code{remquol}, @code{remquo}, @code{rintf}, @code{rintl}, @code{rint},
@code{roundf}, @code{roundl}, @code{round}, @code{scalblnf},
@code{scalblnl}, @code{scalbln}, @code{scalbnf}, @code{scalbnl},
@code{scalbn}, @code{snprintf}, @code{tgammaf}, @code{tgammal},
@code{tgamma}, @code{truncf}, @code{truncl}, @code{trunc},
@code{vfscanf}, @code{vscanf}, @code{vsnprintf} and @code{vsscanf}
are handled as built-in functions
except in strict ISO C90 mode (@option{-ansi} or @option{-std=c90}).
There are also built-in versions of the ISO C99 functions
@code{acosf}, @code{acosl}, @code{asinf}, @code{asinl}, @code{atan2f},
@code{atan2l}, @code{atanf}, @code{atanl}, @code{ceilf}, @code{ceill},
@code{cosf}, @code{coshf}, @code{coshl}, @code{cosl}, @code{expf},
@code{expl}, @code{fabsf}, @code{fabsl}, @code{floorf}, @code{floorl},
@code{fmodf}, @code{fmodl}, @code{frexpf}, @code{frexpl}, @code{ldexpf},
@code{ldexpl}, @code{log10f}, @code{log10l}, @code{logf}, @code{logl},
@code{modfl}, @code{modff}, @code{powf}, @code{powl}, @code{sinf},
@code{sinhf}, @code{sinhl}, @code{sinl}, @code{sqrtf}, @code{sqrtl},
@code{tanf}, @code{tanhf}, @code{tanhl} and @code{tanl}
that are recognized in any mode since ISO C90 reserves these names for
the purpose to which ISO C99 puts them. All these functions have
corresponding versions prefixed with @code{__builtin_}.
There are also built-in functions @code{__builtin_fabsf@var{n}},
@code{__builtin_fabsf@var{n}x}, @code{__builtin_copysignf@var{n}} and
@code{__builtin_copysignf@var{n}x}, corresponding to the TS 18661-3
functions @code{fabsf@var{n}}, @code{fabsf@var{n}x},
@code{copysignf@var{n}} and @code{copysignf@var{n}x}, for supported
types @code{_Float@var{n}} and @code{_Float@var{n}x}.
There are also GNU extension functions @code{clog10}, @code{clog10f} and
@code{clog10l} which names are reserved by ISO C99 for future use.
All these functions have versions prefixed with @code{__builtin_}.
The ISO C94 functions
@code{iswalnum}, @code{iswalpha}, @code{iswcntrl}, @code{iswdigit},
@code{iswgraph}, @code{iswlower}, @code{iswprint}, @code{iswpunct},
@code{iswspace}, @code{iswupper}, @code{iswxdigit}, @code{towlower} and
@code{towupper}
are handled as built-in functions
except in strict ISO C90 mode (@option{-ansi} or @option{-std=c90}).
The ISO C90 functions
@code{abort}, @code{abs}, @code{acos}, @code{asin}, @code{atan2},
@code{atan}, @code{calloc}, @code{ceil}, @code{cosh}, @code{cos},
@code{exit}, @code{exp}, @code{fabs}, @code{floor}, @code{fmod},
@code{fprintf}, @code{fputs}, @code{free}, @code{frexp}, @code{fscanf},
@code{isalnum}, @code{isalpha}, @code{iscntrl}, @code{isdigit},
@code{isgraph}, @code{islower}, @code{isprint}, @code{ispunct},
@code{isspace}, @code{isupper}, @code{isxdigit}, @code{tolower},
@code{toupper}, @code{labs}, @code{ldexp}, @code{log10}, @code{log},
@code{malloc}, @code{memchr}, @code{memcmp}, @code{memcpy},
@code{memset}, @code{modf}, @code{pow}, @code{printf}, @code{putchar},
@code{puts}, @code{realloc}, @code{scanf}, @code{sinh}, @code{sin},
@code{snprintf}, @code{sprintf}, @code{sqrt}, @code{sscanf}, @code{strcat},
@code{strchr}, @code{strcmp}, @code{strcpy}, @code{strcspn},
@code{strlen}, @code{strncat}, @code{strncmp}, @code{strncpy},
@code{strpbrk}, @code{strrchr}, @code{strspn}, @code{strstr},
@code{tanh}, @code{tan}, @code{vfprintf}, @code{vprintf} and @code{vsprintf}
are all recognized as built-in functions unless
@option{-fno-builtin} is specified (or @option{-fno-builtin-@var{function}}
is specified for an individual function). All of these functions have
corresponding versions prefixed with @code{__builtin_}.
GCC provides built-in versions of the ISO C99 floating-point comparison
macros that avoid raising exceptions for unordered operands. They have
the same names as the standard macros ( @code{isgreater},
@code{isgreaterequal}, @code{isless}, @code{islessequal},
@code{islessgreater}, and @code{isunordered}) , with @code{__builtin_}
prefixed. We intend for a library implementor to be able to simply
@code{#define} each standard macro to its built-in equivalent.
In the same fashion, GCC provides @code{fpclassify}, @code{isfinite},
@code{isinf_sign}, @code{isnormal} and @code{signbit} built-ins used with
@code{__builtin_} prefixed. The @code{isinf} and @code{isnan}
built-in functions appear both with and without the @code{__builtin_} prefix.
GCC provides built-in versions of the ISO C99 floating-point rounding and
exceptions handling functions @code{fegetround}, @code{feclearexcept} and
@code{feraiseexcept}. They may not be available for all targets, and because
they need close interaction with libc internal values, they may not be available
for all target libcs, but in all cases they will gracefully fallback to libc
calls. These built-in functions appear both with and without the
@code{__builtin_} prefix.
@deftypefn {Built-in Function} void *__builtin_alloca (size_t size)
The @code{__builtin_alloca} function must be called at block scope.
The function allocates an object @var{size} bytes large on the stack
of the calling function. The object is aligned on the default stack
alignment boundary for the target determined by the
@code{__BIGGEST_ALIGNMENT__} macro. The @code{__builtin_alloca}
function returns a pointer to the first byte of the allocated object.
The lifetime of the allocated object ends just before the calling
function returns to its caller. This is so even when
@code{__builtin_alloca} is called within a nested block.
For example, the following function allocates eight objects of @code{n}
bytes each on the stack, storing a pointer to each in consecutive elements
of the array @code{a}. It then passes the array to function @code{g}
which can safely use the storage pointed to by each of the array elements.
@smallexample
void f (unsigned n)
@{
void *a [8];
for (int i = 0; i != 8; ++i)
a [i] = __builtin_alloca (n);
g (a, n); // @r{safe}
@}
@end smallexample
Since the @code{__builtin_alloca} function doesn't validate its argument
it is the responsibility of its caller to make sure the argument doesn't
cause it to exceed the stack size limit.
The @code{__builtin_alloca} function is provided to make it possible to
allocate on the stack arrays of bytes with an upper bound that may be
computed at run time. Since C99 Variable Length Arrays offer
similar functionality under a portable, more convenient, and safer
interface they are recommended instead, in both C99 and C++ programs
where GCC provides them as an extension.
@xref{Variable Length}, for details.
@end deftypefn
@deftypefn {Built-in Function} void *__builtin_alloca_with_align (size_t size, size_t alignment)
The @code{__builtin_alloca_with_align} function must be called at block
scope. The function allocates an object @var{size} bytes large on
the stack of the calling function. The allocated object is aligned on
the boundary specified by the argument @var{alignment} whose unit is given
in bits (not bytes). The @var{size} argument must be positive and not
exceed the stack size limit. The @var{alignment} argument must be a constant
integer expression that evaluates to a power of 2 greater than or equal to
@code{CHAR_BIT} and less than some unspecified maximum. Invocations
with other values are rejected with an error indicating the valid bounds.
The function returns a pointer to the first byte of the allocated object.
The lifetime of the allocated object ends at the end of the block in which
the function was called. The allocated storage is released no later than
just before the calling function returns to its caller, but may be released
at the end of the block in which the function was called.
For example, in the following function the call to @code{g} is unsafe
because when @code{overalign} is non-zero, the space allocated by
@code{__builtin_alloca_with_align} may have been released at the end
of the @code{if} statement in which it was called.
@smallexample
void f (unsigned n, bool overalign)
@{
void *p;
if (overalign)
p = __builtin_alloca_with_align (n, 64 /* bits */);
else
p = __builtin_alloc (n);
g (p, n); // @r{unsafe}
@}
@end smallexample
Since the @code{__builtin_alloca_with_align} function doesn't validate its
@var{size} argument it is the responsibility of its caller to make sure
the argument doesn't cause it to exceed the stack size limit.
The @code{__builtin_alloca_with_align} function is provided to make
it possible to allocate on the stack overaligned arrays of bytes with
an upper bound that may be computed at run time. Since C99
Variable Length Arrays offer the same functionality under
a portable, more convenient, and safer interface they are recommended
instead, in both C99 and C++ programs where GCC provides them as
an extension. @xref{Variable Length}, for details.
@end deftypefn
@deftypefn {Built-in Function} void *__builtin_alloca_with_align_and_max (size_t size, size_t alignment, size_t max_size)
Similar to @code{__builtin_alloca_with_align} but takes an extra argument
specifying an upper bound for @var{size} in case its value cannot be computed
at compile time, for use by @option{-fstack-usage}, @option{-Wstack-usage}
and @option{-Walloca-larger-than}. @var{max_size} must be a constant integer
expression, it has no effect on code generation and no attempt is made to
check its compatibility with @var{size}.
@end deftypefn
@deftypefn {Built-in Function} bool __builtin_has_attribute (@var{type-or-expression}, @var{attribute})
The @code{__builtin_has_attribute} function evaluates to an integer constant
expression equal to @code{true} if the symbol or type referenced by
the @var{type-or-expression} argument has been declared with
the @var{attribute} referenced by the second argument. For
an @var{type-or-expression} argument that does not reference a symbol,
since attributes do not apply to expressions the built-in consider
the type of the argument. Neither argument is evaluated.
The @var{type-or-expression} argument is subject to the same
restrictions as the argument to @code{typeof} (@pxref{Typeof}). The
@var{attribute} argument is an attribute name optionally followed by
a comma-separated list of arguments enclosed in parentheses. Both forms
of attribute names---with and without double leading and trailing
underscores---are recognized. @xref{Attribute Syntax}, for details.
When no attribute arguments are specified for an attribute that expects
one or more arguments the function returns @code{true} if
@var{type-or-expression} has been declared with the attribute regardless
of the attribute argument values. Arguments provided for an attribute
that expects some are validated and matched up to the provided number.
The function returns @code{true} if all provided arguments match. For
example, the first call to the function below evaluates to @code{true}
because @code{x} is declared with the @code{aligned} attribute but
the second call evaluates to @code{false} because @code{x} is declared
@code{aligned (8)} and not @code{aligned (4)}.
@smallexample
__attribute__ ((aligned (8))) int x;
_Static_assert (__builtin_has_attribute (x, aligned), "aligned");
_Static_assert (!__builtin_has_attribute (x, aligned (4)), "aligned (4)");
@end smallexample
Due to a limitation the @code{__builtin_has_attribute} function returns
@code{false} for the @code{mode} attribute even if the type or variable
referenced by the @var{type-or-expression} argument was declared with one.
The function is also not supported with labels, and in C with enumerators.
Note that unlike the @code{__has_attribute} preprocessor operator which
is suitable for use in @code{#if} preprocessing directives
@code{__builtin_has_attribute} is an intrinsic function that is not
recognized in such contexts.
@end deftypefn
@deftypefn {Built-in Function} @var{type} __builtin_speculation_safe_value (@var{type} val, @var{type} failval)
This built-in function can be used to help mitigate against unsafe
speculative execution. @var{type} may be any integral type or any
pointer type.
@enumerate
@item
If the CPU is not speculatively executing the code, then @var{val}
is returned.
@item
If the CPU is executing speculatively then either:
@itemize
@item
The function may cause execution to pause until it is known that the
code is no-longer being executed speculatively (in which case
@var{val} can be returned, as above); or
@item
The function may use target-dependent speculation tracking state to cause
@var{failval} to be returned when it is known that speculative
execution has incorrectly predicted a conditional branch operation.
@end itemize
@end enumerate
The second argument, @var{failval}, is optional and defaults to zero
if omitted.
GCC defines the preprocessor macro
@code{__HAVE_BUILTIN_SPECULATION_SAFE_VALUE} for targets that have been
updated to support this builtin.
The built-in function can be used where a variable appears to be used in a
safe way, but the CPU, due to speculative execution may temporarily ignore
the bounds checks. Consider, for example, the following function:
@smallexample
int array[500];
int f (unsigned untrusted_index)
@{
if (untrusted_index < 500)
return array[untrusted_index];
return 0;
@}
@end smallexample
If the function is called repeatedly with @code{untrusted_index} less
than the limit of 500, then a branch predictor will learn that the
block of code that returns a value stored in @code{array} will be
executed. If the function is subsequently called with an
out-of-range value it will still try to execute that block of code
first until the CPU determines that the prediction was incorrect
(the CPU will unwind any incorrect operations at that point).
However, depending on how the result of the function is used, it might be
possible to leave traces in the cache that can reveal what was stored
at the out-of-bounds location. The built-in function can be used to
provide some protection against leaking data in this way by changing
the code to:
@smallexample
int array[500];
int f (unsigned untrusted_index)
@{
if (untrusted_index < 500)
return array[__builtin_speculation_safe_value (untrusted_index)];
return 0;
@}
@end smallexample
The built-in function will either cause execution to stall until the
conditional branch has been fully resolved, or it may permit
speculative execution to continue, but using 0 instead of
@code{untrusted_value} if that exceeds the limit.
If accessing any memory location is potentially unsafe when speculative
execution is incorrect, then the code can be rewritten as
@smallexample
int array[500];
int f (unsigned untrusted_index)
@{
if (untrusted_index < 500)
return *__builtin_speculation_safe_value (&array[untrusted_index], NULL);
return 0;
@}
@end smallexample
which will cause a @code{NULL} pointer to be used for the unsafe case.
@end deftypefn
@deftypefn {Built-in Function} int __builtin_types_compatible_p (@var{type1}, @var{type2})
You can use the built-in function @code{__builtin_types_compatible_p} to
determine whether two types are the same.
This built-in function returns 1 if the unqualified versions of the
types @var{type1} and @var{type2} (which are types, not expressions) are
compatible, 0 otherwise. The result of this built-in function can be
used in integer constant expressions.
This built-in function ignores top level qualifiers (e.g., @code{const},
@code{volatile}). For example, @code{int} is equivalent to @code{const
int}.
The type @code{int[]} and @code{int[5]} are compatible. On the other
hand, @code{int} and @code{char *} are not compatible, even if the size
of their types, on the particular architecture are the same. Also, the
amount of pointer indirection is taken into account when determining
similarity. Consequently, @code{short *} is not similar to
@code{short **}. Furthermore, two types that are typedefed are
considered compatible if their underlying types are compatible.
An @code{enum} type is not considered to be compatible with another
@code{enum} type even if both are compatible with the same integer
type; this is what the C standard specifies.
For example, @code{enum @{foo, bar@}} is not similar to
@code{enum @{hot, dog@}}.
You typically use this function in code whose execution varies
depending on the arguments' types. For example:
@smallexample
#define foo(x) \
(@{ \
typeof (x) tmp = (x); \
if (__builtin_types_compatible_p (typeof (x), long double)) \
tmp = foo_long_double (tmp); \
else if (__builtin_types_compatible_p (typeof (x), double)) \
tmp = foo_double (tmp); \
else if (__builtin_types_compatible_p (typeof (x), float)) \
tmp = foo_float (tmp); \
else \
abort (); \
tmp; \
@})
@end smallexample
@emph{Note:} This construct is only available for C@.
@end deftypefn
@deftypefn {Built-in Function} @var{type} __builtin_call_with_static_chain (@var{call_exp}, @var{pointer_exp})
The @var{call_exp} expression must be a function call, and the
@var{pointer_exp} expression must be a pointer. The @var{pointer_exp}
is passed to the function call in the target's static chain location.
The result of builtin is the result of the function call.
@emph{Note:} This builtin is only available for C@.
This builtin can be used to call Go closures from C.
@end deftypefn
@deftypefn {Built-in Function} @var{type} __builtin_choose_expr (@var{const_exp}, @var{exp1}, @var{exp2})
You can use the built-in function @code{__builtin_choose_expr} to
evaluate code depending on the value of a constant expression. This
built-in function returns @var{exp1} if @var{const_exp}, which is an
integer constant expression, is nonzero. Otherwise it returns @var{exp2}.
This built-in function is analogous to the @samp{? :} operator in C,
except that the expression returned has its type unaltered by promotion
rules. Also, the built-in function does not evaluate the expression
that is not chosen. For example, if @var{const_exp} evaluates to @code{true},
@var{exp2} is not evaluated even if it has side effects.
This built-in function can return an lvalue if the chosen argument is an
lvalue.
If @var{exp1} is returned, the return type is the same as @var{exp1}'s
type. Similarly, if @var{exp2} is returned, its return type is the same
as @var{exp2}.
Example:
@smallexample
#define foo(x) \
__builtin_choose_expr ( \
__builtin_types_compatible_p (typeof (x), double), \
foo_double (x), \
__builtin_choose_expr ( \
__builtin_types_compatible_p (typeof (x), float), \
foo_float (x), \
/* @r{The void expression results in a compile-time error} \
@r{when assigning the result to something.} */ \
(void)0))
@end smallexample
@emph{Note:} This construct is only available for C@. Furthermore, the
unused expression (@var{exp1} or @var{exp2} depending on the value of
@var{const_exp}) may still generate syntax errors. This may change in
future revisions.
@end deftypefn
@deftypefn {Built-in Function} @var{type} __builtin_tgmath (@var{functions}, @var{arguments})
The built-in function @code{__builtin_tgmath}, available only for C
and Objective-C, calls a function determined according to the rules of
@code{<tgmath.h>} macros. It is intended to be used in
implementations of that header, so that expansions of macros from that
header only expand each of their arguments once, to avoid problems
when calls to such macros are nested inside the arguments of other
calls to such macros; in addition, it results in better diagnostics
for invalid calls to @code{<tgmath.h>} macros than implementations
using other GNU C language features. For example, the @code{pow}
type-generic macro might be defined as:
@smallexample
#define pow(a, b) __builtin_tgmath (powf, pow, powl, \
cpowf, cpow, cpowl, a, b)
@end smallexample
The arguments to @code{__builtin_tgmath} are at least two pointers to
functions, followed by the arguments to the type-generic macro (which
will be passed as arguments to the selected function). All the
pointers to functions must be pointers to prototyped functions, none
of which may have variable arguments, and all of which must have the
same number of parameters; the number of parameters of the first
function determines how many arguments to @code{__builtin_tgmath} are
interpreted as function pointers, and how many as the arguments to the
called function.
The types of the specified functions must all be different, but
related to each other in the same way as a set of functions that may
be selected between by a macro in @code{<tgmath.h>}. This means that
the functions are parameterized by a floating-point type @var{t},
different for each such function. The function return types may all
be the same type, or they may be @var{t} for each function, or they
may be the real type corresponding to @var{t} for each function (if
some of the types @var{t} are complex). Likewise, for each parameter
position, the type of the parameter in that position may always be the
same type, or may be @var{t} for each function (this case must apply
for at least one parameter position), or may be the real type
corresponding to @var{t} for each function.
The standard rules for @code{<tgmath.h>} macros are used to find a
common type @var{u} from the types of the arguments for parameters
whose types vary between the functions; complex integer types (a GNU
extension) are treated like @code{_Complex double} for this purpose
(or @code{_Complex _Float64} if all the function return types are the
same @code{_Float@var{n}} or @code{_Float@var{n}x} type).
If the function return types vary, or are all the same integer type,
the function called is the one for which @var{t} is @var{u}, and it is
an error if there is no such function. If the function return types
are all the same floating-point type, the type-generic macro is taken
to be one of those from TS 18661 that rounds the result to a narrower
type; if there is a function for which @var{t} is @var{u}, it is
called, and otherwise the first function, if any, for which @var{t}
has at least the range and precision of @var{u} is called, and it is
an error if there is no such function.
@end deftypefn
@deftypefn {Built-in Function} int __builtin_constant_p (@var{exp})
You can use the built-in function @code{__builtin_constant_p} to
determine if a value is known to be constant at compile time and hence
that GCC can perform constant-folding on expressions involving that
value. The argument of the function is the value to test. The function
returns the integer 1 if the argument is known to be a compile-time
constant and 0 if it is not known to be a compile-time constant. A
return of 0 does not indicate that the value is @emph{not} a constant,
but merely that GCC cannot prove it is a constant with the specified
value of the @option{-O} option.
You typically use this function in an embedded application where
memory is a critical resource. If you have some complex calculation,
you may want it to be folded if it involves constants, but need to call
a function if it does not. For example:
@smallexample
#define Scale_Value(X) \
(__builtin_constant_p (X) \
? ((X) * SCALE + OFFSET) : Scale (X))
@end smallexample
You may use this built-in function in either a macro or an inline
function. However, if you use it in an inlined function and pass an
argument of the function as the argument to the built-in, GCC
never returns 1 when you call the inline function with a string constant
or compound literal (@pxref{Compound Literals}) and does not return 1
when you pass a constant numeric value to the inline function unless you
specify the @option{-O} option.
You may also use @code{__builtin_constant_p} in initializers for static
data. For instance, you can write
@smallexample
static const int table[] = @{
__builtin_constant_p (EXPRESSION) ? (EXPRESSION) : -1,
/* @r{@dots{}} */
@};
@end smallexample
@noindent
This is an acceptable initializer even if @var{EXPRESSION} is not a
constant expression, including the case where
@code{__builtin_constant_p} returns 1 because @var{EXPRESSION} can be
folded to a constant but @var{EXPRESSION} contains operands that are
not otherwise permitted in a static initializer (for example,
@code{0 && foo ()}). GCC must be more conservative about evaluating the
built-in in this case, because it has no opportunity to perform
optimization.
@end deftypefn
@deftypefn {Built-in Function} bool __builtin_is_constant_evaluated (void)
The @code{__builtin_is_constant_evaluated} function is available only
in C++. The built-in is intended to be used by implementations of
the @code{std::is_constant_evaluated} C++ function. Programs should make
use of the latter function rather than invoking the built-in directly.
The main use case of the built-in is to determine whether a @code{constexpr}
function is being called in a @code{constexpr} context. A call to
the function evaluates to a core constant expression with the value
@code{true} if and only if it occurs within the evaluation of an expression
or conversion that is manifestly constant-evaluated as defined in the C++
standard. Manifestly constant-evaluated contexts include constant-expressions,
the conditions of @code{constexpr if} statements, constraint-expressions, and
initializers of variables usable in constant expressions. For more details
refer to the latest revision of the C++ standard.
@end deftypefn
@deftypefn {Built-in Function} void __builtin_clear_padding (@var{ptr})
The built-in function @code{__builtin_clear_padding} function clears
padding bits inside of the object representation of object pointed by
@var{ptr}, which has to be a pointer. The value representation of the
object is not affected. The type of the object is assumed to be the type
the pointer points to. Inside of a union, the only cleared bits are
bits that are padding bits for all the union members.
This built-in-function is useful if the padding bits of an object might
have intederminate values and the object representation needs to be
bitwise compared to some other object, for example for atomic operations.
For C++, @var{ptr} argument type should be pointer to trivially-copyable
type, unless the argument is address of a variable or parameter, because
otherwise it isn't known if the type isn't just a base class whose padding
bits are reused or laid out differently in a derived class.
@end deftypefn
@deftypefn {Built-in Function} @var{type} __builtin_bit_cast (@var{type}, @var{arg})
The @code{__builtin_bit_cast} function is available only
in C++. The built-in is intended to be used by implementations of
the @code{std::bit_cast} C++ template function. Programs should make
use of the latter function rather than invoking the built-in directly.
This built-in function allows reinterpreting the bits of the @var{arg}
argument as if it had type @var{type}. @var{type} and the type of the
@var{arg} argument need to be trivially copyable types with the same size.
When manifestly constant-evaluated, it performs extra diagnostics required
for @code{std::bit_cast} and returns a constant expression if @var{arg}
is a constant expression. For more details
refer to the latest revision of the C++ standard.
@end deftypefn
@deftypefn {Built-in Function} long __builtin_expect (long @var{exp}, long @var{c})
@opindex fprofile-arcs
You may use @code{__builtin_expect} to provide the compiler with
branch prediction information. In general, you should prefer to
use actual profile feedback for this (@option{-fprofile-arcs}), as
programmers are notoriously bad at predicting how their programs
actually perform. However, there are applications in which this
data is hard to collect.
The return value is the value of @var{exp}, which should be an integral
expression. The semantics of the built-in are that it is expected that
@var{exp} == @var{c}. For example:
@smallexample
if (__builtin_expect (x, 0))
foo ();
@end smallexample
@noindent
indicates that we do not expect to call @code{foo}, since
we expect @code{x} to be zero. Since you are limited to integral
expressions for @var{exp}, you should use constructions such as
@smallexample
if (__builtin_expect (ptr != NULL, 1))
foo (*ptr);
@end smallexample
@noindent
when testing pointer or floating-point values.
For the purposes of branch prediction optimizations, the probability that
a @code{__builtin_expect} expression is @code{true} is controlled by GCC's
@code{builtin-expect-probability} parameter, which defaults to 90%.
You can also use @code{__builtin_expect_with_probability} to explicitly
assign a probability value to individual expressions. If the built-in
is used in a loop construct, the provided probability will influence
the expected number of iterations made by loop optimizations.
@end deftypefn
@deftypefn {Built-in Function} long __builtin_expect_with_probability
(long @var{exp}, long @var{c}, double @var{probability})
This function has the same semantics as @code{__builtin_expect},
but the caller provides the expected probability that @var{exp} == @var{c}.
The last argument, @var{probability}, is a floating-point value in the
range 0.0 to 1.0, inclusive. The @var{probability} argument must be
constant floating-point expression.
@end deftypefn
@deftypefn {Built-in Function} void __builtin_trap (void)
This function causes the program to exit abnormally. GCC implements
this function by using a target-dependent mechanism (such as
intentionally executing an illegal instruction) or by calling
@code{abort}. The mechanism used may vary from release to release so
you should not rely on any particular implementation.
@end deftypefn
@deftypefn {Built-in Function} void __builtin_unreachable (void)
If control flow reaches the point of the @code{__builtin_unreachable},
the program is undefined. It is useful in situations where the
compiler cannot deduce the unreachability of the code.
One such case is immediately following an @code{asm} statement that
either never terminates, or one that transfers control elsewhere
and never returns. In this example, without the
@code{__builtin_unreachable}, GCC issues a warning that control
reaches the end of a non-void function. It also generates code
to return after the @code{asm}.
@smallexample
int f (int c, int v)
@{
if (c)
@{
return v;
@}
else
@{
asm("jmp error_handler");
__builtin_unreachable ();
@}
@}
@end smallexample
@noindent
Because the @code{asm} statement unconditionally transfers control out
of the function, control never reaches the end of the function
body. The @code{__builtin_unreachable} is in fact unreachable and
communicates this fact to the compiler.
Another use for @code{__builtin_unreachable} is following a call a
function that never returns but that is not declared
@code{__attribute__((noreturn))}, as in this example:
@smallexample
void function_that_never_returns (void);
int g (int c)
@{
if (c)
@{
return 1;
@}
else
@{
function_that_never_returns ();
__builtin_unreachable ();
@}
@}
@end smallexample
@end deftypefn
@deftypefn {Built-in Function} @var{type} __builtin_assoc_barrier (@var{type} @var{expr})
This built-in inhibits re-association of the floating-point expression
@var{expr} with expressions consuming the return value of the built-in. The
expression @var{expr} itself can be reordered, and the whole expression
@var{expr} can be reordered with operands after the barrier. The barrier is
only relevant when @code{-fassociative-math} is active, since otherwise
floating-point is not treated as associative.
@smallexample
float x0 = a + b - b;
float x1 = __builtin_assoc_barrier(a + b) - b;
@end smallexample
@noindent
means that, with @code{-fassociative-math}, @code{x0} can be optimized to
@code{x0 = a} but @code{x1} cannot.
@end deftypefn
@deftypefn {Built-in Function} {void *} __builtin_assume_aligned (const void *@var{exp}, size_t @var{align}, ...)
This function returns its first argument, and allows the compiler
to assume that the returned pointer is at least @var{align} bytes
aligned. This built-in can have either two or three arguments,
if it has three, the third argument should have integer type, and
if it is nonzero means misalignment offset. For example:
@smallexample
void *x = __builtin_assume_aligned (arg, 16);
@end smallexample
@noindent
means that the compiler can assume @code{x}, set to @code{arg}, is at least
16-byte aligned, while:
@smallexample
void *x = __builtin_assume_aligned (arg, 32, 8);
@end smallexample
@noindent
means that the compiler can assume for @code{x}, set to @code{arg}, that
@code{(char *) x - 8} is 32-byte aligned.
@end deftypefn
@deftypefn {Built-in Function} int __builtin_LINE ()
This function is the equivalent of the preprocessor @code{__LINE__}
macro and returns a constant integer expression that evaluates to
the line number of the invocation of the built-in. When used as a C++
default argument for a function @var{F}, it returns the line number
of the call to @var{F}.
@end deftypefn
@deftypefn {Built-in Function} {const char *} __builtin_FUNCTION ()
This function is the equivalent of the @code{__FUNCTION__} symbol
and returns an address constant pointing to the name of the function
from which the built-in was invoked, or the empty string if
the invocation is not at function scope. When used as a C++ default
argument for a function @var{F}, it returns the name of @var{F}'s
caller or the empty string if the call was not made at function
scope.
@end deftypefn
@deftypefn {Built-in Function} {const char *} __builtin_FILE ()
This function is the equivalent of the preprocessor @code{__FILE__}
macro and returns an address constant pointing to the file name
containing the invocation of the built-in, or the empty string if
the invocation is not at function scope. When used as a C++ default
argument for a function @var{F}, it returns the file name of the call
to @var{F} or the empty string if the call was not made at function
scope.
For example, in the following, each call to function @code{foo} will
print a line similar to @code{"file.c:123: foo: message"} with the name
of the file and the line number of the @code{printf} call, the name of
the function @code{foo}, followed by the word @code{message}.
@smallexample
const char*
function (const char *func = __builtin_FUNCTION ())
@{
return func;
@}
void foo (void)
@{
printf ("%s:%i: %s: message\n", file (), line (), function ());
@}
@end smallexample
@end deftypefn
@deftypefn {Built-in Function} void __builtin___clear_cache (void *@var{begin}, void *@var{end})
This function is used to flush the processor's instruction cache for
the region of memory between @var{begin} inclusive and @var{end}
exclusive. Some targets require that the instruction cache be
flushed, after modifying memory containing code, in order to obtain
deterministic behavior.
If the target does not require instruction cache flushes,
@code{__builtin___clear_cache} has no effect. Otherwise either
instructions are emitted in-line to clear the instruction cache or a
call to the @code{__clear_cache} function in libgcc is made.
@end deftypefn
@deftypefn {Built-in Function} void __builtin_prefetch (const void *@var{addr}, ...)
This function is used to minimize cache-miss latency by moving data into
a cache before it is accessed.
You can insert calls to @code{__builtin_prefetch} into code for which
you know addresses of data in memory that is likely to be accessed soon.
If the target supports them, data prefetch instructions are generated.
If the prefetch is done early enough before the access then the data will
be in the cache by the time it is accessed.
The value of @var{addr} is the address of the memory to prefetch.
There are two optional arguments, @var{rw} and @var{locality}.
The value of @var{rw} is a compile-time constant one or zero; one
means that the prefetch is preparing for a write to the memory address
and zero, the default, means that the prefetch is preparing for a read.
The value @var{locality} must be a compile-time constant integer between
zero and three. A value of zero means that the data has no temporal
locality, so it need not be left in the cache after the access. A value
of three means that the data has a high degree of temporal locality and
should be left in all levels of cache possible. Values of one and two
mean, respectively, a low or moderate degree of temporal locality. The
default is three.
@smallexample
for (i = 0; i < n; i++)
@{
a[i] = a[i] + b[i];
__builtin_prefetch (&a[i+j], 1, 1);
__builtin_prefetch (&b[i+j], 0, 1);
/* @r{@dots{}} */
@}
@end smallexample
Data prefetch does not generate faults if @var{addr} is invalid, but
the address expression itself must be valid. For example, a prefetch
of @code{p->next} does not fault if @code{p->next} is not a valid
address, but evaluation faults if @code{p} is not a valid address.
If the target does not support data prefetch, the address expression
is evaluated if it includes side effects but no other code is generated
and GCC does not issue a warning.
@end deftypefn
@deftypefn {Built-in Function}{size_t} __builtin_object_size (const void * @var{ptr}, int @var{type})
Returns the size of an object pointed to by @var{ptr}. @xref{Object Size
Checking}, for a detailed description of the function.
@end deftypefn
@deftypefn {Built-in Function} double __builtin_huge_val (void)
Returns a positive infinity, if supported by the floating-point format,
else @code{DBL_MAX}. This function is suitable for implementing the
ISO C macro @code{HUGE_VAL}.
@end deftypefn
@deftypefn {Built-in Function} float __builtin_huge_valf (void)
Similar to @code{__builtin_huge_val}, except the return type is @code{float}.
@end deftypefn
@deftypefn {Built-in Function} {long double} __builtin_huge_vall (void)
Similar to @code{__builtin_huge_val}, except the return
type is @code{long double}.
@end deftypefn
@deftypefn {Built-in Function} _Float@var{n} __builtin_huge_valf@var{n} (void)
Similar to @code{__builtin_huge_val}, except the return type is
@code{_Float@var{n}}.
@end deftypefn
@deftypefn {Built-in Function} _Float@var{n}x __builtin_huge_valf@var{n}x (void)
Similar to @code{__builtin_huge_val}, except the return type is
@code{_Float@var{n}x}.
@end deftypefn
@deftypefn {Built-in Function} int __builtin_fpclassify (int, int, int, int, int, ...)
This built-in implements the C99 fpclassify functionality. The first
five int arguments should be the target library's notion of the
possible FP classes and are used for return values. They must be
constant values and they must appear in this order: @code{FP_NAN},
@code{FP_INFINITE}, @code{FP_NORMAL}, @code{FP_SUBNORMAL} and
@code{FP_ZERO}. The ellipsis is for exactly one floating-point value
to classify. GCC treats the last argument as type-generic, which
means it does not do default promotion from float to double.
@end deftypefn
@deftypefn {Built-in Function} double __builtin_inf (void)
Similar to @code{__builtin_huge_val}, except a warning is generated
if the target floating-point format does not support infinities.
@end deftypefn
@deftypefn {Built-in Function} _Decimal32 __builtin_infd32 (void)
Similar to @code{__builtin_inf}, except the return type is @code{_Decimal32}.
@end deftypefn
@deftypefn {Built-in Function} _Decimal64 __builtin_infd64 (void)
Similar to @code{__builtin_inf}, except the return type is @code{_Decimal64}.
@end deftypefn
@deftypefn {Built-in Function} _Decimal128 __builtin_infd128 (void)
Similar to @code{__builtin_inf}, except the return type is @code{_Decimal128}.
@end deftypefn
@deftypefn {Built-in Function} float __builtin_inff (void)
Similar to @code{__builtin_inf}, except the return type is @code{float}.
This function is suitable for implementing the ISO C99 macro @code{INFINITY}.
@end deftypefn
@deftypefn {Built-in Function} {long double} __builtin_infl (void)
Similar to @code{__builtin_inf}, except the return
type is @code{long double}.
@end deftypefn
@deftypefn {Built-in Function} _Float@var{n} __builtin_inff@var{n} (void)
Similar to @code{__builtin_inf}, except the return
type is @code{_Float@var{n}}.
@end deftypefn
@deftypefn {Built-in Function} _Float@var{n} __builtin_inff@var{n}x (void)
Similar to @code{__builtin_inf}, except the return
type is @code{_Float@var{n}x}.
@end deftypefn
@deftypefn {Built-in Function} int __builtin_isinf_sign (...)
Similar to @code{isinf}, except the return value is -1 for
an argument of @code{-Inf} and 1 for an argument of @code{+Inf}.
Note while the parameter list is an
ellipsis, this function only accepts exactly one floating-point
argument. GCC treats this parameter as type-generic, which means it
does not do default promotion from float to double.
@end deftypefn
@deftypefn {Built-in Function} double __builtin_nan (const char *str)
This is an implementation of the ISO C99 function @code{nan}.
Since ISO C99 defines this function in terms of @code{strtod}, which we
do not implement, a description of the parsing is in order. The string
is parsed as by @code{strtol}; that is, the base is recognized by
leading @samp{0} or @samp{0x} prefixes. The number parsed is placed
in the significand such that the least significant bit of the number
is at the least significant bit of the significand. The number is
truncated to fit the significand field provided. The significand is
forced to be a quiet NaN@.
This function, if given a string literal all of which would have been
consumed by @code{strtol}, is evaluated early enough that it is considered a
compile-time constant.
@end deftypefn
@deftypefn {Built-in Function} _Decimal32 __builtin_nand32 (const char *str)
Similar to @code{__builtin_nan}, except the return type is @code{_Decimal32}.
@end deftypefn
@deftypefn {Built-in Function} _Decimal64 __builtin_nand64 (const char *str)
Similar to @code{__builtin_nan}, except the return type is @code{_Decimal64}.
@end deftypefn
@deftypefn {Built-in Function} _Decimal128 __builtin_nand128 (const char *str)
Similar to @code{__builtin_nan}, except the return type is @code{_Decimal128}.
@end deftypefn
@deftypefn {Built-in Function} float __builtin_nanf (const char *str)
Similar to @code{__builtin_nan}, except the return type is @code{float}.
@end deftypefn
@deftypefn {Built-in Function} {long double} __builtin_nanl (const char *str)
Similar to @code{__builtin_nan}, except the return type is @code{long double}.
@end deftypefn
@deftypefn {Built-in Function} _Float@var{n} __builtin_nanf@var{n} (const char *str)
Similar to @code{__builtin_nan}, except the return type is
@code{_Float@var{n}}.
@end deftypefn
@deftypefn {Built-in Function} _Float@var{n}x __builtin_nanf@var{n}x (const char *str)
Similar to @code{__builtin_nan}, except the return type is
@code{_Float@var{n}x}.
@end deftypefn
@deftypefn {Built-in Function} double __builtin_nans (const char *str)
Similar to @code{__builtin_nan}, except the significand is forced
to be a signaling NaN@. The @code{nans} function is proposed by
@uref{http://www.open-std.org/jtc1/sc22/wg14/www/docs/n965.htm,,WG14 N965}.
@end deftypefn
@deftypefn {Built-in Function} _Decimal32 __builtin_nansd32 (const char *str)
Similar to @code{__builtin_nans}, except the return type is @code{_Decimal32}.
@end deftypefn
@deftypefn {Built-in Function} _Decimal64 __builtin_nansd64 (const char *str)
Similar to @code{__builtin_nans}, except the return type is @code{_Decimal64}.
@end deftypefn
@deftypefn {Built-in Function} _Decimal128 __builtin_nansd128 (const char *str)
Similar to @code{__builtin_nans}, except the return type is @code{_Decimal128}.
@end deftypefn
@deftypefn {Built-in Function} float __builtin_nansf (const char *str)
Similar to @code{__builtin_nans}, except the return type is @code{float}.
@end deftypefn
@deftypefn {Built-in Function} {long double} __builtin_nansl (const char *str)
Similar to @code{__builtin_nans}, except the return type is @code{long double}.
@end deftypefn
@deftypefn {Built-in Function} _Float@var{n} __builtin_nansf@var{n} (const char *str)
Similar to @code{__builtin_nans}, except the return type is
@code{_Float@var{n}}.
@end deftypefn
@deftypefn {Built-in Function} _Float@var{n}x __builtin_nansf@var{n}x (const char *str)
Similar to @code{__builtin_nans}, except the return type is
@code{_Float@var{n}x}.
@end deftypefn
@deftypefn {Built-in Function} int __builtin_ffs (int x)
Returns one plus the index of the least significant 1-bit of @var{x}, or
if @var{x} is zero, returns zero.
@end deftypefn
@deftypefn {Built-in Function} int __builtin_clz (unsigned int x)
Returns the number of leading 0-bits in @var{x}, starting at the most
significant bit position. If @var{x} is 0, the result is undefined.
@end deftypefn
@deftypefn {Built-in Function} int __builtin_ctz (unsigned int x)
Returns the number of trailing 0-bits in @var{x}, starting at the least
significant bit position. If @var{x} is 0, the result is undefined.
@end deftypefn
@deftypefn {Built-in Function} int __builtin_clrsb (int x)
Returns the number of leading redundant sign bits in @var{x}, i.e.@: the
number of bits following the most significant bit that are identical
to it. There are no special cases for 0 or other values.
@end deftypefn
@deftypefn {Built-in Function} int __builtin_popcount (unsigned int x)
Returns the number of 1-bits in @var{x}.
@end deftypefn
@deftypefn {Built-in Function} int __builtin_parity (unsigned int x)
Returns the parity of @var{x}, i.e.@: the number of 1-bits in @var{x}
modulo 2.
@end deftypefn
@deftypefn {Built-in Function} int __builtin_ffsl (long)
Similar to @code{__builtin_ffs}, except the argument type is
@code{long}.
@end deftypefn
@deftypefn {Built-in Function} int __builtin_clzl (unsigned long)
Similar to @code{__builtin_clz}, except the argument type is
@code{unsigned long}.
@end deftypefn
@deftypefn {Built-in Function} int __builtin_ctzl (unsigned long)
Similar to @code{__builtin_ctz}, except the argument type is
@code{unsigned long}.
@end deftypefn
@deftypefn {Built-in Function} int __builtin_clrsbl (long)
Similar to @code{__builtin_clrsb}, except the argument type is
@code{long}.
@end deftypefn
@deftypefn {Built-in Function} int __builtin_popcountl (unsigned long)
Similar to @code{__builtin_popcount}, except the argument type is
@code{unsigned long}.
@end deftypefn
@deftypefn {Built-in Function} int __builtin_parityl (unsigned long)
Similar to @code{__builtin_parity}, except the argument type is
@code{unsigned long}.
@end deftypefn
@deftypefn {Built-in Function} int __builtin_ffsll (long long)
Similar to @code{__builtin_ffs}, except the argument type is
@code{long long}.
@end deftypefn
@deftypefn {Built-in Function} int __builtin_clzll (unsigned long long)
Similar to @code{__builtin_clz}, except the argument type is
@code{unsigned long long}.
@end deftypefn
@deftypefn {Built-in Function} int __builtin_ctzll (unsigned long long)
Similar to @code{__builtin_ctz}, except the argument type is
@code{unsigned long long}.
@end deftypefn
@deftypefn {Built-in Function} int __builtin_clrsbll (long long)
Similar to @code{__builtin_clrsb}, except the argument type is
@code{long long}.
@end deftypefn
@deftypefn {Built-in Function} int __builtin_popcountll (unsigned long long)
Similar to @code{__builtin_popcount}, except the argument type is
@code{unsigned long long}.
@end deftypefn
@deftypefn {Built-in Function} int __builtin_parityll (unsigned long long)
Similar to @code{__builtin_parity}, except the argument type is
@code{unsigned long long}.
@end deftypefn
@deftypefn {Built-in Function} double __builtin_powi (double, int)
Returns the first argument raised to the power of the second. Unlike the
@code{pow} function no guarantees about precision and rounding are made.
@end deftypefn
@deftypefn {Built-in Function} float __builtin_powif (float, int)
Similar to @code{__builtin_powi}, except the argument and return types
are @code{float}.
@end deftypefn
@deftypefn {Built-in Function} {long double} __builtin_powil (long double, int)
Similar to @code{__builtin_powi}, except the argument and return types
are @code{long double}.
@end deftypefn
@deftypefn {Built-in Function} uint16_t __builtin_bswap16 (uint16_t x)
Returns @var{x} with the order of the bytes reversed; for example,
@code{0xaabb} becomes @code{0xbbaa}. Byte here always means
exactly 8 bits.
@end deftypefn
@deftypefn {Built-in Function} uint32_t __builtin_bswap32 (uint32_t x)
Similar to @code{__builtin_bswap16}, except the argument and return types
are 32-bit.
@end deftypefn
@deftypefn {Built-in Function} uint64_t __builtin_bswap64 (uint64_t x)
Similar to @code{__builtin_bswap32}, except the argument and return types
are 64-bit.
@end deftypefn
@deftypefn {Built-in Function} uint128_t __builtin_bswap128 (uint128_t x)
Similar to @code{__builtin_bswap64}, except the argument and return types
are 128-bit. Only supported on targets when 128-bit types are supported.
@end deftypefn
@deftypefn {Built-in Function} Pmode __builtin_extend_pointer (void * x)
On targets where the user visible pointer size is smaller than the size
of an actual hardware address this function returns the extended user
pointer. Targets where this is true included ILP32 mode on x86_64 or
Aarch64. This function is mainly useful when writing inline assembly
code.
@end deftypefn
@deftypefn {Built-in Function} int __builtin_goacc_parlevel_id (int x)
Returns the openacc gang, worker or vector id depending on whether @var{x} is
0, 1 or 2.
@end deftypefn
@deftypefn {Built-in Function} int __builtin_goacc_parlevel_size (int x)
Returns the openacc gang, worker or vector size depending on whether @var{x} is
0, 1 or 2.
@end deftypefn
@node Target Builtins
@section Built-in Functions Specific to Particular Target Machines
On some target machines, GCC supports many built-in functions specific
to those machines. Generally these generate calls to specific machine
instructions, but allow the compiler to schedule those calls.
@menu
* AArch64 Built-in Functions::
* Alpha Built-in Functions::
* Altera Nios II Built-in Functions::
* ARC Built-in Functions::
* ARC SIMD Built-in Functions::
* ARM iWMMXt Built-in Functions::
* ARM C Language Extensions (ACLE)::
* ARM Floating Point Status and Control Intrinsics::
* ARM ARMv8-M Security Extensions::
* AVR Built-in Functions::
* Blackfin Built-in Functions::
* BPF Built-in Functions::
* FR-V Built-in Functions::
* MIPS DSP Built-in Functions::
* MIPS Paired-Single Support::
* MIPS Loongson Built-in Functions::
* MIPS SIMD Architecture (MSA) Support::
* Other MIPS Built-in Functions::
* MSP430 Built-in Functions::
* NDS32 Built-in Functions::
* picoChip Built-in Functions::
* Basic PowerPC Built-in Functions::
* PowerPC AltiVec/VSX Built-in Functions::
* PowerPC Hardware Transactional Memory Built-in Functions::
* PowerPC Atomic Memory Operation Functions::
* PowerPC Matrix-Multiply Assist Built-in Functions::
* PRU Built-in Functions::
* RISC-V Built-in Functions::
* RX Built-in Functions::
* S/390 System z Built-in Functions::
* SH Built-in Functions::
* SPARC VIS Built-in Functions::
* TI C6X Built-in Functions::
* TILE-Gx Built-in Functions::
* TILEPro Built-in Functions::
* x86 Built-in Functions::
* x86 transactional memory intrinsics::
* x86 control-flow protection intrinsics::
@end menu
@node AArch64 Built-in Functions
@subsection AArch64 Built-in Functions
These built-in functions are available for the AArch64 family of
processors.
@smallexample
unsigned int __builtin_aarch64_get_fpcr ();
void __builtin_aarch64_set_fpcr (unsigned int);
unsigned int __builtin_aarch64_get_fpsr ();
void __builtin_aarch64_set_fpsr (unsigned int);
unsigned long long __builtin_aarch64_get_fpcr64 ();
void __builtin_aarch64_set_fpcr64 (unsigned long long);
unsigned long long __builtin_aarch64_get_fpsr64 ();
void __builtin_aarch64_set_fpsr64 (unsigned long long);
@end smallexample
@node Alpha Built-in Functions
@subsection Alpha Built-in Functions
These built-in functions are available for the Alpha family of
processors, depending on the command-line switches used.
The following built-in functions are always available. They
all generate the machine instruction that is part of the name.
@smallexample
long __builtin_alpha_implver (void);
long __builtin_alpha_rpcc (void);
long __builtin_alpha_amask (long);
long __builtin_alpha_cmpbge (long, long);
long __builtin_alpha_extbl (long, long);
long __builtin_alpha_extwl (long, long);
long __builtin_alpha_extll (long, long);
long __builtin_alpha_extql (long, long);
long __builtin_alpha_extwh (long, long);
long __builtin_alpha_extlh (long, long);
long __builtin_alpha_extqh (long, long);
long __builtin_alpha_insbl (long, long);
long __builtin_alpha_inswl (long, long);
long __builtin_alpha_insll (long, long);
long __builtin_alpha_insql (long, long);
long __builtin_alpha_inswh (long, long);
long __builtin_alpha_inslh (long, long);
long __builtin_alpha_insqh (long, long);
long __builtin_alpha_mskbl (long, long);
long __builtin_alpha_mskwl (long, long);
long __builtin_alpha_mskll (long, long);
long __builtin_alpha_mskql (long, long);
long __builtin_alpha_mskwh (long, long);
long __builtin_alpha_msklh (long, long);
long __builtin_alpha_mskqh (long, long);
long __builtin_alpha_umulh (long, long);
long __builtin_alpha_zap (long, long);
long __builtin_alpha_zapnot (long, long);
@end smallexample
The following built-in functions are always with @option{-mmax}
or @option{-mcpu=@var{cpu}} where @var{cpu} is @code{pca56} or
later. They all generate the machine instruction that is part
of the name.
@smallexample
long __builtin_alpha_pklb (long);
long __builtin_alpha_pkwb (long);
long __builtin_alpha_unpkbl (long);
long __builtin_alpha_unpkbw (long);
long __builtin_alpha_minub8 (long, long);
long __builtin_alpha_minsb8 (long, long);
long __builtin_alpha_minuw4 (long, long);
long __builtin_alpha_minsw4 (long, long);
long __builtin_alpha_maxub8 (long, long);
long __builtin_alpha_maxsb8 (long, long);
long __builtin_alpha_maxuw4 (long, long);
long __builtin_alpha_maxsw4 (long, long);
long __builtin_alpha_perr (long, long);
@end smallexample
The following built-in functions are always with @option{-mcix}
or @option{-mcpu=@var{cpu}} where @var{cpu} is @code{ev67} or
later. They all generate the machine instruction that is part
of the name.
@smallexample
long __builtin_alpha_cttz (long);
long __builtin_alpha_ctlz (long);
long __builtin_alpha_ctpop (long);
@end smallexample
The following built-in functions are available on systems that use the OSF/1
PALcode. Normally they invoke the @code{rduniq} and @code{wruniq}
PAL calls, but when invoked with @option{-mtls-kernel}, they invoke
@code{rdval} and @code{wrval}.
@smallexample
void *__builtin_thread_pointer (void);
void __builtin_set_thread_pointer (void *);
@end smallexample
@node Altera Nios II Built-in Functions
@subsection Altera Nios II Built-in Functions
These built-in functions are available for the Altera Nios II
family of processors.
The following built-in functions are always available. They
all generate the machine instruction that is part of the name.
@example
int __builtin_ldbio (volatile const void *);
int __builtin_ldbuio (volatile const void *);
int __builtin_ldhio (volatile const void *);
int __builtin_ldhuio (volatile const void *);
int __builtin_ldwio (volatile const void *);
void __builtin_stbio (volatile void *, int);
void __builtin_sthio (volatile void *, int);
void __builtin_stwio (volatile void *, int);
void __builtin_sync (void);
int __builtin_rdctl (int);
int __builtin_rdprs (int, int);
void __builtin_wrctl (int, int);
void __builtin_flushd (volatile void *);
void __builtin_flushda (volatile void *);
int __builtin_wrpie (int);
void __builtin_eni (int);
int __builtin_ldex (volatile const void *);
int __builtin_stex (volatile void *, int);
int __builtin_ldsex (volatile const void *);
int __builtin_stsex (volatile void *, int);
@end example
The following built-in functions are always available. They
all generate a Nios II Custom Instruction. The name of the
function represents the types that the function takes and
returns. The letter before the @code{n} is the return type
or void if absent. The @code{n} represents the first parameter
to all the custom instructions, the custom instruction number.
The two letters after the @code{n} represent the up to two
parameters to the function.
The letters represent the following data types:
@table @code
@item <no letter>
@code{void} for return type and no parameter for parameter types.
@item i
@code{int} for return type and parameter type
@item f
@code{float} for return type and parameter type
@item p
@code{void *} for return type and parameter type
@end table
And the function names are:
@example
void __builtin_custom_n (void);
void __builtin_custom_ni (int);
void __builtin_custom_nf (float);
void __builtin_custom_np (void *);
void __builtin_custom_nii (int, int);
void __builtin_custom_nif (int, float);
void __builtin_custom_nip (int, void *);
void __builtin_custom_nfi (float, int);
void __builtin_custom_nff (float, float);
void __builtin_custom_nfp (float, void *);
void __builtin_custom_npi (void *, int);
void __builtin_custom_npf (void *, float);
void __builtin_custom_npp (void *, void *);
int __builtin_custom_in (void);
int __builtin_custom_ini (int);
int __builtin_custom_inf (float);
int __builtin_custom_inp (void *);
int __builtin_custom_inii (int, int);
int __builtin_custom_inif (int, float);
int __builtin_custom_inip (int, void *);
int __builtin_custom_infi (float, int);
int __builtin_custom_inff (float, float);
int __builtin_custom_infp (float, void *);
int __builtin_custom_inpi (void *, int);
int __builtin_custom_inpf (void *, float);
int __builtin_custom_inpp (void *, void *);
float __builtin_custom_fn (void);
float __builtin_custom_fni (int);
float __builtin_custom_fnf (float);
float __builtin_custom_fnp (void *);
float __builtin_custom_fnii (int, int);
float __builtin_custom_fnif (int, float);
float __builtin_custom_fnip (int, void *);
float __builtin_custom_fnfi (float, int);
float __builtin_custom_fnff (float, float);
float __builtin_custom_fnfp (float, void *);
float __builtin_custom_fnpi (void *, int);
float __builtin_custom_fnpf (void *, float);
float __builtin_custom_fnpp (void *, void *);
void * __builtin_custom_pn (void);
void * __builtin_custom_pni (int);
void * __builtin_custom_pnf (float);
void * __builtin_custom_pnp (void *);
void * __builtin_custom_pnii (int, int);
void * __builtin_custom_pnif (int, float);
void * __builtin_custom_pnip (int, void *);
void * __builtin_custom_pnfi (float, int);
void * __builtin_custom_pnff (float, float);
void * __builtin_custom_pnfp (float, void *);
void * __builtin_custom_pnpi (void *, int);
void * __builtin_custom_pnpf (void *, float);
void * __builtin_custom_pnpp (void *, void *);
@end example
@node ARC Built-in Functions
@subsection ARC Built-in Functions
The following built-in functions are provided for ARC targets. The
built-ins generate the corresponding assembly instructions. In the
examples given below, the generated code often requires an operand or
result to be in a register. Where necessary further code will be
generated to ensure this is true, but for brevity this is not
described in each case.
@emph{Note:} Using a built-in to generate an instruction not supported
by a target may cause problems. At present the compiler is not
guaranteed to detect such misuse, and as a result an internal compiler
error may be generated.
@deftypefn {Built-in Function} int __builtin_arc_aligned (void *@var{val}, int @var{alignval})
Return 1 if @var{val} is known to have the byte alignment given
by @var{alignval}, otherwise return 0.
Note that this is different from
@smallexample
__alignof__(*(char *)@var{val}) >= alignval
@end smallexample
because __alignof__ sees only the type of the dereference, whereas
__builtin_arc_align uses alignment information from the pointer
as well as from the pointed-to type.
The information available will depend on optimization level.
@end deftypefn
@deftypefn {Built-in Function} void __builtin_arc_brk (void)
Generates
@example
brk
@end example
@end deftypefn
@deftypefn {Built-in Function} {unsigned int} __builtin_arc_core_read (unsigned int @var{regno})
The operand is the number of a register to be read. Generates:
@example
mov @var{dest}, r@var{regno}
@end example
where the value in @var{dest} will be the result returned from the
built-in.
@end deftypefn
@deftypefn {Built-in Function} void __builtin_arc_core_write (unsigned int @var{regno}, unsigned int @var{val})
The first operand is the number of a register to be written, the
second operand is a compile time constant to write into that
register. Generates:
@example
mov r@var{regno}, @var{val}
@end example
@end deftypefn
@deftypefn {Built-in Function} int __builtin_arc_divaw (int @var{a}, int @var{b})
Only available if either @option{-mcpu=ARC700} or @option{-meA} is set.
Generates:
@example
divaw @var{dest}, @var{a}, @var{b}
@end example
where the value in @var{dest} will be the result returned from the
built-in.
@end deftypefn
@deftypefn {Built-in Function} void __builtin_arc_flag (unsigned int @var{a})
Generates
@example
flag @var{a}
@end example
@end deftypefn
@deftypefn {Built-in Function} {unsigned int} __builtin_arc_lr (unsigned int @var{auxr})
The operand, @var{auxv}, is the address of an auxiliary register and
must be a compile time constant. Generates:
@example
lr @var{dest}, [@var{auxr}]
@end example
Where the value in @var{dest} will be the result returned from the
built-in.
@end deftypefn
@deftypefn {Built-in Function} void __builtin_arc_mul64 (int @var{a}, int @var{b})
Only available with @option{-mmul64}. Generates:
@example
mul64 @var{a}, @var{b}
@end example
@end deftypefn
@deftypefn {Built-in Function} void __builtin_arc_mulu64 (unsigned int @var{a}, unsigned int @var{b})
Only available with @option{-mmul64}. Generates:
@example
mulu64 @var{a}, @var{b}
@end example
@end deftypefn
@deftypefn {Built-in Function} void __builtin_arc_nop (void)
Generates:
@example
nop
@end example
@end deftypefn
@deftypefn {Built-in Function} int __builtin_arc_norm (int @var{src})
Only valid if the @samp{norm} instruction is available through the
@option{-mnorm} option or by default with @option{-mcpu=ARC700}.
Generates:
@example
norm @var{dest}, @var{src}
@end example
Where the value in @var{dest} will be the result returned from the
built-in.
@end deftypefn
@deftypefn {Built-in Function} {short int} __builtin_arc_normw (short int @var{src})
Only valid if the @samp{normw} instruction is available through the
@option{-mnorm} option or by default with @option{-mcpu=ARC700}.
Generates:
@example
normw @var{dest}, @var{src}
@end example
Where the value in @var{dest} will be the result returned from the
built-in.
@end deftypefn
@deftypefn {Built-in Function} void __builtin_arc_rtie (void)
Generates:
@example
rtie
@end example
@end deftypefn
@deftypefn {Built-in Function} void __builtin_arc_sleep (int @var{a}
Generates:
@example
sleep @var{a}
@end example
@end deftypefn
@deftypefn {Built-in Function} void __builtin_arc_sr (unsigned int @var{val}, unsigned int @var{auxr})
The first argument, @var{val}, is a compile time constant to be
written to the register, the second argument, @var{auxr}, is the
address of an auxiliary register. Generates:
@example
sr @var{val}, [@var{auxr}]
@end example
@end deftypefn
@deftypefn {Built-in Function} int __builtin_arc_swap (int @var{src})
Only valid with @option{-mswap}. Generates:
@example
swap @var{dest}, @var{src}
@end example
Where the value in @var{dest} will be the result returned from the
built-in.
@end deftypefn
@deftypefn {Built-in Function} void __builtin_arc_swi (void)
Generates:
@example
swi
@end example
@end deftypefn
@deftypefn {Built-in Function} void __builtin_arc_sync (void)
Only available with @option{-mcpu=ARC700}. Generates:
@example
sync
@end example
@end deftypefn
@deftypefn {Built-in Function} void __builtin_arc_trap_s (unsigned int @var{c})
Only available with @option{-mcpu=ARC700}. Generates:
@example
trap_s @var{c}
@end example
@end deftypefn
@deftypefn {Built-in Function} void __builtin_arc_unimp_s (void)
Only available with @option{-mcpu=ARC700}. Generates:
@example
unimp_s
@end example
@end deftypefn
The instructions generated by the following builtins are not
considered as candidates for scheduling. They are not moved around by
the compiler during scheduling, and thus can be expected to appear
where they are put in the C code:
@example
__builtin_arc_brk()
__builtin_arc_core_read()
__builtin_arc_core_write()
__builtin_arc_flag()
__builtin_arc_lr()
__builtin_arc_sleep()
__builtin_arc_sr()
__builtin_arc_swi()
@end example
@node ARC SIMD Built-in Functions
@subsection ARC SIMD Built-in Functions
SIMD builtins provided by the compiler can be used to generate the
vector instructions. This section describes the available builtins
and their usage in programs. With the @option{-msimd} option, the
compiler provides 128-bit vector types, which can be specified using
the @code{vector_size} attribute. The header file @file{arc-simd.h}
can be included to use the following predefined types:
@example
typedef int __v4si __attribute__((vector_size(16)));
typedef short __v8hi __attribute__((vector_size(16)));
@end example
These types can be used to define 128-bit variables. The built-in
functions listed in the following section can be used on these
variables to generate the vector operations.
For all builtins, @code{__builtin_arc_@var{someinsn}}, the header file
@file{arc-simd.h} also provides equivalent macros called
@code{_@var{someinsn}} that can be used for programming ease and
improved readability. The following macros for DMA control are also
provided:
@example
#define _setup_dma_in_channel_reg _vdiwr
#define _setup_dma_out_channel_reg _vdowr
@end example
The following is a complete list of all the SIMD built-ins provided
for ARC, grouped by calling signature.
The following take two @code{__v8hi} arguments and return a
@code{__v8hi} result:
@example
__v8hi __builtin_arc_vaddaw (__v8hi, __v8hi);
__v8hi __builtin_arc_vaddw (__v8hi, __v8hi);
__v8hi __builtin_arc_vand (__v8hi, __v8hi);
__v8hi __builtin_arc_vandaw (__v8hi, __v8hi);
__v8hi __builtin_arc_vavb (__v8hi, __v8hi);
__v8hi __builtin_arc_vavrb (__v8hi, __v8hi);
__v8hi __builtin_arc_vbic (__v8hi, __v8hi);
__v8hi __builtin_arc_vbicaw (__v8hi, __v8hi);
__v8hi __builtin_arc_vdifaw (__v8hi, __v8hi);
__v8hi __builtin_arc_vdifw (__v8hi, __v8hi);
__v8hi __builtin_arc_veqw (__v8hi, __v8hi);
__v8hi __builtin_arc_vh264f (__v8hi, __v8hi);
__v8hi __builtin_arc_vh264ft (__v8hi, __v8hi);
__v8hi __builtin_arc_vh264fw (__v8hi, __v8hi);
__v8hi __builtin_arc_vlew (__v8hi, __v8hi);
__v8hi __builtin_arc_vltw (__v8hi, __v8hi);
__v8hi __builtin_arc_vmaxaw (__v8hi, __v8hi);
__v8hi __builtin_arc_vmaxw (__v8hi, __v8hi);
__v8hi __builtin_arc_vminaw (__v8hi, __v8hi);
__v8hi __builtin_arc_vminw (__v8hi, __v8hi);
__v8hi __builtin_arc_vmr1aw (__v8hi, __v8hi);
__v8hi __builtin_arc_vmr1w (__v8hi, __v8hi);
__v8hi __builtin_arc_vmr2aw (__v8hi, __v8hi);
__v8hi __builtin_arc_vmr2w (__v8hi, __v8hi);
__v8hi __builtin_arc_vmr3aw (__v8hi, __v8hi);
__v8hi __builtin_arc_vmr3w (__v8hi, __v8hi);
__v8hi __builtin_arc_vmr4aw (__v8hi, __v8hi);
__v8hi __builtin_arc_vmr4w (__v8hi, __v8hi);
__v8hi __builtin_arc_vmr5aw (__v8hi, __v8hi);
__v8hi __builtin_arc_vmr5w (__v8hi, __v8hi);
__v8hi __builtin_arc_vmr6aw (__v8hi, __v8hi);
__v8hi __builtin_arc_vmr6w (__v8hi, __v8hi);
__v8hi __builtin_arc_vmr7aw (__v8hi, __v8hi);
__v8hi __builtin_arc_vmr7w (__v8hi, __v8hi);
__v8hi __builtin_arc_vmrb (__v8hi, __v8hi);
__v8hi __builtin_arc_vmulaw (__v8hi, __v8hi);
__v8hi __builtin_arc_vmulfaw (__v8hi, __v8hi);
__v8hi __builtin_arc_vmulfw (__v8hi, __v8hi);
__v8hi __builtin_arc_vmulw (__v8hi, __v8hi);
__v8hi __builtin_arc_vnew (__v8hi, __v8hi);
__v8hi __builtin_arc_vor (__v8hi, __v8hi);
__v8hi __builtin_arc_vsubaw (__v8hi, __v8hi);
__v8hi __builtin_arc_vsubw (__v8hi, __v8hi);
__v8hi __builtin_arc_vsummw (__v8hi, __v8hi);
__v8hi __builtin_arc_vvc1f (__v8hi, __v8hi);
__v8hi __builtin_arc_vvc1ft (__v8hi, __v8hi);
__v8hi __builtin_arc_vxor (__v8hi, __v8hi);
__v8hi __builtin_arc_vxoraw (__v8hi, __v8hi);
@end example
The following take one @code{__v8hi} and one @code{int} argument and return a
@code{__v8hi} result:
@example
__v8hi __builtin_arc_vbaddw (__v8hi, int);
__v8hi __builtin_arc_vbmaxw (__v8hi, int);
__v8hi __builtin_arc_vbminw (__v8hi, int);
__v8hi __builtin_arc_vbmulaw (__v8hi, int);
__v8hi __builtin_arc_vbmulfw (__v8hi, int);
__v8hi __builtin_arc_vbmulw (__v8hi, int);
__v8hi __builtin_arc_vbrsubw (__v8hi, int);
__v8hi __builtin_arc_vbsubw (__v8hi, int);
@end example
The following take one @code{__v8hi} argument and one @code{int} argument which
must be a 3-bit compile time constant indicating a register number
I0-I7. They return a @code{__v8hi} result.
@example
__v8hi __builtin_arc_vasrw (__v8hi, const int);
__v8hi __builtin_arc_vsr8 (__v8hi, const int);
__v8hi __builtin_arc_vsr8aw (__v8hi, const int);
@end example
The following take one @code{__v8hi} argument and one @code{int}
argument which must be a 6-bit compile time constant. They return a
@code{__v8hi} result.
@example
__v8hi __builtin_arc_vasrpwbi (__v8hi, const int);
__v8hi __builtin_arc_vasrrpwbi (__v8hi, const int);
__v8hi __builtin_arc_vasrrwi (__v8hi, const int);
__v8hi __builtin_arc_vasrsrwi (__v8hi, const int);
__v8hi __builtin_arc_vasrwi (__v8hi, const int);
__v8hi __builtin_arc_vsr8awi (__v8hi, const int);
__v8hi __builtin_arc_vsr8i (__v8hi, const int);
@end example
The following take one @code{__v8hi} argument and one @code{int} argument which
must be a 8-bit compile time constant. They return a @code{__v8hi}
result.
@example
__v8hi __builtin_arc_vd6tapf (__v8hi, const int);
__v8hi __builtin_arc_vmvaw (__v8hi, const int);
__v8hi __builtin_arc_vmvw (__v8hi, const int);
__v8hi __builtin_arc_vmvzw (__v8hi, const int);
@end example
The following take two @code{int} arguments, the second of which which
must be a 8-bit compile time constant. They return a @code{__v8hi}
result:
@example
__v8hi __builtin_arc_vmovaw (int, const int);
__v8hi __builtin_arc_vmovw (int, const int);
__v8hi __builtin_arc_vmovzw (int, const int);
@end example
The following take a single @code{__v8hi} argument and return a
@code{__v8hi} result:
@example
__v8hi __builtin_arc_vabsaw (__v8hi);
__v8hi __builtin_arc_vabsw (__v8hi);
__v8hi __builtin_arc_vaddsuw (__v8hi);
__v8hi __builtin_arc_vexch1 (__v8hi);
__v8hi __builtin_arc_vexch2 (__v8hi);
__v8hi __builtin_arc_vexch4 (__v8hi);
__v8hi __builtin_arc_vsignw (__v8hi);
__v8hi __builtin_arc_vupbaw (__v8hi);
__v8hi __builtin_arc_vupbw (__v8hi);
__v8hi __builtin_arc_vupsbaw (__v8hi);
__v8hi __builtin_arc_vupsbw (__v8hi);
@end example
The following take two @code{int} arguments and return no result:
@example
void __builtin_arc_vdirun (int, int);
void __builtin_arc_vdorun (int, int);
@end example
The following take two @code{int} arguments and return no result. The
first argument must a 3-bit compile time constant indicating one of
the DR0-DR7 DMA setup channels:
@example
void __builtin_arc_vdiwr (const int, int);
void __builtin_arc_vdowr (const int, int);
@end example
The following take an @code{int} argument and return no result:
@example
void __builtin_arc_vendrec (int);
void __builtin_arc_vrec (int);
void __builtin_arc_vrecrun (int);
void __builtin_arc_vrun (int);
@end example
The following take a @code{__v8hi} argument and two @code{int}
arguments and return a @code{__v8hi} result. The second argument must
be a 3-bit compile time constants, indicating one the registers I0-I7,
and the third argument must be an 8-bit compile time constant.
@emph{Note:} Although the equivalent hardware instructions do not take
an SIMD register as an operand, these builtins overwrite the relevant
bits of the @code{__v8hi} register provided as the first argument with
the value loaded from the @code{[Ib, u8]} location in the SDM.
@example
__v8hi __builtin_arc_vld32 (__v8hi, const int, const int);
__v8hi __builtin_arc_vld32wh (__v8hi, const int, const int);
__v8hi __builtin_arc_vld32wl (__v8hi, const int, const int);
__v8hi __builtin_arc_vld64 (__v8hi, const int, const int);
@end example
The following take two @code{int} arguments and return a @code{__v8hi}
result. The first argument must be a 3-bit compile time constants,
indicating one the registers I0-I7, and the second argument must be an
8-bit compile time constant.
@example
__v8hi __builtin_arc_vld128 (const int, const int);
__v8hi __builtin_arc_vld64w (const int, const int);
@end example
The following take a @code{__v8hi} argument and two @code{int}
arguments and return no result. The second argument must be a 3-bit
compile time constants, indicating one the registers I0-I7, and the
third argument must be an 8-bit compile time constant.
@example
void __builtin_arc_vst128 (__v8hi, const int, const int);
void __builtin_arc_vst64 (__v8hi, const int, const int);
@end example
The following take a @code{__v8hi} argument and three @code{int}
arguments and return no result. The second argument must be a 3-bit
compile-time constant, identifying the 16-bit sub-register to be
stored, the third argument must be a 3-bit compile time constants,
indicating one the registers I0-I7, and the fourth argument must be an
8-bit compile time constant.
@example
void __builtin_arc_vst16_n (__v8hi, const int, const int, const int);
void __builtin_arc_vst32_n (__v8hi, const int, const int, const int);
@end example
@node ARM iWMMXt Built-in Functions
@subsection ARM iWMMXt Built-in Functions
These built-in functions are available for the ARM family of
processors when the @option{-mcpu=iwmmxt} switch is used:
@smallexample
typedef int v2si __attribute__ ((vector_size (8)));
typedef short v4hi __attribute__ ((vector_size (8)));
typedef char v8qi __attribute__ ((vector_size (8)));
int __builtin_arm_getwcgr0 (void);
void __builtin_arm_setwcgr0 (int);
int __builtin_arm_getwcgr1 (void);
void __builtin_arm_setwcgr1 (int);
int __builtin_arm_getwcgr2 (void);
void __builtin_arm_setwcgr2 (int);
int __builtin_arm_getwcgr3 (void);
void __builtin_arm_setwcgr3 (int);
int __builtin_arm_textrmsb (v8qi, int);
int __builtin_arm_textrmsh (v4hi, int);
int __builtin_arm_textrmsw (v2si, int);
int __builtin_arm_textrmub (v8qi, int);
int __builtin_arm_textrmuh (v4hi, int);
int __builtin_arm_textrmuw (v2si, int);
v8qi __builtin_arm_tinsrb (v8qi, int, int);
v4hi __builtin_arm_tinsrh (v4hi, int, int);
v2si __builtin_arm_tinsrw (v2si, int, int);
long long __builtin_arm_tmia (long long, int, int);
long long __builtin_arm_tmiabb (long long, int, int);
long long __builtin_arm_tmiabt (long long, int, int);
long long __builtin_arm_tmiaph (long long, int, int);
long long __builtin_arm_tmiatb (long long, int, int);
long long __builtin_arm_tmiatt (long long, int, int);
int __builtin_arm_tmovmskb (v8qi);
int __builtin_arm_tmovmskh (v4hi);
int __builtin_arm_tmovmskw (v2si);
long long __builtin_arm_waccb (v8qi);
long long __builtin_arm_wacch (v4hi);
long long __builtin_arm_waccw (v2si);
v8qi __builtin_arm_waddb (v8qi, v8qi);
v8qi __builtin_arm_waddbss (v8qi, v8qi);
v8qi __builtin_arm_waddbus (v8qi, v8qi);
v4hi __builtin_arm_waddh (v4hi, v4hi);
v4hi __builtin_arm_waddhss (v4hi, v4hi);
v4hi __builtin_arm_waddhus (v4hi, v4hi);
v2si __builtin_arm_waddw (v2si, v2si);
v2si __builtin_arm_waddwss (v2si, v2si);
v2si __builtin_arm_waddwus (v2si, v2si);
v8qi __builtin_arm_walign (v8qi, v8qi, int);
long long __builtin_arm_wand(long long, long long);
long long __builtin_arm_wandn (long long, long long);
v8qi __builtin_arm_wavg2b (v8qi, v8qi);
v8qi __builtin_arm_wavg2br (v8qi, v8qi);
v4hi __builtin_arm_wavg2h (v4hi, v4hi);
v4hi __builtin_arm_wavg2hr (v4hi, v4hi);
v8qi __builtin_arm_wcmpeqb (v8qi, v8qi);
v4hi __builtin_arm_wcmpeqh (v4hi, v4hi);
v2si __builtin_arm_wcmpeqw (v2si, v2si);
v8qi __builtin_arm_wcmpgtsb (v8qi, v8qi);
v4hi __builtin_arm_wcmpgtsh (v4hi, v4hi);
v2si __builtin_arm_wcmpgtsw (v2si, v2si);
v8qi __builtin_arm_wcmpgtub (v8qi, v8qi);
v4hi __builtin_arm_wcmpgtuh (v4hi, v4hi);
v2si __builtin_arm_wcmpgtuw (v2si, v2si);
long long __builtin_arm_wmacs (long long, v4hi, v4hi);
long long __builtin_arm_wmacsz (v4hi, v4hi);
long long __builtin_arm_wmacu (long long, v4hi, v4hi);
long long __builtin_arm_wmacuz (v4hi, v4hi);
v4hi __builtin_arm_wmadds (v4hi, v4hi);
v4hi __builtin_arm_wmaddu (v4hi, v4hi);
v8qi __builtin_arm_wmaxsb (v8qi, v8qi);
v4hi __builtin_arm_wmaxsh (v4hi, v4hi);
v2si __builtin_arm_wmaxsw (v2si, v2si);
v8qi __builtin_arm_wmaxub (v8qi, v8qi);
v4hi __builtin_arm_wmaxuh (v4hi, v4hi);
v2si __builtin_arm_wmaxuw (v2si, v2si);
v8qi __builtin_arm_wminsb (v8qi, v8qi);
v4hi __builtin_arm_wminsh (v4hi, v4hi);
v2si __builtin_arm_wminsw (v2si, v2si);
v8qi __builtin_arm_wminub (v8qi, v8qi);
v4hi __builtin_arm_wminuh (v4hi, v4hi);
v2si __builtin_arm_wminuw (v2si, v2si);
v4hi __builtin_arm_wmulsm (v4hi, v4hi);
v4hi __builtin_arm_wmulul (v4hi, v4hi);
v4hi __builtin_arm_wmulum (v4hi, v4hi);
long long __builtin_arm_wor (long long, long long);
v2si __builtin_arm_wpackdss (long long, long long);
v2si __builtin_arm_wpackdus (long long, long long);
v8qi __builtin_arm_wpackhss (v4hi, v4hi);
v8qi __builtin_arm_wpackhus (v4hi, v4hi);
v4hi __builtin_arm_wpackwss (v2si, v2si);
v4hi __builtin_arm_wpackwus (v2si, v2si);
long long __builtin_arm_wrord (long long, long long);
long long __builtin_arm_wrordi (long long, int);
v4hi __builtin_arm_wrorh (v4hi, long long);
v4hi __builtin_arm_wrorhi (v4hi, int);
v2si __builtin_arm_wrorw (v2si, long long);
v2si __builtin_arm_wrorwi (v2si, int);
v2si __builtin_arm_wsadb (v2si, v8qi, v8qi);
v2si __builtin_arm_wsadbz (v8qi, v8qi);
v2si __builtin_arm_wsadh (v2si, v4hi, v4hi);
v2si __builtin_arm_wsadhz (v4hi, v4hi);
v4hi __builtin_arm_wshufh (v4hi, int);
long long __builtin_arm_wslld (long long, long long);
long long __builtin_arm_wslldi (long long, int);
v4hi __builtin_arm_wsllh (v4hi, long long);
v4hi __builtin_arm_wsllhi (v4hi, int);
v2si __builtin_arm_wsllw (v2si, long long);
v2si __builtin_arm_wsllwi (v2si, int);
long long __builtin_arm_wsrad (long long, long long);
long long __builtin_arm_wsradi (long long, int);
v4hi __builtin_arm_wsrah (v4hi, long long);
v4hi __builtin_arm_wsrahi (v4hi, int);
v2si __builtin_arm_wsraw (v2si, long long);
v2si __builtin_arm_wsrawi (v2si, int);
long long __builtin_arm_wsrld (long long, long long);
long long __builtin_arm_wsrldi (long long, int);
v4hi __builtin_arm_wsrlh (v4hi, long long);
v4hi __builtin_arm_wsrlhi (v4hi, int);
v2si __builtin_arm_wsrlw (v2si, long long);
v2si __builtin_arm_wsrlwi (v2si, int);
v8qi __builtin_arm_wsubb (v8qi, v8qi);
v8qi __builtin_arm_wsubbss (v8qi, v8qi);
v8qi __builtin_arm_wsubbus (v8qi, v8qi);
v4hi __builtin_arm_wsubh (v4hi, v4hi);
v4hi __builtin_arm_wsubhss (v4hi, v4hi);
v4hi __builtin_arm_wsubhus (v4hi, v4hi);
v2si __builtin_arm_wsubw (v2si, v2si);
v2si __builtin_arm_wsubwss (v2si, v2si);
v2si __builtin_arm_wsubwus (v2si, v2si);
v4hi __builtin_arm_wunpckehsb (v8qi);
v2si __builtin_arm_wunpckehsh (v4hi);
long long __builtin_arm_wunpckehsw (v2si);
v4hi __builtin_arm_wunpckehub (v8qi);
v2si __builtin_arm_wunpckehuh (v4hi);
long long __builtin_arm_wunpckehuw (v2si);
v4hi __builtin_arm_wunpckelsb (v8qi);
v2si __builtin_arm_wunpckelsh (v4hi);
long long __builtin_arm_wunpckelsw (v2si);
v4hi __builtin_arm_wunpckelub (v8qi);
v2si __builtin_arm_wunpckeluh (v4hi);
long long __builtin_arm_wunpckeluw (v2si);
v8qi __builtin_arm_wunpckihb (v8qi, v8qi);
v4hi __builtin_arm_wunpckihh (v4hi, v4hi);
v2si __builtin_arm_wunpckihw (v2si, v2si);
v8qi __builtin_arm_wunpckilb (v8qi, v8qi);
v4hi __builtin_arm_wunpckilh (v4hi, v4hi);
v2si __builtin_arm_wunpckilw (v2si, v2si);
long long __builtin_arm_wxor (long long, long long);
long long __builtin_arm_wzero ();
@end smallexample
@node ARM C Language Extensions (ACLE)
@subsection ARM C Language Extensions (ACLE)
GCC implements extensions for C as described in the ARM C Language
Extensions (ACLE) specification, which can be found at
@uref{https://developer.arm.com/documentation/ihi0053/latest/}.
As a part of ACLE, GCC implements extensions for Advanced SIMD as described in
the ARM C Language Extensions Specification. The complete list of Advanced SIMD
intrinsics can be found at
@uref{https://developer.arm.com/documentation/ihi0073/latest/}.
The built-in intrinsics for the Advanced SIMD extension are available when
NEON is enabled.
Currently, ARM and AArch64 back ends do not support ACLE 2.0 fully. Both
back ends support CRC32 intrinsics and the ARM back end supports the
Coprocessor intrinsics, all from @file{arm_acle.h}. The ARM back end's 16-bit
floating-point Advanced SIMD intrinsics currently comply to ACLE v1.1.
AArch64's back end does not have support for 16-bit floating point Advanced SIMD
intrinsics yet.
See @ref{ARM Options} and @ref{AArch64 Options} for more information on the
availability of extensions.
@node ARM Floating Point Status and Control Intrinsics
@subsection ARM Floating Point Status and Control Intrinsics
These built-in functions are available for the ARM family of
processors with floating-point unit.
@smallexample
unsigned int __builtin_arm_get_fpscr ();
void __builtin_arm_set_fpscr (unsigned int);
@end smallexample
@node ARM ARMv8-M Security Extensions
@subsection ARM ARMv8-M Security Extensions
GCC implements the ARMv8-M Security Extensions as described in the ARMv8-M
Security Extensions: Requirements on Development Tools Engineering
Specification, which can be found at
@uref{https://developer.arm.com/documentation/ecm0359818/latest/}.
As part of the Security Extensions GCC implements two new function attributes:
@code{cmse_nonsecure_entry} and @code{cmse_nonsecure_call}.
As part of the Security Extensions GCC implements the intrinsics below. FPTR
is used here to mean any function pointer type.
@smallexample
cmse_address_info_t cmse_TT (void *);
cmse_address_info_t cmse_TT_fptr (FPTR);
cmse_address_info_t cmse_TTT (void *);
cmse_address_info_t cmse_TTT_fptr (FPTR);
cmse_address_info_t cmse_TTA (void *);
cmse_address_info_t cmse_TTA_fptr (FPTR);
cmse_address_info_t cmse_TTAT (void *);
cmse_address_info_t cmse_TTAT_fptr (FPTR);
void * cmse_check_address_range (void *, size_t, int);
typeof(p) cmse_nsfptr_create (FPTR p);
intptr_t cmse_is_nsfptr (FPTR);
int cmse_nonsecure_caller (void);
@end smallexample
@node AVR Built-in Functions
@subsection AVR Built-in Functions
For each built-in function for AVR, there is an equally named,
uppercase built-in macro defined. That way users can easily query if
or if not a specific built-in is implemented or not. For example, if
@code{__builtin_avr_nop} is available the macro
@code{__BUILTIN_AVR_NOP} is defined to @code{1} and undefined otherwise.
@table @code
@item void __builtin_avr_nop (void)
@itemx void __builtin_avr_sei (void)
@itemx void __builtin_avr_cli (void)
@itemx void __builtin_avr_sleep (void)
@itemx void __builtin_avr_wdr (void)
@itemx unsigned char __builtin_avr_swap (unsigned char)
@itemx unsigned int __builtin_avr_fmul (unsigned char, unsigned char)
@itemx int __builtin_avr_fmuls (char, char)
@itemx int __builtin_avr_fmulsu (char, unsigned char)
These built-in functions map to the respective machine
instruction, i.e.@: @code{nop}, @code{sei}, @code{cli}, @code{sleep},
@code{wdr}, @code{swap}, @code{fmul}, @code{fmuls}
resp. @code{fmulsu}. The three @code{fmul*} built-ins are implemented
as library call if no hardware multiplier is available.
@item void __builtin_avr_delay_cycles (unsigned long ticks)
Delay execution for @var{ticks} cycles. Note that this
built-in does not take into account the effect of interrupts that
might increase delay time. @var{ticks} must be a compile-time
integer constant; delays with a variable number of cycles are not supported.
@item char __builtin_avr_flash_segment (const __memx void*)
This built-in takes a byte address to the 24-bit
@ref{AVR Named Address Spaces,address space} @code{__memx} and returns
the number of the flash segment (the 64 KiB chunk) where the address
points to. Counting starts at @code{0}.
If the address does not point to flash memory, return @code{-1}.
@item uint8_t __builtin_avr_insert_bits (uint32_t map, uint8_t bits, uint8_t val)
Insert bits from @var{bits} into @var{val} and return the resulting
value. The nibbles of @var{map} determine how the insertion is
performed: Let @var{X} be the @var{n}-th nibble of @var{map}
@enumerate
@item If @var{X} is @code{0xf},
then the @var{n}-th bit of @var{val} is returned unaltered.
@item If X is in the range 0@dots{}7,
then the @var{n}-th result bit is set to the @var{X}-th bit of @var{bits}
@item If X is in the range 8@dots{}@code{0xe},
then the @var{n}-th result bit is undefined.
@end enumerate
@noindent
One typical use case for this built-in is adjusting input and
output values to non-contiguous port layouts. Some examples:
@smallexample
// same as val, bits is unused
__builtin_avr_insert_bits (0xffffffff, bits, val);
@end smallexample
@smallexample
// same as bits, val is unused
__builtin_avr_insert_bits (0x76543210, bits, val);
@end smallexample
@smallexample
// same as rotating bits by 4
__builtin_avr_insert_bits (0x32107654, bits, 0);
@end smallexample
@smallexample
// high nibble of result is the high nibble of val
// low nibble of result is the low nibble of bits
__builtin_avr_insert_bits (0xffff3210, bits, val);
@end smallexample
@smallexample
// reverse the bit order of bits
__builtin_avr_insert_bits (0x01234567, bits, 0);
@end smallexample
@item void __builtin_avr_nops (unsigned count)
Insert @var{count} @code{NOP} instructions.
The number of instructions must be a compile-time integer constant.
@end table
@noindent
There are many more AVR-specific built-in functions that are used to
implement the ISO/IEC TR 18037 ``Embedded C'' fixed-point functions of
section 7.18a.6. You don't need to use these built-ins directly.
Instead, use the declarations as supplied by the @code{stdfix.h} header
with GNU-C99:
@smallexample
#include <stdfix.h>
// Re-interpret the bit representation of unsigned 16-bit
// integer @var{uval} as Q-format 0.16 value.
unsigned fract get_bits (uint_ur_t uval)
@{
return urbits (uval);
@}
@end smallexample
@node Blackfin Built-in Functions
@subsection Blackfin Built-in Functions
Currently, there are two Blackfin-specific built-in functions. These are
used for generating @code{CSYNC} and @code{SSYNC} machine insns without
using inline assembly; by using these built-in functions the compiler can
automatically add workarounds for hardware errata involving these
instructions. These functions are named as follows:
@smallexample
void __builtin_bfin_csync (void);
void __builtin_bfin_ssync (void);
@end smallexample
@node BPF Built-in Functions
@subsection BPF Built-in Functions
The following built-in functions are available for eBPF targets.
@deftypefn {Built-in Function} unsigned long long __builtin_bpf_load_byte (unsigned long long @var{offset})
Load a byte from the @code{struct sk_buff} packet data pointed by the register @code{%r6} and return it.
@end deftypefn
@deftypefn {Built-in Function} unsigned long long __builtin_bpf_load_half (unsigned long long @var{offset})
Load 16-bits from the @code{struct sk_buff} packet data pointed by the register @code{%r6} and return it.
@end deftypefn
@deftypefn {Built-in Function} unsigned long long __builtin_bpf_load_word (unsigned long long @var{offset})
Load 32-bits from the @code{struct sk_buff} packet data pointed by the register @code{%r6} and return it.
@end deftypefn
@deftypefn {Built-in Function} void * __builtin_preserve_access_index (@var{expr})
BPF Compile Once-Run Everywhere (CO-RE) support. Instruct GCC to generate CO-RE relocation records for any accesses to aggregate data structures (struct, union, array types) in @var{expr}. This builtin is otherwise transparent, the return value is whatever @var{expr} evaluates to. It is also overloaded: @var{expr} may be of any type (not necessarily a pointer), the return type is the same. Has no effect if @code{-mco-re} is not in effect (either specified or implied).
@end deftypefn
@node FR-V Built-in Functions
@subsection FR-V Built-in Functions
GCC provides many FR-V-specific built-in functions. In general,
these functions are intended to be compatible with those described
by @cite{FR-V Family, Softune C/C++ Compiler Manual (V6), Fujitsu
Semiconductor}. The two exceptions are @code{__MDUNPACKH} and
@code{__MBTOHE}, the GCC forms of which pass 128-bit values by
pointer rather than by value.
Most of the functions are named after specific FR-V instructions.
Such functions are said to be ``directly mapped'' and are summarized
here in tabular form.
@menu
* Argument Types::
* Directly-mapped Integer Functions::
* Directly-mapped Media Functions::
* Raw read/write Functions::
* Other Built-in Functions::
@end menu
@node Argument Types
@subsubsection Argument Types
The arguments to the built-in functions can be divided into three groups:
register numbers, compile-time constants and run-time values. In order
to make this classification clear at a glance, the arguments and return
values are given the following pseudo types:
@multitable @columnfractions .20 .30 .15 .35
@headitem Pseudo type @tab Real C type @tab Constant? @tab Description
@item @code{uh} @tab @code{unsigned short} @tab No @tab an unsigned halfword
@item @code{uw1} @tab @code{unsigned int} @tab No @tab an unsigned word
@item @code{sw1} @tab @code{int} @tab No @tab a signed word
@item @code{uw2} @tab @code{unsigned long long} @tab No
@tab an unsigned doubleword
@item @code{sw2} @tab @code{long long} @tab No @tab a signed doubleword
@item @code{const} @tab @code{int} @tab Yes @tab an integer constant
@item @code{acc} @tab @code{int} @tab Yes @tab an ACC register number
@item @code{iacc} @tab @code{int} @tab Yes @tab an IACC register number
@end multitable
These pseudo types are not defined by GCC, they are simply a notational
convenience used in this manual.
Arguments of type @code{uh}, @code{uw1}, @code{sw1}, @code{uw2}
and @code{sw2} are evaluated at run time. They correspond to
register operands in the underlying FR-V instructions.
@code{const} arguments represent immediate operands in the underlying
FR-V instructions. They must be compile-time constants.
@code{acc} arguments are evaluated at compile time and specify the number
of an accumulator register. For example, an @code{acc} argument of 2
selects the ACC2 register.
@code{iacc} arguments are similar to @code{acc} arguments but specify the
number of an IACC register. See @pxref{Other Built-in Functions}
for more details.
@node Directly-mapped Integer Functions
@subsubsection Directly-Mapped Integer Functions
The functions listed below map directly to FR-V I-type instructions.
@multitable @columnfractions .45 .32 .23
@headitem Function prototype @tab Example usage @tab Assembly output
@item @code{sw1 __ADDSS (sw1, sw1)}
@tab @code{@var{c} = __ADDSS (@var{a}, @var{b})}
@tab @code{ADDSS @var{a},@var{b},@var{c}}
@item @code{sw1 __SCAN (sw1, sw1)}
@tab @code{@var{c} = __SCAN (@var{a}, @var{b})}
@tab @code{SCAN @var{a},@var{b},@var{c}}
@item @code{sw1 __SCUTSS (sw1)}
@tab @code{@var{b} = __SCUTSS (@var{a})}
@tab @code{SCUTSS @var{a},@var{b}}
@item @code{sw1 __SLASS (sw1, sw1)}
@tab @code{@var{c} = __SLASS (@var{a}, @var{b})}
@tab @code{SLASS @var{a},@var{b},@var{c}}
@item @code{void __SMASS (sw1, sw1)}
@tab @code{__SMASS (@var{a}, @var{b})}
@tab @code{SMASS @var{a},@var{b}}
@item @code{void __SMSSS (sw1, sw1)}
@tab @code{__SMSSS (@var{a}, @var{b})}
@tab @code{SMSSS @var{a},@var{b}}
@item @code{void __SMU (sw1, sw1)}
@tab @code{__SMU (@var{a}, @var{b})}
@tab @code{SMU @var{a},@var{b}}
@item @code{sw2 __SMUL (sw1, sw1)}
@tab @code{@var{c} = __SMUL (@var{a}, @var{b})}
@tab @code{SMUL @var{a},@var{b},@var{c}}
@item @code{sw1 __SUBSS (sw1, sw1)}
@tab @code{@var{c} = __SUBSS (@var{a}, @var{b})}
@tab @code{SUBSS @var{a},@var{b},@var{c}}
@item @code{uw2 __UMUL (uw1, uw1)}
@tab @code{@var{c} = __UMUL (@var{a}, @var{b})}
@tab @code{UMUL @var{a},@var{b},@var{c}}
@end multitable
@node Directly-mapped Media Functions
@subsubsection Directly-Mapped Media Functions
The functions listed below map directly to FR-V M-type instructions.
@multitable @columnfractions .45 .32 .23
@headitem Function prototype @tab Example usage @tab Assembly output
@item @code{uw1 __MABSHS (sw1)}
@tab @code{@var{b} = __MABSHS (@var{a})}
@tab @code{MABSHS @var{a},@var{b}}
@item @code{void __MADDACCS (acc, acc)}
@tab @code{__MADDACCS (@var{b}, @var{a})}
@tab @code{MADDACCS @var{a},@var{b}}
@item @code{sw1 __MADDHSS (sw1, sw1)}
@tab @code{@var{c} = __MADDHSS (@var{a}, @var{b})}
@tab @code{MADDHSS @var{a},@var{b},@var{c}}
@item @code{uw1 __MADDHUS (uw1, uw1)}
@tab @code{@var{c} = __MADDHUS (@var{a}, @var{b})}
@tab @code{MADDHUS @var{a},@var{b},@var{c}}
@item @code{uw1 __MAND (uw1, uw1)}
@tab @code{@var{c} = __MAND (@var{a}, @var{b})}
@tab @code{MAND @var{a},@var{b},@var{c}}
@item @code{void __MASACCS (acc, acc)}
@tab @code{__MASACCS (@var{b}, @var{a})}
@tab @code{MASACCS @var{a},@var{b}}
@item @code{uw1 __MAVEH (uw1, uw1)}
@tab @code{@var{c} = __MAVEH (@var{a}, @var{b})}
@tab @code{MAVEH @var{a},@var{b},@var{c}}
@item @code{uw2 __MBTOH (uw1)}
@tab @code{@var{b} = __MBTOH (@var{a})}
@tab @code{MBTOH @var{a},@var{b}}
@item @code{void __MBTOHE (uw1 *, uw1)}
@tab @code{__MBTOHE (&@var{b}, @var{a})}
@tab @code{MBTOHE @var{a},@var{b}}
@item @code{void __MCLRACC (acc)}
@tab @code{__MCLRACC (@var{a})}
@tab @code{MCLRACC @var{a}}
@item @code{void __MCLRACCA (void)}
@tab @code{__MCLRACCA ()}
@tab @code{MCLRACCA}
@item @code{uw1 __Mcop1 (uw1, uw1)}
@tab @code{@var{c} = __Mcop1 (@var{a}, @var{b})}
@tab @code{Mcop1 @var{a},@var{b},@var{c}}
@item @code{uw1 __Mcop2 (uw1, uw1)}
@tab @code{@var{c} = __Mcop2 (@var{a}, @var{b})}
@tab @code{Mcop2 @var{a},@var{b},@var{c}}
@item @code{uw1 __MCPLHI (uw2, const)}
@tab @code{@var{c} = __MCPLHI (@var{a}, @var{b})}
@tab @code{MCPLHI @var{a},#@var{b},@var{c}}
@item @code{uw1 __MCPLI (uw2, const)}
@tab @code{@var{c} = __MCPLI (@var{a}, @var{b})}
@tab @code{MCPLI @var{a},#@var{b},@var{c}}
@item @code{void __MCPXIS (acc, sw1, sw1)}
@tab @code{__MCPXIS (@var{c}, @var{a}, @var{b})}
@tab @code{MCPXIS @var{a},@var{b},@var{c}}
@item @code{void __MCPXIU (acc, uw1, uw1)}
@tab @code{__MCPXIU (@var{c}, @var{a}, @var{b})}
@tab @code{MCPXIU @var{a},@var{b},@var{c}}
@item @code{void __MCPXRS (acc, sw1, sw1)}
@tab @code{__MCPXRS (@var{c}, @var{a}, @var{b})}
@tab @code{MCPXRS @var{a},@var{b},@var{c}}
@item @code{void __MCPXRU (acc, uw1, uw1)}
@tab @code{__MCPXRU (@var{c}, @var{a}, @var{b})}
@tab @code{MCPXRU @var{a},@var{b},@var{c}}
@item @code{uw1 __MCUT (acc, uw1)}
@tab @code{@var{c} = __MCUT (@var{a}, @var{b})}
@tab @code{MCUT @var{a},@var{b},@var{c}}
@item @code{uw1 __MCUTSS (acc, sw1)}
@tab @code{@var{c} = __MCUTSS (@var{a}, @var{b})}
@tab @code{MCUTSS @var{a},@var{b},@var{c}}
@item @code{void __MDADDACCS (acc, acc)}
@tab @code{__MDADDACCS (@var{b}, @var{a})}
@tab @code{MDADDACCS @var{a},@var{b}}
@item @code{void __MDASACCS (acc, acc)}
@tab @code{__MDASACCS (@var{b}, @var{a})}
@tab @code{MDASACCS @var{a},@var{b}}
@item @code{uw2 __MDCUTSSI (acc, const)}
@tab @code{@var{c} = __MDCUTSSI (@var{a}, @var{b})}
@tab @code{MDCUTSSI @var{a},#@var{b},@var{c}}
@item @code{uw2 __MDPACKH (uw2, uw2)}
@tab @code{@var{c} = __MDPACKH (@var{a}, @var{b})}
@tab @code{MDPACKH @var{a},@var{b},@var{c}}
@item @code{uw2 __MDROTLI (uw2, const)}
@tab @code{@var{c} = __MDROTLI (@var{a}, @var{b})}
@tab @code{MDROTLI @var{a},#@var{b},@var{c}}
@item @code{void __MDSUBACCS (acc, acc)}
@tab @code{__MDSUBACCS (@var{b}, @var{a})}
@tab @code{MDSUBACCS @var{a},@var{b}}
@item @code{void __MDUNPACKH (uw1 *, uw2)}
@tab @code{__MDUNPACKH (&@var{b}, @var{a})}
@tab @code{MDUNPACKH @var{a},@var{b}}
@item @code{uw2 __MEXPDHD (uw1, const)}
@tab @code{@var{c} = __MEXPDHD (@var{a}, @var{b})}
@tab @code{MEXPDHD @var{a},#@var{b},@var{c}}
@item @code{uw1 __MEXPDHW (uw1, const)}
@tab @code{@var{c} = __MEXPDHW (@var{a}, @var{b})}
@tab @code{MEXPDHW @var{a},#@var{b},@var{c}}
@item @code{uw1 __MHDSETH (uw1, const)}
@tab @code{@var{c} = __MHDSETH (@var{a}, @var{b})}
@tab @code{MHDSETH @var{a},#@var{b},@var{c}}
@item @code{sw1 __MHDSETS (const)}
@tab @code{@var{b} = __MHDSETS (@var{a})}
@tab @code{MHDSETS #@var{a},@var{b}}
@item @code{uw1 __MHSETHIH (uw1, const)}
@tab @code{@var{b} = __MHSETHIH (@var{b}, @var{a})}
@tab @code{MHSETHIH #@var{a},@var{b}}
@item @code{sw1 __MHSETHIS (sw1, const)}
@tab @code{@var{b} = __MHSETHIS (@var{b}, @var{a})}
@tab @code{MHSETHIS #@var{a},@var{b}}
@item @code{uw1 __MHSETLOH (uw1, const)}
@tab @code{@var{b} = __MHSETLOH (@var{b}, @var{a})}
@tab @code{MHSETLOH #@var{a},@var{b}}
@item @code{sw1 __MHSETLOS (sw1, const)}
@tab @code{@var{b} = __MHSETLOS (@var{b}, @var{a})}
@tab @code{MHSETLOS #@var{a},@var{b}}
@item @code{uw1 __MHTOB (uw2)}
@tab @code{@var{b} = __MHTOB (@var{a})}
@tab @code{MHTOB @var{a},@var{b}}
@item @code{void __MMACHS (acc, sw1, sw1)}
@tab @code{__MMACHS (@var{c}, @var{a}, @var{b})}
@tab @code{MMACHS @var{a},@var{b},@var{c}}
@item @code{void __MMACHU (acc, uw1, uw1)}
@tab @code{__MMACHU (@var{c}, @var{a}, @var{b})}
@tab @code{MMACHU @var{a},@var{b},@var{c}}
@item @code{void __MMRDHS (acc, sw1, sw1)}
@tab @code{__MMRDHS (@var{c}, @var{a}, @var{b})}
@tab @code{MMRDHS @var{a},@var{b},@var{c}}
@item @code{void __MMRDHU (acc, uw1, uw1)}
@tab @code{__MMRDHU (@var{c}, @var{a}, @var{b})}
@tab @code{MMRDHU @var{a},@var{b},@var{c}}
@item @code{void __MMULHS (acc, sw1, sw1)}
@tab @code{__MMULHS (@var{c}, @var{a}, @var{b})}
@tab @code{MMULHS @var{a},@var{b},@var{c}}
@item @code{void __MMULHU (acc, uw1, uw1)}
@tab @code{__MMULHU (@var{c}, @var{a}, @var{b})}
@tab @code{MMULHU @var{a},@var{b},@var{c}}
@item @code{void __MMULXHS (acc, sw1, sw1)}
@tab @code{__MMULXHS (@var{c}, @var{a}, @var{b})}
@tab @code{MMULXHS @var{a},@var{b},@var{c}}
@item @code{void __MMULXHU (acc, uw1, uw1)}
@tab @code{__MMULXHU (@var{c}, @var{a}, @var{b})}
@tab @code{MMULXHU @var{a},@var{b},@var{c}}
@item @code{uw1 __MNOT (uw1)}
@tab @code{@var{b} = __MNOT (@var{a})}
@tab @code{MNOT @var{a},@var{b}}
@item @code{uw1 __MOR (uw1, uw1)}
@tab @code{@var{c} = __MOR (@var{a}, @var{b})}
@tab @code{MOR @var{a},@var{b},@var{c}}
@item @code{uw1 __MPACKH (uh, uh)}
@tab @code{@var{c} = __MPACKH (@var{a}, @var{b})}
@tab @code{MPACKH @var{a},@var{b},@var{c}}
@item @code{sw2 __MQADDHSS (sw2, sw2)}
@tab @code{@var{c} = __MQADDHSS (@var{a}, @var{b})}
@tab @code{MQADDHSS @var{a},@var{b},@var{c}}
@item @code{uw2 __MQADDHUS (uw2, uw2)}
@tab @code{@var{c} = __MQADDHUS (@var{a}, @var{b})}
@tab @code{MQADDHUS @var{a},@var{b},@var{c}}
@item @code{void __MQCPXIS (acc, sw2, sw2)}
@tab @code{__MQCPXIS (@var{c}, @var{a}, @var{b})}
@tab @code{MQCPXIS @var{a},@var{b},@var{c}}
@item @code{void __MQCPXIU (acc, uw2, uw2)}
@tab @code{__MQCPXIU (@var{c}, @var{a}, @var{b})}
@tab @code{MQCPXIU @var{a},@var{b},@var{c}}
@item @code{void __MQCPXRS (acc, sw2, sw2)}
@tab @code{__MQCPXRS (@var{c}, @var{a}, @var{b})}
@tab @code{MQCPXRS @var{a},@var{b},@var{c}}
@item @code{void __MQCPXRU (acc, uw2, uw2)}
@tab @code{__MQCPXRU (@var{c}, @var{a}, @var{b})}
@tab @code{MQCPXRU @var{a},@var{b},@var{c}}
@item @code{sw2 __MQLCLRHS (sw2, sw2)}
@tab @code{@var{c} = __MQLCLRHS (@var{a}, @var{b})}
@tab @code{MQLCLRHS @var{a},@var{b},@var{c}}
@item @code{sw2 __MQLMTHS (sw2, sw2)}
@tab @code{@var{c} = __MQLMTHS (@var{a}, @var{b})}
@tab @code{MQLMTHS @var{a},@var{b},@var{c}}
@item @code{void __MQMACHS (acc, sw2, sw2)}
@tab @code{__MQMACHS (@var{c}, @var{a}, @var{b})}
@tab @code{MQMACHS @var{a},@var{b},@var{c}}
@item @code{void __MQMACHU (acc, uw2, uw2)}
@tab @code{__MQMACHU (@var{c}, @var{a}, @var{b})}
@tab @code{MQMACHU @var{a},@var{b},@var{c}}
@item @code{void __MQMACXHS (acc, sw2, sw2)}
@tab @code{__MQMACXHS (@var{c}, @var{a}, @var{b})}
@tab @code{MQMACXHS @var{a},@var{b},@var{c}}
@item @code{void __MQMULHS (acc, sw2, sw2)}
@tab @code{__MQMULHS (@var{c}, @var{a}, @var{b})}
@tab @code{MQMULHS @var{a},@var{b},@var{c}}
@item @code{void __MQMULHU (acc, uw2, uw2)}
@tab @code{__MQMULHU (@var{c}, @var{a}, @var{b})}
@tab @code{MQMULHU @var{a},@var{b},@var{c}}
@item @code{void __MQMULXHS (acc, sw2, sw2)}
@tab @code{__MQMULXHS (@var{c}, @var{a}, @var{b})}
@tab @code{MQMULXHS @var{a},@var{b},@var{c}}
@item @code{void __MQMULXHU (acc, uw2, uw2)}
@tab @code{__MQMULXHU (@var{c}, @var{a}, @var{b})}
@tab @code{MQMULXHU @var{a},@var{b},@var{c}}
@item @code{sw2 __MQSATHS (sw2, sw2)}
@tab @code{@var{c} = __MQSATHS (@var{a}, @var{b})}
@tab @code{MQSATHS @var{a},@var{b},@var{c}}
@item @code{uw2 __MQSLLHI (uw2, int)}
@tab @code{@var{c} = __MQSLLHI (@var{a}, @var{b})}
@tab @code{MQSLLHI @var{a},@var{b},@var{c}}
@item @code{sw2 __MQSRAHI (sw2, int)}
@tab @code{@var{c} = __MQSRAHI (@var{a}, @var{b})}
@tab @code{MQSRAHI @var{a},@var{b},@var{c}}
@item @code{sw2 __MQSUBHSS (sw2, sw2)}
@tab @code{@var{c} = __MQSUBHSS (@var{a}, @var{b})}
@tab @code{MQSUBHSS @var{a},@var{b},@var{c}}
@item @code{uw2 __MQSUBHUS (uw2, uw2)}
@tab @code{@var{c} = __MQSUBHUS (@var{a}, @var{b})}
@tab @code{MQSUBHUS @var{a},@var{b},@var{c}}
@item @code{void __MQXMACHS (acc, sw2, sw2)}
@tab @code{__MQXMACHS (@var{c}, @var{a}, @var{b})}
@tab @code{MQXMACHS @var{a},@var{b},@var{c}}
@item @code{void __MQXMACXHS (acc, sw2, sw2)}
@tab @code{__MQXMACXHS (@var{c}, @var{a}, @var{b})}
@tab @code{MQXMACXHS @var{a},@var{b},@var{c}}
@item @code{uw1 __MRDACC (acc)}
@tab @code{@var{b} = __MRDACC (@var{a})}
@tab @code{MRDACC @var{a},@var{b}}
@item @code{uw1 __MRDACCG (acc)}
@tab @code{@var{b} = __MRDACCG (@var{a})}
@tab @code{MRDACCG @var{a},@var{b}}
@item @code{uw1 __MROTLI (uw1, const)}
@tab @code{@var{c} = __MROTLI (@var{a}, @var{b})}
@tab @code{MROTLI @var{a},#@var{b},@var{c}}
@item @code{uw1 __MROTRI (uw1, const)}
@tab @code{@var{c} = __MROTRI (@var{a}, @var{b})}
@tab @code{MROTRI @var{a},#@var{b},@var{c}}
@item @code{sw1 __MSATHS (sw1, sw1)}
@tab @code{@var{c} = __MSATHS (@var{a}, @var{b})}
@tab @code{MSATHS @var{a},@var{b},@var{c}}
@item @code{uw1 __MSATHU (uw1, uw1)}
@tab @code{@var{c} = __MSATHU (@var{a}, @var{b})}
@tab @code{MSATHU @var{a},@var{b},@var{c}}
@item @code{uw1 __MSLLHI (uw1, const)}
@tab @code{@var{c} = __MSLLHI (@var{a}, @var{b})}
@tab @code{MSLLHI @var{a},#@var{b},@var{c}}
@item @code{sw1 __MSRAHI (sw1, const)}
@tab @code{@var{c} = __MSRAHI (@var{a}, @var{b})}
@tab @code{MSRAHI @var{a},#@var{b},@var{c}}
@item @code{uw1 __MSRLHI (uw1, const)}
@tab @code{@var{c} = __MSRLHI (@var{a}, @var{b})}
@tab @code{MSRLHI @var{a},#@var{b},@var{c}}
@item @code{void __MSUBACCS (acc, acc)}
@tab @code{__MSUBACCS (@var{b}, @var{a})}
@tab @code{MSUBACCS @var{a},@var{b}}
@item @code{sw1 __MSUBHSS (sw1, sw1)}
@tab @code{@var{c} = __MSUBHSS (@var{a}, @var{b})}
@tab @code{MSUBHSS @var{a},@var{b},@var{c}}
@item @code{uw1 __MSUBHUS (uw1, uw1)}
@tab @code{@var{c} = __MSUBHUS (@var{a}, @var{b})}
@tab @code{MSUBHUS @var{a},@var{b},@var{c}}
@item @code{void __MTRAP (void)}
@tab @code{__MTRAP ()}
@tab @code{MTRAP}
@item @code{uw2 __MUNPACKH (uw1)}
@tab @code{@var{b} = __MUNPACKH (@var{a})}
@tab @code{MUNPACKH @var{a},@var{b}}
@item @code{uw1 __MWCUT (uw2, uw1)}
@tab @code{@var{c} = __MWCUT (@var{a}, @var{b})}
@tab @code{MWCUT @var{a},@var{b},@var{c}}
@item @code{void __MWTACC (acc, uw1)}
@tab @code{__MWTACC (@var{b}, @var{a})}
@tab @code{MWTACC @var{a},@var{b}}
@item @code{void __MWTACCG (acc, uw1)}
@tab @code{__MWTACCG (@var{b}, @var{a})}
@tab @code{MWTACCG @var{a},@var{b}}
@item @code{uw1 __MXOR (uw1, uw1)}
@tab @code{@var{c} = __MXOR (@var{a}, @var{b})}
@tab @code{MXOR @var{a},@var{b},@var{c}}
@end multitable
@node Raw read/write Functions
@subsubsection Raw Read/Write Functions
This sections describes built-in functions related to read and write
instructions to access memory. These functions generate
@code{membar} instructions to flush the I/O load and stores where
appropriate, as described in Fujitsu's manual described above.
@table @code
@item unsigned char __builtin_read8 (void *@var{data})
@item unsigned short __builtin_read16 (void *@var{data})
@item unsigned long __builtin_read32 (void *@var{data})
@item unsigned long long __builtin_read64 (void *@var{data})
@item void __builtin_write8 (void *@var{data}, unsigned char @var{datum})
@item void __builtin_write16 (void *@var{data}, unsigned short @var{datum})
@item void __builtin_write32 (void *@var{data}, unsigned long @var{datum})
@item void __builtin_write64 (void *@var{data}, unsigned long long @var{datum})
@end table
@node Other Built-in Functions
@subsubsection Other Built-in Functions
This section describes built-in functions that are not named after
a specific FR-V instruction.
@table @code
@item sw2 __IACCreadll (iacc @var{reg})
Return the full 64-bit value of IACC0@. The @var{reg} argument is reserved
for future expansion and must be 0.
@item sw1 __IACCreadl (iacc @var{reg})
Return the value of IACC0H if @var{reg} is 0 and IACC0L if @var{reg} is 1.
Other values of @var{reg} are rejected as invalid.
@item void __IACCsetll (iacc @var{reg}, sw2 @var{x})
Set the full 64-bit value of IACC0 to @var{x}. The @var{reg} argument
is reserved for future expansion and must be 0.
@item void __IACCsetl (iacc @var{reg}, sw1 @var{x})
Set IACC0H to @var{x} if @var{reg} is 0 and IACC0L to @var{x} if @var{reg}
is 1. Other values of @var{reg} are rejected as invalid.
@item void __data_prefetch0 (const void *@var{x})
Use the @code{dcpl} instruction to load the contents of address @var{x}
into the data cache.
@item void __data_prefetch (const void *@var{x})
Use the @code{nldub} instruction to load the contents of address @var{x}
into the data cache. The instruction is issued in slot I1@.
@end table
@node MIPS DSP Built-in Functions
@subsection MIPS DSP Built-in Functions
The MIPS DSP Application-Specific Extension (ASE) includes new
instructions that are designed to improve the performance of DSP and
media applications. It provides instructions that operate on packed
8-bit/16-bit integer data, Q7, Q15 and Q31 fractional data.
GCC supports MIPS DSP operations using both the generic
vector extensions (@pxref{Vector Extensions}) and a collection of
MIPS-specific built-in functions. Both kinds of support are
enabled by the @option{-mdsp} command-line option.
Revision 2 of the ASE was introduced in the second half of 2006.
This revision adds extra instructions to the original ASE, but is
otherwise backwards-compatible with it. You can select revision 2
using the command-line option @option{-mdspr2}; this option implies
@option{-mdsp}.
The SCOUNT and POS bits of the DSP control register are global. The
WRDSP, EXTPDP, EXTPDPV and MTHLIP instructions modify the SCOUNT and
POS bits. During optimization, the compiler does not delete these
instructions and it does not delete calls to functions containing
these instructions.
At present, GCC only provides support for operations on 32-bit
vectors. The vector type associated with 8-bit integer data is
usually called @code{v4i8}, the vector type associated with Q7
is usually called @code{v4q7}, the vector type associated with 16-bit
integer data is usually called @code{v2i16}, and the vector type
associated with Q15 is usually called @code{v2q15}. They can be
defined in C as follows:
@smallexample
typedef signed char v4i8 __attribute__ ((vector_size(4)));
typedef signed char v4q7 __attribute__ ((vector_size(4)));
typedef short v2i16 __attribute__ ((vector_size(4)));
typedef short v2q15 __attribute__ ((vector_size(4)));
@end smallexample
@code{v4i8}, @code{v4q7}, @code{v2i16} and @code{v2q15} values are
initialized in the same way as aggregates. For example:
@smallexample
v4i8 a = @{1, 2, 3, 4@};
v4i8 b;
b = (v4i8) @{5, 6, 7, 8@};
v2q15 c = @{0x0fcb, 0x3a75@};
v2q15 d;
d = (v2q15) @{0.1234 * 0x1.0p15, 0.4567 * 0x1.0p15@};
@end smallexample
@emph{Note:} The CPU's endianness determines the order in which values
are packed. On little-endian targets, the first value is the least
significant and the last value is the most significant. The opposite
order applies to big-endian targets. For example, the code above
sets the lowest byte of @code{a} to @code{1} on little-endian targets
and @code{4} on big-endian targets.
@emph{Note:} Q7, Q15 and Q31 values must be initialized with their integer
representation. As shown in this example, the integer representation
of a Q7 value can be obtained by multiplying the fractional value by
@code{0x1.0p7}. The equivalent for Q15 values is to multiply by
@code{0x1.0p15}. The equivalent for Q31 values is to multiply by
@code{0x1.0p31}.
The table below lists the @code{v4i8} and @code{v2q15} operations for which
hardware support exists. @code{a} and @code{b} are @code{v4i8} values,
and @code{c} and @code{d} are @code{v2q15} values.
@multitable @columnfractions .50 .50
@headitem C code @tab MIPS instruction
@item @code{a + b} @tab @code{addu.qb}
@item @code{c + d} @tab @code{addq.ph}
@item @code{a - b} @tab @code{subu.qb}
@item @code{c - d} @tab @code{subq.ph}
@end multitable
The table below lists the @code{v2i16} operation for which
hardware support exists for the DSP ASE REV 2. @code{e} and @code{f} are
@code{v2i16} values.
@multitable @columnfractions .50 .50
@headitem C code @tab MIPS instruction
@item @code{e * f} @tab @code{mul.ph}
@end multitable
It is easier to describe the DSP built-in functions if we first define
the following types:
@smallexample
typedef int q31;
typedef int i32;
typedef unsigned int ui32;
typedef long long a64;
@end smallexample
@code{q31} and @code{i32} are actually the same as @code{int}, but we
use @code{q31} to indicate a Q31 fractional value and @code{i32} to
indicate a 32-bit integer value. Similarly, @code{a64} is the same as
@code{long long}, but we use @code{a64} to indicate values that are
placed in one of the four DSP accumulators (@code{$ac0},
@code{$ac1}, @code{$ac2} or @code{$ac3}).
Also, some built-in functions prefer or require immediate numbers as
parameters, because the corresponding DSP instructions accept both immediate
numbers and register operands, or accept immediate numbers only. The
immediate parameters are listed as follows.
@smallexample
imm0_3: 0 to 3.
imm0_7: 0 to 7.
imm0_15: 0 to 15.
imm0_31: 0 to 31.
imm0_63: 0 to 63.
imm0_255: 0 to 255.
imm_n32_31: -32 to 31.
imm_n512_511: -512 to 511.
@end smallexample
The following built-in functions map directly to a particular MIPS DSP
instruction. Please refer to the architecture specification
for details on what each instruction does.
@smallexample
v2q15 __builtin_mips_addq_ph (v2q15, v2q15);
v2q15 __builtin_mips_addq_s_ph (v2q15, v2q15);
q31 __builtin_mips_addq_s_w (q31, q31);
v4i8 __builtin_mips_addu_qb (v4i8, v4i8);
v4i8 __builtin_mips_addu_s_qb (v4i8, v4i8);
v2q15 __builtin_mips_subq_ph (v2q15, v2q15);
v2q15 __builtin_mips_subq_s_ph (v2q15, v2q15);
q31 __builtin_mips_subq_s_w (q31, q31);
v4i8 __builtin_mips_subu_qb (v4i8, v4i8);
v4i8 __builtin_mips_subu_s_qb (v4i8, v4i8);
i32 __builtin_mips_addsc (i32, i32);
i32 __builtin_mips_addwc (i32, i32);
i32 __builtin_mips_modsub (i32, i32);
i32 __builtin_mips_raddu_w_qb (v4i8);
v2q15 __builtin_mips_absq_s_ph (v2q15);
q31 __builtin_mips_absq_s_w (q31);
v4i8 __builtin_mips_precrq_qb_ph (v2q15, v2q15);
v2q15 __builtin_mips_precrq_ph_w (q31, q31);
v2q15 __builtin_mips_precrq_rs_ph_w (q31, q31);
v4i8 __builtin_mips_precrqu_s_qb_ph (v2q15, v2q15);
q31 __builtin_mips_preceq_w_phl (v2q15);
q31 __builtin_mips_preceq_w_phr (v2q15);
v2q15 __builtin_mips_precequ_ph_qbl (v4i8);
v2q15 __builtin_mips_precequ_ph_qbr (v4i8);
v2q15 __builtin_mips_precequ_ph_qbla (v4i8);
v2q15 __builtin_mips_precequ_ph_qbra (v4i8);
v2q15 __builtin_mips_preceu_ph_qbl (v4i8);
v2q15 __builtin_mips_preceu_ph_qbr (v4i8);
v2q15 __builtin_mips_preceu_ph_qbla (v4i8);
v2q15 __builtin_mips_preceu_ph_qbra (v4i8);
v4i8 __builtin_mips_shll_qb (v4i8, imm0_7);
v4i8 __builtin_mips_shll_qb (v4i8, i32);
v2q15 __builtin_mips_shll_ph (v2q15, imm0_15);
v2q15 __builtin_mips_shll_ph (v2q15, i32);
v2q15 __builtin_mips_shll_s_ph (v2q15, imm0_15);
v2q15 __builtin_mips_shll_s_ph (v2q15, i32);
q31 __builtin_mips_shll_s_w (q31, imm0_31);
q31 __builtin_mips_shll_s_w (q31, i32);
v4i8 __builtin_mips_shrl_qb (v4i8, imm0_7);
v4i8 __builtin_mips_shrl_qb (v4i8, i32);
v2q15 __builtin_mips_shra_ph (v2q15, imm0_15);
v2q15 __builtin_mips_shra_ph (v2q15, i32);
v2q15 __builtin_mips_shra_r_ph (v2q15, imm0_15);
v2q15 __builtin_mips_shra_r_ph (v2q15, i32);
q31 __builtin_mips_shra_r_w (q31, imm0_31);
q31 __builtin_mips_shra_r_w (q31, i32);
v2q15 __builtin_mips_muleu_s_ph_qbl (v4i8, v2q15);
v2q15 __builtin_mips_muleu_s_ph_qbr (v4i8, v2q15);
v2q15 __builtin_mips_mulq_rs_ph (v2q15, v2q15);
q31 __builtin_mips_muleq_s_w_phl (v2q15, v2q15);
q31 __builtin_mips_muleq_s_w_phr (v2q15, v2q15);
a64 __builtin_mips_dpau_h_qbl (a64, v4i8, v4i8);
a64 __builtin_mips_dpau_h_qbr (a64, v4i8, v4i8);
a64 __builtin_mips_dpsu_h_qbl (a64, v4i8, v4i8);
a64 __builtin_mips_dpsu_h_qbr (a64, v4i8, v4i8);
a64 __builtin_mips_dpaq_s_w_ph (a64, v2q15, v2q15);
a64 __builtin_mips_dpaq_sa_l_w (a64, q31, q31);
a64 __builtin_mips_dpsq_s_w_ph (a64, v2q15, v2q15);
a64 __builtin_mips_dpsq_sa_l_w (a64, q31, q31);
a64 __builtin_mips_mulsaq_s_w_ph (a64, v2q15, v2q15);
a64 __builtin_mips_maq_s_w_phl (a64, v2q15, v2q15);
a64 __builtin_mips_maq_s_w_phr (a64, v2q15, v2q15);
a64 __builtin_mips_maq_sa_w_phl (a64, v2q15, v2q15);
a64 __builtin_mips_maq_sa_w_phr (a64, v2q15, v2q15);
i32 __builtin_mips_bitrev (i32);
i32 __builtin_mips_insv (i32, i32);
v4i8 __builtin_mips_repl_qb (imm0_255);
v4i8 __builtin_mips_repl_qb (i32);
v2q15 __builtin_mips_repl_ph (imm_n512_511);
v2q15 __builtin_mips_repl_ph (i32);
void __builtin_mips_cmpu_eq_qb (v4i8, v4i8);
void __builtin_mips_cmpu_lt_qb (v4i8, v4i8);
void __builtin_mips_cmpu_le_qb (v4i8, v4i8);
i32 __builtin_mips_cmpgu_eq_qb (v4i8, v4i8);
i32 __builtin_mips_cmpgu_lt_qb (v4i8, v4i8);
i32 __builtin_mips_cmpgu_le_qb (v4i8, v4i8);
void __builtin_mips_cmp_eq_ph (v2q15, v2q15);
void __builtin_mips_cmp_lt_ph (v2q15, v2q15);
void __builtin_mips_cmp_le_ph (v2q15, v2q15);
v4i8 __builtin_mips_pick_qb (v4i8, v4i8);
v2q15 __builtin_mips_pick_ph (v2q15, v2q15);
v2q15 __builtin_mips_packrl_ph (v2q15, v2q15);
i32 __builtin_mips_extr_w (a64, imm0_31);
i32 __builtin_mips_extr_w (a64, i32);
i32 __builtin_mips_extr_r_w (a64, imm0_31);
i32 __builtin_mips_extr_s_h (a64, i32);
i32 __builtin_mips_extr_rs_w (a64, imm0_31);
i32 __builtin_mips_extr_rs_w (a64, i32);
i32 __builtin_mips_extr_s_h (a64, imm0_31);
i32 __builtin_mips_extr_r_w (a64, i32);
i32 __builtin_mips_extp (a64, imm0_31);
i32 __builtin_mips_extp (a64, i32);
i32 __builtin_mips_extpdp (a64, imm0_31);
i32 __builtin_mips_extpdp (a64, i32);
a64 __builtin_mips_shilo (a64, imm_n32_31);
a64 __builtin_mips_shilo (a64, i32);
a64 __builtin_mips_mthlip (a64, i32);
void __builtin_mips_wrdsp (i32, imm0_63);
i32 __builtin_mips_rddsp (imm0_63);
i32 __builtin_mips_lbux (void *, i32);
i32 __builtin_mips_lhx (void *, i32);
i32 __builtin_mips_lwx (void *, i32);
a64 __builtin_mips_ldx (void *, i32); /* MIPS64 only */
i32 __builtin_mips_bposge32 (void);
a64 __builtin_mips_madd (a64, i32, i32);
a64 __builtin_mips_maddu (a64, ui32, ui32);
a64 __builtin_mips_msub (a64, i32, i32);
a64 __builtin_mips_msubu (a64, ui32, ui32);
a64 __builtin_mips_mult (i32, i32);
a64 __builtin_mips_multu (ui32, ui32);
@end smallexample
The following built-in functions map directly to a particular MIPS DSP REV 2
instruction. Please refer to the architecture specification
for details on what each instruction does.
@smallexample
v4q7 __builtin_mips_absq_s_qb (v4q7);
v2i16 __builtin_mips_addu_ph (v2i16, v2i16);
v2i16 __builtin_mips_addu_s_ph (v2i16, v2i16);
v4i8 __builtin_mips_adduh_qb (v4i8, v4i8);
v4i8 __builtin_mips_adduh_r_qb (v4i8, v4i8);
i32 __builtin_mips_append (i32, i32, imm0_31);
i32 __builtin_mips_balign (i32, i32, imm0_3);
i32 __builtin_mips_cmpgdu_eq_qb (v4i8, v4i8);
i32 __builtin_mips_cmpgdu_lt_qb (v4i8, v4i8);
i32 __builtin_mips_cmpgdu_le_qb (v4i8, v4i8);
a64 __builtin_mips_dpa_w_ph (a64, v2i16, v2i16);
a64 __builtin_mips_dps_w_ph (a64, v2i16, v2i16);
v2i16 __builtin_mips_mul_ph (v2i16, v2i16);
v2i16 __builtin_mips_mul_s_ph (v2i16, v2i16);
q31 __builtin_mips_mulq_rs_w (q31, q31);
v2q15 __builtin_mips_mulq_s_ph (v2q15, v2q15);
q31 __builtin_mips_mulq_s_w (q31, q31);
a64 __builtin_mips_mulsa_w_ph (a64, v2i16, v2i16);
v4i8 __builtin_mips_precr_qb_ph (v2i16, v2i16);
v2i16 __builtin_mips_precr_sra_ph_w (i32, i32, imm0_31);
v2i16 __builtin_mips_precr_sra_r_ph_w (i32, i32, imm0_31);
i32 __builtin_mips_prepend (i32, i32, imm0_31);
v4i8 __builtin_mips_shra_qb (v4i8, imm0_7);
v4i8 __builtin_mips_shra_r_qb (v4i8, imm0_7);
v4i8 __builtin_mips_shra_qb (v4i8, i32);
v4i8 __builtin_mips_shra_r_qb (v4i8, i32);
v2i16 __builtin_mips_shrl_ph (v2i16, imm0_15);
v2i16 __builtin_mips_shrl_ph (v2i16, i32);
v2i16 __builtin_mips_subu_ph (v2i16, v2i16);
v2i16 __builtin_mips_subu_s_ph (v2i16, v2i16);
v4i8 __builtin_mips_subuh_qb (v4i8, v4i8);
v4i8 __builtin_mips_subuh_r_qb (v4i8, v4i8);
v2q15 __builtin_mips_addqh_ph (v2q15, v2q15);
v2q15 __builtin_mips_addqh_r_ph (v2q15, v2q15);
q31 __builtin_mips_addqh_w (q31, q31);
q31 __builtin_mips_addqh_r_w (q31, q31);
v2q15 __builtin_mips_subqh_ph (v2q15, v2q15);
v2q15 __builtin_mips_subqh_r_ph (v2q15, v2q15);
q31 __builtin_mips_subqh_w (q31, q31);
q31 __builtin_mips_subqh_r_w (q31, q31);
a64 __builtin_mips_dpax_w_ph (a64, v2i16, v2i16);
a64 __builtin_mips_dpsx_w_ph (a64, v2i16, v2i16);
a64 __builtin_mips_dpaqx_s_w_ph (a64, v2q15, v2q15);
a64 __builtin_mips_dpaqx_sa_w_ph (a64, v2q15, v2q15);
a64 __builtin_mips_dpsqx_s_w_ph (a64, v2q15, v2q15);
a64 __builtin_mips_dpsqx_sa_w_ph (a64, v2q15, v2q15);
@end smallexample
@node MIPS Paired-Single Support
@subsection MIPS Paired-Single Support
The MIPS64 architecture includes a number of instructions that
operate on pairs of single-precision floating-point values.
Each pair is packed into a 64-bit floating-point register,
with one element being designated the ``upper half'' and
the other being designated the ``lower half''.
GCC supports paired-single operations using both the generic
vector extensions (@pxref{Vector Extensions}) and a collection of
MIPS-specific built-in functions. Both kinds of support are
enabled by the @option{-mpaired-single} command-line option.
The vector type associated with paired-single values is usually
called @code{v2sf}. It can be defined in C as follows:
@smallexample
typedef float v2sf __attribute__ ((vector_size (8)));
@end smallexample
@code{v2sf} values are initialized in the same way as aggregates.
For example:
@smallexample
v2sf a = @{1.5, 9.1@};
v2sf b;
float e, f;
b = (v2sf) @{e, f@};
@end smallexample
@emph{Note:} The CPU's endianness determines which value is stored in
the upper half of a register and which value is stored in the lower half.
On little-endian targets, the first value is the lower one and the second
value is the upper one. The opposite order applies to big-endian targets.
For example, the code above sets the lower half of @code{a} to
@code{1.5} on little-endian targets and @code{9.1} on big-endian targets.
@node MIPS Loongson Built-in Functions
@subsection MIPS Loongson Built-in Functions
GCC provides intrinsics to access the SIMD instructions provided by the
ST Microelectronics Loongson-2E and -2F processors. These intrinsics,
available after inclusion of the @code{loongson.h} header file,
operate on the following 64-bit vector types:
@itemize
@item @code{uint8x8_t}, a vector of eight unsigned 8-bit integers;
@item @code{uint16x4_t}, a vector of four unsigned 16-bit integers;
@item @code{uint32x2_t}, a vector of two unsigned 32-bit integers;
@item @code{int8x8_t}, a vector of eight signed 8-bit integers;
@item @code{int16x4_t}, a vector of four signed 16-bit integers;
@item @code{int32x2_t}, a vector of two signed 32-bit integers.
@end itemize
The intrinsics provided are listed below; each is named after the
machine instruction to which it corresponds, with suffixes added as
appropriate to distinguish intrinsics that expand to the same machine
instruction yet have different argument types. Refer to the architecture
documentation for a description of the functionality of each
instruction.
@smallexample
int16x4_t packsswh (int32x2_t s, int32x2_t t);
int8x8_t packsshb (int16x4_t s, int16x4_t t);
uint8x8_t packushb (uint16x4_t s, uint16x4_t t);
uint32x2_t paddw_u (uint32x2_t s, uint32x2_t t);
uint16x4_t paddh_u (uint16x4_t s, uint16x4_t t);
uint8x8_t paddb_u (uint8x8_t s, uint8x8_t t);
int32x2_t paddw_s (int32x2_t s, int32x2_t t);
int16x4_t paddh_s (int16x4_t s, int16x4_t t);
int8x8_t paddb_s (int8x8_t s, int8x8_t t);
uint64_t paddd_u (uint64_t s, uint64_t t);
int64_t paddd_s (int64_t s, int64_t t);
int16x4_t paddsh (int16x4_t s, int16x4_t t);
int8x8_t paddsb (int8x8_t s, int8x8_t t);
uint16x4_t paddush (uint16x4_t s, uint16x4_t t);
uint8x8_t paddusb (uint8x8_t s, uint8x8_t t);
uint64_t pandn_ud (uint64_t s, uint64_t t);
uint32x2_t pandn_uw (uint32x2_t s, uint32x2_t t);
uint16x4_t pandn_uh (uint16x4_t s, uint16x4_t t);
uint8x8_t pandn_ub (uint8x8_t s, uint8x8_t t);
int64_t pandn_sd (int64_t s, int64_t t);
int32x2_t pandn_sw (int32x2_t s, int32x2_t t);
int16x4_t pandn_sh (int16x4_t s, int16x4_t t);
int8x8_t pandn_sb (int8x8_t s, int8x8_t t);
uint16x4_t pavgh (uint16x4_t s, uint16x4_t t);
uint8x8_t pavgb (uint8x8_t s, uint8x8_t t);
uint32x2_t pcmpeqw_u (uint32x2_t s, uint32x2_t t);
uint16x4_t pcmpeqh_u (uint16x4_t s, uint16x4_t t);
uint8x8_t pcmpeqb_u (uint8x8_t s, uint8x8_t t);
int32x2_t pcmpeqw_s (int32x2_t s, int32x2_t t);
int16x4_t pcmpeqh_s (int16x4_t s, int16x4_t t);
int8x8_t pcmpeqb_s (int8x8_t s, int8x8_t t);
uint32x2_t pcmpgtw_u (uint32x2_t s, uint32x2_t t);
uint16x4_t pcmpgth_u (uint16x4_t s, uint16x4_t t);
uint8x8_t pcmpgtb_u (uint8x8_t s, uint8x8_t t);
int32x2_t pcmpgtw_s (int32x2_t s, int32x2_t t);
int16x4_t pcmpgth_s (int16x4_t s, int16x4_t t);
int8x8_t pcmpgtb_s (int8x8_t s, int8x8_t t);
uint16x4_t pextrh_u (uint16x4_t s, int field);
int16x4_t pextrh_s (int16x4_t s, int field);
uint16x4_t pinsrh_0_u (uint16x4_t s, uint16x4_t t);
uint16x4_t pinsrh_1_u (uint16x4_t s, uint16x4_t t);
uint16x4_t pinsrh_2_u (uint16x4_t s, uint16x4_t t);
uint16x4_t pinsrh_3_u (uint16x4_t s, uint16x4_t t);
int16x4_t pinsrh_0_s (int16x4_t s, int16x4_t t);
int16x4_t pinsrh_1_s (int16x4_t s, int16x4_t t);
int16x4_t pinsrh_2_s (int16x4_t s, int16x4_t t);
int16x4_t pinsrh_3_s (int16x4_t s, int16x4_t t);
int32x2_t pmaddhw (int16x4_t s, int16x4_t t);
int16x4_t pmaxsh (int16x4_t s, int16x4_t t);
uint8x8_t pmaxub (uint8x8_t s, uint8x8_t t);
int16x4_t pminsh (int16x4_t s, int16x4_t t);
uint8x8_t pminub (uint8x8_t s, uint8x8_t t);
uint8x8_t pmovmskb_u (uint8x8_t s);
int8x8_t pmovmskb_s (int8x8_t s);
uint16x4_t pmulhuh (uint16x4_t s, uint16x4_t t);
int16x4_t pmulhh (int16x4_t s, int16x4_t t);
int16x4_t pmullh (int16x4_t s, int16x4_t t);
int64_t pmuluw (uint32x2_t s, uint32x2_t t);
uint8x8_t pasubub (uint8x8_t s, uint8x8_t t);
uint16x4_t biadd (uint8x8_t s);
uint16x4_t psadbh (uint8x8_t s, uint8x8_t t);
uint16x4_t pshufh_u (uint16x4_t dest, uint16x4_t s, uint8_t order);
int16x4_t pshufh_s (int16x4_t dest, int16x4_t s, uint8_t order);
uint16x4_t psllh_u (uint16x4_t s, uint8_t amount);
int16x4_t psllh_s (int16x4_t s, uint8_t amount);
uint32x2_t psllw_u (uint32x2_t s, uint8_t amount);
int32x2_t psllw_s (int32x2_t s, uint8_t amount);
uint16x4_t psrlh_u (uint16x4_t s, uint8_t amount);
int16x4_t psrlh_s (int16x4_t s, uint8_t amount);
uint32x2_t psrlw_u (uint32x2_t s, uint8_t amount);
int32x2_t psrlw_s (int32x2_t s, uint8_t amount);
uint16x4_t psrah_u (uint16x4_t s, uint8_t amount);
int16x4_t psrah_s (int16x4_t s, uint8_t amount);
uint32x2_t psraw_u (uint32x2_t s, uint8_t amount);
int32x2_t psraw_s (int32x2_t s, uint8_t amount);
uint32x2_t psubw_u (uint32x2_t s, uint32x2_t t);
uint16x4_t psubh_u (uint16x4_t s, uint16x4_t t);
uint8x8_t psubb_u (uint8x8_t s, uint8x8_t t);
int32x2_t psubw_s (int32x2_t s, int32x2_t t);
int16x4_t psubh_s (int16x4_t s, int16x4_t t);
int8x8_t psubb_s (int8x8_t s, int8x8_t t);
uint64_t psubd_u (uint64_t s, uint64_t t);
int64_t psubd_s (int64_t s, int64_t t);
int16x4_t psubsh (int16x4_t s, int16x4_t t);
int8x8_t psubsb (int8x8_t s, int8x8_t t);
uint16x4_t psubush (uint16x4_t s, uint16x4_t t);
uint8x8_t psubusb (uint8x8_t s, uint8x8_t t);
uint32x2_t punpckhwd_u (uint32x2_t s, uint32x2_t t);
uint16x4_t punpckhhw_u (uint16x4_t s, uint16x4_t t);
uint8x8_t punpckhbh_u (uint8x8_t s, uint8x8_t t);
int32x2_t punpckhwd_s (int32x2_t s, int32x2_t t);
int16x4_t punpckhhw_s (int16x4_t s, int16x4_t t);
int8x8_t punpckhbh_s (int8x8_t s, int8x8_t t);
uint32x2_t punpcklwd_u (uint32x2_t s, uint32x2_t t);
uint16x4_t punpcklhw_u (uint16x4_t s, uint16x4_t t);
uint8x8_t punpcklbh_u (uint8x8_t s, uint8x8_t t);
int32x2_t punpcklwd_s (int32x2_t s, int32x2_t t);
int16x4_t punpcklhw_s (int16x4_t s, int16x4_t t);
int8x8_t punpcklbh_s (int8x8_t s, int8x8_t t);
@end smallexample
@menu
* Paired-Single Arithmetic::
* Paired-Single Built-in Functions::
* MIPS-3D Built-in Functions::
@end menu
@node Paired-Single Arithmetic
@subsubsection Paired-Single Arithmetic
The table below lists the @code{v2sf} operations for which hardware
support exists. @code{a}, @code{b} and @code{c} are @code{v2sf}
values and @code{x} is an integral value.
@multitable @columnfractions .50 .50
@headitem C code @tab MIPS instruction
@item @code{a + b} @tab @code{add.ps}
@item @code{a - b} @tab @code{sub.ps}
@item @code{-a} @tab @code{neg.ps}
@item @code{a * b} @tab @code{mul.ps}
@item @code{a * b + c} @tab @code{madd.ps}
@item @code{a * b - c} @tab @code{msub.ps}
@item @code{-(a * b + c)} @tab @code{nmadd.ps}
@item @code{-(a * b - c)} @tab @code{nmsub.ps}
@item @code{x ? a : b} @tab @code{movn.ps}/@code{movz.ps}
@end multitable
Note that the multiply-accumulate instructions can be disabled
using the command-line option @code{-mno-fused-madd}.
@node Paired-Single Built-in Functions
@subsubsection Paired-Single Built-in Functions
The following paired-single functions map directly to a particular
MIPS instruction. Please refer to the architecture specification
for details on what each instruction does.
@table @code
@item v2sf __builtin_mips_pll_ps (v2sf, v2sf)
Pair lower lower (@code{pll.ps}).
@item v2sf __builtin_mips_pul_ps (v2sf, v2sf)
Pair upper lower (@code{pul.ps}).
@item v2sf __builtin_mips_plu_ps (v2sf, v2sf)
Pair lower upper (@code{plu.ps}).
@item v2sf __builtin_mips_puu_ps (v2sf, v2sf)
Pair upper upper (@code{puu.ps}).
@item v2sf __builtin_mips_cvt_ps_s (float, float)
Convert pair to paired single (@code{cvt.ps.s}).
@item float __builtin_mips_cvt_s_pl (v2sf)
Convert pair lower to single (@code{cvt.s.pl}).
@item float __builtin_mips_cvt_s_pu (v2sf)
Convert pair upper to single (@code{cvt.s.pu}).
@item v2sf __builtin_mips_abs_ps (v2sf)
Absolute value (@code{abs.ps}).
@item v2sf __builtin_mips_alnv_ps (v2sf, v2sf, int)
Align variable (@code{alnv.ps}).
@emph{Note:} The value of the third parameter must be 0 or 4
modulo 8, otherwise the result is unpredictable. Please read the
instruction description for details.
@end table
The following multi-instruction functions are also available.
In each case, @var{cond} can be any of the 16 floating-point conditions:
@code{f}, @code{un}, @code{eq}, @code{ueq}, @code{olt}, @code{ult},
@code{ole}, @code{ule}, @code{sf}, @code{ngle}, @code{seq}, @code{ngl},
@code{lt}, @code{nge}, @code{le} or @code{ngt}.
@table @code
@item v2sf __builtin_mips_movt_c_@var{cond}_ps (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
@itemx v2sf __builtin_mips_movf_c_@var{cond}_ps (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
Conditional move based on floating-point comparison (@code{c.@var{cond}.ps},
@code{movt.ps}/@code{movf.ps}).
The @code{movt} functions return the value @var{x} computed by:
@smallexample
c.@var{cond}.ps @var{cc},@var{a},@var{b}
mov.ps @var{x},@var{c}
movt.ps @var{x},@var{d},@var{cc}
@end smallexample
The @code{movf} functions are similar but use @code{movf.ps} instead
of @code{movt.ps}.
@item int __builtin_mips_upper_c_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
@itemx int __builtin_mips_lower_c_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
Comparison of two paired-single values (@code{c.@var{cond}.ps},
@code{bc1t}/@code{bc1f}).
These functions compare @var{a} and @var{b} using @code{c.@var{cond}.ps}
and return either the upper or lower half of the result. For example:
@smallexample
v2sf a, b;
if (__builtin_mips_upper_c_eq_ps (a, b))
upper_halves_are_equal ();
else
upper_halves_are_unequal ();
if (__builtin_mips_lower_c_eq_ps (a, b))
lower_halves_are_equal ();
else
lower_halves_are_unequal ();
@end smallexample
@end table
@node MIPS-3D Built-in Functions
@subsubsection MIPS-3D Built-in Functions
The MIPS-3D Application-Specific Extension (ASE) includes additional
paired-single instructions that are designed to improve the performance
of 3D graphics operations. Support for these instructions is controlled
by the @option{-mips3d} command-line option.
The functions listed below map directly to a particular MIPS-3D
instruction. Please refer to the architecture specification for
more details on what each instruction does.
@table @code
@item v2sf __builtin_mips_addr_ps (v2sf, v2sf)
Reduction add (@code{addr.ps}).
@item v2sf __builtin_mips_mulr_ps (v2sf, v2sf)
Reduction multiply (@code{mulr.ps}).
@item v2sf __builtin_mips_cvt_pw_ps (v2sf)
Convert paired single to paired word (@code{cvt.pw.ps}).
@item v2sf __builtin_mips_cvt_ps_pw (v2sf)
Convert paired word to paired single (@code{cvt.ps.pw}).
@item float __builtin_mips_recip1_s (float)
@itemx double __builtin_mips_recip1_d (double)
@itemx v2sf __builtin_mips_recip1_ps (v2sf)
Reduced-precision reciprocal (sequence step 1) (@code{recip1.@var{fmt}}).
@item float __builtin_mips_recip2_s (float, float)
@itemx double __builtin_mips_recip2_d (double, double)
@itemx v2sf __builtin_mips_recip2_ps (v2sf, v2sf)
Reduced-precision reciprocal (sequence step 2) (@code{recip2.@var{fmt}}).
@item float __builtin_mips_rsqrt1_s (float)
@itemx double __builtin_mips_rsqrt1_d (double)
@itemx v2sf __builtin_mips_rsqrt1_ps (v2sf)
Reduced-precision reciprocal square root (sequence step 1)
(@code{rsqrt1.@var{fmt}}).
@item float __builtin_mips_rsqrt2_s (float, float)
@itemx double __builtin_mips_rsqrt2_d (double, double)
@itemx v2sf __builtin_mips_rsqrt2_ps (v2sf, v2sf)
Reduced-precision reciprocal square root (sequence step 2)
(@code{rsqrt2.@var{fmt}}).
@end table
The following multi-instruction functions are also available.
In each case, @var{cond} can be any of the 16 floating-point conditions:
@code{f}, @code{un}, @code{eq}, @code{ueq}, @code{olt}, @code{ult},
@code{ole}, @code{ule}, @code{sf}, @code{ngle}, @code{seq},
@code{ngl}, @code{lt}, @code{nge}, @code{le} or @code{ngt}.
@table @code
@item int __builtin_mips_cabs_@var{cond}_s (float @var{a}, float @var{b})
@itemx int __builtin_mips_cabs_@var{cond}_d (double @var{a}, double @var{b})
Absolute comparison of two scalar values (@code{cabs.@var{cond}.@var{fmt}},
@code{bc1t}/@code{bc1f}).
These functions compare @var{a} and @var{b} using @code{cabs.@var{cond}.s}
or @code{cabs.@var{cond}.d} and return the result as a boolean value.
For example:
@smallexample
float a, b;
if (__builtin_mips_cabs_eq_s (a, b))
true ();
else
false ();
@end smallexample
@item int __builtin_mips_upper_cabs_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
@itemx int __builtin_mips_lower_cabs_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
Absolute comparison of two paired-single values (@code{cabs.@var{cond}.ps},
@code{bc1t}/@code{bc1f}).
These functions compare @var{a} and @var{b} using @code{cabs.@var{cond}.ps}
and return either the upper or lower half of the result. For example:
@smallexample
v2sf a, b;
if (__builtin_mips_upper_cabs_eq_ps (a, b))
upper_halves_are_equal ();
else
upper_halves_are_unequal ();
if (__builtin_mips_lower_cabs_eq_ps (a, b))
lower_halves_are_equal ();
else
lower_halves_are_unequal ();
@end smallexample
@item v2sf __builtin_mips_movt_cabs_@var{cond}_ps (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
@itemx v2sf __builtin_mips_movf_cabs_@var{cond}_ps (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
Conditional move based on absolute comparison (@code{cabs.@var{cond}.ps},
@code{movt.ps}/@code{movf.ps}).
The @code{movt} functions return the value @var{x} computed by:
@smallexample
cabs.@var{cond}.ps @var{cc},@var{a},@var{b}
mov.ps @var{x},@var{c}
movt.ps @var{x},@var{d},@var{cc}
@end smallexample
The @code{movf} functions are similar but use @code{movf.ps} instead
of @code{movt.ps}.
@item int __builtin_mips_any_c_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
@itemx int __builtin_mips_all_c_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
@itemx int __builtin_mips_any_cabs_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
@itemx int __builtin_mips_all_cabs_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
Comparison of two paired-single values
(@code{c.@var{cond}.ps}/@code{cabs.@var{cond}.ps},
@code{bc1any2t}/@code{bc1any2f}).
These functions compare @var{a} and @var{b} using @code{c.@var{cond}.ps}
or @code{cabs.@var{cond}.ps}. The @code{any} forms return @code{true} if either
result is @code{true} and the @code{all} forms return @code{true} if both results are @code{true}.
For example:
@smallexample
v2sf a, b;
if (__builtin_mips_any_c_eq_ps (a, b))
one_is_true ();
else
both_are_false ();
if (__builtin_mips_all_c_eq_ps (a, b))
both_are_true ();
else
one_is_false ();
@end smallexample
@item int __builtin_mips_any_c_@var{cond}_4s (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
@itemx int __builtin_mips_all_c_@var{cond}_4s (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
@itemx int __builtin_mips_any_cabs_@var{cond}_4s (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
@itemx int __builtin_mips_all_cabs_@var{cond}_4s (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
Comparison of four paired-single values
(@code{c.@var{cond}.ps}/@code{cabs.@var{cond}.ps},
@code{bc1any4t}/@code{bc1any4f}).
These functions use @code{c.@var{cond}.ps} or @code{cabs.@var{cond}.ps}
to compare @var{a} with @var{b} and to compare @var{c} with @var{d}.
The @code{any} forms return @code{true} if any of the four results are @code{true}
and the @code{all} forms return @code{true} if all four results are @code{true}.
For example:
@smallexample
v2sf a, b, c, d;
if (__builtin_mips_any_c_eq_4s (a, b, c, d))
some_are_true ();
else
all_are_false ();
if (__builtin_mips_all_c_eq_4s (a, b, c, d))
all_are_true ();
else
some_are_false ();
@end smallexample
@end table
@node MIPS SIMD Architecture (MSA) Support
@subsection MIPS SIMD Architecture (MSA) Support
@menu
* MIPS SIMD Architecture Built-in Functions::
@end menu
GCC provides intrinsics to access the SIMD instructions provided by the
MSA MIPS SIMD Architecture. The interface is made available by including
@code{<msa.h>} and using @option{-mmsa -mhard-float -mfp64 -mnan=2008}.
For each @code{__builtin_msa_*}, there is a shortened name of the intrinsic,
@code{__msa_*}.
MSA implements 128-bit wide vector registers, operating on 8-, 16-, 32- and
64-bit integer, 16- and 32-bit fixed-point, or 32- and 64-bit floating point
data elements. The following vectors typedefs are included in @code{msa.h}:
@itemize
@item @code{v16i8}, a vector of sixteen signed 8-bit integers;
@item @code{v16u8}, a vector of sixteen unsigned 8-bit integers;
@item @code{v8i16}, a vector of eight signed 16-bit integers;
@item @code{v8u16}, a vector of eight unsigned 16-bit integers;
@item @code{v4i32}, a vector of four signed 32-bit integers;
@item @code{v4u32}, a vector of four unsigned 32-bit integers;
@item @code{v2i64}, a vector of two signed 64-bit integers;
@item @code{v2u64}, a vector of two unsigned 64-bit integers;
@item @code{v4f32}, a vector of four 32-bit floats;
@item @code{v2f64}, a vector of two 64-bit doubles.
@end itemize
Instructions and corresponding built-ins may have additional restrictions and/or
input/output values manipulated:
@itemize
@item @code{imm0_1}, an integer literal in range 0 to 1;
@item @code{imm0_3}, an integer literal in range 0 to 3;
@item @code{imm0_7}, an integer literal in range 0 to 7;
@item @code{imm0_15}, an integer literal in range 0 to 15;
@item @code{imm0_31}, an integer literal in range 0 to 31;
@item @code{imm0_63}, an integer literal in range 0 to 63;
@item @code{imm0_255}, an integer literal in range 0 to 255;
@item @code{imm_n16_15}, an integer literal in range -16 to 15;
@item @code{imm_n512_511}, an integer literal in range -512 to 511;
@item @code{imm_n1024_1022}, an integer literal in range -512 to 511 left
shifted by 1 bit, i.e., -1024, -1022, @dots{}, 1020, 1022;
@item @code{imm_n2048_2044}, an integer literal in range -512 to 511 left
shifted by 2 bits, i.e., -2048, -2044, @dots{}, 2040, 2044;
@item @code{imm_n4096_4088}, an integer literal in range -512 to 511 left
shifted by 3 bits, i.e., -4096, -4088, @dots{}, 4080, 4088;
@item @code{imm1_4}, an integer literal in range 1 to 4;
@item @code{i32, i64, u32, u64, f32, f64}, defined as follows:
@end itemize
@smallexample
@{
typedef int i32;
#if __LONG_MAX__ == __LONG_LONG_MAX__
typedef long i64;
#else
typedef long long i64;
#endif
typedef unsigned int u32;
#if __LONG_MAX__ == __LONG_LONG_MAX__
typedef unsigned long u64;
#else
typedef unsigned long long u64;
#endif
typedef double f64;
typedef float f32;
@}
@end smallexample
@node MIPS SIMD Architecture Built-in Functions
@subsubsection MIPS SIMD Architecture Built-in Functions
The intrinsics provided are listed below; each is named after the
machine instruction.
@smallexample
v16i8 __builtin_msa_add_a_b (v16i8, v16i8);
v8i16 __builtin_msa_add_a_h (v8i16, v8i16);
v4i32 __builtin_msa_add_a_w (v4i32, v4i32);
v2i64 __builtin_msa_add_a_d (v2i64, v2i64);
v16i8 __builtin_msa_adds_a_b (v16i8, v16i8);
v8i16 __builtin_msa_adds_a_h (v8i16, v8i16);
v4i32 __builtin_msa_adds_a_w (v4i32, v4i32);
v2i64 __builtin_msa_adds_a_d (v2i64, v2i64);
v16i8 __builtin_msa_adds_s_b (v16i8, v16i8);
v8i16 __builtin_msa_adds_s_h (v8i16, v8i16);
v4i32 __builtin_msa_adds_s_w (v4i32, v4i32);
v2i64 __builtin_msa_adds_s_d (v2i64, v2i64);
v16u8 __builtin_msa_adds_u_b (v16u8, v16u8);
v8u16 __builtin_msa_adds_u_h (v8u16, v8u16);
v4u32 __builtin_msa_adds_u_w (v4u32, v4u32);
v2u64 __builtin_msa_adds_u_d (v2u64, v2u64);
v16i8 __builtin_msa_addv_b (v16i8, v16i8);
v8i16 __builtin_msa_addv_h (v8i16, v8i16);
v4i32 __builtin_msa_addv_w (v4i32, v4i32);
v2i64 __builtin_msa_addv_d (v2i64, v2i64);
v16i8 __builtin_msa_addvi_b (v16i8, imm0_31);
v8i16 __builtin_msa_addvi_h (v8i16, imm0_31);
v4i32 __builtin_msa_addvi_w (v4i32, imm0_31);
v2i64 __builtin_msa_addvi_d (v2i64, imm0_31);
v16u8 __builtin_msa_and_v (v16u8, v16u8);
v16u8 __builtin_msa_andi_b (v16u8, imm0_255);
v16i8 __builtin_msa_asub_s_b (v16i8, v16i8);
v8i16 __builtin_msa_asub_s_h (v8i16, v8i16);
v4i32 __builtin_msa_asub_s_w (v4i32, v4i32);
v2i64 __builtin_msa_asub_s_d (v2i64, v2i64);
v16u8 __builtin_msa_asub_u_b (v16u8, v16u8);
v8u16 __builtin_msa_asub_u_h (v8u16, v8u16);
v4u32 __builtin_msa_asub_u_w (v4u32, v4u32);
v2u64 __builtin_msa_asub_u_d (v2u64, v2u64);
v16i8 __builtin_msa_ave_s_b (v16i8, v16i8);
v8i16 __builtin_msa_ave_s_h (v8i16, v8i16);
v4i32 __builtin_msa_ave_s_w (v4i32, v4i32);
v2i64 __builtin_msa_ave_s_d (v2i64, v2i64);
v16u8 __builtin_msa_ave_u_b (v16u8, v16u8);
v8u16 __builtin_msa_ave_u_h (v8u16, v8u16);
v4u32 __builtin_msa_ave_u_w (v4u32, v4u32);
v2u64 __builtin_msa_ave_u_d (v2u64, v2u64);
v16i8 __builtin_msa_aver_s_b (v16i8, v16i8);
v8i16 __builtin_msa_aver_s_h (v8i16, v8i16);
v4i32 __builtin_msa_aver_s_w (v4i32, v4i32);
v2i64 __builtin_msa_aver_s_d (v2i64, v2i64);
v16u8 __builtin_msa_aver_u_b (v16u8, v16u8);
v8u16 __builtin_msa_aver_u_h (v8u16, v8u16);
v4u32 __builtin_msa_aver_u_w (v4u32, v4u32);
v2u64 __builtin_msa_aver_u_d (v2u64, v2u64);
v16u8 __builtin_msa_bclr_b (v16u8, v16u8);
v8u16 __builtin_msa_bclr_h (v8u16, v8u16);
v4u32 __builtin_msa_bclr_w (v4u32, v4u32);
v2u64 __builtin_msa_bclr_d (v2u64, v2u64);
v16u8 __builtin_msa_bclri_b (v16u8, imm0_7);
v8u16 __builtin_msa_bclri_h (v8u16, imm0_15);
v4u32 __builtin_msa_bclri_w (v4u32, imm0_31);
v2u64 __builtin_msa_bclri_d (v2u64, imm0_63);
v16u8 __builtin_msa_binsl_b (v16u8, v16u8, v16u8);
v8u16 __builtin_msa_binsl_h (v8u16, v8u16, v8u16);
v4u32 __builtin_msa_binsl_w (v4u32, v4u32, v4u32);
v2u64 __builtin_msa_binsl_d (v2u64, v2u64, v2u64);
v16u8 __builtin_msa_binsli_b (v16u8, v16u8, imm0_7);
v8u16 __builtin_msa_binsli_h (v8u16, v8u16, imm0_15);
v4u32 __builtin_msa_binsli_w (v4u32, v4u32, imm0_31);
v2u64 __builtin_msa_binsli_d (v2u64, v2u64, imm0_63);
v16u8 __builtin_msa_binsr_b (v16u8, v16u8, v16u8);
v8u16 __builtin_msa_binsr_h (v8u16, v8u16, v8u16);
v4u32 __builtin_msa_binsr_w (v4u32, v4u32, v4u32);
v2u64 __builtin_msa_binsr_d (v2u64, v2u64, v2u64);
v16u8 __builtin_msa_binsri_b (v16u8, v16u8, imm0_7);
v8u16 __builtin_msa_binsri_h (v8u16, v8u16, imm0_15);
v4u32 __builtin_msa_binsri_w (v4u32, v4u32, imm0_31);
v2u64 __builtin_msa_binsri_d (v2u64, v2u64, imm0_63);
v16u8 __builtin_msa_bmnz_v (v16u8, v16u8, v16u8);
v16u8 __builtin_msa_bmnzi_b (v16u8, v16u8, imm0_255);
v16u8 __builtin_msa_bmz_v (v16u8, v16u8, v16u8);
v16u8 __builtin_msa_bmzi_b (v16u8, v16u8, imm0_255);
v16u8 __builtin_msa_bneg_b (v16u8, v16u8);
v8u16 __builtin_msa_bneg_h (v8u16, v8u16);
v4u32 __builtin_msa_bneg_w (v4u32, v4u32);
v2u64 __builtin_msa_bneg_d (v2u64, v2u64);
v16u8 __builtin_msa_bnegi_b (v16u8, imm0_7);
v8u16 __builtin_msa_bnegi_h (v8u16, imm0_15);
v4u32 __builtin_msa_bnegi_w (v4u32, imm0_31);
v2u64 __builtin_msa_bnegi_d (v2u64, imm0_63);
i32 __builtin_msa_bnz_b (v16u8);
i32 __builtin_msa_bnz_h (v8u16);
i32 __builtin_msa_bnz_w (v4u32);
i32 __builtin_msa_bnz_d (v2u64);
i32 __builtin_msa_bnz_v (v16u8);
v16u8 __builtin_msa_bsel_v (v16u8, v16u8, v16u8);
v16u8 __builtin_msa_bseli_b (v16u8, v16u8, imm0_255);
v16u8 __builtin_msa_bset_b (v16u8, v16u8);
v8u16 __builtin_msa_bset_h (v8u16, v8u16);
v4u32 __builtin_msa_bset_w (v4u32, v4u32);
v2u64 __builtin_msa_bset_d (v2u64, v2u64);
v16u8 __builtin_msa_bseti_b (v16u8, imm0_7);
v8u16 __builtin_msa_bseti_h (v8u16, imm0_15);
v4u32 __builtin_msa_bseti_w (v4u32, imm0_31);
v2u64 __builtin_msa_bseti_d (v2u64, imm0_63);
i32 __builtin_msa_bz_b (v16u8);
i32 __builtin_msa_bz_h (v8u16);
i32 __builtin_msa_bz_w (v4u32);
i32 __builtin_msa_bz_d (v2u64);
i32 __builtin_msa_bz_v (v16u8);
v16i8 __builtin_msa_ceq_b (v16i8, v16i8);
v8i16 __builtin_msa_ceq_h (v8i16, v8i16);
v4i32 __builtin_msa_ceq_w (v4i32, v4i32);
v2i64 __builtin_msa_ceq_d (v2i64, v2i64);
v16i8 __builtin_msa_ceqi_b (v16i8, imm_n16_15);
v8i16 __builtin_msa_ceqi_h (v8i16, imm_n16_15);
v4i32 __builtin_msa_ceqi_w (v4i32, imm_n16_15);
v2i64 __builtin_msa_ceqi_d (v2i64, imm_n16_15);
i32 __builtin_msa_cfcmsa (imm0_31);
v16i8 __builtin_msa_cle_s_b (v16i8, v16i8);
v8i16 __builtin_msa_cle_s_h (v8i16, v8i16);
v4i32 __builtin_msa_cle_s_w (v4i32, v4i32);
v2i64 __builtin_msa_cle_s_d (v2i64, v2i64);
v16i8 __builtin_msa_cle_u_b (v16u8, v16u8);
v8i16 __builtin_msa_cle_u_h (v8u16, v8u16);
v4i32 __builtin_msa_cle_u_w (v4u32, v4u32);
v2i64 __builtin_msa_cle_u_d (v2u64, v2u64);
v16i8 __builtin_msa_clei_s_b (v16i8, imm_n16_15);
v8i16 __builtin_msa_clei_s_h (v8i16, imm_n16_15);
v4i32 __builtin_msa_clei_s_w (v4i32, imm_n16_15);
v2i64 __builtin_msa_clei_s_d (v2i64, imm_n16_15);
v16i8 __builtin_msa_clei_u_b (v16u8, imm0_31);
v8i16 __builtin_msa_clei_u_h (v8u16, imm0_31);
v4i32 __builtin_msa_clei_u_w (v4u32, imm0_31);
v2i64 __builtin_msa_clei_u_d (v2u64, imm0_31);
v16i8 __builtin_msa_clt_s_b (v16i8, v16i8);
v8i16 __builtin_msa_clt_s_h (v8i16, v8i16);
v4i32 __builtin_msa_clt_s_w (v4i32, v4i32);
v2i64 __builtin_msa_clt_s_d (v2i64, v2i64);
v16i8 __builtin_msa_clt_u_b (v16u8, v16u8);
v8i16 __builtin_msa_clt_u_h (v8u16, v8u16);
v4i32 __builtin_msa_clt_u_w (v4u32, v4u32);
v2i64 __builtin_msa_clt_u_d (v2u64, v2u64);
v16i8 __builtin_msa_clti_s_b (v16i8, imm_n16_15);
v8i16 __builtin_msa_clti_s_h (v8i16, imm_n16_15);
v4i32 __builtin_msa_clti_s_w (v4i32, imm_n16_15);
v2i64 __builtin_msa_clti_s_d (v2i64, imm_n16_15);
v16i8 __builtin_msa_clti_u_b (v16u8, imm0_31);
v8i16 __builtin_msa_clti_u_h (v8u16, imm0_31);
v4i32 __builtin_msa_clti_u_w (v4u32, imm0_31);
v2i64 __builtin_msa_clti_u_d (v2u64, imm0_31);
i32 __builtin_msa_copy_s_b (v16i8, imm0_15);
i32 __builtin_msa_copy_s_h (v8i16, imm0_7);
i32 __builtin_msa_copy_s_w (v4i32, imm0_3);
i64 __builtin_msa_copy_s_d (v2i64, imm0_1);
u32 __builtin_msa_copy_u_b (v16i8, imm0_15);
u32 __builtin_msa_copy_u_h (v8i16, imm0_7);
u32 __builtin_msa_copy_u_w (v4i32, imm0_3);
u64 __builtin_msa_copy_u_d (v2i64, imm0_1);
void __builtin_msa_ctcmsa (imm0_31, i32);
v16i8 __builtin_msa_div_s_b (v16i8, v16i8);
v8i16 __builtin_msa_div_s_h (v8i16, v8i16);
v4i32 __builtin_msa_div_s_w (v4i32, v4i32);
v2i64 __builtin_msa_div_s_d (v2i64, v2i64);
v16u8 __builtin_msa_div_u_b (v16u8, v16u8);
v8u16 __builtin_msa_div_u_h (v8u16, v8u16);
v4u32 __builtin_msa_div_u_w (v4u32, v4u32);
v2u64 __builtin_msa_div_u_d (v2u64, v2u64);
v8i16 __builtin_msa_dotp_s_h (v16i8, v16i8);
v4i32 __builtin_msa_dotp_s_w (v8i16, v8i16);
v2i64 __builtin_msa_dotp_s_d (v4i32, v4i32);
v8u16 __builtin_msa_dotp_u_h (v16u8, v16u8);
v4u32 __builtin_msa_dotp_u_w (v8u16, v8u16);
v2u64 __builtin_msa_dotp_u_d (v4u32, v4u32);
v8i16 __builtin_msa_dpadd_s_h (v8i16, v16i8, v16i8);
v4i32 __builtin_msa_dpadd_s_w (v4i32, v8i16, v8i16);
v2i64 __builtin_msa_dpadd_s_d (v2i64, v4i32, v4i32);
v8u16 __builtin_msa_dpadd_u_h (v8u16, v16u8, v16u8);
v4u32 __builtin_msa_dpadd_u_w (v4u32, v8u16, v8u16);
v2u64 __builtin_msa_dpadd_u_d (v2u64, v4u32, v4u32);
v8i16 __builtin_msa_dpsub_s_h (v8i16, v16i8, v16i8);
v4i32 __builtin_msa_dpsub_s_w (v4i32, v8i16, v8i16);
v2i64 __builtin_msa_dpsub_s_d (v2i64, v4i32, v4i32);
v8i16 __builtin_msa_dpsub_u_h (v8i16, v16u8, v16u8);
v4i32 __builtin_msa_dpsub_u_w (v4i32, v8u16, v8u16);
v2i64 __builtin_msa_dpsub_u_d (v2i64, v4u32, v4u32);
v4f32 __builtin_msa_fadd_w (v4f32, v4f32);
v2f64 __builtin_msa_fadd_d (v2f64, v2f64);
v4i32 __builtin_msa_fcaf_w (v4f32, v4f32);
v2i64 __builtin_msa_fcaf_d (v2f64, v2f64);
v4i32 __builtin_msa_fceq_w (v4f32, v4f32);
v2i64 __builtin_msa_fceq_d (v2f64, v2f64);
v4i32 __builtin_msa_fclass_w (v4f32);
v2i64 __builtin_msa_fclass_d (v2f64);
v4i32 __builtin_msa_fcle_w (v4f32, v4f32);
v2i64 __builtin_msa_fcle_d (v2f64, v2f64);
v4i32 __builtin_msa_fclt_w (v4f32, v4f32);
v2i64 __builtin_msa_fclt_d (v2f64, v2f64);
v4i32 __builtin_msa_fcne_w (v4f32, v4f32);
v2i64 __builtin_msa_fcne_d (v2f64, v2f64);
v4i32 __builtin_msa_fcor_w (v4f32, v4f32);
v2i64 __builtin_msa_fcor_d (v2f64, v2f64);
v4i32 __builtin_msa_fcueq_w (v4f32, v4f32);
v2i64 __builtin_msa_fcueq_d (v2f64, v2f64);
v4i32 __builtin_msa_fcule_w (v4f32, v4f32);
v2i64 __builtin_msa_fcule_d (v2f64, v2f64);
v4i32 __builtin_msa_fcult_w (v4f32, v4f32);
v2i64 __builtin_msa_fcult_d (v2f64, v2f64);
v4i32 __builtin_msa_fcun_w (v4f32, v4f32);
v2i64 __builtin_msa_fcun_d (v2f64, v2f64);
v4i32 __builtin_msa_fcune_w (v4f32, v4f32);
v2i64 __builtin_msa_fcune_d (v2f64, v2f64);
v4f32 __builtin_msa_fdiv_w (v4f32, v4f32);
v2f64 __builtin_msa_fdiv_d (v2f64, v2f64);
v8i16 __builtin_msa_fexdo_h (v4f32, v4f32);
v4f32 __builtin_msa_fexdo_w (v2f64, v2f64);
v4f32 __builtin_msa_fexp2_w (v4f32, v4i32);
v2f64 __builtin_msa_fexp2_d (v2f64, v2i64);
v4f32 __builtin_msa_fexupl_w (v8i16);
v2f64 __builtin_msa_fexupl_d (v4f32);
v4f32 __builtin_msa_fexupr_w (v8i16);
v2f64 __builtin_msa_fexupr_d (v4f32);
v4f32 __builtin_msa_ffint_s_w (v4i32);
v2f64 __builtin_msa_ffint_s_d (v2i64);
v4f32 __builtin_msa_ffint_u_w (v4u32);
v2f64 __builtin_msa_ffint_u_d (v2u64);
v4f32 __builtin_msa_ffql_w (v8i16);
v2f64 __builtin_msa_ffql_d (v4i32);
v4f32 __builtin_msa_ffqr_w (v8i16);
v2f64 __builtin_msa_ffqr_d (v4i32);
v16i8 __builtin_msa_fill_b (i32);
v8i16 __builtin_msa_fill_h (i32);
v4i32 __builtin_msa_fill_w (i32);
v2i64 __builtin_msa_fill_d (i64);
v4f32 __builtin_msa_flog2_w (v4f32);
v2f64 __builtin_msa_flog2_d (v2f64);
v4f32 __builtin_msa_fmadd_w (v4f32, v4f32, v4f32);
v2f64 __builtin_msa_fmadd_d (v2f64, v2f64, v2f64);
v4f32 __builtin_msa_fmax_w (v4f32, v4f32);
v2f64 __builtin_msa_fmax_d (v2f64, v2f64);
v4f32 __builtin_msa_fmax_a_w (v4f32, v4f32);
v2f64 __builtin_msa_fmax_a_d (v2f64, v2f64);
v4f32 __builtin_msa_fmin_w (v4f32, v4f32);
v2f64 __builtin_msa_fmin_d (v2f64, v2f64);
v4f32 __builtin_msa_fmin_a_w (v4f32, v4f32);
v2f64 __builtin_msa_fmin_a_d (v2f64, v2f64);
v4f32 __builtin_msa_fmsub_w (v4f32, v4f32, v4f32);
v2f64 __builtin_msa_fmsub_d (v2f64, v2f64, v2f64);
v4f32 __builtin_msa_fmul_w (v4f32, v4f32);
v2f64 __builtin_msa_fmul_d (v2f64, v2f64);
v4f32 __builtin_msa_frint_w (v4f32);
v2f64 __builtin_msa_frint_d (v2f64);
v4f32 __builtin_msa_frcp_w (v4f32);
v2f64 __builtin_msa_frcp_d (v2f64);
v4f32 __builtin_msa_frsqrt_w (v4f32);
v2f64 __builtin_msa_frsqrt_d (v2f64);
v4i32 __builtin_msa_fsaf_w (v4f32, v4f32);
v2i64 __builtin_msa_fsaf_d (v2f64, v2f64);
v4i32 __builtin_msa_fseq_w (v4f32, v4f32);
v2i64 __builtin_msa_fseq_d (v2f64, v2f64);
v4i32 __builtin_msa_fsle_w (v4f32, v4f32);
v2i64 __builtin_msa_fsle_d (v2f64, v2f64);
v4i32 __builtin_msa_fslt_w (v4f32, v4f32);
v2i64 __builtin_msa_fslt_d (v2f64, v2f64);
v4i32 __builtin_msa_fsne_w (v4f32, v4f32);
v2i64 __builtin_msa_fsne_d (v2f64, v2f64);
v4i32 __builtin_msa_fsor_w (v4f32, v4f32);
v2i64 __builtin_msa_fsor_d (v2f64, v2f64);
v4f32 __builtin_msa_fsqrt_w (v4f32);
v2f64 __builtin_msa_fsqrt_d (v2f64);
v4f32 __builtin_msa_fsub_w (v4f32, v4f32);
v2f64 __builtin_msa_fsub_d (v2f64, v2f64);
v4i32 __builtin_msa_fsueq_w (v4f32, v4f32);
v2i64 __builtin_msa_fsueq_d (v2f64, v2f64);
v4i32 __builtin_msa_fsule_w (v4f32, v4f32);
v2i64 __builtin_msa_fsule_d (v2f64, v2f64);
v4i32 __builtin_msa_fsult_w (v4f32, v4f32);
v2i64 __builtin_msa_fsult_d (v2f64, v2f64);
v4i32 __builtin_msa_fsun_w (v4f32, v4f32);
v2i64 __builtin_msa_fsun_d (v2f64, v2f64);
v4i32 __builtin_msa_fsune_w (v4f32, v4f32);
v2i64 __builtin_msa_fsune_d (v2f64, v2f64);
v4i32 __builtin_msa_ftint_s_w (v4f32);
v2i64 __builtin_msa_ftint_s_d (v2f64);
v4u32 __builtin_msa_ftint_u_w (v4f32);
v2u64 __builtin_msa_ftint_u_d (v2f64);
v8i16 __builtin_msa_ftq_h (v4f32, v4f32);
v4i32 __builtin_msa_ftq_w (v2f64, v2f64);
v4i32 __builtin_msa_ftrunc_s_w (v4f32);
v2i64 __builtin_msa_ftrunc_s_d (v2f64);
v4u32 __builtin_msa_ftrunc_u_w (v4f32);
v2u64 __builtin_msa_ftrunc_u_d (v2f64);
v8i16 __builtin_msa_hadd_s_h (v16i8, v16i8);
v4i32 __builtin_msa_hadd_s_w (v8i16, v8i16);
v2i64 __builtin_msa_hadd_s_d (v4i32, v4i32);
v8u16 __builtin_msa_hadd_u_h (v16u8, v16u8);
v4u32 __builtin_msa_hadd_u_w (v8u16, v8u16);
v2u64 __builtin_msa_hadd_u_d (v4u32, v4u32);
v8i16 __builtin_msa_hsub_s_h (v16i8, v16i8);
v4i32 __builtin_msa_hsub_s_w (v8i16, v8i16);
v2i64 __builtin_msa_hsub_s_d (v4i32, v4i32);
v8i16 __builtin_msa_hsub_u_h (v16u8, v16u8);
v4i32 __builtin_msa_hsub_u_w (v8u16, v8u16);
v2i64 __builtin_msa_hsub_u_d (v4u32, v4u32);
v16i8 __builtin_msa_ilvev_b (v16i8, v16i8);
v8i16 __builtin_msa_ilvev_h (v8i16, v8i16);
v4i32 __builtin_msa_ilvev_w (v4i32, v4i32);
v2i64 __builtin_msa_ilvev_d (v2i64, v2i64);
v16i8 __builtin_msa_ilvl_b (v16i8, v16i8);
v8i16 __builtin_msa_ilvl_h (v8i16, v8i16);
v4i32 __builtin_msa_ilvl_w (v4i32, v4i32);
v2i64 __builtin_msa_ilvl_d (v2i64, v2i64);
v16i8 __builtin_msa_ilvod_b (v16i8, v16i8);
v8i16 __builtin_msa_ilvod_h (v8i16, v8i16);
v4i32 __builtin_msa_ilvod_w (v4i32, v4i32);
v2i64 __builtin_msa_ilvod_d (v2i64, v2i64);
v16i8 __builtin_msa_ilvr_b (v16i8, v16i8);
v8i16 __builtin_msa_ilvr_h (v8i16, v8i16);
v4i32 __builtin_msa_ilvr_w (v4i32, v4i32);
v2i64 __builtin_msa_ilvr_d (v2i64, v2i64);
v16i8 __builtin_msa_insert_b (v16i8, imm0_15, i32);
v8i16 __builtin_msa_insert_h (v8i16, imm0_7, i32);
v4i32 __builtin_msa_insert_w (v4i32, imm0_3, i32);
v2i64 __builtin_msa_insert_d (v2i64, imm0_1, i64);
v16i8 __builtin_msa_insve_b (v16i8, imm0_15, v16i8);
v8i16 __builtin_msa_insve_h (v8i16, imm0_7, v8i16);
v4i32 __builtin_msa_insve_w (v4i32, imm0_3, v4i32);
v2i64 __builtin_msa_insve_d (v2i64, imm0_1, v2i64);
v16i8 __builtin_msa_ld_b (const void *, imm_n512_511);
v8i16 __builtin_msa_ld_h (const void *, imm_n1024_1022);
v4i32 __builtin_msa_ld_w (const void *, imm_n2048_2044);
v2i64 __builtin_msa_ld_d (const void *, imm_n4096_4088);
v16i8 __builtin_msa_ldi_b (imm_n512_511);
v8i16 __builtin_msa_ldi_h (imm_n512_511);
v4i32 __builtin_msa_ldi_w (imm_n512_511);
v2i64 __builtin_msa_ldi_d (imm_n512_511);
v8i16 __builtin_msa_madd_q_h (v8i16, v8i16, v8i16);
v4i32 __builtin_msa_madd_q_w (v4i32, v4i32, v4i32);
v8i16 __builtin_msa_maddr_q_h (v8i16, v8i16, v8i16);
v4i32 __builtin_msa_maddr_q_w (v4i32, v4i32, v4i32);
v16i8 __builtin_msa_maddv_b (v16i8, v16i8, v16i8);
v8i16 __builtin_msa_maddv_h (v8i16, v8i16, v8i16);
v4i32 __builtin_msa_maddv_w (v4i32, v4i32, v4i32);
v2i64 __builtin_msa_maddv_d (v2i64, v2i64, v2i64);
v16i8 __builtin_msa_max_a_b (v16i8, v16i8);
v8i16 __builtin_msa_max_a_h (v8i16, v8i16);
v4i32 __builtin_msa_max_a_w (v4i32, v4i32);
v2i64 __builtin_msa_max_a_d (v2i64, v2i64);
v16i8 __builtin_msa_max_s_b (v16i8, v16i8);
v8i16 __builtin_msa_max_s_h (v8i16, v8i16);
v4i32 __builtin_msa_max_s_w (v4i32, v4i32);
v2i64 __builtin_msa_max_s_d (v2i64, v2i64);
v16u8 __builtin_msa_max_u_b (v16u8, v16u8);
v8u16 __builtin_msa_max_u_h (v8u16, v8u16);
v4u32 __builtin_msa_max_u_w (v4u32, v4u32);
v2u64 __builtin_msa_max_u_d (v2u64, v2u64);
v16i8 __builtin_msa_maxi_s_b (v16i8, imm_n16_15);
v8i16 __builtin_msa_maxi_s_h (v8i16, imm_n16_15);
v4i32 __builtin_msa_maxi_s_w (v4i32, imm_n16_15);
v2i64 __builtin_msa_maxi_s_d (v2i64, imm_n16_15);
v16u8 __builtin_msa_maxi_u_b (v16u8, imm0_31);
v8u16 __builtin_msa_maxi_u_h (v8u16, imm0_31);
v4u32 __builtin_msa_maxi_u_w (v4u32, imm0_31);
v2u64 __builtin_msa_maxi_u_d (v2u64, imm0_31);
v16i8 __builtin_msa_min_a_b (v16i8, v16i8);
v8i16 __builtin_msa_min_a_h (v8i16, v8i16);
v4i32 __builtin_msa_min_a_w (v4i32, v4i32);
v2i64 __builtin_msa_min_a_d (v2i64, v2i64);
v16i8 __builtin_msa_min_s_b (v16i8, v16i8);
v8i16 __builtin_msa_min_s_h (v8i16, v8i16);
v4i32 __builtin_msa_min_s_w (v4i32, v4i32);
v2i64 __builtin_msa_min_s_d (v2i64, v2i64);
v16u8 __builtin_msa_min_u_b (v16u8, v16u8);
v8u16 __builtin_msa_min_u_h (v8u16, v8u16);
v4u32 __builtin_msa_min_u_w (v4u32, v4u32);
v2u64 __builtin_msa_min_u_d (v2u64, v2u64);
v16i8 __builtin_msa_mini_s_b (v16i8, imm_n16_15);
v8i16 __builtin_msa_mini_s_h (v8i16, imm_n16_15);
v4i32 __builtin_msa_mini_s_w (v4i32, imm_n16_15);
v2i64 __builtin_msa_mini_s_d (v2i64, imm_n16_15);
v16u8 __builtin_msa_mini_u_b (v16u8, imm0_31);
v8u16 __builtin_msa_mini_u_h (v8u16, imm0_31);
v4u32 __builtin_msa_mini_u_w (v4u32, imm0_31);
v2u64 __builtin_msa_mini_u_d (v2u64, imm0_31);
v16i8 __builtin_msa_mod_s_b (v16i8, v16i8);
v8i16 __builtin_msa_mod_s_h (v8i16, v8i16);
v4i32 __builtin_msa_mod_s_w (v4i32, v4i32);
v2i64 __builtin_msa_mod_s_d (v2i64, v2i64);
v16u8 __builtin_msa_mod_u_b (v16u8, v16u8);
v8u16 __builtin_msa_mod_u_h (v8u16, v8u16);
v4u32 __builtin_msa_mod_u_w (v4u32, v4u32);
v2u64 __builtin_msa_mod_u_d (v2u64, v2u64);
v16i8 __builtin_msa_move_v (v16i8);
v8i16 __builtin_msa_msub_q_h (v8i16, v8i16, v8i16);
v4i32 __builtin_msa_msub_q_w (v4i32, v4i32, v4i32);
v8i16 __builtin_msa_msubr_q_h (v8i16, v8i16, v8i16);
v4i32 __builtin_msa_msubr_q_w (v4i32, v4i32, v4i32);
v16i8 __builtin_msa_msubv_b (v16i8, v16i8, v16i8);
v8i16 __builtin_msa_msubv_h (v8i16, v8i16, v8i16);
v4i32 __builtin_msa_msubv_w (v4i32, v4i32, v4i32);
v2i64 __builtin_msa_msubv_d (v2i64, v2i64, v2i64);
v8i16 __builtin_msa_mul_q_h (v8i16, v8i16);
v4i32 __builtin_msa_mul_q_w (v4i32, v4i32);
v8i16 __builtin_msa_mulr_q_h (v8i16, v8i16);
v4i32 __builtin_msa_mulr_q_w (v4i32, v4i32);
v16i8 __builtin_msa_mulv_b (v16i8, v16i8);
v8i16 __builtin_msa_mulv_h (v8i16, v8i16);
v4i32 __builtin_msa_mulv_w (v4i32, v4i32);
v2i64 __builtin_msa_mulv_d (v2i64, v2i64);
v16i8 __builtin_msa_nloc_b (v16i8);
v8i16 __builtin_msa_nloc_h (v8i16);
v4i32 __builtin_msa_nloc_w (v4i32);
v2i64 __builtin_msa_nloc_d (v2i64);
v16i8 __builtin_msa_nlzc_b (v16i8);
v8i16 __builtin_msa_nlzc_h (v8i16);
v4i32 __builtin_msa_nlzc_w (v4i32);
v2i64 __builtin_msa_nlzc_d (v2i64);
v16u8 __builtin_msa_nor_v (v16u8, v16u8);
v16u8 __builtin_msa_nori_b (v16u8, imm0_255);
v16u8 __builtin_msa_or_v (v16u8, v16u8);
v16u8 __builtin_msa_ori_b (v16u8, imm0_255);
v16i8 __builtin_msa_pckev_b (v16i8, v16i8);
v8i16 __builtin_msa_pckev_h (v8i16, v8i16);
v4i32 __builtin_msa_pckev_w (v4i32, v4i32);
v2i64 __builtin_msa_pckev_d (v2i64, v2i64);
v16i8 __builtin_msa_pckod_b (v16i8, v16i8);
v8i16 __builtin_msa_pckod_h (v8i16, v8i16);
v4i32 __builtin_msa_pckod_w (v4i32, v4i32);
v2i64 __builtin_msa_pckod_d (v2i64, v2i64);
v16i8 __builtin_msa_pcnt_b (v16i8);
v8i16 __builtin_msa_pcnt_h (v8i16);
v4i32 __builtin_msa_pcnt_w (v4i32);
v2i64 __builtin_msa_pcnt_d (v2i64);
v16i8 __builtin_msa_sat_s_b (v16i8, imm0_7);
v8i16 __builtin_msa_sat_s_h (v8i16, imm0_15);
v4i32 __builtin_msa_sat_s_w (v4i32, imm0_31);
v2i64 __builtin_msa_sat_s_d (v2i64, imm0_63);
v16u8 __builtin_msa_sat_u_b (v16u8, imm0_7);
v8u16 __builtin_msa_sat_u_h (v8u16, imm0_15);
v4u32 __builtin_msa_sat_u_w (v4u32, imm0_31);
v2u64 __builtin_msa_sat_u_d (v2u64, imm0_63);
v16i8 __builtin_msa_shf_b (v16i8, imm0_255);
v8i16 __builtin_msa_shf_h (v8i16, imm0_255);
v4i32 __builtin_msa_shf_w (v4i32, imm0_255);
v16i8 __builtin_msa_sld_b (v16i8, v16i8, i32);
v8i16 __builtin_msa_sld_h (v8i16, v8i16, i32);
v4i32 __builtin_msa_sld_w (v4i32, v4i32, i32);
v2i64 __builtin_msa_sld_d (v2i64, v2i64, i32);
v16i8 __builtin_msa_sldi_b (v16i8, v16i8, imm0_15);
v8i16 __builtin_msa_sldi_h (v8i16, v8i16, imm0_7);
v4i32 __builtin_msa_sldi_w (v4i32, v4i32, imm0_3);
v2i64 __builtin_msa_sldi_d (v2i64, v2i64, imm0_1);
v16i8 __builtin_msa_sll_b (v16i8, v16i8);
v8i16 __builtin_msa_sll_h (v8i16, v8i16);
v4i32 __builtin_msa_sll_w (v4i32, v4i32);
v2i64 __builtin_msa_sll_d (v2i64, v2i64);
v16i8 __builtin_msa_slli_b (v16i8, imm0_7);
v8i16 __builtin_msa_slli_h (v8i16, imm0_15);
v4i32 __builtin_msa_slli_w (v4i32, imm0_31);
v2i64 __builtin_msa_slli_d (v2i64, imm0_63);
v16i8 __builtin_msa_splat_b (v16i8, i32);
v8i16 __builtin_msa_splat_h (v8i16, i32);
v4i32 __builtin_msa_splat_w (v4i32, i32);
v2i64 __builtin_msa_splat_d (v2i64, i32);
v16i8 __builtin_msa_splati_b (v16i8, imm0_15);
v8i16 __builtin_msa_splati_h (v8i16, imm0_7);
v4i32 __builtin_msa_splati_w (v4i32, imm0_3);
v2i64 __builtin_msa_splati_d (v2i64, imm0_1);
v16i8 __builtin_msa_sra_b (v16i8, v16i8);
v8i16 __builtin_msa_sra_h (v8i16, v8i16);
v4i32 __builtin_msa_sra_w (v4i32, v4i32);
v2i64 __builtin_msa_sra_d (v2i64, v2i64);
v16i8 __builtin_msa_srai_b (v16i8, imm0_7);
v8i16 __builtin_msa_srai_h (v8i16, imm0_15);
v4i32 __builtin_msa_srai_w (v4i32, imm0_31);
v2i64 __builtin_msa_srai_d (v2i64, imm0_63);
v16i8 __builtin_msa_srar_b (v16i8, v16i8);
v8i16 __builtin_msa_srar_h (v8i16, v8i16);
v4i32 __builtin_msa_srar_w (v4i32, v4i32);
v2i64 __builtin_msa_srar_d (v2i64, v2i64);
v16i8 __builtin_msa_srari_b (v16i8, imm0_7);
v8i16 __builtin_msa_srari_h (v8i16, imm0_15);
v4i32 __builtin_msa_srari_w (v4i32, imm0_31);
v2i64 __builtin_msa_srari_d (v2i64, imm0_63);
v16i8 __builtin_msa_srl_b (v16i8, v16i8);
v8i16 __builtin_msa_srl_h (v8i16, v8i16);
v4i32 __builtin_msa_srl_w (v4i32, v4i32);
v2i64 __builtin_msa_srl_d (v2i64, v2i64);
v16i8 __builtin_msa_srli_b (v16i8, imm0_7);
v8i16 __builtin_msa_srli_h (v8i16, imm0_15);
v4i32 __builtin_msa_srli_w (v4i32, imm0_31);
v2i64 __builtin_msa_srli_d (v2i64, imm0_63);
v16i8 __builtin_msa_srlr_b (v16i8, v16i8);
v8i16 __builtin_msa_srlr_h (v8i16, v8i16);
v4i32 __builtin_msa_srlr_w (v4i32, v4i32);
v2i64 __builtin_msa_srlr_d (v2i64, v2i64);
v16i8 __builtin_msa_srlri_b (v16i8, imm0_7);
v8i16 __builtin_msa_srlri_h (v8i16, imm0_15);
v4i32 __builtin_msa_srlri_w (v4i32, imm0_31);
v2i64 __builtin_msa_srlri_d (v2i64, imm0_63);
void __builtin_msa_st_b (v16i8, void *, imm_n512_511);
void __builtin_msa_st_h (v8i16, void *, imm_n1024_1022);
void __builtin_msa_st_w (v4i32, void *, imm_n2048_2044);
void __builtin_msa_st_d (v2i64, void *, imm_n4096_4088);
v16i8 __builtin_msa_subs_s_b (v16i8, v16i8);
v8i16 __builtin_msa_subs_s_h (v8i16, v8i16);
v4i32 __builtin_msa_subs_s_w (v4i32, v4i32);
v2i64 __builtin_msa_subs_s_d (v2i64, v2i64);
v16u8 __builtin_msa_subs_u_b (v16u8, v16u8);
v8u16 __builtin_msa_subs_u_h (v8u16, v8u16);
v4u32 __builtin_msa_subs_u_w (v4u32, v4u32);
v2u64 __builtin_msa_subs_u_d (v2u64, v2u64);
v16u8 __builtin_msa_subsus_u_b (v16u8, v16i8);
v8u16 __builtin_msa_subsus_u_h (v8u16, v8i16);
v4u32 __builtin_msa_subsus_u_w (v4u32, v4i32);
v2u64 __builtin_msa_subsus_u_d (v2u64, v2i64);
v16i8 __builtin_msa_subsuu_s_b (v16u8, v16u8);
v8i16 __builtin_msa_subsuu_s_h (v8u16, v8u16);
v4i32 __builtin_msa_subsuu_s_w (v4u32, v4u32);
v2i64 __builtin_msa_subsuu_s_d (v2u64, v2u64);
v16i8 __builtin_msa_subv_b (v16i8, v16i8);
v8i16 __builtin_msa_subv_h (v8i16, v8i16);
v4i32 __builtin_msa_subv_w (v4i32, v4i32);
v2i64 __builtin_msa_subv_d (v2i64, v2i64);
v16i8 __builtin_msa_subvi_b (v16i8, imm0_31);
v8i16 __builtin_msa_subvi_h (v8i16, imm0_31);
v4i32 __builtin_msa_subvi_w (v4i32, imm0_31);
v2i64 __builtin_msa_subvi_d (v2i64, imm0_31);
v16i8 __builtin_msa_vshf_b (v16i8, v16i8, v16i8);
v8i16 __builtin_msa_vshf_h (v8i16, v8i16, v8i16);
v4i32 __builtin_msa_vshf_w (v4i32, v4i32, v4i32);
v2i64 __builtin_msa_vshf_d (v2i64, v2i64, v2i64);
v16u8 __builtin_msa_xor_v (v16u8, v16u8);
v16u8 __builtin_msa_xori_b (v16u8, imm0_255);
@end smallexample
@node Other MIPS Built-in Functions
@subsection Other MIPS Built-in Functions
GCC provides other MIPS-specific built-in functions:
@table @code
@item void __builtin_mips_cache (int @var{op}, const volatile void *@var{addr})
Insert a @samp{cache} instruction with operands @var{op} and @var{addr}.
GCC defines the preprocessor macro @code{___GCC_HAVE_BUILTIN_MIPS_CACHE}
when this function is available.
@item unsigned int __builtin_mips_get_fcsr (void)
@itemx void __builtin_mips_set_fcsr (unsigned int @var{value})
Get and set the contents of the floating-point control and status register
(FPU control register 31). These functions are only available in hard-float
code but can be called in both MIPS16 and non-MIPS16 contexts.
@code{__builtin_mips_set_fcsr} can be used to change any bit of the
register except the condition codes, which GCC assumes are preserved.
@end table
@node MSP430 Built-in Functions
@subsection MSP430 Built-in Functions
GCC provides a couple of special builtin functions to aid in the
writing of interrupt handlers in C.
@table @code
@item __bic_SR_register_on_exit (int @var{mask})
This clears the indicated bits in the saved copy of the status register
currently residing on the stack. This only works inside interrupt
handlers and the changes to the status register will only take affect
once the handler returns.
@item __bis_SR_register_on_exit (int @var{mask})
This sets the indicated bits in the saved copy of the status register
currently residing on the stack. This only works inside interrupt
handlers and the changes to the status register will only take affect
once the handler returns.
@item __delay_cycles (long long @var{cycles})
This inserts an instruction sequence that takes exactly @var{cycles}
cycles (between 0 and about 17E9) to complete. The inserted sequence
may use jumps, loops, or no-ops, and does not interfere with any other
instructions. Note that @var{cycles} must be a compile-time constant
integer - that is, you must pass a number, not a variable that may be
optimized to a constant later. The number of cycles delayed by this
builtin is exact.
@end table
@node NDS32 Built-in Functions
@subsection NDS32 Built-in Functions
These built-in functions are available for the NDS32 target:
@deftypefn {Built-in Function} void __builtin_nds32_isync (int *@var{addr})
Insert an ISYNC instruction into the instruction stream where
@var{addr} is an instruction address for serialization.
@end deftypefn
@deftypefn {Built-in Function} void __builtin_nds32_isb (void)
Insert an ISB instruction into the instruction stream.
@end deftypefn
@deftypefn {Built-in Function} int __builtin_nds32_mfsr (int @var{sr})
Return the content of a system register which is mapped by @var{sr}.
@end deftypefn
@deftypefn {Built-in Function} int __builtin_nds32_mfusr (int @var{usr})
Return the content of a user space register which is mapped by @var{usr}.
@end deftypefn
@deftypefn {Built-in Function} void __builtin_nds32_mtsr (int @var{value}, int @var{sr})
Move the @var{value} to a system register which is mapped by @var{sr}.
@end deftypefn
@deftypefn {Built-in Function} void __builtin_nds32_mtusr (int @var{value}, int @var{usr})
Move the @var{value} to a user space register which is mapped by @var{usr}.
@end deftypefn
@deftypefn {Built-in Function} void __builtin_nds32_setgie_en (void)
Enable global interrupt.
@end deftypefn
@deftypefn {Built-in Function} void __builtin_nds32_setgie_dis (void)
Disable global interrupt.
@end deftypefn
@node picoChip Built-in Functions
@subsection picoChip Built-in Functions
GCC provides an interface to selected machine instructions from the
picoChip instruction set.
@table @code
@item int __builtin_sbc (int @var{value})
Sign bit count. Return the number of consecutive bits in @var{value}
that have the same value as the sign bit. The result is the number of
leading sign bits minus one, giving the number of redundant sign bits in
@var{value}.
@item int __builtin_byteswap (int @var{value})
Byte swap. Return the result of swapping the upper and lower bytes of
@var{value}.
@item int __builtin_brev (int @var{value})
Bit reversal. Return the result of reversing the bits in
@var{value}. Bit 15 is swapped with bit 0, bit 14 is swapped with bit 1,
and so on.
@item int __builtin_adds (int @var{x}, int @var{y})
Saturating addition. Return the result of adding @var{x} and @var{y},
storing the value 32767 if the result overflows.
@item int __builtin_subs (int @var{x}, int @var{y})
Saturating subtraction. Return the result of subtracting @var{y} from
@var{x}, storing the value @minus{}32768 if the result overflows.
@item void __builtin_halt (void)
Halt. The processor stops execution. This built-in is useful for
implementing assertions.
@end table
@node Basic PowerPC Built-in Functions
@subsection Basic PowerPC Built-in Functions
@menu
* Basic PowerPC Built-in Functions Available on all Configurations::
* Basic PowerPC Built-in Functions Available on ISA 2.05::
* Basic PowerPC Built-in Functions Available on ISA 2.06::
* Basic PowerPC Built-in Functions Available on ISA 2.07::
* Basic PowerPC Built-in Functions Available on ISA 3.0::
* Basic PowerPC Built-in Functions Available on ISA 3.1::
@end menu
This section describes PowerPC built-in functions that do not require
the inclusion of any special header files to declare prototypes or
provide macro definitions. The sections that follow describe
additional PowerPC built-in functions.
@node Basic PowerPC Built-in Functions Available on all Configurations
@subsubsection Basic PowerPC Built-in Functions Available on all Configurations
@deftypefn {Built-in Function} void __builtin_cpu_init (void)
This function is a @code{nop} on the PowerPC platform and is included solely
to maintain API compatibility with the x86 builtins.
@end deftypefn
@deftypefn {Built-in Function} int __builtin_cpu_is (const char *@var{cpuname})
This function returns a value of @code{1} if the run-time CPU is of type
@var{cpuname} and returns @code{0} otherwise
The @code{__builtin_cpu_is} function requires GLIBC 2.23 or newer
which exports the hardware capability bits. GCC defines the macro
@code{__BUILTIN_CPU_SUPPORTS__} if the @code{__builtin_cpu_supports}
built-in function is fully supported.
If GCC was configured to use a GLIBC before 2.23, the built-in
function @code{__builtin_cpu_is} always returns a 0 and the compiler
issues a warning.
The following CPU names can be detected:
@table @samp
@item power10
IBM POWER10 Server CPU.
@item power9
IBM POWER9 Server CPU.
@item power8
IBM POWER8 Server CPU.
@item power7
IBM POWER7 Server CPU.
@item power6x
IBM POWER6 Server CPU (RAW mode).
@item power6
IBM POWER6 Server CPU (Architected mode).
@item power5+
IBM POWER5+ Server CPU.
@item power5
IBM POWER5 Server CPU.
@item ppc970
IBM 970 Server CPU (ie, Apple G5).
@item power4
IBM POWER4 Server CPU.
@item ppca2
IBM A2 64-bit Embedded CPU
@item ppc476
IBM PowerPC 476FP 32-bit Embedded CPU.
@item ppc464
IBM PowerPC 464 32-bit Embedded CPU.
@item ppc440
PowerPC 440 32-bit Embedded CPU.
@item ppc405
PowerPC 405 32-bit Embedded CPU.
@item ppc-cell-be
IBM PowerPC Cell Broadband Engine Architecture CPU.
@end table
Here is an example:
@smallexample
#ifdef __BUILTIN_CPU_SUPPORTS__
if (__builtin_cpu_is ("power8"))
@{
do_power8 (); // POWER8 specific implementation.
@}
else
#endif
@{
do_generic (); // Generic implementation.
@}
@end smallexample
@end deftypefn
@deftypefn {Built-in Function} int __builtin_cpu_supports (const char *@var{feature})
This function returns a value of @code{1} if the run-time CPU supports the HWCAP
feature @var{feature} and returns @code{0} otherwise.
The @code{__builtin_cpu_supports} function requires GLIBC 2.23 or
newer which exports the hardware capability bits. GCC defines the
macro @code{__BUILTIN_CPU_SUPPORTS__} if the
@code{__builtin_cpu_supports} built-in function is fully supported.
If GCC was configured to use a GLIBC before 2.23, the built-in
function @code{__builtin_cpu_supports} always returns a 0 and the
compiler issues a warning.
The following features can be
detected:
@table @samp
@item 4xxmac
4xx CPU has a Multiply Accumulator.
@item altivec
CPU has a SIMD/Vector Unit.
@item arch_2_05
CPU supports ISA 2.05 (eg, POWER6)
@item arch_2_06
CPU supports ISA 2.06 (eg, POWER7)
@item arch_2_07
CPU supports ISA 2.07 (eg, POWER8)
@item arch_3_00
CPU supports ISA 3.0 (eg, POWER9)
@item arch_3_1
CPU supports ISA 3.1 (eg, POWER10)
@item archpmu
CPU supports the set of compatible performance monitoring events.
@item booke
CPU supports the Embedded ISA category.
@item cellbe
CPU has a CELL broadband engine.
@item darn
CPU supports the @code{darn} (deliver a random number) instruction.
@item dfp
CPU has a decimal floating point unit.
@item dscr
CPU supports the data stream control register.
@item ebb
CPU supports event base branching.
@item efpdouble
CPU has a SPE double precision floating point unit.
@item efpsingle
CPU has a SPE single precision floating point unit.
@item fpu
CPU has a floating point unit.
@item htm
CPU has hardware transaction memory instructions.
@item htm-nosc
Kernel aborts hardware transactions when a syscall is made.
@item htm-no-suspend
CPU supports hardware transaction memory but does not support the
@code{tsuspend.} instruction.
@item ic_snoop
CPU supports icache snooping capabilities.
@item ieee128
CPU supports 128-bit IEEE binary floating point instructions.
@item isel
CPU supports the integer select instruction.
@item mma
CPU supports the matrix-multiply assist instructions.
@item mmu
CPU has a memory management unit.
@item notb
CPU does not have a timebase (eg, 601 and 403gx).
@item pa6t
CPU supports the PA Semi 6T CORE ISA.
@item power4
CPU supports ISA 2.00 (eg, POWER4)
@item power5
CPU supports ISA 2.02 (eg, POWER5)
@item power5+
CPU supports ISA 2.03 (eg, POWER5+)
@item power6x
CPU supports ISA 2.05 (eg, POWER6) extended opcodes mffgpr and mftgpr.
@item ppc32
CPU supports 32-bit mode execution.
@item ppc601
CPU supports the old POWER ISA (eg, 601)
@item ppc64
CPU supports 64-bit mode execution.
@item ppcle
CPU supports a little-endian mode that uses address swizzling.
@item scv
Kernel supports system call vectored.
@item smt
CPU support simultaneous multi-threading.
@item spe
CPU has a signal processing extension unit.
@item tar
CPU supports the target address register.
@item true_le
CPU supports true little-endian mode.
@item ucache
CPU has unified I/D cache.
@item vcrypto
CPU supports the vector cryptography instructions.
@item vsx
CPU supports the vector-scalar extension.
@end table
Here is an example:
@smallexample
#ifdef __BUILTIN_CPU_SUPPORTS__
if (__builtin_cpu_supports ("fpu"))
@{
asm("fadd %0,%1,%2" : "=d"(dst) : "d"(src1), "d"(src2));
@}
else
#endif
@{
dst = __fadd (src1, src2); // Software FP addition function.
@}
@end smallexample
@end deftypefn
The following built-in functions are also available on all PowerPC
processors:
@smallexample
uint64_t __builtin_ppc_get_timebase ();
unsigned long __builtin_ppc_mftb ();
double __builtin_unpack_ibm128 (__ibm128, int);
__ibm128 __builtin_pack_ibm128 (double, double);
double __builtin_mffs (void);
void __builtin_mtfsf (const int, double);
void __builtin_mtfsb0 (const int);
void __builtin_mtfsb1 (const int);
void __builtin_set_fpscr_rn (int);
@end smallexample
The @code{__builtin_ppc_get_timebase} and @code{__builtin_ppc_mftb}
functions generate instructions to read the Time Base Register. The
@code{__builtin_ppc_get_timebase} function may generate multiple
instructions and always returns the 64 bits of the Time Base Register.
The @code{__builtin_ppc_mftb} function always generates one instruction and
returns the Time Base Register value as an unsigned long, throwing away
the most significant word on 32-bit environments. The @code{__builtin_mffs}
return the value of the FPSCR register. Note, ISA 3.0 supports the
@code{__builtin_mffsl()} which permits software to read the control and
non-sticky status bits in the FSPCR without the higher latency associated with
accessing the sticky status bits. The @code{__builtin_mtfsf} takes a constant
8-bit integer field mask and a double precision floating point argument
and generates the @code{mtfsf} (extended mnemonic) instruction to write new
values to selected fields of the FPSCR. The
@code{__builtin_mtfsb0} and @code{__builtin_mtfsb1} take the bit to change
as an argument. The valid bit range is between 0 and 31. The builtins map to
the @code{mtfsb0} and @code{mtfsb1} instructions which take the argument and
add 32. Hence these instructions only modify the FPSCR[32:63] bits by
changing the specified bit to a zero or one respectively. The
@code{__builtin_set_fpscr_rn} builtin allows changing both of the floating
point rounding mode bits. The argument is a 2-bit value. The argument can
either be a @code{const int} or stored in a variable. The builtin uses
the ISA 3.0
instruction @code{mffscrn} if available, otherwise it reads the FPSCR, masks
the current rounding mode bits out and OR's in the new value.
@node Basic PowerPC Built-in Functions Available on ISA 2.05
@subsubsection Basic PowerPC Built-in Functions Available on ISA 2.05
The basic built-in functions described in this section are
available on the PowerPC family of processors starting with ISA 2.05
or later. Unless specific options are explicitly disabled on the
command line, specifying option @option{-mcpu=power6} has the effect of
enabling the @option{-mpowerpc64}, @option{-mpowerpc-gpopt},
@option{-mpowerpc-gfxopt}, @option{-mmfcrf}, @option{-mpopcntb},
@option{-mfprnd}, @option{-mcmpb}, @option{-mhard-dfp}, and
@option{-mrecip-precision} options. Specify the
@option{-maltivec} option explicitly in
combination with the above options if desired.
The following functions require option @option{-mcmpb}.
@smallexample
unsigned long long __builtin_cmpb (unsigned long long int, unsigned long long int);
unsigned int __builtin_cmpb (unsigned int, unsigned int);
@end smallexample
The @code{__builtin_cmpb} function
performs a byte-wise compare on the contents of its two arguments,
returning the result of the byte-wise comparison as the returned
value. For each byte comparison, the corresponding byte of the return
value holds 0xff if the input bytes are equal and 0 if the input bytes
are not equal. If either of the arguments to this built-in function
is wider than 32 bits, the function call expands into the form that
expects @code{unsigned long long int} arguments
which is only available on 64-bit targets.
The following built-in functions are available
when hardware decimal floating point
(@option{-mhard-dfp}) is available:
@smallexample
void __builtin_set_fpscr_drn(int);
_Decimal64 __builtin_ddedpd (int, _Decimal64);
_Decimal128 __builtin_ddedpdq (int, _Decimal128);
_Decimal64 __builtin_denbcd (int, _Decimal64);
_Decimal128 __builtin_denbcdq (int, _Decimal128);
_Decimal64 __builtin_diex (long long, _Decimal64);
_Decimal128 _builtin_diexq (long long, _Decimal128);
_Decimal64 __builtin_dscli (_Decimal64, int);
_Decimal128 __builtin_dscliq (_Decimal128, int);
_Decimal64 __builtin_dscri (_Decimal64, int);
_Decimal128 __builtin_dscriq (_Decimal128, int);
long long __builtin_dxex (_Decimal64);
long long __builtin_dxexq (_Decimal128);
_Decimal128 __builtin_pack_dec128 (unsigned long long, unsigned long long);
unsigned long long __builtin_unpack_dec128 (_Decimal128, int);
The @code{__builtin_set_fpscr_drn} builtin allows changing the three decimal
floating point rounding mode bits. The argument is a 3-bit value. The
argument can either be a @code{const int} or the value can be stored in
a variable.
The builtin uses the ISA 3.0 instruction @code{mffscdrn} if available.
Otherwise the builtin reads the FPSCR, masks the current decimal rounding
mode bits out and OR's in the new value.
@end smallexample
The following functions require @option{-mhard-float},
@option{-mpowerpc-gfxopt}, and @option{-mpopcntb} options.
@smallexample
double __builtin_recipdiv (double, double);
float __builtin_recipdivf (float, float);
double __builtin_rsqrt (double);
float __builtin_rsqrtf (float);
@end smallexample
The @code{vec_rsqrt}, @code{__builtin_rsqrt}, and
@code{__builtin_rsqrtf} functions generate multiple instructions to
implement the reciprocal sqrt functionality using reciprocal sqrt
estimate instructions.
The @code{__builtin_recipdiv}, and @code{__builtin_recipdivf}
functions generate multiple instructions to implement division using
the reciprocal estimate instructions.
The following functions require @option{-mhard-float} and
@option{-mmultiple} options.
The @code{__builtin_unpack_longdouble} function takes a
@code{long double} argument and a compile time constant of 0 or 1. If
the constant is 0, the first @code{double} within the
@code{long double} is returned, otherwise the second @code{double}
is returned. The @code{__builtin_unpack_longdouble} function is only
available if @code{long double} uses the IBM extended double
representation.
The @code{__builtin_pack_longdouble} function takes two @code{double}
arguments and returns a @code{long double} value that combines the two
arguments. The @code{__builtin_pack_longdouble} function is only
available if @code{long double} uses the IBM extended double
representation.
The @code{__builtin_unpack_ibm128} function takes a @code{__ibm128}
argument and a compile time constant of 0 or 1. If the constant is 0,
the first @code{double} within the @code{__ibm128} is returned,
otherwise the second @code{double} is returned.
The @code{__builtin_pack_ibm128} function takes two @code{double}
arguments and returns a @code{__ibm128} value that combines the two
arguments.
Additional built-in functions are available for the 64-bit PowerPC
family of processors, for efficient use of 128-bit floating point
(@code{__float128}) values.
@node Basic PowerPC Built-in Functions Available on ISA 2.06
@subsubsection Basic PowerPC Built-in Functions Available on ISA 2.06
The basic built-in functions described in this section are
available on the PowerPC family of processors starting with ISA 2.05
or later. Unless specific options are explicitly disabled on the
command line, specifying option @option{-mcpu=power7} has the effect of
enabling all the same options as for @option{-mcpu=power6} in
addition to the @option{-maltivec}, @option{-mpopcntd}, and
@option{-mvsx} options.
The following basic built-in functions require @option{-mpopcntd}:
@smallexample
unsigned int __builtin_addg6s (unsigned int, unsigned int);
long long __builtin_bpermd (long long, long long);
unsigned int __builtin_cbcdtd (unsigned int);
unsigned int __builtin_cdtbcd (unsigned int);
long long __builtin_divde (long long, long long);
unsigned long long __builtin_divdeu (unsigned long long, unsigned long long);
int __builtin_divwe (int, int);
unsigned int __builtin_divweu (unsigned int, unsigned int);
vector __int128 __builtin_pack_vector_int128 (long long, long long);
void __builtin_rs6000_speculation_barrier (void);
long long __builtin_unpack_vector_int128 (vector __int128, signed char);
@end smallexample
Of these, the @code{__builtin_divde} and @code{__builtin_divdeu} functions
require a 64-bit environment.
The following basic built-in functions, which are also supported on
x86 targets, require @option{-mfloat128}.
@smallexample
__float128 __builtin_fabsq (__float128);
__float128 __builtin_copysignq (__float128, __float128);
__float128 __builtin_infq (void);
__float128 __builtin_huge_valq (void);
__float128 __builtin_nanq (void);
__float128 __builtin_nansq (void);
__float128 __builtin_sqrtf128 (__float128);
__float128 __builtin_fmaf128 (__float128, __float128, __float128);
@end smallexample
@node Basic PowerPC Built-in Functions Available on ISA 2.07
@subsubsection Basic PowerPC Built-in Functions Available on ISA 2.07
The basic built-in functions described in this section are
available on the PowerPC family of processors starting with ISA 2.07
or later. Unless specific options are explicitly disabled on the
command line, specifying option @option{-mcpu=power8} has the effect of
enabling all the same options as for @option{-mcpu=power7} in
addition to the @option{-mpower8-fusion}, @option{-mpower8-vector},
@option{-mcrypto}, @option{-mhtm}, @option{-mquad-memory}, and
@option{-mquad-memory-atomic} options.
This section intentionally empty.
@node Basic PowerPC Built-in Functions Available on ISA 3.0
@subsubsection Basic PowerPC Built-in Functions Available on ISA 3.0
The basic built-in functions described in this section are
available on the PowerPC family of processors starting with ISA 3.0
or later. Unless specific options are explicitly disabled on the
command line, specifying option @option{-mcpu=power9} has the effect of
enabling all the same options as for @option{-mcpu=power8} in
addition to the @option{-misel} option.
The following built-in functions are available on Linux 64-bit systems
that use the ISA 3.0 instruction set (@option{-mcpu=power9}):
@table @code
@item __float128 __builtin_addf128_round_to_odd (__float128, __float128)
Perform a 128-bit IEEE floating point add using round to odd as the
rounding mode.
@findex __builtin_addf128_round_to_odd
@item __float128 __builtin_subf128_round_to_odd (__float128, __float128)
Perform a 128-bit IEEE floating point subtract using round to odd as
the rounding mode.
@findex __builtin_subf128_round_to_odd
@item __float128 __builtin_mulf128_round_to_odd (__float128, __float128)
Perform a 128-bit IEEE floating point multiply using round to odd as
the rounding mode.
@findex __builtin_mulf128_round_to_odd
@item __float128 __builtin_divf128_round_to_odd (__float128, __float128)
Perform a 128-bit IEEE floating point divide using round to odd as
the rounding mode.
@findex __builtin_divf128_round_to_odd
@item __float128 __builtin_sqrtf128_round_to_odd (__float128)
Perform a 128-bit IEEE floating point square root using round to odd
as the rounding mode.
@findex __builtin_sqrtf128_round_to_odd
@item __float128 __builtin_fmaf128_round_to_odd (__float128, __float128, __float128)
Perform a 128-bit IEEE floating point fused multiply and add operation
using round to odd as the rounding mode.
@findex __builtin_fmaf128_round_to_odd
@item double __builtin_truncf128_round_to_odd (__float128)
Convert a 128-bit IEEE floating point value to @code{double} using
round to odd as the rounding mode.
@findex __builtin_truncf128_round_to_odd
@end table
The following additional built-in functions are also available for the
PowerPC family of processors, starting with ISA 3.0 or later:
@smallexample
long long __builtin_darn (void);
long long __builtin_darn_raw (void);
int __builtin_darn_32 (void);
@end smallexample
The @code{__builtin_darn} and @code{__builtin_darn_raw}
functions require a
64-bit environment supporting ISA 3.0 or later.
The @code{__builtin_darn} function provides a 64-bit conditioned
random number. The @code{__builtin_darn_raw} function provides a
64-bit raw random number. The @code{__builtin_darn_32} function
provides a 32-bit conditioned random number.
The following additional built-in functions are also available for the
PowerPC family of processors, starting with ISA 3.0 or later:
@smallexample
int __builtin_byte_in_set (unsigned char u, unsigned long long set);
int __builtin_byte_in_range (unsigned char u, unsigned int range);
int __builtin_byte_in_either_range (unsigned char u, unsigned int ranges);
int __builtin_dfp_dtstsfi_lt (unsigned int comparison, _Decimal64 value);
int __builtin_dfp_dtstsfi_lt (unsigned int comparison, _Decimal128 value);
int __builtin_dfp_dtstsfi_lt_dd (unsigned int comparison, _Decimal64 value);
int __builtin_dfp_dtstsfi_lt_td (unsigned int comparison, _Decimal128 value);
int __builtin_dfp_dtstsfi_gt (unsigned int comparison, _Decimal64 value);
int __builtin_dfp_dtstsfi_gt (unsigned int comparison, _Decimal128 value);
int __builtin_dfp_dtstsfi_gt_dd (unsigned int comparison, _Decimal64 value);
int __builtin_dfp_dtstsfi_gt_td (unsigned int comparison, _Decimal128 value);
int __builtin_dfp_dtstsfi_eq (unsigned int comparison, _Decimal64 value);
int __builtin_dfp_dtstsfi_eq (unsigned int comparison, _Decimal128 value);
int __builtin_dfp_dtstsfi_eq_dd (unsigned int comparison, _Decimal64 value);
int __builtin_dfp_dtstsfi_eq_td (unsigned int comparison, _Decimal128 value);
int __builtin_dfp_dtstsfi_ov (unsigned int comparison, _Decimal64 value);
int __builtin_dfp_dtstsfi_ov (unsigned int comparison, _Decimal128 value);
int __builtin_dfp_dtstsfi_ov_dd (unsigned int comparison, _Decimal64 value);
int __builtin_dfp_dtstsfi_ov_td (unsigned int comparison, _Decimal128 value);
double __builtin_mffsl(void);
@end smallexample
The @code{__builtin_byte_in_set} function requires a
64-bit environment supporting ISA 3.0 or later. This function returns
a non-zero value if and only if its @code{u} argument exactly equals one of
the eight bytes contained within its 64-bit @code{set} argument.
The @code{__builtin_byte_in_range} and
@code{__builtin_byte_in_either_range} require an environment
supporting ISA 3.0 or later. For these two functions, the
@code{range} argument is encoded as 4 bytes, organized as
@code{hi_1:lo_1:hi_2:lo_2}.
The @code{__builtin_byte_in_range} function returns a
non-zero value if and only if its @code{u} argument is within the
range bounded between @code{lo_2} and @code{hi_2} inclusive.
The @code{__builtin_byte_in_either_range} function returns non-zero if
and only if its @code{u} argument is within either the range bounded
between @code{lo_1} and @code{hi_1} inclusive or the range bounded
between @code{lo_2} and @code{hi_2} inclusive.
The @code{__builtin_dfp_dtstsfi_lt} function returns a non-zero value
if and only if the number of signficant digits of its @code{value} argument
is less than its @code{comparison} argument. The
@code{__builtin_dfp_dtstsfi_lt_dd} and
@code{__builtin_dfp_dtstsfi_lt_td} functions behave similarly, but
require that the type of the @code{value} argument be
@code{__Decimal64} and @code{__Decimal128} respectively.
The @code{__builtin_dfp_dtstsfi_gt} function returns a non-zero value
if and only if the number of signficant digits of its @code{value} argument
is greater than its @code{comparison} argument. The
@code{__builtin_dfp_dtstsfi_gt_dd} and
@code{__builtin_dfp_dtstsfi_gt_td} functions behave similarly, but
require that the type of the @code{value} argument be
@code{__Decimal64} and @code{__Decimal128} respectively.
The @code{__builtin_dfp_dtstsfi_eq} function returns a non-zero value
if and only if the number of signficant digits of its @code{value} argument
equals its @code{comparison} argument. The
@code{__builtin_dfp_dtstsfi_eq_dd} and
@code{__builtin_dfp_dtstsfi_eq_td} functions behave similarly, but
require that the type of the @code{value} argument be
@code{__Decimal64} and @code{__Decimal128} respectively.
The @code{__builtin_dfp_dtstsfi_ov} function returns a non-zero value
if and only if its @code{value} argument has an undefined number of
significant digits, such as when @code{value} is an encoding of @code{NaN}.
The @code{__builtin_dfp_dtstsfi_ov_dd} and
@code{__builtin_dfp_dtstsfi_ov_td} functions behave similarly, but
require that the type of the @code{value} argument be
@code{__Decimal64} and @code{__Decimal128} respectively.
The @code{__builtin_mffsl} uses the ISA 3.0 @code{mffsl} instruction to read
the FPSCR. The instruction is a lower latency version of the @code{mffs}
instruction. If the @code{mffsl} instruction is not available, then the
builtin uses the older @code{mffs} instruction to read the FPSCR.
@node Basic PowerPC Built-in Functions Available on ISA 3.1
@subsubsection Basic PowerPC Built-in Functions Available on ISA 3.1
The basic built-in functions described in this section are
available on the PowerPC family of processors starting with ISA 3.1.
Unless specific options are explicitly disabled on the
command line, specifying option @option{-mcpu=power10} has the effect of
enabling all the same options as for @option{-mcpu=power9}.
The following built-in functions are available on Linux 64-bit systems
that use a future architecture instruction set (@option{-mcpu=power10}):
@smallexample
@exdent unsigned long long
@exdent __builtin_cfuged (unsigned long long, unsigned long long)
@end smallexample
Perform a 64-bit centrifuge operation, as if implemented by the
@code{cfuged} instruction.
@findex __builtin_cfuged
@smallexample
@exdent unsigned long long
@exdent __builtin_cntlzdm (unsigned long long, unsigned long long)
@end smallexample
Perform a 64-bit count leading zeros operation under mask, as if
implemented by the @code{cntlzdm} instruction.
@findex __builtin_cntlzdm
@smallexample
@exdent unsigned long long
@exdent __builtin_cnttzdm (unsigned long long, unsigned long long)
@end smallexample
Perform a 64-bit count trailing zeros operation under mask, as if
implemented by the @code{cnttzdm} instruction.
@findex __builtin_cnttzdm
@smallexample
@exdent unsigned long long
@exdent __builtin_pdepd (unsigned long long, unsigned long long)
@end smallexample
Perform a 64-bit parallel bits deposit operation, as if implemented by the
@code{pdepd} instruction.
@findex __builtin_pdepd
@smallexample
@exdent unsigned long long
@exdent __builtin_pextd (unsigned long long, unsigned long long)
@end smallexample
Perform a 64-bit parallel bits extract operation, as if implemented by the
@code{pextd} instruction.
@findex __builtin_pextd
@smallexample
@exdent vector signed __int128 vsx_xl_sext (signed long long, signed char *)
@exdent vector signed __int128 vsx_xl_sext (signed long long, signed short *)
@exdent vector signed __int128 vsx_xl_sext (signed long long, signed int *)
@exdent vector signed __int128 vsx_xl_sext (signed long long, signed long long *)
@exdent vector unsigned __int128 vsx_xl_zext (signed long long, unsigned char *)
@exdent vector unsigned __int128 vsx_xl_zext (signed long long, unsigned short *)
@exdent vector unsigned __int128 vsx_xl_zext (signed long long, unsigned int *)
@exdent vector unsigned __int128 vsx_xl_zext (signed long long, unsigned long long *)
@end smallexample
Load (and sign extend) to an __int128 vector, as if implemented by the ISA 3.1
@code{lxvrbx}, @code{lxvrhx}, @code{lxvrwx}, and @code{lxvrdx} instructions.
@findex vsx_xl_sext
@findex vsx_xl_zext
@smallexample
@exdent void vec_xst_trunc (vector signed __int128, signed long long, signed char *)
@exdent void vec_xst_trunc (vector signed __int128, signed long long, signed short *)
@exdent void vec_xst_trunc (vector signed __int128, signed long long, signed int *)
@exdent void vec_xst_trunc (vector signed __int128, signed long long, signed long long *)
@exdent void vec_xst_trunc (vector unsigned __int128, signed long long, unsigned char *)
@exdent void vec_xst_trunc (vector unsigned __int128, signed long long, unsigned short *)
@exdent void vec_xst_trunc (vector unsigned __int128, signed long long, unsigned int *)
@exdent void vec_xst_trunc (vector unsigned __int128, signed long long, unsigned long long *)
@end smallexample
Truncate and store the rightmost element of a vector, as if implemented by the
ISA 3.1 @code{stxvrbx}, @code{stxvrhx}, @code{stxvrwx}, and @code{stxvrdx}
instructions.
@findex vec_xst_trunc
@node PowerPC AltiVec/VSX Built-in Functions
@subsection PowerPC AltiVec/VSX Built-in Functions
GCC provides an interface for the PowerPC family of processors to access
the AltiVec operations described in Motorola's AltiVec Programming
Interface Manual. The interface is made available by including
@code{<altivec.h>} and using @option{-maltivec} and
@option{-mabi=altivec}. The interface supports the following vector
types.
@smallexample
vector unsigned char
vector signed char
vector bool char
vector unsigned short
vector signed short
vector bool short
vector pixel
vector unsigned int
vector signed int
vector bool int
vector float
@end smallexample
GCC's implementation of the high-level language interface available from
C and C++ code differs from Motorola's documentation in several ways.
@itemize @bullet
@item
A vector constant is a list of constant expressions within curly braces.
@item
A vector initializer requires no cast if the vector constant is of the
same type as the variable it is initializing.
@item
If @code{signed} or @code{unsigned} is omitted, the signedness of the
vector type is the default signedness of the base type. The default
varies depending on the operating system, so a portable program should
always specify the signedness.
@item
Compiling with @option{-maltivec} adds keywords @code{__vector},
@code{vector}, @code{__pixel}, @code{pixel}, @code{__bool} and
@code{bool}. When compiling ISO C, the context-sensitive substitution
of the keywords @code{vector}, @code{pixel} and @code{bool} is
disabled. To use them, you must include @code{<altivec.h>} instead.
@item
GCC allows using a @code{typedef} name as the type specifier for a
vector type, but only under the following circumstances:
@itemize @bullet
@item
When using @code{__vector} instead of @code{vector}; for example,
@smallexample
typedef signed short int16;
__vector int16 data;
@end smallexample
@item
When using @code{vector} in keyword-and-predefine mode; for example,
@smallexample
typedef signed short int16;
vector int16 data;
@end smallexample
Note that keyword-and-predefine mode is enabled by disabling GNU
extensions (e.g., by using @code{-std=c11}) and including
@code{<altivec.h>}.
@end itemize
@item
For C, overloaded functions are implemented with macros so the following
does not work:
@smallexample
vec_add ((vector signed int)@{1, 2, 3, 4@}, foo);
@end smallexample
@noindent
Since @code{vec_add} is a macro, the vector constant in the example
is treated as four separate arguments. Wrap the entire argument in
parentheses for this to work.
@end itemize
@emph{Note:} Only the @code{<altivec.h>} interface is supported.
Internally, GCC uses built-in functions to achieve the functionality in
the aforementioned header file, but they are not supported and are
subject to change without notice.
GCC complies with the Power Vector Intrinsic Programming Reference (PVIPR),
which may be found at
@uref{https://openpowerfoundation.org/?resource_lib=power-vector-intrinsic-programming-reference}.
Chapter 4 of this document fully documents the vector API interfaces
that must be
provided by compliant compilers. Programmers should preferentially use
the interfaces described therein. However, historically GCC has provided
additional interfaces for access to vector instructions. These are
briefly described below. Where the PVIPR provides a portable interface,
other functions in GCC that provide the same capabilities should be
considered deprecated.
The PVIPR documents the following overloaded functions:
@multitable @columnfractions 0.33 0.33 0.33
@item @code{vec_abs}
@tab @code{vec_absd}
@tab @code{vec_abss}
@item @code{vec_add}
@tab @code{vec_addc}
@tab @code{vec_adde}
@item @code{vec_addec}
@tab @code{vec_adds}
@tab @code{vec_all_eq}
@item @code{vec_all_ge}
@tab @code{vec_all_gt}
@tab @code{vec_all_in}
@item @code{vec_all_le}
@tab @code{vec_all_lt}
@tab @code{vec_all_nan}
@item @code{vec_all_ne}
@tab @code{vec_all_nge}
@tab @code{vec_all_ngt}
@item @code{vec_all_nle}
@tab @code{vec_all_nlt}
@tab @code{vec_all_numeric}
@item @code{vec_and}
@tab @code{vec_andc}
@tab @code{vec_any_eq}
@item @code{vec_any_ge}
@tab @code{vec_any_gt}
@tab @code{vec_any_le}
@item @code{vec_any_lt}
@tab @code{vec_any_nan}
@tab @code{vec_any_ne}
@item @code{vec_any_nge}
@tab @code{vec_any_ngt}
@tab @code{vec_any_nle}
@item @code{vec_any_nlt}
@tab @code{vec_any_numeric}
@tab @code{vec_any_out}
@item @code{vec_avg}
@tab @code{vec_bperm}
@tab @code{vec_ceil}
@item @code{vec_cipher_be}
@tab @code{vec_cipherlast_be}
@tab @code{vec_cmpb}
@item @code{vec_cmpeq}
@tab @code{vec_cmpge}
@tab @code{vec_cmpgt}
@item @code{vec_cmple}
@tab @code{vec_cmplt}
@tab @code{vec_cmpne}
@item @code{vec_cmpnez}
@tab @code{vec_cntlz}
@tab @code{vec_cntlz_lsbb}
@item @code{vec_cnttz}
@tab @code{vec_cnttz_lsbb}
@tab @code{vec_cpsgn}
@item @code{vec_ctf}
@tab @code{vec_cts}
@tab @code{vec_ctu}
@item @code{vec_div}
@tab @code{vec_double}
@tab @code{vec_doublee}
@item @code{vec_doubleh}
@tab @code{vec_doublel}
@tab @code{vec_doubleo}
@item @code{vec_eqv}
@tab @code{vec_expte}
@tab @code{vec_extract}
@item @code{vec_extract_exp}
@tab @code{vec_extract_fp32_from_shorth}
@tab @code{vec_extract_fp32_from_shortl}
@item @code{vec_extract_sig}
@tab @code{vec_extract_4b}
@tab @code{vec_first_match_index}
@item @code{vec_first_match_or_eos_index}
@tab @code{vec_first_mismatch_index}
@tab @code{vec_first_mismatch_or_eos_index}
@item @code{vec_float}
@tab @code{vec_float2}
@tab @code{vec_floate}
@item @code{vec_floato}
@tab @code{vec_floor}
@tab @code{vec_gb}
@item @code{vec_insert}
@tab @code{vec_insert_exp}
@tab @code{vec_insert4b}
@item @code{vec_ld}
@tab @code{vec_lde}
@tab @code{vec_ldl}
@item @code{vec_loge}
@tab @code{vec_madd}
@tab @code{vec_madds}
@item @code{vec_max}
@tab @code{vec_mergee}
@tab @code{vec_mergeh}
@item @code{vec_mergel}
@tab @code{vec_mergeo}
@tab @code{vec_mfvscr}
@item @code{vec_min}
@tab @code{vec_mradds}
@tab @code{vec_msub}
@item @code{vec_msum}
@tab @code{vec_msums}
@tab @code{vec_mtvscr}
@item @code{vec_mul}
@tab @code{vec_mule}
@tab @code{vec_mulo}
@item @code{vec_nabs}
@tab @code{vec_nand}
@tab @code{vec_ncipher_be}
@item @code{vec_ncipherlast_be}
@tab @code{vec_nearbyint}
@tab @code{vec_neg}
@item @code{vec_nmadd}
@tab @code{vec_nmsub}
@tab @code{vec_nor}
@item @code{vec_or}
@tab @code{vec_orc}
@tab @code{vec_pack}
@item @code{vec_pack_to_short_fp32}
@tab @code{vec_packpx}
@tab @code{vec_packs}
@item @code{vec_packsu}
@tab @code{vec_parity_lsbb}
@tab @code{vec_perm}
@item @code{vec_permxor}
@tab @code{vec_pmsum_be}
@tab @code{vec_popcnt}
@item @code{vec_re}
@tab @code{vec_recipdiv}
@tab @code{vec_revb}
@item @code{vec_reve}
@tab @code{vec_rint}
@tab @code{vec_rl}
@item @code{vec_rlmi}
@tab @code{vec_rlnm}
@tab @code{vec_round}
@item @code{vec_rsqrt}
@tab @code{vec_rsqrte}
@tab @code{vec_sbox_be}
@item @code{vec_sel}
@tab @code{vec_shasigma_be}
@tab @code{vec_signed}
@item @code{vec_signed2}
@tab @code{vec_signede}
@tab @code{vec_signedo}
@item @code{vec_sl}
@tab @code{vec_sld}
@tab @code{vec_sldw}
@item @code{vec_sll}
@tab @code{vec_slo}
@tab @code{vec_slv}
@item @code{vec_splat}
@tab @code{vec_splat_s8}
@tab @code{vec_splat_s16}
@item @code{vec_splat_s32}
@tab @code{vec_splat_u8}
@tab @code{vec_splat_u16}
@item @code{vec_splat_u32}
@tab @code{vec_splats}
@tab @code{vec_sqrt}
@item @code{vec_sr}
@tab @code{vec_sra}
@tab @code{vec_srl}
@item @code{vec_sro}
@tab @code{vec_srv}
@tab @code{vec_st}
@item @code{vec_ste}
@tab @code{vec_stl}
@tab @code{vec_sub}
@item @code{vec_subc}
@tab @code{vec_sube}
@tab @code{vec_subec}
@item @code{vec_subs}
@tab @code{vec_sum2s}
@tab @code{vec_sum4s}
@item @code{vec_sums}
@tab @code{vec_test_data_class}
@tab @code{vec_trunc}
@item @code{vec_unpackh}
@tab @code{vec_unpackl}
@tab @code{vec_unsigned}
@item @code{vec_unsigned2}
@tab @code{vec_unsignede}
@tab @code{vec_unsignedo}
@item @code{vec_xl}
@tab @code{vec_xl_be}
@tab @code{vec_xl_len}
@item @code{vec_xl_len_r}
@tab @code{vec_xor}
@tab @code{vec_xst}
@item @code{vec_xst_be}
@tab @code{vec_xst_len}
@tab @code{vec_xst_len_r}
@end multitable
@menu
* PowerPC AltiVec Built-in Functions on ISA 2.05::
* PowerPC AltiVec Built-in Functions Available on ISA 2.06::
* PowerPC AltiVec Built-in Functions Available on ISA 2.07::
* PowerPC AltiVec Built-in Functions Available on ISA 3.0::
* PowerPC AltiVec Built-in Functions Available on ISA 3.1::
@end menu
@node PowerPC AltiVec Built-in Functions on ISA 2.05
@subsubsection PowerPC AltiVec Built-in Functions on ISA 2.05
The following interfaces are supported for the generic and specific
AltiVec operations and the AltiVec predicates. In cases where there
is a direct mapping between generic and specific operations, only the
generic names are shown here, although the specific operations can also
be used.
Arguments that are documented as @code{const int} require literal
integral values within the range required for that operation.
Only functions excluded from the PVIPR are listed here.
@smallexample
void vec_dss (const int);
void vec_dssall (void);
void vec_dst (const vector unsigned char *, int, const int);
void vec_dst (const vector signed char *, int, const int);
void vec_dst (const vector bool char *, int, const int);
void vec_dst (const vector unsigned short *, int, const int);
void vec_dst (const vector signed short *, int, const int);
void vec_dst (const vector bool short *, int, const int);
void vec_dst (const vector pixel *, int, const int);
void vec_dst (const vector unsigned int *, int, const int);
void vec_dst (const vector signed int *, int, const int);
void vec_dst (const vector bool int *, int, const int);
void vec_dst (const vector float *, int, const int);
void vec_dst (const unsigned char *, int, const int);
void vec_dst (const signed char *, int, const int);
void vec_dst (const unsigned short *, int, const int);
void vec_dst (const short *, int, const int);
void vec_dst (const unsigned int *, int, const int);
void vec_dst (const int *, int, const int);
void vec_dst (const float *, int, const int);
void vec_dstst (const vector unsigned char *, int, const int);
void vec_dstst (const vector signed char *, int, const int);
void vec_dstst (const vector bool char *, int, const int);
void vec_dstst (const vector unsigned short *, int, const int);
void vec_dstst (const vector signed short *, int, const int);
void vec_dstst (const vector bool short *, int, const int);
void vec_dstst (const vector pixel *, int, const int);
void vec_dstst (const vector unsigned int *, int, const int);
void vec_dstst (const vector signed int *, int, const int);
void vec_dstst (const vector bool int *, int, const int);
void vec_dstst (const vector float *, int, const int);
void vec_dstst (const unsigned char *, int, const int);
void vec_dstst (const signed char *, int, const int);
void vec_dstst (const unsigned short *, int, const int);
void vec_dstst (const short *, int, const int);
void vec_dstst (const unsigned int *, int, const int);
void vec_dstst (const int *, int, const int);
void vec_dstst (const unsigned long *, int, const int);
void vec_dstst (const long *, int, const int);
void vec_dstst (const float *, int, const int);
void vec_dststt (const vector unsigned char *, int, const int);
void vec_dststt (const vector signed char *, int, const int);
void vec_dststt (const vector bool char *, int, const int);
void vec_dststt (const vector unsigned short *, int, const int);
void vec_dststt (const vector signed short *, int, const int);
void vec_dststt (const vector bool short *, int, const int);
void vec_dststt (const vector pixel *, int, const int);
void vec_dststt (const vector unsigned int *, int, const int);
void vec_dststt (const vector signed int *, int, const int);
void vec_dststt (const vector bool int *, int, const int);
void vec_dststt (const vector float *, int, const int);
void vec_dststt (const unsigned char *, int, const int);
void vec_dststt (const signed char *, int, const int);
void vec_dststt (const unsigned short *, int, const int);
void vec_dststt (const short *, int, const int);
void vec_dststt (const unsigned int *, int, const int);
void vec_dststt (const int *, int, const int);
void vec_dststt (const float *, int, const int);
void vec_dstt (const vector unsigned char *, int, const int);
void vec_dstt (const vector signed char *, int, const int);
void vec_dstt (const vector bool char *, int, const int);
void vec_dstt (const vector unsigned short *, int, const int);
void vec_dstt (const vector signed short *, int, const int);
void vec_dstt (const vector bool short *, int, const int);
void vec_dstt (const vector pixel *, int, const int);
void vec_dstt (const vector unsigned int *, int, const int);
void vec_dstt (const vector signed int *, int, const int);
void vec_dstt (const vector bool int *, int, const int);
void vec_dstt (const vector float *, int, const int);
void vec_dstt (const unsigned char *, int, const int);
void vec_dstt (const signed char *, int, const int);
void vec_dstt (const unsigned short *, int, const int);
void vec_dstt (const short *, int, const int);
void vec_dstt (const unsigned int *, int, const int);
void vec_dstt (const int *, int, const int);
void vec_dstt (const float *, int, const int);
vector signed char vec_lvebx (int, char *);
vector unsigned char vec_lvebx (int, unsigned char *);
vector signed short vec_lvehx (int, short *);
vector unsigned short vec_lvehx (int, unsigned short *);
vector float vec_lvewx (int, float *);
vector signed int vec_lvewx (int, int *);
vector unsigned int vec_lvewx (int, unsigned int *);
vector unsigned char vec_lvsl (int, const unsigned char *);
vector unsigned char vec_lvsl (int, const signed char *);
vector unsigned char vec_lvsl (int, const unsigned short *);
vector unsigned char vec_lvsl (int, const short *);
vector unsigned char vec_lvsl (int, const unsigned int *);
vector unsigned char vec_lvsl (int, const int *);
vector unsigned char vec_lvsl (int, const float *);
vector unsigned char vec_lvsr (int, const unsigned char *);
vector unsigned char vec_lvsr (int, const signed char *);
vector unsigned char vec_lvsr (int, const unsigned short *);
vector unsigned char vec_lvsr (int, const short *);
vector unsigned char vec_lvsr (int, const unsigned int *);
vector unsigned char vec_lvsr (int, const int *);
vector unsigned char vec_lvsr (int, const float *);
void vec_stvebx (vector signed char, int, signed char *);
void vec_stvebx (vector unsigned char, int, unsigned char *);
void vec_stvebx (vector bool char, int, signed char *);
void vec_stvebx (vector bool char, int, unsigned char *);
void vec_stvehx (vector signed short, int, short *);
void vec_stvehx (vector unsigned short, int, unsigned short *);
void vec_stvehx (vector bool short, int, short *);
void vec_stvehx (vector bool short, int, unsigned short *);
void vec_stvewx (vector float, int, float *);
void vec_stvewx (vector signed int, int, int *);
void vec_stvewx (vector unsigned int, int, unsigned int *);
void vec_stvewx (vector bool int, int, int *);
void vec_stvewx (vector bool int, int, unsigned int *);
vector float vec_vaddfp (vector float, vector float);
vector signed char vec_vaddsbs (vector bool char, vector signed char);
vector signed char vec_vaddsbs (vector signed char, vector bool char);
vector signed char vec_vaddsbs (vector signed char, vector signed char);
vector signed short vec_vaddshs (vector bool short, vector signed short);
vector signed short vec_vaddshs (vector signed short, vector bool short);
vector signed short vec_vaddshs (vector signed short, vector signed short);
vector signed int vec_vaddsws (vector bool int, vector signed int);
vector signed int vec_vaddsws (vector signed int, vector bool int);
vector signed int vec_vaddsws (vector signed int, vector signed int);
vector signed char vec_vaddubm (vector bool char, vector signed char);
vector signed char vec_vaddubm (vector signed char, vector bool char);
vector signed char vec_vaddubm (vector signed char, vector signed char);
vector unsigned char vec_vaddubm (vector bool char, vector unsigned char);
vector unsigned char vec_vaddubm (vector unsigned char, vector bool char);
vector unsigned char vec_vaddubm (vector unsigned char, vector unsigned char);
vector unsigned char vec_vaddubs (vector bool char, vector unsigned char);
vector unsigned char vec_vaddubs (vector unsigned char, vector bool char);
vector unsigned char vec_vaddubs (vector unsigned char, vector unsigned char);
vector signed short vec_vadduhm (vector bool short, vector signed short);
vector signed short vec_vadduhm (vector signed short, vector bool short);
vector signed short vec_vadduhm (vector signed short, vector signed short);
vector unsigned short vec_vadduhm (vector bool short, vector unsigned short);
vector unsigned short vec_vadduhm (vector unsigned short, vector bool short);
vector unsigned short vec_vadduhm (vector unsigned short, vector unsigned short);
vector unsigned short vec_vadduhs (vector bool short, vector unsigned short);
vector unsigned short vec_vadduhs (vector unsigned short, vector bool short);
vector unsigned short vec_vadduhs (vector unsigned short, vector unsigned short);
vector signed int vec_vadduwm (vector bool int, vector signed int);
vector signed int vec_vadduwm (vector signed int, vector bool int);
vector signed int vec_vadduwm (vector signed int, vector signed int);
vector unsigned int vec_vadduwm (vector bool int, vector unsigned int);
vector unsigned int vec_vadduwm (vector unsigned int, vector bool int);
vector unsigned int vec_vadduwm (vector unsigned int, vector unsigned int);
vector unsigned int vec_vadduws (vector bool int, vector unsigned int);
vector unsigned int vec_vadduws (vector unsigned int, vector bool int);
vector unsigned int vec_vadduws (vector unsigned int, vector unsigned int);
vector signed char vec_vavgsb (vector signed char, vector signed char);
vector signed short vec_vavgsh (vector signed short, vector signed short);
vector signed int vec_vavgsw (vector signed int, vector signed int);
vector unsigned char vec_vavgub (vector unsigned char, vector unsigned char);
vector unsigned short vec_vavguh (vector unsigned short, vector unsigned short);
vector unsigned int vec_vavguw (vector unsigned int, vector unsigned int);
vector float vec_vcfsx (vector signed int, const int);
vector float vec_vcfux (vector unsigned int, const int);
vector bool int vec_vcmpeqfp (vector float, vector float);
vector bool char vec_vcmpequb (vector signed char, vector signed char);
vector bool char vec_vcmpequb (vector unsigned char, vector unsigned char);
vector bool short vec_vcmpequh (vector signed short, vector signed short);
vector bool short vec_vcmpequh (vector unsigned short, vector unsigned short);
vector bool int vec_vcmpequw (vector signed int, vector signed int);
vector bool int vec_vcmpequw (vector unsigned int, vector unsigned int);
vector bool int vec_vcmpgtfp (vector float, vector float);
vector bool char vec_vcmpgtsb (vector signed char, vector signed char);
vector bool short vec_vcmpgtsh (vector signed short, vector signed short);
vector bool int vec_vcmpgtsw (vector signed int, vector signed int);
vector bool char vec_vcmpgtub (vector unsigned char, vector unsigned char);
vector bool short vec_vcmpgtuh (vector unsigned short, vector unsigned short);
vector bool int vec_vcmpgtuw (vector unsigned int, vector unsigned int);
vector float vec_vmaxfp (vector float, vector float);
vector signed char vec_vmaxsb (vector bool char, vector signed char);
vector signed char vec_vmaxsb (vector signed char, vector bool char);
vector signed char vec_vmaxsb (vector signed char, vector signed char);
vector signed short vec_vmaxsh (vector bool short, vector signed short);
vector signed short vec_vmaxsh (vector signed short, vector bool short);
vector signed short vec_vmaxsh (vector signed short, vector signed short);
vector signed int vec_vmaxsw (vector bool int, vector signed int);
vector signed int vec_vmaxsw (vector signed int, vector bool int);
vector signed int vec_vmaxsw (vector signed int, vector signed int);
vector unsigned char vec_vmaxub (vector bool char, vector unsigned char);
vector unsigned char vec_vmaxub (vector unsigned char, vector bool char);
vector unsigned char vec_vmaxub (vector unsigned char, vector unsigned char);
vector unsigned short vec_vmaxuh (vector bool short, vector unsigned short);
vector unsigned short vec_vmaxuh (vector unsigned short, vector bool short);
vector unsigned short vec_vmaxuh (vector unsigned short, vector unsigned short);
vector unsigned int vec_vmaxuw (vector bool int, vector unsigned int);
vector unsigned int vec_vmaxuw (vector unsigned int, vector bool int);
vector unsigned int vec_vmaxuw (vector unsigned int, vector unsigned int);
vector float vec_vminfp (vector float, vector float);
vector signed char vec_vminsb (vector bool char, vector signed char);
vector signed char vec_vminsb (vector signed char, vector bool char);
vector signed char vec_vminsb (vector signed char, vector signed char);
vector signed short vec_vminsh (vector bool short, vector signed short);
vector signed short vec_vminsh (vector signed short, vector bool short);
vector signed short vec_vminsh (vector signed short, vector signed short);
vector signed int vec_vminsw (vector bool int, vector signed int);
vector signed int vec_vminsw (vector signed int, vector bool int);
vector signed int vec_vminsw (vector signed int, vector signed int);
vector unsigned char vec_vminub (vector bool char, vector unsigned char);
vector unsigned char vec_vminub (vector unsigned char, vector bool char);
vector unsigned char vec_vminub (vector unsigned char, vector unsigned char);
vector unsigned short vec_vminuh (vector bool short, vector unsigned short);
vector unsigned short vec_vminuh (vector unsigned short, vector bool short);
vector unsigned short vec_vminuh (vector unsigned short, vector unsigned short);
vector unsigned int vec_vminuw (vector bool int, vector unsigned int);
vector unsigned int vec_vminuw (vector unsigned int, vector bool int);
vector unsigned int vec_vminuw (vector unsigned int, vector unsigned int);
vector bool char vec_vmrghb (vector bool char, vector bool char);
vector signed char vec_vmrghb (vector signed char, vector signed char);
vector unsigned char vec_vmrghb (vector unsigned char, vector unsigned char);
vector bool short vec_vmrghh (vector bool short, vector bool short);
vector signed short vec_vmrghh (vector signed short, vector signed short);
vector unsigned short vec_vmrghh (vector unsigned short, vector unsigned short);
vector pixel vec_vmrghh (vector pixel, vector pixel);
vector float vec_vmrghw (vector float, vector float);
vector bool int vec_vmrghw (vector bool int, vector bool int);
vector signed int vec_vmrghw (vector signed int, vector signed int);
vector unsigned int vec_vmrghw (vector unsigned int, vector unsigned int);
vector bool char vec_vmrglb (vector bool char, vector bool char);
vector signed char vec_vmrglb (vector signed char, vector signed char);
vector unsigned char vec_vmrglb (vector unsigned char, vector unsigned char);
vector bool short vec_vmrglh (vector bool short, vector bool short);
vector signed short vec_vmrglh (vector signed short, vector signed short);
vector unsigned short vec_vmrglh (vector unsigned short, vector unsigned short);
vector pixel vec_vmrglh (vector pixel, vector pixel);
vector float vec_vmrglw (vector float, vector float);
vector signed int vec_vmrglw (vector signed int, vector signed int);
vector unsigned int vec_vmrglw (vector unsigned int, vector unsigned int);
vector bool int vec_vmrglw (vector bool int, vector bool int);
vector signed int vec_vmsummbm (vector signed char, vector unsigned char,
vector signed int);
vector signed int vec_vmsumshm (vector signed short, vector signed short,
vector signed int);
vector signed int vec_vmsumshs (vector signed short, vector signed short,
vector signed int);
vector unsigned int vec_vmsumubm (vector unsigned char, vector unsigned char,
vector unsigned int);
vector unsigned int vec_vmsumuhm (vector unsigned short, vector unsigned short,
vector unsigned int);
vector unsigned int vec_vmsumuhs (vector unsigned short, vector unsigned short,
vector unsigned int);
vector signed short vec_vmulesb (vector signed char, vector signed char);
vector signed int vec_vmulesh (vector signed short, vector signed short);
vector unsigned short vec_vmuleub (vector unsigned char, vector unsigned char);
vector unsigned int vec_vmuleuh (vector unsigned short, vector unsigned short);
vector signed short vec_vmulosb (vector signed char, vector signed char);
vector signed int vec_vmulosh (vector signed short, vector signed short);
vector unsigned short vec_vmuloub (vector unsigned char, vector unsigned char);
vector unsigned int vec_vmulouh (vector unsigned short, vector unsigned short);
vector signed char vec_vpkshss (vector signed short, vector signed short);
vector unsigned char vec_vpkshus (vector signed short, vector signed short);
vector signed short vec_vpkswss (vector signed int, vector signed int);
vector unsigned short vec_vpkswus (vector signed int, vector signed int);
vector bool char vec_vpkuhum (vector bool short, vector bool short);
vector signed char vec_vpkuhum (vector signed short, vector signed short);
vector unsigned char vec_vpkuhum (vector unsigned short, vector unsigned short);
vector unsigned char vec_vpkuhus (vector unsigned short, vector unsigned short);
vector bool short vec_vpkuwum (vector bool int, vector bool int);
vector signed short vec_vpkuwum (vector signed int, vector signed int);
vector unsigned short vec_vpkuwum (vector unsigned int, vector unsigned int);
vector unsigned short vec_vpkuwus (vector unsigned int, vector unsigned int);
vector signed char vec_vrlb (vector signed char, vector unsigned char);
vector unsigned char vec_vrlb (vector unsigned char, vector unsigned char);
vector signed short vec_vrlh (vector signed short, vector unsigned short);
vector unsigned short vec_vrlh (vector unsigned short, vector unsigned short);
vector signed int vec_vrlw (vector signed int, vector unsigned int);
vector unsigned int vec_vrlw (vector unsigned int, vector unsigned int);
vector signed char vec_vslb (vector signed char, vector unsigned char);
vector unsigned char vec_vslb (vector unsigned char, vector unsigned char);
vector signed short vec_vslh (vector signed short, vector unsigned short);
vector unsigned short vec_vslh (vector unsigned short, vector unsigned short);
vector signed int vec_vslw (vector signed int, vector unsigned int);
vector unsigned int vec_vslw (vector unsigned int, vector unsigned int);
vector signed char vec_vspltb (vector signed char, const int);
vector unsigned char vec_vspltb (vector unsigned char, const int);
vector bool char vec_vspltb (vector bool char, const int);
vector bool short vec_vsplth (vector bool short, const int);
vector signed short vec_vsplth (vector signed short, const int);
vector unsigned short vec_vsplth (vector unsigned short, const int);
vector pixel vec_vsplth (vector pixel, const int);
vector float vec_vspltw (vector float, const int);
vector signed int vec_vspltw (vector signed int, const int);
vector unsigned int vec_vspltw (vector unsigned int, const int);
vector bool int vec_vspltw (vector bool int, const int);
vector signed char vec_vsrab (vector signed char, vector unsigned char);
vector unsigned char vec_vsrab (vector unsigned char, vector unsigned char);
vector signed short vec_vsrah (vector signed short, vector unsigned short);
vector unsigned short vec_vsrah (vector unsigned short, vector unsigned short);
vector signed int vec_vsraw (vector signed int, vector unsigned int);
vector unsigned int vec_vsraw (vector unsigned int, vector unsigned int);
vector signed char vec_vsrb (vector signed char, vector unsigned char);
vector unsigned char vec_vsrb (vector unsigned char, vector unsigned char);
vector signed short vec_vsrh (vector signed short, vector unsigned short);
vector unsigned short vec_vsrh (vector unsigned short, vector unsigned short);
vector signed int vec_vsrw (vector signed int, vector unsigned int);
vector unsigned int vec_vsrw (vector unsigned int, vector unsigned int);
vector float vec_vsubfp (vector float, vector float);
vector signed char vec_vsubsbs (vector bool char, vector signed char);
vector signed char vec_vsubsbs (vector signed char, vector bool char);
vector signed char vec_vsubsbs (vector signed char, vector signed char);
vector signed short vec_vsubshs (vector bool short, vector signed short);
vector signed short vec_vsubshs (vector signed short, vector bool short);
vector signed short vec_vsubshs (vector signed short, vector signed short);
vector signed int vec_vsubsws (vector bool int, vector signed int);
vector signed int vec_vsubsws (vector signed int, vector bool int);
vector signed int vec_vsubsws (vector signed int, vector signed int);
vector signed char vec_vsububm (vector bool char, vector signed char);
vector signed char vec_vsububm (vector signed char, vector bool char);
vector signed char vec_vsububm (vector signed char, vector signed char);
vector unsigned char vec_vsububm (vector bool char, vector unsigned char);
vector unsigned char vec_vsububm (vector unsigned char, vector bool char);
vector unsigned char vec_vsububm (vector unsigned char, vector unsigned char);
vector unsigned char vec_vsububs (vector bool char, vector unsigned char);
vector unsigned char vec_vsububs (vector unsigned char, vector bool char);
vector unsigned char vec_vsububs (vector unsigned char, vector unsigned char);
vector signed short vec_vsubuhm (vector bool short, vector signed short);
vector signed short vec_vsubuhm (vector signed short, vector bool short);
vector signed short vec_vsubuhm (vector signed short, vector signed short);
vector unsigned short vec_vsubuhm (vector bool short, vector unsigned short);
vector unsigned short vec_vsubuhm (vector unsigned short, vector bool short);
vector unsigned short vec_vsubuhm (vector unsigned short, vector unsigned short);
vector unsigned short vec_vsubuhs (vector bool short, vector unsigned short);
vector unsigned short vec_vsubuhs (vector unsigned short, vector bool short);
vector unsigned short vec_vsubuhs (vector unsigned short, vector unsigned short);
vector signed int vec_vsubuwm (vector bool int, vector signed int);
vector signed int vec_vsubuwm (vector signed int, vector bool int);
vector signed int vec_vsubuwm (vector signed int, vector signed int);
vector unsigned int vec_vsubuwm (vector bool int, vector unsigned int);
vector unsigned int vec_vsubuwm (vector unsigned int, vector bool int);
vector unsigned int vec_vsubuwm (vector unsigned int, vector unsigned int);
vector unsigned int vec_vsubuws (vector bool int, vector unsigned int);
vector unsigned int vec_vsubuws (vector unsigned int, vector bool int);
vector unsigned int vec_vsubuws (vector unsigned int, vector unsigned int);
vector signed int vec_vsum4sbs (vector signed char, vector signed int);
vector signed int vec_vsum4shs (vector signed short, vector signed int);
vector unsigned int vec_vsum4ubs (vector unsigned char, vector unsigned int);
vector unsigned int vec_vupkhpx (vector pixel);
vector bool short vec_vupkhsb (vector bool char);
vector signed short vec_vupkhsb (vector signed char);
vector bool int vec_vupkhsh (vector bool short);
vector signed int vec_vupkhsh (vector signed short);
vector unsigned int vec_vupklpx (vector pixel);
vector bool short vec_vupklsb (vector bool char);
vector signed short vec_vupklsb (vector signed char);
vector bool int vec_vupklsh (vector bool short);
vector signed int vec_vupklsh (vector signed short);
@end smallexample
@node PowerPC AltiVec Built-in Functions Available on ISA 2.06
@subsubsection PowerPC AltiVec Built-in Functions Available on ISA 2.06
The AltiVec built-in functions described in this section are
available on the PowerPC family of processors starting with ISA 2.06
or later. These are normally enabled by adding @option{-mvsx} to the
command line.
When @option{-mvsx} is used, the following additional vector types are
implemented.
@smallexample
vector unsigned __int128
vector signed __int128
vector unsigned long long int
vector signed long long int
vector double
@end smallexample
The long long types are only implemented for 64-bit code generation.
Only functions excluded from the PVIPR are listed here.
@smallexample
void vec_dst (const unsigned long *, int, const int);
void vec_dst (const long *, int, const int);
void vec_dststt (const unsigned long *, int, const int);
void vec_dststt (const long *, int, const int);
void vec_dstt (const unsigned long *, int, const int);
void vec_dstt (const long *, int, const int);
vector unsigned char vec_lvsl (int, const unsigned long *);
vector unsigned char vec_lvsl (int, const long *);
vector unsigned char vec_lvsr (int, const unsigned long *);
vector unsigned char vec_lvsr (int, const long *);
vector unsigned char vec_lvsl (int, const double *);
vector unsigned char vec_lvsr (int, const double *);
vector double vec_vsx_ld (int, const vector double *);
vector double vec_vsx_ld (int, const double *);
vector float vec_vsx_ld (int, const vector float *);
vector float vec_vsx_ld (int, const float *);
vector bool int vec_vsx_ld (int, const vector bool int *);
vector signed int vec_vsx_ld (int, const vector signed int *);
vector signed int vec_vsx_ld (int, const int *);
vector signed int vec_vsx_ld (int, const long *);
vector unsigned int vec_vsx_ld (int, const vector unsigned int *);
vector unsigned int vec_vsx_ld (int, const unsigned int *);
vector unsigned int vec_vsx_ld (int, const unsigned long *);
vector bool short vec_vsx_ld (int, const vector bool short *);
vector pixel vec_vsx_ld (int, const vector pixel *);
vector signed short vec_vsx_ld (int, const vector signed short *);
vector signed short vec_vsx_ld (int, const short *);
vector unsigned short vec_vsx_ld (int, const vector unsigned short *);
vector unsigned short vec_vsx_ld (int, const unsigned short *);
vector bool char vec_vsx_ld (int, const vector bool char *);
vector signed char vec_vsx_ld (int, const vector signed char *);
vector signed char vec_vsx_ld (int, const signed char *);
vector unsigned char vec_vsx_ld (int, const vector unsigned char *);
vector unsigned char vec_vsx_ld (int, const unsigned char *);
void vec_vsx_st (vector double, int, vector double *);
void vec_vsx_st (vector double, int, double *);
void vec_vsx_st (vector float, int, vector float *);
void vec_vsx_st (vector float, int, float *);
void vec_vsx_st (vector signed int, int, vector signed int *);
void vec_vsx_st (vector signed int, int, int *);
void vec_vsx_st (vector unsigned int, int, vector unsigned int *);
void vec_vsx_st (vector unsigned int, int, unsigned int *);
void vec_vsx_st (vector bool int, int, vector bool int *);
void vec_vsx_st (vector bool int, int, unsigned int *);
void vec_vsx_st (vector bool int, int, int *);
void vec_vsx_st (vector signed short, int, vector signed short *);
void vec_vsx_st (vector signed short, int, short *);
void vec_vsx_st (vector unsigned short, int, vector unsigned short *);
void vec_vsx_st (vector unsigned short, int, unsigned short *);
void vec_vsx_st (vector bool short, int, vector bool short *);
void vec_vsx_st (vector bool short, int, unsigned short *);
void vec_vsx_st (vector pixel, int, vector pixel *);
void vec_vsx_st (vector pixel, int, unsigned short *);
void vec_vsx_st (vector pixel, int, short *);
void vec_vsx_st (vector bool short, int, short *);
void vec_vsx_st (vector signed char, int, vector signed char *);
void vec_vsx_st (vector signed char, int, signed char *);
void vec_vsx_st (vector unsigned char, int, vector unsigned char *);
void vec_vsx_st (vector unsigned char, int, unsigned char *);
void vec_vsx_st (vector bool char, int, vector bool char *);
void vec_vsx_st (vector bool char, int, unsigned char *);
void vec_vsx_st (vector bool char, int, signed char *);
vector double vec_xxpermdi (vector double, vector double, const int);
vector float vec_xxpermdi (vector float, vector float, const int);
vector long long vec_xxpermdi (vector long long, vector long long, const int);
vector unsigned long long vec_xxpermdi (vector unsigned long long,
vector unsigned long long, const int);
vector int vec_xxpermdi (vector int, vector int, const int);
vector unsigned int vec_xxpermdi (vector unsigned int,
vector unsigned int, const int);
vector short vec_xxpermdi (vector short, vector short, const int);
vector unsigned short vec_xxpermdi (vector unsigned short,
vector unsigned short, const int);
vector signed char vec_xxpermdi (vector signed char, vector signed char,
const int);
vector unsigned char vec_xxpermdi (vector unsigned char,
vector unsigned char, const int);
vector double vec_xxsldi (vector double, vector double, int);
vector float vec_xxsldi (vector float, vector float, int);
vector long long vec_xxsldi (vector long long, vector long long, int);
vector unsigned long long vec_xxsldi (vector unsigned long long,
vector unsigned long long, int);
vector int vec_xxsldi (vector int, vector int, int);
vector unsigned int vec_xxsldi (vector unsigned int, vector unsigned int, int);
vector short vec_xxsldi (vector short, vector short, int);
vector unsigned short vec_xxsldi (vector unsigned short,
vector unsigned short, int);
vector signed char vec_xxsldi (vector signed char, vector signed char, int);
vector unsigned char vec_xxsldi (vector unsigned char,
vector unsigned char, int);
@end smallexample
Note that the @samp{vec_ld} and @samp{vec_st} built-in functions always
generate the AltiVec @samp{LVX} and @samp{STVX} instructions even
if the VSX instruction set is available. The @samp{vec_vsx_ld} and
@samp{vec_vsx_st} built-in functions always generate the VSX @samp{LXVD2X},
@samp{LXVW4X}, @samp{STXVD2X}, and @samp{STXVW4X} instructions.
@node PowerPC AltiVec Built-in Functions Available on ISA 2.07
@subsubsection PowerPC AltiVec Built-in Functions Available on ISA 2.07
If the ISA 2.07 additions to the vector/scalar (power8-vector)
instruction set are available, the following additional functions are
available for both 32-bit and 64-bit targets. For 64-bit targets, you
can use @var{vector long} instead of @var{vector long long},
@var{vector bool long} instead of @var{vector bool long long}, and
@var{vector unsigned long} instead of @var{vector unsigned long long}.
Only functions excluded from the PVIPR are listed here.
@smallexample
vector long long vec_vaddudm (vector long long, vector long long);
vector long long vec_vaddudm (vector bool long long, vector long long);
vector long long vec_vaddudm (vector long long, vector bool long long);
vector unsigned long long vec_vaddudm (vector unsigned long long,
vector unsigned long long);
vector unsigned long long vec_vaddudm (vector bool unsigned long long,
vector unsigned long long);
vector unsigned long long vec_vaddudm (vector unsigned long long,
vector bool unsigned long long);
vector long long vec_vclz (vector long long);
vector unsigned long long vec_vclz (vector unsigned long long);
vector int vec_vclz (vector int);
vector unsigned int vec_vclz (vector int);
vector short vec_vclz (vector short);
vector unsigned short vec_vclz (vector unsigned short);
vector signed char vec_vclz (vector signed char);
vector unsigned char vec_vclz (vector unsigned char);
vector signed char vec_vclzb (vector signed char);
vector unsigned char vec_vclzb (vector unsigned char);
vector long long vec_vclzd (vector long long);
vector unsigned long long vec_vclzd (vector unsigned long long);
vector short vec_vclzh (vector short);
vector unsigned short vec_vclzh (vector unsigned short);
vector int vec_vclzw (vector int);
vector unsigned int vec_vclzw (vector int);
vector signed char vec_vgbbd (vector signed char);
vector unsigned char vec_vgbbd (vector unsigned char);
vector long long vec_vmaxsd (vector long long, vector long long);
vector unsigned long long vec_vmaxud (vector unsigned long long,
unsigned vector long long);
vector long long vec_vminsd (vector long long, vector long long);
vector unsigned long long vec_vminud (vector long long, vector long long);
vector int vec_vpksdss (vector long long, vector long long);
vector unsigned int vec_vpksdss (vector long long, vector long long);
vector unsigned int vec_vpkudus (vector unsigned long long,
vector unsigned long long);
vector int vec_vpkudum (vector long long, vector long long);
vector unsigned int vec_vpkudum (vector unsigned long long,
vector unsigned long long);
vector bool int vec_vpkudum (vector bool long long, vector bool long long);
vector long long vec_vpopcnt (vector long long);
vector unsigned long long vec_vpopcnt (vector unsigned long long);
vector int vec_vpopcnt (vector int);
vector unsigned int vec_vpopcnt (vector int);
vector short vec_vpopcnt (vector short);
vector unsigned short vec_vpopcnt (vector unsigned short);
vector signed char vec_vpopcnt (vector signed char);
vector unsigned char vec_vpopcnt (vector unsigned char);
vector signed char vec_vpopcntb (vector signed char);
vector unsigned char vec_vpopcntb (vector unsigned char);
vector long long vec_vpopcntd (vector long long);
vector unsigned long long vec_vpopcntd (vector unsigned long long);
vector short vec_vpopcnth (vector short);
vector unsigned short vec_vpopcnth (vector unsigned short);
vector int vec_vpopcntw (vector int);
vector unsigned int vec_vpopcntw (vector int);
vector long long vec_vrld (vector long long, vector unsigned long long);
vector unsigned long long vec_vrld (vector unsigned long long,
vector unsigned long long);
vector long long vec_vsld (vector long long, vector unsigned long long);
vector long long vec_vsld (vector unsigned long long,
vector unsigned long long);
vector long long vec_vsrad (vector long long, vector unsigned long long);
vector unsigned long long vec_vsrad (vector unsigned long long,
vector unsigned long long);
vector long long vec_vsrd (vector long long, vector unsigned long long);
vector unsigned long long char vec_vsrd (vector unsigned long long,
vector unsigned long long);
vector long long vec_vsubudm (vector long long, vector long long);
vector long long vec_vsubudm (vector bool long long, vector long long);
vector long long vec_vsubudm (vector long long, vector bool long long);
vector unsigned long long vec_vsubudm (vector unsigned long long,
vector unsigned long long);
vector unsigned long long vec_vsubudm (vector bool long long,
vector unsigned long long);
vector unsigned long long vec_vsubudm (vector unsigned long long,
vector bool long long);
vector long long vec_vupkhsw (vector int);
vector unsigned long long vec_vupkhsw (vector unsigned int);
vector long long vec_vupklsw (vector int);
vector unsigned long long vec_vupklsw (vector int);
@end smallexample
If the ISA 2.07 additions to the vector/scalar (power8-vector)
instruction set are available, the following additional functions are
available for 64-bit targets. New vector types
(@var{vector __int128} and @var{vector __uint128}) are available
to hold the @var{__int128} and @var{__uint128} types to use these
builtins.
The normal vector extract, and set operations work on
@var{vector __int128} and @var{vector __uint128} types,
but the index value must be 0.
Only functions excluded from the PVIPR are listed here.
@smallexample
vector __int128 vec_vaddcuq (vector __int128, vector __int128);
vector __uint128 vec_vaddcuq (vector __uint128, vector __uint128);
vector __int128 vec_vadduqm (vector __int128, vector __int128);
vector __uint128 vec_vadduqm (vector __uint128, vector __uint128);
vector __int128 vec_vaddecuq (vector __int128, vector __int128,
vector __int128);
vector __uint128 vec_vaddecuq (vector __uint128, vector __uint128,
vector __uint128);
vector __int128 vec_vaddeuqm (vector __int128, vector __int128,
vector __int128);
vector __uint128 vec_vaddeuqm (vector __uint128, vector __uint128,
vector __uint128);
vector __int128 vec_vsubecuq (vector __int128, vector __int128,
vector __int128);
vector __uint128 vec_vsubecuq (vector __uint128, vector __uint128,
vector __uint128);
vector __int128 vec_vsubeuqm (vector __int128, vector __int128,
vector __int128);
vector __uint128 vec_vsubeuqm (vector __uint128, vector __uint128,
vector __uint128);
vector __int128 vec_vsubcuq (vector __int128, vector __int128);
vector __uint128 vec_vsubcuq (vector __uint128, vector __uint128);
__int128 vec_vsubuqm (__int128, __int128);
__uint128 vec_vsubuqm (__uint128, __uint128);
vector __int128 __builtin_bcdadd (vector __int128, vector __int128, const int);
vector unsigned char __builtin_bcdadd (vector unsigned char, vector unsigned char,
const int);
int __builtin_bcdadd_lt (vector __int128, vector __int128, const int);
int __builtin_bcdadd_lt (vector unsigned char, vector unsigned char, const int);
int __builtin_bcdadd_eq (vector __int128, vector __int128, const int);
int __builtin_bcdadd_eq (vector unsigned char, vector unsigned char, const int);
int __builtin_bcdadd_gt (vector __int128, vector __int128, const int);
int __builtin_bcdadd_gt (vector unsigned char, vector unsigned char, const int);
int __builtin_bcdadd_ov (vector __int128, vector __int128, const int);
int __builtin_bcdadd_ov (vector unsigned char, vector unsigned char, const int);
vector __int128 __builtin_bcdsub (vector __int128, vector __int128, const int);
vector unsigned char __builtin_bcdsub (vector unsigned char, vector unsigned char,
const int);
int __builtin_bcdsub_lt (vector __int128, vector __int128, const int);
int __builtin_bcdsub_lt (vector unsigned char, vector unsigned char, const int);
int __builtin_bcdsub_eq (vector __int128, vector __int128, const int);
int __builtin_bcdsub_eq (vector unsigned char, vector unsigned char, const int);
int __builtin_bcdsub_gt (vector __int128, vector __int128, const int);
int __builtin_bcdsub_gt (vector unsigned char, vector unsigned char, const int);
int __builtin_bcdsub_ov (vector __int128, vector __int128, const int);
int __builtin_bcdsub_ov (vector unsigned char, vector unsigned char, const int);
@end smallexample
@node PowerPC AltiVec Built-in Functions Available on ISA 3.0
@subsubsection PowerPC AltiVec Built-in Functions Available on ISA 3.0
The following additional built-in functions are also available for the
PowerPC family of processors, starting with ISA 3.0
(@option{-mcpu=power9}) or later.
Only instructions excluded from the PVIPR are listed here.
@smallexample
unsigned int scalar_extract_exp (double source);
unsigned long long int scalar_extract_exp (__ieee128 source);
unsigned long long int scalar_extract_sig (double source);
unsigned __int128 scalar_extract_sig (__ieee128 source);
double scalar_insert_exp (unsigned long long int significand,
unsigned long long int exponent);
double scalar_insert_exp (double significand, unsigned long long int exponent);
ieee_128 scalar_insert_exp (unsigned __int128 significand,
unsigned long long int exponent);
ieee_128 scalar_insert_exp (ieee_128 significand, unsigned long long int exponent);
int scalar_cmp_exp_gt (double arg1, double arg2);
int scalar_cmp_exp_lt (double arg1, double arg2);
int scalar_cmp_exp_eq (double arg1, double arg2);
int scalar_cmp_exp_unordered (double arg1, double arg2);
bool scalar_test_data_class (float source, const int condition);
bool scalar_test_data_class (double source, const int condition);
bool scalar_test_data_class (__ieee128 source, const int condition);
bool scalar_test_neg (float source);
bool scalar_test_neg (double source);
bool scalar_test_neg (__ieee128 source);
@end smallexample
The @code{scalar_extract_exp} and @code{scalar_extract_sig}
functions require a 64-bit environment supporting ISA 3.0 or later.
The @code{scalar_extract_exp} and @code{scalar_extract_sig} built-in
functions return the significand and the biased exponent value
respectively of their @code{source} arguments.
When supplied with a 64-bit @code{source} argument, the
result returned by @code{scalar_extract_sig} has
the @code{0x0010000000000000} bit set if the
function's @code{source} argument is in normalized form.
Otherwise, this bit is set to 0.
When supplied with a 128-bit @code{source} argument, the
@code{0x00010000000000000000000000000000} bit of the result is
treated similarly.
Note that the sign of the significand is not represented in the result
returned from the @code{scalar_extract_sig} function. Use the
@code{scalar_test_neg} function to test the sign of its @code{double}
argument.
The @code{scalar_insert_exp}
functions require a 64-bit environment supporting ISA 3.0 or later.
When supplied with a 64-bit first argument, the
@code{scalar_insert_exp} built-in function returns a double-precision
floating point value that is constructed by assembling the values of its
@code{significand} and @code{exponent} arguments. The sign of the
result is copied from the most significant bit of the
@code{significand} argument. The significand and exponent components
of the result are composed of the least significant 11 bits of the
@code{exponent} argument and the least significant 52 bits of the
@code{significand} argument respectively.
When supplied with a 128-bit first argument, the
@code{scalar_insert_exp} built-in function returns a quad-precision
ieee floating point value. The sign bit of the result is copied from
the most significant bit of the @code{significand} argument.
The significand and exponent components of the result are composed of
the least significant 15 bits of the @code{exponent} argument and the
least significant 112 bits of the @code{significand} argument respectively.
The @code{scalar_cmp_exp_gt}, @code{scalar_cmp_exp_lt},
@code{scalar_cmp_exp_eq}, and @code{scalar_cmp_exp_unordered} built-in
functions return a non-zero value if @code{arg1} is greater than, less
than, equal to, or not comparable to @code{arg2} respectively. The
arguments are not comparable if one or the other equals NaN (not a
number).
The @code{scalar_test_data_class} built-in function returns 1
if any of the condition tests enabled by the value of the
@code{condition} variable are true, and 0 otherwise. The
@code{condition} argument must be a compile-time constant integer with
value not exceeding 127. The
@code{condition} argument is encoded as a bitmask with each bit
enabling the testing of a different condition, as characterized by the
following:
@smallexample
0x40 Test for NaN
0x20 Test for +Infinity
0x10 Test for -Infinity
0x08 Test for +Zero
0x04 Test for -Zero
0x02 Test for +Denormal
0x01 Test for -Denormal
@end smallexample
The @code{scalar_test_neg} built-in function returns 1 if its
@code{source} argument holds a negative value, 0 otherwise.
The following built-in functions are also available for the PowerPC family
of processors, starting with ISA 3.0 or later
(@option{-mcpu=power9}). These string functions are described
separately in order to group the descriptions closer to the function
prototypes.
Only functions excluded from the PVIPR are listed here.
@smallexample
int vec_all_nez (vector signed char, vector signed char);
int vec_all_nez (vector unsigned char, vector unsigned char);
int vec_all_nez (vector signed short, vector signed short);
int vec_all_nez (vector unsigned short, vector unsigned short);
int vec_all_nez (vector signed int, vector signed int);
int vec_all_nez (vector unsigned int, vector unsigned int);
int vec_any_eqz (vector signed char, vector signed char);
int vec_any_eqz (vector unsigned char, vector unsigned char);
int vec_any_eqz (vector signed short, vector signed short);
int vec_any_eqz (vector unsigned short, vector unsigned short);
int vec_any_eqz (vector signed int, vector signed int);
int vec_any_eqz (vector unsigned int, vector unsigned int);
signed char vec_xlx (unsigned int index, vector signed char data);
unsigned char vec_xlx (unsigned int index, vector unsigned char data);
signed short vec_xlx (unsigned int index, vector signed short data);
unsigned short vec_xlx (unsigned int index, vector unsigned short data);
signed int vec_xlx (unsigned int index, vector signed int data);
unsigned int vec_xlx (unsigned int index, vector unsigned int data);
float vec_xlx (unsigned int index, vector float data);
signed char vec_xrx (unsigned int index, vector signed char data);
unsigned char vec_xrx (unsigned int index, vector unsigned char data);
signed short vec_xrx (unsigned int index, vector signed short data);
unsigned short vec_xrx (unsigned int index, vector unsigned short data);
signed int vec_xrx (unsigned int index, vector signed int data);
unsigned int vec_xrx (unsigned int index, vector unsigned int data);
float vec_xrx (unsigned int index, vector float data);
@end smallexample
The @code{vec_all_nez}, @code{vec_any_eqz}, and @code{vec_cmpnez}
perform pairwise comparisons between the elements at the same
positions within their two vector arguments.
The @code{vec_all_nez} function returns a
non-zero value if and only if all pairwise comparisons are not
equal and no element of either vector argument contains a zero.
The @code{vec_any_eqz} function returns a
non-zero value if and only if at least one pairwise comparison is equal
or if at least one element of either vector argument contains a zero.
The @code{vec_cmpnez} function returns a vector of the same type as
its two arguments, within which each element consists of all ones to
denote that either the corresponding elements of the incoming arguments are
not equal or that at least one of the corresponding elements contains
zero. Otherwise, the element of the returned vector contains all zeros.
The @code{vec_xlx} and @code{vec_xrx} functions extract the single
element selected by the @code{index} argument from the vector
represented by the @code{data} argument. The @code{index} argument
always specifies a byte offset, regardless of the size of the vector
element. With @code{vec_xlx}, @code{index} is the offset of the first
byte of the element to be extracted. With @code{vec_xrx}, @code{index}
represents the last byte of the element to be extracted, measured
from the right end of the vector. In other words, the last byte of
the element to be extracted is found at position @code{(15 - index)}.
There is no requirement that @code{index} be a multiple of the vector
element size. However, if the size of the vector element added to
@code{index} is greater than 15, the content of the returned value is
undefined.
The following functions are also available if the ISA 3.0 instruction
set additions (@option{-mcpu=power9}) are available.
Only functions excluded from the PVIPR are listed here.
@smallexample
vector long long vec_vctz (vector long long);
vector unsigned long long vec_vctz (vector unsigned long long);
vector int vec_vctz (vector int);
vector unsigned int vec_vctz (vector int);
vector short vec_vctz (vector short);
vector unsigned short vec_vctz (vector unsigned short);
vector signed char vec_vctz (vector signed char);
vector unsigned char vec_vctz (vector unsigned char);
vector signed char vec_vctzb (vector signed char);
vector unsigned char vec_vctzb (vector unsigned char);
vector long long vec_vctzd (vector long long);
vector unsigned long long vec_vctzd (vector unsigned long long);
vector short vec_vctzh (vector short);
vector unsigned short vec_vctzh (vector unsigned short);
vector int vec_vctzw (vector int);
vector unsigned int vec_vctzw (vector int);
vector int vec_vprtyb (vector int);
vector unsigned int vec_vprtyb (vector unsigned int);
vector long long vec_vprtyb (vector long long);
vector unsigned long long vec_vprtyb (vector unsigned long long);
vector int vec_vprtybw (vector int);
vector unsigned int vec_vprtybw (vector unsigned int);
vector long long vec_vprtybd (vector long long);
vector unsigned long long vec_vprtybd (vector unsigned long long);
@end smallexample
On 64-bit targets, if the ISA 3.0 additions (@option{-mcpu=power9})
are available:
@smallexample
vector long vec_vprtyb (vector long);
vector unsigned long vec_vprtyb (vector unsigned long);
vector __int128 vec_vprtyb (vector __int128);
vector __uint128 vec_vprtyb (vector __uint128);
vector long vec_vprtybd (vector long);
vector unsigned long vec_vprtybd (vector unsigned long);
vector __int128 vec_vprtybq (vector __int128);
vector __uint128 vec_vprtybd (vector __uint128);
@end smallexample
The following built-in functions are available for the PowerPC family
of processors, starting with ISA 3.0 or later (@option{-mcpu=power9}).
Only functions excluded from the PVIPR are listed here.
@smallexample
__vector unsigned char
vec_absdb (__vector unsigned char arg1, __vector unsigned char arg2);
__vector unsigned short
vec_absdh (__vector unsigned short arg1, __vector unsigned short arg2);
__vector unsigned int
vec_absdw (__vector unsigned int arg1, __vector unsigned int arg2);
@end smallexample
The @code{vec_absd}, @code{vec_absdb}, @code{vec_absdh}, and
@code{vec_absdw} built-in functions each computes the absolute
differences of the pairs of vector elements supplied in its two vector
arguments, placing the absolute differences into the corresponding
elements of the vector result.
The following built-in functions are available for the PowerPC family
of processors, starting with ISA 3.0 or later (@option{-mcpu=power9}):
@smallexample
vector unsigned int vec_vrlnm (vector unsigned int, vector unsigned int);
vector unsigned long long vec_vrlnm (vector unsigned long long,
vector unsigned long long);
@end smallexample
The result of @code{vec_vrlnm} is obtained by rotating each element
of the first argument vector left and ANDing it with a mask. The
second argument vector contains the mask beginning in bits 11:15,
the mask end in bits 19:23, and the shift count in bits 27:31,
of each element.
If the cryptographic instructions are enabled (@option{-mcrypto} or
@option{-mcpu=power8}), the following builtins are enabled.
Only functions excluded from the PVIPR are listed here.
@smallexample
vector unsigned long long __builtin_crypto_vsbox (vector unsigned long long);
vector unsigned long long __builtin_crypto_vcipher (vector unsigned long long,
vector unsigned long long);
vector unsigned long long __builtin_crypto_vcipherlast
(vector unsigned long long,
vector unsigned long long);
vector unsigned long long __builtin_crypto_vncipher (vector unsigned long long,
vector unsigned long long);
vector unsigned long long __builtin_crypto_vncipherlast (vector unsigned long long,
vector unsigned long long);
vector unsigned char __builtin_crypto_vpermxor (vector unsigned char,
vector unsigned char,
vector unsigned char);
vector unsigned short __builtin_crypto_vpermxor (vector unsigned short,
vector unsigned short,
vector unsigned short);
vector unsigned int __builtin_crypto_vpermxor (vector unsigned int,
vector unsigned int,
vector unsigned int);
vector unsigned long long __builtin_crypto_vpermxor (vector unsigned long long,
vector unsigned long long,
vector unsigned long long);
vector unsigned char __builtin_crypto_vpmsumb (vector unsigned char,
vector unsigned char);
vector unsigned short __builtin_crypto_vpmsumh (vector unsigned short,
vector unsigned short);
vector unsigned int __builtin_crypto_vpmsumw (vector unsigned int,
vector unsigned int);
vector unsigned long long __builtin_crypto_vpmsumd (vector unsigned long long,
vector unsigned long long);
vector unsigned long long __builtin_crypto_vshasigmad (vector unsigned long long,
int, int);
vector unsigned int __builtin_crypto_vshasigmaw (vector unsigned int, int, int);
@end smallexample
The second argument to @var{__builtin_crypto_vshasigmad} and
@var{__builtin_crypto_vshasigmaw} must be a constant
integer that is 0 or 1. The third argument to these built-in functions
must be a constant integer in the range of 0 to 15.
The following sign extension builtins are provided:
@smallexample
vector signed int vec_signexti (vector signed char a);
vector signed long long vec_signextll (vector signed char a);
vector signed int vec_signexti (vector signed short a);
vector signed long long vec_signextll (vector signed short a);
vector signed long long vec_signextll (vector signed int a);
vector signed long long vec_signextq (vector signed long long a);
@end smallexample
Each element of the result is produced by sign-extending the element of the
input vector that would fall in the least significant portion of the result
element. For example, a sign-extension of a vector signed char to a vector
signed long long will sign extend the rightmost byte of each doubleword.
@node PowerPC AltiVec Built-in Functions Available on ISA 3.1
@subsubsection PowerPC AltiVec Built-in Functions Available on ISA 3.1
The following additional built-in functions are also available for the
PowerPC family of processors, starting with ISA 3.1 (@option{-mcpu=power10}):
@smallexample
@exdent vector unsigned long long int
@exdent vec_cfuge (vector unsigned long long int, vector unsigned long long int);
@end smallexample
Perform a vector centrifuge operation, as if implemented by the
@code{vcfuged} instruction.
@findex vec_cfuge
@smallexample
@exdent vector unsigned long long int
@exdent vec_cntlzm (vector unsigned long long int, vector unsigned long long int);
@end smallexample
Perform a vector count leading zeros under bit mask operation, as if
implemented by the @code{vclzdm} instruction.
@findex vec_cntlzm
@smallexample
@exdent vector unsigned long long int
@exdent vec_cnttzm (vector unsigned long long int, vector unsigned long long int);
@end smallexample
Perform a vector count trailing zeros under bit mask operation, as if
implemented by the @code{vctzdm} instruction.
@findex vec_cnttzm
@smallexample
@exdent vector signed char
@exdent vec_clrl (vector signed char a, unsigned int n);
@exdent vector unsigned char
@exdent vec_clrl (vector unsigned char a, unsigned int n);
@end smallexample
Clear the left-most @code{(16 - n)} bytes of vector argument @code{a}, as if
implemented by the @code{vclrlb} instruction on a big-endian target
and by the @code{vclrrb} instruction on a little-endian target. A
value of @code{n} that is greater than 16 is treated as if it equaled 16.
@findex vec_clrl
@smallexample
@exdent vector signed char
@exdent vec_clrr (vector signed char a, unsigned int n);
@exdent vector unsigned char
@exdent vec_clrr (vector unsigned char a, unsigned int n);
@end smallexample
Clear the right-most @code{(16 - n)} bytes of vector argument @code{a}, as if
implemented by the @code{vclrrb} instruction on a big-endian target
and by the @code{vclrlb} instruction on a little-endian target. A
value of @code{n} that is greater than 16 is treated as if it equaled 16.
@findex vec_clrr
@smallexample
@exdent vector unsigned long long int
@exdent vec_gnb (vector unsigned __int128, const unsigned char);
@end smallexample
Perform a 128-bit vector gather operation, as if implemented by the
@code{vgnb} instruction. The second argument must be a literal
integer value between 2 and 7 inclusive.
@findex vec_gnb
Vector Extract
@smallexample
@exdent vector unsigned long long int
@exdent vec_extractl (vector unsigned char, vector unsigned char, unsigned int);
@exdent vector unsigned long long int
@exdent vec_extractl (vector unsigned short, vector unsigned short, unsigned int);
@exdent vector unsigned long long int
@exdent vec_extractl (vector unsigned int, vector unsigned int, unsigned int);
@exdent vector unsigned long long int
@exdent vec_extractl (vector unsigned long long, vector unsigned long long, unsigned int);
@end smallexample
Extract an element from two concatenated vectors starting at the given byte index
in natural-endian order, and place it zero-extended in doubleword 1 of the result
according to natural element order. If the byte index is out of range for the
data type, the intrinsic will be rejected.
For little-endian, this output will match the placement by the hardware
instruction, i.e., dword[0] in RTL notation. For big-endian, an additional
instruction is needed to move it from the "left" doubleword to the "right" one.
For little-endian, semantics matching the @code{vextdubvrx},
@code{vextduhvrx}, @code{vextduwvrx} instruction will be generated, while for
big-endian, semantics matching the @code{vextdubvlx}, @code{vextduhvlx},
@code{vextduwvlx} instructions
will be generated. Note that some fairly anomalous results can be generated if
the byte index is not aligned on an element boundary for the element being
extracted. This is a limitation of the bi-endian vector programming model is
consistent with the limitation on @code{vec_perm}.
@findex vec_extractl
@smallexample
@exdent vector unsigned long long int
@exdent vec_extracth (vector unsigned char, vector unsigned char, unsigned int);
@exdent vector unsigned long long int
@exdent vec_extracth (vector unsigned short, vector unsigned short,
unsigned int);
@exdent vector unsigned long long int
@exdent vec_extracth (vector unsigned int, vector unsigned int, unsigned int);
@exdent vector unsigned long long int
@exdent vec_extracth (vector unsigned long long, vector unsigned long long,
unsigned int);
@end smallexample
Extract an element from two concatenated vectors starting at the given byte
index. The index is based on big endian order for a little endian system.
Similarly, the index is based on little endian order for a big endian system.
The extraced elements are zero-extended and put in doubleword 1
according to natural element order. If the byte index is out of range for the
data type, the intrinsic will be rejected. For little-endian, this output
will match the placement by the hardware instruction (vextdubvrx, vextduhvrx,
vextduwvrx, vextddvrx) i.e., dword[0] in RTL
notation. For big-endian, an additional instruction is needed to move it
from the "left" doubleword to the "right" one. For little-endian, semantics
matching the @code{vextdubvlx}, @code{vextduhvlx}, @code{vextduwvlx}
instructions will be generated, while for big-endian, semantics matching the
@code{vextdubvrx}, @code{vextduhvrx}, @code{vextduwvrx} instructions will
be generated. Note that some fairly anomalous
results can be generated if the byte index is not aligned on the
element boundary for the element being extracted. This is a
limitation of the bi-endian vector programming model consistent with the
limitation on @code{vec_perm}.
@findex vec_extracth
@smallexample
@exdent vector unsigned long long int
@exdent vec_pdep (vector unsigned long long int, vector unsigned long long int);
@end smallexample
Perform a vector parallel bits deposit operation, as if implemented by
the @code{vpdepd} instruction.
@findex vec_pdep
Vector Insert
@smallexample
@exdent vector unsigned char
@exdent vec_insertl (unsigned char, vector unsigned char, unsigned int);
@exdent vector unsigned short
@exdent vec_insertl (unsigned short, vector unsigned short, unsigned int);
@exdent vector unsigned int
@exdent vec_insertl (unsigned int, vector unsigned int, unsigned int);
@exdent vector unsigned long long
@exdent vec_insertl (unsigned long long, vector unsigned long long,
unsigned int);
@exdent vector unsigned char
@exdent vec_insertl (vector unsigned char, vector unsigned char, unsigned int;
@exdent vector unsigned short
@exdent vec_insertl (vector unsigned short, vector unsigned short,
unsigned int);
@exdent vector unsigned int
@exdent vec_insertl (vector unsigned int, vector unsigned int, unsigned int);
@end smallexample
Let src be the first argument, when the first argument is a scalar, or the
rightmost element of the left doubleword of the first argument, when the first
argument is a vector. Insert the source into the destination at the position
given by the third argument, using natural element order in the second
argument. The rest of the second argument is unchanged. If the byte
index is greater than 14 for halfwords, greater than 12 for words, or
greater than 8 for doublewords the result is undefined. For little-endian,
the generated code will be semantically equivalent to @code{vins[bhwd]rx}
instructions. Similarly for big-endian it will be semantically equivalent
to @code{vins[bhwd]lx}. Note that some fairly anomalous results can be
generated if the byte index is not aligned on an element boundary for the
type of element being inserted.
@findex vec_insertl
@smallexample
@exdent vector unsigned char
@exdent vec_inserth (unsigned char, vector unsigned char, unsigned int);
@exdent vector unsigned short
@exdent vec_inserth (unsigned short, vector unsigned short, unsigned int);
@exdent vector unsigned int
@exdent vec_inserth (unsigned int, vector unsigned int, unsigned int);
@exdent vector unsigned long long
@exdent vec_inserth (unsigned long long, vector unsigned long long,
unsigned int);
@exdent vector unsigned char
@exdent vec_inserth (vector unsigned char, vector unsigned char, unsigned int);
@exdent vector unsigned short
@exdent vec_inserth (vector unsigned short, vector unsigned short,
unsigned int);
@exdent vector unsigned int
@exdent vec_inserth (vector unsigned int, vector unsigned int, unsigned int);
@end smallexample
Let src be the first argument, when the first argument is a scalar, or the
rightmost element of the first argument, when the first argument is a vector.
Insert src into the second argument at the position identified by the third
argument, using opposite element order in the second argument, and leaving the
rest of the second argument unchanged. If the byte index is greater than 14
for halfwords, 12 for words, or 8 for doublewords, the intrinsic will be
rejected. Note that the underlying hardware instruction uses the same register
for the second argument and the result.
For little-endian, the code generation will be semantically equivalent to
@code{vins[bhwd]lx}, while for big-endian it will be semantically equivalent to
@code{vins[bhwd]rx}.
Note that some fairly anomalous results can be generated if the byte index is
not aligned on an element boundary for the sort of element being inserted.
@findex vec_inserth
Vector Replace Element
@smallexample
@exdent vector signed int vec_replace_elt (vector signed int, signed int,
const int);
@exdent vector unsigned int vec_replace_elt (vector unsigned int,
unsigned int, const int);
@exdent vector float vec_replace_elt (vector float, float, const int);
@exdent vector signed long long vec_replace_elt (vector signed long long,
signed long long, const int);
@exdent vector unsigned long long vec_replace_elt (vector unsigned long long,
unsigned long long, const int);
@exdent vector double rec_replace_elt (vector double, double, const int);
@end smallexample
The third argument (constrained to [0,3]) identifies the natural-endian
element number of the first argument that will be replaced by the second
argument to produce the result. The other elements of the first argument will
remain unchanged in the result.
If it's desirable to insert a word at an unaligned position, use
vec_replace_unaligned instead.
@findex vec_replace_element
Vector Replace Unaligned
@smallexample
@exdent vector unsigned char vec_replace_unaligned (vector unsigned char,
signed int, const int);
@exdent vector unsigned char vec_replace_unaligned (vector unsigned char,
unsigned int, const int);
@exdent vector unsigned char vec_replace_unaligned (vector unsigned char,
float, const int);
@exdent vector unsigned char vec_replace_unaligned (vector unsigned char,
signed long long, const int);
@exdent vector unsigned char vec_replace_unaligned (vector unsigned char,
unsigned long long, const int);
@exdent vector unsigned char vec_replace_unaligned (vector unsigned char,
double, const int);
@end smallexample
The second argument replaces a portion of the first argument to produce the
result, with the rest of the first argument unchanged in the result. The
third argument identifies the byte index (using left-to-right, or big-endian
order) where the high-order byte of the second argument will be placed, with
the remaining bytes of the second argument placed naturally "to the right"
of the high-order byte.
The programmer is responsible for understanding the endianness issues involved
with the first argument and the result.
@findex vec_replace_unaligned
Vector Shift Left Double Bit Immediate
@smallexample
@exdent vector signed char vec_sldb (vector signed char, vector signed char,
const unsigned int);
@exdent vector unsigned char vec_sldb (vector unsigned char,
vector unsigned char, const unsigned int);
@exdent vector signed short vec_sldb (vector signed short, vector signed short,
const unsigned int);
@exdent vector unsigned short vec_sldb (vector unsigned short,
vector unsigned short, const unsigned int);
@exdent vector signed int vec_sldb (vector signed int, vector signed int,
const unsigned int);
@exdent vector unsigned int vec_sldb (vector unsigned int, vector unsigned int,
const unsigned int);
@exdent vector signed long long vec_sldb (vector signed long long,
vector signed long long, const unsigned int);
@exdent vector unsigned long long vec_sldb (vector unsigned long long,
vector unsigned long long, const unsigned int);
@end smallexample
Shift the combined input vectors left by the amount specified by the low-order
three bits of the third argument, and return the leftmost remaining 128 bits.
Code using this instruction must be endian-aware.
@findex vec_sldb
Vector Shift Right Double Bit Immediate
@smallexample
@exdent vector signed char vec_srdb (vector signed char, vector signed char,
const unsigned int);
@exdent vector unsigned char vec_srdb (vector unsigned char, vector unsigned char,
const unsigned int);
@exdent vector signed short vec_srdb (vector signed short, vector signed short,
const unsigned int);
@exdent vector unsigned short vec_srdb (vector unsigned short, vector unsigned short,
const unsigned int);
@exdent vector signed int vec_srdb (vector signed int, vector signed int,
const unsigned int);
@exdent vector unsigned int vec_srdb (vector unsigned int, vector unsigned int,
const unsigned int);
@exdent vector signed long long vec_srdb (vector signed long long,
vector signed long long, const unsigned int);
@exdent vector unsigned long long vec_srdb (vector unsigned long long,
vector unsigned long long, const unsigned int);
@end smallexample
Shift the combined input vectors right by the amount specified by the low-order
three bits of the third argument, and return the remaining 128 bits. Code
using this built-in must be endian-aware.
@findex vec_srdb
Vector Splat
@smallexample
@exdent vector signed int vec_splati (const signed int);
@exdent vector float vec_splati (const float);
@end smallexample
Splat a 32-bit immediate into a vector of words.
@findex vec_splati
@smallexample
@exdent vector double vec_splatid (const float);
@end smallexample
Convert a single precision floating-point value to double-precision and splat
the result to a vector of double-precision floats.
@findex vec_splatid
@smallexample
@exdent vector signed int vec_splati_ins (vector signed int,
const unsigned int, const signed int);
@exdent vector unsigned int vec_splati_ins (vector unsigned int,
const unsigned int, const unsigned int);
@exdent vector float vec_splati_ins (vector float, const unsigned int,
const float);
@end smallexample
Argument 2 must be either 0 or 1. Splat the value of argument 3 into the word
identified by argument 2 of each doubleword of argument 1 and return the
result. The other words of argument 1 are unchanged.
@findex vec_splati_ins
Vector Blend Variable
@smallexample
@exdent vector signed char vec_blendv (vector signed char, vector signed char,
vector unsigned char);
@exdent vector unsigned char vec_blendv (vector unsigned char,
vector unsigned char, vector unsigned char);
@exdent vector signed short vec_blendv (vector signed short,
vector signed short, vector unsigned short);
@exdent vector unsigned short vec_blendv (vector unsigned short,
vector unsigned short, vector unsigned short);
@exdent vector signed int vec_blendv (vector signed int, vector signed int,
vector unsigned int);
@exdent vector unsigned int vec_blendv (vector unsigned int,
vector unsigned int, vector unsigned int);
@exdent vector signed long long vec_blendv (vector signed long long,
vector signed long long, vector unsigned long long);
@exdent vector unsigned long long vec_blendv (vector unsigned long long,
vector unsigned long long, vector unsigned long long);
@exdent vector float vec_blendv (vector float, vector float,
vector unsigned int);
@exdent vector double vec_blendv (vector double, vector double,
vector unsigned long long);
@end smallexample
Blend the first and second argument vectors according to the sign bits of the
corresponding elements of the third argument vector. This is similar to the
@code{vsel} and @code{xxsel} instructions but for bigger elements.
@findex vec_blendv
Vector Permute Extended
@smallexample
@exdent vector signed char vec_permx (vector signed char, vector signed char,
vector unsigned char, const int);
@exdent vector unsigned char vec_permx (vector unsigned char,
vector unsigned char, vector unsigned char, const int);
@exdent vector signed short vec_permx (vector signed short,
vector signed short, vector unsigned char, const int);
@exdent vector unsigned short vec_permx (vector unsigned short,
vector unsigned short, vector unsigned char, const int);
@exdent vector signed int vec_permx (vector signed int, vector signed int,
vector unsigned char, const int);
@exdent vector unsigned int vec_permx (vector unsigned int,
vector unsigned int, vector unsigned char, const int);
@exdent vector signed long long vec_permx (vector signed long long,
vector signed long long, vector unsigned char, const int);
@exdent vector unsigned long long vec_permx (vector unsigned long long,
vector unsigned long long, vector unsigned char, const int);
@exdent vector float (vector float, vector float, vector unsigned char,
const int);
@exdent vector double (vector double, vector double, vector unsigned char,
const int);
@end smallexample
Perform a partial permute of the first two arguments, which form a 32-byte
section of an emulated vector up to 256 bytes wide, using the partial permute
control vector in the third argument. The fourth argument (constrained to
values of 0-7) identifies which 32-byte section of the emulated vector is
contained in the first two arguments.
@findex vec_permx
@smallexample
@exdent vector unsigned long long int
@exdent vec_pext (vector unsigned long long int, vector unsigned long long int);
@end smallexample
Perform a vector parallel bit extract operation, as if implemented by
the @code{vpextd} instruction.
@findex vec_pext
@smallexample
@exdent vector unsigned char vec_stril (vector unsigned char);
@exdent vector signed char vec_stril (vector signed char);
@exdent vector unsigned short vec_stril (vector unsigned short);
@exdent vector signed short vec_stril (vector signed short);
@end smallexample
Isolate the left-most non-zero elements of the incoming vector argument,
replacing all elements to the right of the left-most zero element
found within the argument with zero. The typical implementation uses
the @code{vstribl} or @code{vstrihl} instruction on big-endian targets
and uses the @code{vstribr} or @code{vstrihr} instruction on
little-endian targets.
@findex vec_stril
@smallexample
@exdent int vec_stril_p (vector unsigned char);
@exdent int vec_stril_p (vector signed char);
@exdent int short vec_stril_p (vector unsigned short);
@exdent int vec_stril_p (vector signed short);
@end smallexample
Return a non-zero value if and only if the argument contains a zero
element. The typical implementation uses
the @code{vstribl.} or @code{vstrihl.} instruction on big-endian targets
and uses the @code{vstribr.} or @code{vstrihr.} instruction on
little-endian targets. Choose this built-in to check for presence of
zero element if the same argument is also passed to @code{vec_stril}.
@findex vec_stril_p
@smallexample
@exdent vector unsigned char vec_strir (vector unsigned char);
@exdent vector signed char vec_strir (vector signed char);
@exdent vector unsigned short vec_strir (vector unsigned short);
@exdent vector signed short vec_strir (vector signed short);
@end smallexample
Isolate the right-most non-zero elements of the incoming vector argument,
replacing all elements to the left of the right-most zero element
found within the argument with zero. The typical implementation uses
the @code{vstribr} or @code{vstrihr} instruction on big-endian targets
and uses the @code{vstribl} or @code{vstrihl} instruction on
little-endian targets.
@findex vec_strir
@smallexample
@exdent int vec_strir_p (vector unsigned char);
@exdent int vec_strir_p (vector signed char);
@exdent int short vec_strir_p (vector unsigned short);
@exdent int vec_strir_p (vector signed short);
@end smallexample
Return a non-zero value if and only if the argument contains a zero
element. The typical implementation uses
the @code{vstribr.} or @code{vstrihr.} instruction on big-endian targets
and uses the @code{vstribl.} or @code{vstrihl.} instruction on
little-endian targets. Choose this built-in to check for presence of
zero element if the same argument is also passed to @code{vec_strir}.
@findex vec_strir_p
@smallexample
@exdent vector unsigned char
@exdent vec_ternarylogic (vector unsigned char, vector unsigned char,
vector unsigned char, const unsigned int);
@exdent vector unsigned short
@exdent vec_ternarylogic (vector unsigned short, vector unsigned short,
vector unsigned short, const unsigned int);
@exdent vector unsigned int
@exdent vec_ternarylogic (vector unsigned int, vector unsigned int,
vector unsigned int, const unsigned int);
@exdent vector unsigned long long int
@exdent vec_ternarylogic (vector unsigned long long int, vector unsigned long long int,
vector unsigned long long int, const unsigned int);
@exdent vector unsigned __int128
@exdent vec_ternarylogic (vector unsigned __int128, vector unsigned __int128,
vector unsigned __int128, const unsigned int);
@end smallexample
Perform a 128-bit vector evaluate operation, as if implemented by the
@code{xxeval} instruction. The fourth argument must be a literal
integer value between 0 and 255 inclusive.
@findex vec_ternarylogic
@smallexample
@exdent vector unsigned char vec_genpcvm (vector unsigned char, const int);
@exdent vector unsigned short vec_genpcvm (vector unsigned short, const int);
@exdent vector unsigned int vec_genpcvm (vector unsigned int, const int);
@exdent vector unsigned int vec_genpcvm (vector unsigned long long int,
const int);
@end smallexample
Vector Integer Multiply/Divide/Modulo
@smallexample
@exdent vector signed int
@exdent vec_mulh (vector signed int a, vector signed int b);
@exdent vector unsigned int
@exdent vec_mulh (vector unsigned int a, vector unsigned int b);
@end smallexample
For each integer value @code{i} from 0 to 3, do the following. The integer
value in word element @code{i} of a is multiplied by the integer value in word
element @code{i} of b. The high-order 32 bits of the 64-bit product are placed
into word element @code{i} of the vector returned.
@smallexample
@exdent vector signed long long
@exdent vec_mulh (vector signed long long a, vector signed long long b);
@exdent vector unsigned long long
@exdent vec_mulh (vector unsigned long long a, vector unsigned long long b);
@end smallexample
For each integer value @code{i} from 0 to 1, do the following. The integer
value in doubleword element @code{i} of a is multiplied by the integer value in
doubleword element @code{i} of b. The high-order 64 bits of the 128-bit product
are placed into doubleword element @code{i} of the vector returned.
@smallexample
@exdent vector unsigned long long
@exdent vec_mul (vector unsigned long long a, vector unsigned long long b);
@exdent vector signed long long
@exdent vec_mul (vector signed long long a, vector signed long long b);
@end smallexample
For each integer value @code{i} from 0 to 1, do the following. The integer
value in doubleword element @code{i} of a is multiplied by the integer value in
doubleword element @code{i} of b. The low-order 64 bits of the 128-bit product
are placed into doubleword element @code{i} of the vector returned.
@smallexample
@exdent vector signed int
@exdent vec_div (vector signed int a, vector signed int b);
@exdent vector unsigned int
@exdent vec_div (vector unsigned int a, vector unsigned int b);
@end smallexample
For each integer value @code{i} from 0 to 3, do the following. The integer in
word element @code{i} of a is divided by the integer in word element @code{i}
of b. The unique integer quotient is placed into the word element @code{i} of
the vector returned. If an attempt is made to perform any of the divisions
<anything> ÷ 0 then the quotient is undefined.
@smallexample
@exdent vector signed long long
@exdent vec_div (vector signed long long a, vector signed long long b);
@exdent vector unsigned long long
@exdent vec_div (vector unsigned long long a, vector unsigned long long b);
@end smallexample
For each integer value @code{i} from 0 to 1, do the following. The integer in
doubleword element @code{i} of a is divided by the integer in doubleword
element @code{i} of b. The unique integer quotient is placed into the
doubleword element @code{i} of the vector returned. If an attempt is made to
perform any of the divisions 0x8000_0000_0000_0000 ÷ -1 or <anything> ÷ 0 then
the quotient is undefined.
@smallexample
@exdent vector signed int
@exdent vec_dive (vector signed int a, vector signed int b);
@exdent vector unsigned int
@exdent vec_dive (vector unsigned int a, vector unsigned int b);
@end smallexample
For each integer value @code{i} from 0 to 3, do the following. The integer in
word element @code{i} of a is shifted left by 32 bits, then divided by the
integer in word element @code{i} of b. The unique integer quotient is placed
into the word element @code{i} of the vector returned. If the quotient cannot
be represented in 32 bits, or if an attempt is made to perform any of the
divisions <anything> ÷ 0 then the quotient is undefined.
@smallexample
@exdent vector signed long long
@exdent vec_dive (vector signed long long a, vector signed long long b);
@exdent vector unsigned long long
@exdent vec_dive (vector unsigned long long a, vector unsigned long long b);
@end smallexample
For each integer value @code{i} from 0 to 1, do the following. The integer in
doubleword element @code{i} of a is shifted left by 64 bits, then divided by
the integer in doubleword element @code{i} of b. The unique integer quotient is
placed into the doubleword element @code{i} of the vector returned. If the
quotient cannot be represented in 64 bits, or if an attempt is made to perform
<anything> ÷ 0 then the quotient is undefined.
@smallexample
@exdent vector signed int
@exdent vec_mod (vector signed int a, vector signed int b);
@exdent vector unsigned int
@exdent vec_mod (vector unsigned int a, vector unsigned int b);
@end smallexample
For each integer value @code{i} from 0 to 3, do the following. The integer in
word element @code{i} of a is divided by the integer in word element @code{i}
of b. The unique integer remainder is placed into the word element @code{i} of
the vector returned. If an attempt is made to perform any of the divisions
0x8000_0000 ÷ -1 or <anything> ÷ 0 then the remainder is undefined.
@smallexample
@exdent vector signed long long
@exdent vec_mod (vector signed long long a, vector signed long long b);
@exdent vector unsigned long long
@exdent vec_mod (vector unsigned long long a, vector unsigned long long b);
@end smallexample
For each integer value @code{i} from 0 to 1, do the following. The integer in
doubleword element @code{i} of a is divided by the integer in doubleword
element @code{i} of b. The unique integer remainder is placed into the
doubleword element @code{i} of the vector returned. If an attempt is made to
perform <anything> ÷ 0 then the remainder is undefined.
Generate PCV from specified Mask size, as if implemented by the
@code{xxgenpcvbm}, @code{xxgenpcvhm}, @code{xxgenpcvwm} instructions, where
immediate value is either 0, 1, 2 or 3.
@findex vec_genpcvm
@smallexample
@exdent vector unsigned __int128 vec_rl (vector unsigned __int128 A,
vector unsigned __int128 B);
@exdent vector signed __int128 vec_rl (vector signed __int128 A,
vector unsigned __int128 B);
@end smallexample
Result value: Each element of R is obtained by rotating the corresponding element
of A left by the number of bits specified by the corresponding element of B.
@smallexample
@exdent vector unsigned __int128 vec_rlmi (vector unsigned __int128,
vector unsigned __int128,
vector unsigned __int128);
@exdent vector signed __int128 vec_rlmi (vector signed __int128,
vector signed __int128,
vector unsigned __int128);
@end smallexample
Returns the result of rotating the first input and inserting it under mask
into the second input. The first bit in the mask, the last bit in the mask are
obtained from the two 7-bit fields bits [108:115] and bits [117:123]
respectively of the second input. The shift is obtained from the third input
in the 7-bit field [125:131] where all bits counted from zero at the left.
@smallexample
@exdent vector unsigned __int128 vec_rlnm (vector unsigned __int128,
vector unsigned __int128,
vector unsigned __int128);
@exdent vector signed __int128 vec_rlnm (vector signed __int128,
vector unsigned __int128,
vector unsigned __int128);
@end smallexample
Returns the result of rotating the first input and ANDing it with a mask. The
first bit in the mask and the last bit in the mask are obtained from the two
7-bit fields bits [117:123] and bits [125:131] respectively of the second
input. The shift is obtained from the third input in the 7-bit field bits
[125:131] where all bits counted from zero at the left.
@smallexample
@exdent vector unsigned __int128 vec_sl(vector unsigned __int128 A, vector unsigned __int128 B);
@exdent vector signed __int128 vec_sl(vector signed __int128 A, vector unsigned __int128 B);
@end smallexample
Result value: Each element of R is obtained by shifting the corresponding element of
A left by the number of bits specified by the corresponding element of B.
@smallexample
@exdent vector unsigned __int128 vec_sr(vector unsigned __int128 A, vector unsigned __int128 B);
@exdent vector signed __int128 vec_sr(vector signed __int128 A, vector unsigned __int128 B);
@end smallexample
Result value: Each element of R is obtained by shifting the corresponding element of
A right by the number of bits specified by the corresponding element of B.
@smallexample
@exdent vector unsigned __int128 vec_sra(vector unsigned __int128 A, vector unsigned __int128 B);
@exdent vector signed __int128 vec_sra(vector signed __int128 A, vector unsigned __int128 B);
@end smallexample
Result value: Each element of R is obtained by arithmetic shifting the corresponding
element of A right by the number of bits specified by the corresponding element of B.
@smallexample
@exdent vector unsigned __int128 vec_mule (vector unsigned long long,
vector unsigned long long);
@exdent vector signed __int128 vec_mule (vector signed long long,
vector signed long long);
@end smallexample
Returns a vector containing a 128-bit integer result of multiplying the even
doubleword elements of the two inputs.
@smallexample
@exdent vector unsigned __int128 vec_mulo (vector unsigned long long,
vector unsigned long long);
@exdent vector signed __int128 vec_mulo (vector signed long long,
vector signed long long);
@end smallexample
Returns a vector containing a 128-bit integer result of multiplying the odd
doubleword elements of the two inputs.
@smallexample
@exdent vector unsigned __int128 vec_div (vector unsigned __int128,
vector unsigned __int128);
@exdent vector signed __int128 vec_div (vector signed __int128,
vector signed __int128);
@end smallexample
Returns the result of dividing the first operand by the second operand. An
attempt to divide any value by zero or to divide the most negative signed
128-bit integer by negative one results in an undefined value.
@smallexample
@exdent vector unsigned __int128 vec_dive (vector unsigned __int128,
vector unsigned __int128);
@exdent vector signed __int128 vec_dive (vector signed __int128,
vector signed __int128);
@end smallexample
The result is produced by shifting the first input left by 128 bits and
dividing by the second. If an attempt is made to divide by zero or the result
is larger than 128 bits, the result is undefined.
@smallexample
@exdent vector unsigned __int128 vec_mod (vector unsigned __int128,
vector unsigned __int128);
@exdent vector signed __int128 vec_mod (vector signed __int128,
vector signed __int128);
@end smallexample
The result is the modulo result of dividing the first input by the second
input.
The following builtins perform 128-bit vector comparisons. The
@code{vec_all_xx}, @code{vec_any_xx}, and @code{vec_cmpxx}, where @code{xx} is
one of the operations @code{eq, ne, gt, lt, ge, le} perform pairwise
comparisons between the elements at the same positions within their two vector
arguments. The @code{vec_all_xx}function returns a non-zero value if and only
if all pairwise comparisons are true. The @code{vec_any_xx} function returns
a non-zero value if and only if at least one pairwise comparison is true. The
@code{vec_cmpxx}function returns a vector of the same type as its two
arguments, within which each element consists of all ones to denote that
specified logical comparison of the corresponding elements was true.
Otherwise, the element of the returned vector contains all zeros.
@smallexample
vector bool __int128 vec_cmpeq (vector signed __int128, vector signed __int128);
vector bool __int128 vec_cmpeq (vector unsigned __int128, vector unsigned __int128);
vector bool __int128 vec_cmpne (vector signed __int128, vector signed __int128);
vector bool __int128 vec_cmpne (vector unsigned __int128, vector unsigned __int128);
vector bool __int128 vec_cmpgt (vector signed __int128, vector signed __int128);
vector bool __int128 vec_cmpgt (vector unsigned __int128, vector unsigned __int128);
vector bool __int128 vec_cmplt (vector signed __int128, vector signed __int128);
vector bool __int128 vec_cmplt (vector unsigned __int128, vector unsigned __int128);
vector bool __int128 vec_cmpge (vector signed __int128, vector signed __int128);
vector bool __int128 vec_cmpge (vector unsigned __int128, vector unsigned __int128);
vector bool __int128 vec_cmple (vector signed __int128, vector signed __int128);
vector bool __int128 vec_cmple (vector unsigned __int128, vector unsigned __int128);
int vec_all_eq (vector signed __int128, vector signed __int128);
int vec_all_eq (vector unsigned __int128, vector unsigned __int128);
int vec_all_ne (vector signed __int128, vector signed __int128);
int vec_all_ne (vector unsigned __int128, vector unsigned __int128);
int vec_all_gt (vector signed __int128, vector signed __int128);
int vec_all_gt (vector unsigned __int128, vector unsigned __int128);
int vec_all_lt (vector signed __int128, vector signed __int128);
int vec_all_lt (vector unsigned __int128, vector unsigned __int128);
int vec_all_ge (vector signed __int128, vector signed __int128);
int vec_all_ge (vector unsigned __int128, vector unsigned __int128);
int vec_all_le (vector signed __int128, vector signed __int128);
int vec_all_le (vector unsigned __int128, vector unsigned __int128);
int vec_any_eq (vector signed __int128, vector signed __int128);
int vec_any_eq (vector unsigned __int128, vector unsigned __int128);
int vec_any_ne (vector signed __int128, vector signed __int128);
int vec_any_ne (vector unsigned __int128, vector unsigned __int128);
int vec_any_gt (vector signed __int128, vector signed __int128);
int vec_any_gt (vector unsigned __int128, vector unsigned __int128);
int vec_any_lt (vector signed __int128, vector signed __int128);
int vec_any_lt (vector unsigned __int128, vector unsigned __int128);
int vec_any_ge (vector signed __int128, vector signed __int128);
int vec_any_ge (vector unsigned __int128, vector unsigned __int128);
int vec_any_le (vector signed __int128, vector signed __int128);
int vec_any_le (vector unsigned __int128, vector unsigned __int128);
@end smallexample
@node PowerPC Hardware Transactional Memory Built-in Functions
@subsection PowerPC Hardware Transactional Memory Built-in Functions
GCC provides two interfaces for accessing the Hardware Transactional
Memory (HTM) instructions available on some of the PowerPC family
of processors (eg, POWER8). The two interfaces come in a low level
interface, consisting of built-in functions specific to PowerPC and a
higher level interface consisting of inline functions that are common
between PowerPC and S/390.
@subsubsection PowerPC HTM Low Level Built-in Functions
The following low level built-in functions are available with
@option{-mhtm} or @option{-mcpu=CPU} where CPU is `power8' or later.
They all generate the machine instruction that is part of the name.
The HTM builtins (with the exception of @code{__builtin_tbegin}) return
the full 4-bit condition register value set by their associated hardware
instruction. The header file @code{htmintrin.h} defines some macros that can
be used to decipher the return value. The @code{__builtin_tbegin} builtin
returns a simple @code{true} or @code{false} value depending on whether a transaction was
successfully started or not. The arguments of the builtins match exactly the
type and order of the associated hardware instruction's operands, except for
the @code{__builtin_tcheck} builtin, which does not take any input arguments.
Refer to the ISA manual for a description of each instruction's operands.
@smallexample
unsigned int __builtin_tbegin (unsigned int);
unsigned int __builtin_tend (unsigned int);
unsigned int __builtin_tabort (unsigned int);
unsigned int __builtin_tabortdc (unsigned int, unsigned int, unsigned int);
unsigned int __builtin_tabortdci (unsigned int, unsigned int, int);
unsigned int __builtin_tabortwc (unsigned int, unsigned int, unsigned int);
unsigned int __builtin_tabortwci (unsigned int, unsigned int, int);
unsigned int __builtin_tcheck (void);
unsigned int __builtin_treclaim (unsigned int);
unsigned int __builtin_trechkpt (void);
unsigned int __builtin_tsr (unsigned int);
@end smallexample
In addition to the above HTM built-ins, we have added built-ins for
some common extended mnemonics of the HTM instructions:
@smallexample
unsigned int __builtin_tendall (void);
unsigned int __builtin_tresume (void);
unsigned int __builtin_tsuspend (void);
@end smallexample
Note that the semantics of the above HTM builtins are required to mimic
the locking semantics used for critical sections. Builtins that are used
to create a new transaction or restart a suspended transaction must have
lock acquisition like semantics while those builtins that end or suspend a
transaction must have lock release like semantics. Specifically, this must
mimic lock semantics as specified by C++11, for example: Lock acquisition is
as-if an execution of __atomic_exchange_n(&globallock,1,__ATOMIC_ACQUIRE)
that returns 0, and lock release is as-if an execution of
__atomic_store(&globallock,0,__ATOMIC_RELEASE), with globallock being an
implicit implementation-defined lock used for all transactions. The HTM
instructions associated with with the builtins inherently provide the
correct acquisition and release hardware barriers required. However,
the compiler must also be prohibited from moving loads and stores across
the builtins in a way that would violate their semantics. This has been
accomplished by adding memory barriers to the associated HTM instructions
(which is a conservative approach to provide acquire and release semantics).
Earlier versions of the compiler did not treat the HTM instructions as
memory barriers. A @code{__TM_FENCE__} macro has been added, which can
be used to determine whether the current compiler treats HTM instructions
as memory barriers or not. This allows the user to explicitly add memory
barriers to their code when using an older version of the compiler.
The following set of built-in functions are available to gain access
to the HTM specific special purpose registers.
@smallexample
unsigned long __builtin_get_texasr (void);
unsigned long __builtin_get_texasru (void);
unsigned long __builtin_get_tfhar (void);
unsigned long __builtin_get_tfiar (void);
void __builtin_set_texasr (unsigned long);
void __builtin_set_texasru (unsigned long);
void __builtin_set_tfhar (unsigned long);
void __builtin_set_tfiar (unsigned long);
@end smallexample
Example usage of these low level built-in functions may look like:
@smallexample
#include <htmintrin.h>
int num_retries = 10;
while (1)
@{
if (__builtin_tbegin (0))
@{
/* Transaction State Initiated. */
if (is_locked (lock))
__builtin_tabort (0);
... transaction code...
__builtin_tend (0);
break;
@}
else
@{
/* Transaction State Failed. Use locks if the transaction
failure is "persistent" or we've tried too many times. */
if (num_retries-- <= 0
|| _TEXASRU_FAILURE_PERSISTENT (__builtin_get_texasru ()))
@{
acquire_lock (lock);
... non transactional fallback path...
release_lock (lock);
break;
@}
@}
@}
@end smallexample
One final built-in function has been added that returns the value of
the 2-bit Transaction State field of the Machine Status Register (MSR)
as stored in @code{CR0}.
@smallexample
unsigned long __builtin_ttest (void)
@end smallexample
This built-in can be used to determine the current transaction state
using the following code example:
@smallexample
#include <htmintrin.h>
unsigned char tx_state = _HTM_STATE (__builtin_ttest ());
if (tx_state == _HTM_TRANSACTIONAL)
@{
/* Code to use in transactional state. */
@}
else if (tx_state == _HTM_NONTRANSACTIONAL)
@{
/* Code to use in non-transactional state. */
@}
else if (tx_state == _HTM_SUSPENDED)
@{
/* Code to use in transaction suspended state. */
@}
@end smallexample
@subsubsection PowerPC HTM High Level Inline Functions
The following high level HTM interface is made available by including
@code{<htmxlintrin.h>} and using @option{-mhtm} or @option{-mcpu=CPU}
where CPU is `power8' or later. This interface is common between PowerPC
and S/390, allowing users to write one HTM source implementation that
can be compiled and executed on either system.
@smallexample
long __TM_simple_begin (void);
long __TM_begin (void* const TM_buff);
long __TM_end (void);
void __TM_abort (void);
void __TM_named_abort (unsigned char const code);
void __TM_resume (void);
void __TM_suspend (void);
long __TM_is_user_abort (void* const TM_buff);
long __TM_is_named_user_abort (void* const TM_buff, unsigned char *code);
long __TM_is_illegal (void* const TM_buff);
long __TM_is_footprint_exceeded (void* const TM_buff);
long __TM_nesting_depth (void* const TM_buff);
long __TM_is_nested_too_deep(void* const TM_buff);
long __TM_is_conflict(void* const TM_buff);
long __TM_is_failure_persistent(void* const TM_buff);
long __TM_failure_address(void* const TM_buff);
long long __TM_failure_code(void* const TM_buff);
@end smallexample
Using these common set of HTM inline functions, we can create
a more portable version of the HTM example in the previous
section that will work on either PowerPC or S/390:
@smallexample
#include <htmxlintrin.h>
int num_retries = 10;
TM_buff_type TM_buff;
while (1)
@{
if (__TM_begin (TM_buff) == _HTM_TBEGIN_STARTED)
@{
/* Transaction State Initiated. */
if (is_locked (lock))
__TM_abort ();
... transaction code...
__TM_end ();
break;
@}
else
@{
/* Transaction State Failed. Use locks if the transaction
failure is "persistent" or we've tried too many times. */
if (num_retries-- <= 0
|| __TM_is_failure_persistent (TM_buff))
@{
acquire_lock (lock);
... non transactional fallback path...
release_lock (lock);
break;
@}
@}
@}
@end smallexample
@node PowerPC Atomic Memory Operation Functions
@subsection PowerPC Atomic Memory Operation Functions
ISA 3.0 of the PowerPC added new atomic memory operation (amo)
instructions. GCC provides support for these instructions in 64-bit
environments. All of the functions are declared in the include file
@code{amo.h}.
The functions supported are:
@smallexample
#include <amo.h>
uint32_t amo_lwat_add (uint32_t *, uint32_t);
uint32_t amo_lwat_xor (uint32_t *, uint32_t);
uint32_t amo_lwat_ior (uint32_t *, uint32_t);
uint32_t amo_lwat_and (uint32_t *, uint32_t);
uint32_t amo_lwat_umax (uint32_t *, uint32_t);
uint32_t amo_lwat_umin (uint32_t *, uint32_t);
uint32_t amo_lwat_swap (uint32_t *, uint32_t);
int32_t amo_lwat_sadd (int32_t *, int32_t);
int32_t amo_lwat_smax (int32_t *, int32_t);
int32_t amo_lwat_smin (int32_t *, int32_t);
int32_t amo_lwat_sswap (int32_t *, int32_t);
uint64_t amo_ldat_add (uint64_t *, uint64_t);
uint64_t amo_ldat_xor (uint64_t *, uint64_t);
uint64_t amo_ldat_ior (uint64_t *, uint64_t);
uint64_t amo_ldat_and (uint64_t *, uint64_t);
uint64_t amo_ldat_umax (uint64_t *, uint64_t);
uint64_t amo_ldat_umin (uint64_t *, uint64_t);
uint64_t amo_ldat_swap (uint64_t *, uint64_t);
int64_t amo_ldat_sadd (int64_t *, int64_t);
int64_t amo_ldat_smax (int64_t *, int64_t);
int64_t amo_ldat_smin (int64_t *, int64_t);
int64_t amo_ldat_sswap (int64_t *, int64_t);
void amo_stwat_add (uint32_t *, uint32_t);
void amo_stwat_xor (uint32_t *, uint32_t);
void amo_stwat_ior (uint32_t *, uint32_t);
void amo_stwat_and (uint32_t *, uint32_t);
void amo_stwat_umax (uint32_t *, uint32_t);
void amo_stwat_umin (uint32_t *, uint32_t);
void amo_stwat_sadd (int32_t *, int32_t);
void amo_stwat_smax (int32_t *, int32_t);
void amo_stwat_smin (int32_t *, int32_t);
void amo_stdat_add (uint64_t *, uint64_t);
void amo_stdat_xor (uint64_t *, uint64_t);
void amo_stdat_ior (uint64_t *, uint64_t);
void amo_stdat_and (uint64_t *, uint64_t);
void amo_stdat_umax (uint64_t *, uint64_t);
void amo_stdat_umin (uint64_t *, uint64_t);
void amo_stdat_sadd (int64_t *, int64_t);
void amo_stdat_smax (int64_t *, int64_t);
void amo_stdat_smin (int64_t *, int64_t);
@end smallexample
@node PowerPC Matrix-Multiply Assist Built-in Functions
@subsection PowerPC Matrix-Multiply Assist Built-in Functions
ISA 3.1 of the PowerPC added new Matrix-Multiply Assist (MMA) instructions.
GCC provides support for these instructions through the following built-in
functions which are enabled with the @code{-mmma} option. The vec_t type
below is defined to be a normal vector unsigned char type. The uint2, uint4
and uint8 parameters are 2-bit, 4-bit and 8-bit unsigned integer constants
respectively. The compiler will verify that they are constants and that
their values are within range.
The built-in functions supported are:
@smallexample
void __builtin_mma_xvi4ger8 (__vector_quad *, vec_t, vec_t);
void __builtin_mma_xvi8ger4 (__vector_quad *, vec_t, vec_t);
void __builtin_mma_xvi16ger2 (__vector_quad *, vec_t, vec_t);
void __builtin_mma_xvi16ger2s (__vector_quad *, vec_t, vec_t);
void __builtin_mma_xvf16ger2 (__vector_quad *, vec_t, vec_t);
void __builtin_mma_xvbf16ger2 (__vector_quad *, vec_t, vec_t);
void __builtin_mma_xvf32ger (__vector_quad *, vec_t, vec_t);
void __builtin_mma_xvi4ger8pp (__vector_quad *, vec_t, vec_t);
void __builtin_mma_xvi8ger4pp (__vector_quad *, vec_t, vec_t);
void __builtin_mma_xvi8ger4spp(__vector_quad *, vec_t, vec_t);
void __builtin_mma_xvi16ger2pp (__vector_quad *, vec_t, vec_t);
void __builtin_mma_xvi16ger2spp (__vector_quad *, vec_t, vec_t);
void __builtin_mma_xvf16ger2pp (__vector_quad *, vec_t, vec_t);
void __builtin_mma_xvf16ger2pn (__vector_quad *, vec_t, vec_t);
void __builtin_mma_xvf16ger2np (__vector_quad *, vec_t, vec_t);
void __builtin_mma_xvf16ger2nn (__vector_quad *, vec_t, vec_t);
void __builtin_mma_xvbf16ger2pp (__vector_quad *, vec_t, vec_t);
void __builtin_mma_xvbf16ger2pn (__vector_quad *, vec_t, vec_t);
void __builtin_mma_xvbf16ger2np (__vector_quad *, vec_t, vec_t);
void __builtin_mma_xvbf16ger2nn (__vector_quad *, vec_t, vec_t);
void __builtin_mma_xvf32gerpp (__vector_quad *, vec_t, vec_t);
void __builtin_mma_xvf32gerpn (__vector_quad *, vec_t, vec_t);
void __builtin_mma_xvf32gernp (__vector_quad *, vec_t, vec_t);
void __builtin_mma_xvf32gernn (__vector_quad *, vec_t, vec_t);
void __builtin_mma_pmxvi4ger8 (__vector_quad *, vec_t, vec_t, uint4, uint4, uint8);
void __builtin_mma_pmxvi4ger8pp (__vector_quad *, vec_t, vec_t, uint4, uint4, uint8);
void __builtin_mma_pmxvi8ger4 (__vector_quad *, vec_t, vec_t, uint4, uint4, uint4);
void __builtin_mma_pmxvi8ger4pp (__vector_quad *, vec_t, vec_t, uint4, uint4, uint4);
void __builtin_mma_pmxvi8ger4spp(__vector_quad *, vec_t, vec_t, uint4, uint4, uint4);
void __builtin_mma_pmxvi16ger2 (__vector_quad *, vec_t, vec_t, uint4, uint4, uint2);
void __builtin_mma_pmxvi16ger2s (__vector_quad *, vec_t, vec_t, uint4, uint4, uint2);
void __builtin_mma_pmxvf16ger2 (__vector_quad *, vec_t, vec_t, uint4, uint4, uint2);
void __builtin_mma_pmxvbf16ger2 (__vector_quad *, vec_t, vec_t, uint4, uint4, uint2);
void __builtin_mma_pmxvi16ger2pp (__vector_quad *, vec_t, vec_t, uint4, uint4, uint2);
void __builtin_mma_pmxvi16ger2spp (__vector_quad *, vec_t, vec_t, uint4, uint4, uint2);
void __builtin_mma_pmxvf16ger2pp (__vector_quad *, vec_t, vec_t, uint4, uint4, uint2);
void __builtin_mma_pmxvf16ger2pn (__vector_quad *, vec_t, vec_t, uint4, uint4, uint2);
void __builtin_mma_pmxvf16ger2np (__vector_quad *, vec_t, vec_t, uint4, uint4, uint2);
void __builtin_mma_pmxvf16ger2nn (__vector_quad *, vec_t, vec_t, uint4, uint4, uint2);
void __builtin_mma_pmxvbf16ger2pp (__vector_quad *, vec_t, vec_t, uint4, uint4, uint2);
void __builtin_mma_pmxvbf16ger2pn (__vector_quad *, vec_t, vec_t, uint4, uint4, uint2);
void __builtin_mma_pmxvbf16ger2np (__vector_quad *, vec_t, vec_t, uint4, uint4, uint2);
void __builtin_mma_pmxvbf16ger2nn (__vector_quad *, vec_t, vec_t, uint4, uint4, uint2);
void __builtin_mma_pmxvf32ger (__vector_quad *, vec_t, vec_t, uint4, uint4);
void __builtin_mma_pmxvf32gerpp (__vector_quad *, vec_t, vec_t, uint4, uint4);
void __builtin_mma_pmxvf32gerpn (__vector_quad *, vec_t, vec_t, uint4, uint4);
void __builtin_mma_pmxvf32gernp (__vector_quad *, vec_t, vec_t, uint4, uint4);
void __builtin_mma_pmxvf32gernn (__vector_quad *, vec_t, vec_t, uint4, uint4);
void __builtin_mma_xvf64ger (__vector_quad *, __vector_pair, vec_t);
void __builtin_mma_xvf64gerpp (__vector_quad *, __vector_pair, vec_t);
void __builtin_mma_xvf64gerpn (__vector_quad *, __vector_pair, vec_t);
void __builtin_mma_xvf64gernp (__vector_quad *, __vector_pair, vec_t);
void __builtin_mma_xvf64gernn (__vector_quad *, __vector_pair, vec_t);
void __builtin_mma_pmxvf64ger (__vector_quad *, __vector_pair, vec_t, uint4, uint2);
void __builtin_mma_pmxvf64gerpp (__vector_quad *, __vector_pair, vec_t, uint4, uint2);
void __builtin_mma_pmxvf64gerpn (__vector_quad *, __vector_pair, vec_t, uint4, uint2);
void __builtin_mma_pmxvf64gernp (__vector_quad *, __vector_pair, vec_t, uint4, uint2);
void __builtin_mma_pmxvf64gernn (__vector_quad *, __vector_pair, vec_t, uint4, uint2);
void __builtin_mma_xxmtacc (__vector_quad *);
void __builtin_mma_xxmfacc (__vector_quad *);
void __builtin_mma_xxsetaccz (__vector_quad *);
void __builtin_mma_build_acc (__vector_quad *, vec_t, vec_t, vec_t, vec_t);
void __builtin_mma_disassemble_acc (void *, __vector_quad *);
void __builtin_vsx_build_pair (__vector_pair *, vec_t, vec_t);
void __builtin_vsx_disassemble_pair (void *, __vector_pair *);
vec_t __builtin_vsx_xvcvspbf16 (vec_t);
vec_t __builtin_vsx_xvcvbf16spn (vec_t);
__vector_pair __builtin_vsx_lxvp (size_t, __vector_pair *);
void __builtin_vsx_stxvp (__vector_pair, size_t, __vector_pair *);
@end smallexample
@node PRU Built-in Functions
@subsection PRU Built-in Functions
GCC provides a couple of special builtin functions to aid in utilizing
special PRU instructions.
The built-in functions supported are:
@table @code
@item __delay_cycles (long long @var{cycles})
This inserts an instruction sequence that takes exactly @var{cycles}
cycles (between 0 and 0xffffffff) to complete. The inserted sequence
may use jumps, loops, or no-ops, and does not interfere with any other
instructions. Note that @var{cycles} must be a compile-time constant
integer - that is, you must pass a number, not a variable that may be
optimized to a constant later. The number of cycles delayed by this
builtin is exact.
@item __halt (void)
This inserts a HALT instruction to stop processor execution.
@item unsigned int __lmbd (unsigned int @var{wordval}, unsigned int @var{bitval})
This inserts LMBD instruction to calculate the left-most bit with value
@var{bitval} in value @var{wordval}. Only the least significant bit
of @var{bitval} is taken into account.
@end table
@node RISC-V Built-in Functions
@subsection RISC-V Built-in Functions
These built-in functions are available for the RISC-V family of
processors.
@deftypefn {Built-in Function} {void *} __builtin_thread_pointer (void)
Returns the value that is currently set in the @samp{tp} register.
@end deftypefn
@node RX Built-in Functions
@subsection RX Built-in Functions
GCC supports some of the RX instructions which cannot be expressed in
the C programming language via the use of built-in functions. The
following functions are supported:
@deftypefn {Built-in Function} void __builtin_rx_brk (void)
Generates the @code{brk} machine instruction.
@end deftypefn
@deftypefn {Built-in Function} void __builtin_rx_clrpsw (int)
Generates the @code{clrpsw} machine instruction to clear the specified
bit in the processor status word.
@end deftypefn
@deftypefn {Built-in Function} void __builtin_rx_int (int)
Generates the @code{int} machine instruction to generate an interrupt
with the specified value.
@end deftypefn
@deftypefn {Built-in Function} void __builtin_rx_machi (int, int)
Generates the @code{machi} machine instruction to add the result of
multiplying the top 16 bits of the two arguments into the
accumulator.
@end deftypefn
@deftypefn {Built-in Function} void __builtin_rx_maclo (int, int)
Generates the @code{maclo} machine instruction to add the result of
multiplying the bottom 16 bits of the two arguments into the
accumulator.
@end deftypefn
@deftypefn {Built-in Function} void __builtin_rx_mulhi (int, int)
Generates the @code{mulhi} machine instruction to place the result of
multiplying the top 16 bits of the two arguments into the
accumulator.
@end deftypefn
@deftypefn {Built-in Function} void __builtin_rx_mullo (int, int)
Generates the @code{mullo} machine instruction to place the result of
multiplying the bottom 16 bits of the two arguments into the
accumulator.
@end deftypefn
@deftypefn {Built-in Function} int __builtin_rx_mvfachi (void)
Generates the @code{mvfachi} machine instruction to read the top
32 bits of the accumulator.
@end deftypefn
@deftypefn {Built-in Function} int __builtin_rx_mvfacmi (void)
Generates the @code{mvfacmi} machine instruction to read the middle
32 bits of the accumulator.
@end deftypefn
@deftypefn {Built-in Function} int __builtin_rx_mvfc (int)
Generates the @code{mvfc} machine instruction which reads the control
register specified in its argument and returns its value.
@end deftypefn
@deftypefn {Built-in Function} void __builtin_rx_mvtachi (int)
Generates the @code{mvtachi} machine instruction to set the top
32 bits of the accumulator.
@end deftypefn
@deftypefn {Built-in Function} void __builtin_rx_mvtaclo (int)
Generates the @code{mvtaclo} machine instruction to set the bottom
32 bits of the accumulator.
@end deftypefn
@deftypefn {Built-in Function} void __builtin_rx_mvtc (int reg, int val)
Generates the @code{mvtc} machine instruction which sets control
register number @code{reg} to @code{val}.
@end deftypefn
@deftypefn {Built-in Function} void __builtin_rx_mvtipl (int)
Generates the @code{mvtipl} machine instruction set the interrupt
priority level.
@end deftypefn
@deftypefn {Built-in Function} void __builtin_rx_racw (int)
Generates the @code{racw} machine instruction to round the accumulator
according to the specified mode.
@end deftypefn
@deftypefn {Built-in Function} int __builtin_rx_revw (int)
Generates the @code{revw} machine instruction which swaps the bytes in
the argument so that bits 0--7 now occupy bits 8--15 and vice versa,
and also bits 16--23 occupy bits 24--31 and vice versa.
@end deftypefn
@deftypefn {Built-in Function} void __builtin_rx_rmpa (void)
Generates the @code{rmpa} machine instruction which initiates a
repeated multiply and accumulate sequence.
@end deftypefn
@deftypefn {Built-in Function} void __builtin_rx_round (float)
Generates the @code{round} machine instruction which returns the
floating-point argument rounded according to the current rounding mode
set in the floating-point status word register.
@end deftypefn
@deftypefn {Built-in Function} int __builtin_rx_sat (int)
Generates the @code{sat} machine instruction which returns the
saturated value of the argument.
@end deftypefn
@deftypefn {Built-in Function} void __builtin_rx_setpsw (int)
Generates the @code{setpsw} machine instruction to set the specified
bit in the processor status word.
@end deftypefn
@deftypefn {Built-in Function} void __builtin_rx_wait (void)
Generates the @code{wait} machine instruction.
@end deftypefn
@node S/390 System z Built-in Functions
@subsection S/390 System z Built-in Functions
@deftypefn {Built-in Function} int __builtin_tbegin (void*)
Generates the @code{tbegin} machine instruction starting a
non-constrained hardware transaction. If the parameter is non-NULL the
memory area is used to store the transaction diagnostic buffer and
will be passed as first operand to @code{tbegin}. This buffer can be
defined using the @code{struct __htm_tdb} C struct defined in
@code{htmintrin.h} and must reside on a double-word boundary. The
second tbegin operand is set to @code{0xff0c}. This enables
save/restore of all GPRs and disables aborts for FPR and AR
manipulations inside the transaction body. The condition code set by
the tbegin instruction is returned as integer value. The tbegin
instruction by definition overwrites the content of all FPRs. The
compiler will generate code which saves and restores the FPRs. For
soft-float code it is recommended to used the @code{*_nofloat}
variant. In order to prevent a TDB from being written it is required
to pass a constant zero value as parameter. Passing a zero value
through a variable is not sufficient. Although modifications of
access registers inside the transaction will not trigger an
transaction abort it is not supported to actually modify them. Access
registers do not get saved when entering a transaction. They will have
undefined state when reaching the abort code.
@end deftypefn
Macros for the possible return codes of tbegin are defined in the
@code{htmintrin.h} header file:
@table @code
@item _HTM_TBEGIN_STARTED
@code{tbegin} has been executed as part of normal processing. The
transaction body is supposed to be executed.
@item _HTM_TBEGIN_INDETERMINATE
The transaction was aborted due to an indeterminate condition which
might be persistent.
@item _HTM_TBEGIN_TRANSIENT
The transaction aborted due to a transient failure. The transaction
should be re-executed in that case.
@item _HTM_TBEGIN_PERSISTENT
The transaction aborted due to a persistent failure. Re-execution
under same circumstances will not be productive.
@end table
@defmac _HTM_FIRST_USER_ABORT_CODE
The @code{_HTM_FIRST_USER_ABORT_CODE} defined in @code{htmintrin.h}
specifies the first abort code which can be used for
@code{__builtin_tabort}. Values below this threshold are reserved for
machine use.
@end defmac
@deftp {Data type} {struct __htm_tdb}
The @code{struct __htm_tdb} defined in @code{htmintrin.h} describes
the structure of the transaction diagnostic block as specified in the
Principles of Operation manual chapter 5-91.
@end deftp
@deftypefn {Built-in Function} int __builtin_tbegin_nofloat (void*)
Same as @code{__builtin_tbegin} but without FPR saves and restores.
Using this variant in code making use of FPRs will leave the FPRs in
undefined state when entering the transaction abort handler code.
@end deftypefn
@deftypefn {Built-in Function} int __builtin_tbegin_retry (void*, int)
In addition to @code{__builtin_tbegin} a loop for transient failures
is generated. If tbegin returns a condition code of 2 the transaction
will be retried as often as specified in the second argument. The
perform processor assist instruction is used to tell the CPU about the
number of fails so far.
@end deftypefn
@deftypefn {Built-in Function} int __builtin_tbegin_retry_nofloat (void*, int)
Same as @code{__builtin_tbegin_retry} but without FPR saves and
restores. Using this variant in code making use of FPRs will leave
the FPRs in undefined state when entering the transaction abort
handler code.
@end deftypefn
@deftypefn {Built-in Function} void __builtin_tbeginc (void)
Generates the @code{tbeginc} machine instruction starting a constrained
hardware transaction. The second operand is set to @code{0xff08}.
@end deftypefn
@deftypefn {Built-in Function} int __builtin_tend (void)
Generates the @code{tend} machine instruction finishing a transaction
and making the changes visible to other threads. The condition code
generated by tend is returned as integer value.
@end deftypefn
@deftypefn {Built-in Function} void __builtin_tabort (int)
Generates the @code{tabort} machine instruction with the specified
abort code. Abort codes from 0 through 255 are reserved and will
result in an error message.
@end deftypefn
@deftypefn {Built-in Function} void __builtin_tx_assist (int)
Generates the @code{ppa rX,rY,1} machine instruction. Where the
integer parameter is loaded into rX and a value of zero is loaded into
rY. The integer parameter specifies the number of times the
transaction repeatedly aborted.
@end deftypefn
@deftypefn {Built-in Function} int __builtin_tx_nesting_depth (void)
Generates the @code{etnd} machine instruction. The current nesting
depth is returned as integer value. For a nesting depth of 0 the code
is not executed as part of an transaction.
@end deftypefn
@deftypefn {Built-in Function} void __builtin_non_tx_store (uint64_t *, uint64_t)
Generates the @code{ntstg} machine instruction. The second argument
is written to the first arguments location. The store operation will
not be rolled-back in case of an transaction abort.
@end deftypefn
@node SH Built-in Functions
@subsection SH Built-in Functions
The following built-in functions are supported on the SH1, SH2, SH3 and SH4
families of processors:
@deftypefn {Built-in Function} {void} __builtin_set_thread_pointer (void *@var{ptr})
Sets the @samp{GBR} register to the specified value @var{ptr}. This is usually
used by system code that manages threads and execution contexts. The compiler
normally does not generate code that modifies the contents of @samp{GBR} and
thus the value is preserved across function calls. Changing the @samp{GBR}
value in user code must be done with caution, since the compiler might use
@samp{GBR} in order to access thread local variables.
@end deftypefn
@deftypefn {Built-in Function} {void *} __builtin_thread_pointer (void)
Returns the value that is currently set in the @samp{GBR} register.
Memory loads and stores that use the thread pointer as a base address are
turned into @samp{GBR} based displacement loads and stores, if possible.
For example:
@smallexample
struct my_tcb
@{
int a, b, c, d, e;
@};
int get_tcb_value (void)
@{
// Generate @samp{mov.l @@(8,gbr),r0} instruction
return ((my_tcb*)__builtin_thread_pointer ())->c;
@}
@end smallexample
@end deftypefn
@deftypefn {Built-in Function} {unsigned int} __builtin_sh_get_fpscr (void)
Returns the value that is currently set in the @samp{FPSCR} register.
@end deftypefn
@deftypefn {Built-in Function} {void} __builtin_sh_set_fpscr (unsigned int @var{val})
Sets the @samp{FPSCR} register to the specified value @var{val}, while
preserving the current values of the FR, SZ and PR bits.
@end deftypefn
@node SPARC VIS Built-in Functions
@subsection SPARC VIS Built-in Functions
GCC supports SIMD operations on the SPARC using both the generic vector
extensions (@pxref{Vector Extensions}) as well as built-in functions for
the SPARC Visual Instruction Set (VIS). When you use the @option{-mvis}
switch, the VIS extension is exposed as the following built-in functions:
@smallexample
typedef int v1si __attribute__ ((vector_size (4)));
typedef int v2si __attribute__ ((vector_size (8)));
typedef short v4hi __attribute__ ((vector_size (8)));
typedef short v2hi __attribute__ ((vector_size (4)));
typedef unsigned char v8qi __attribute__ ((vector_size (8)));
typedef unsigned char v4qi __attribute__ ((vector_size (4)));
void __builtin_vis_write_gsr (int64_t);
int64_t __builtin_vis_read_gsr (void);
void * __builtin_vis_alignaddr (void *, long);
void * __builtin_vis_alignaddrl (void *, long);
int64_t __builtin_vis_faligndatadi (int64_t, int64_t);
v2si __builtin_vis_faligndatav2si (v2si, v2si);
v4hi __builtin_vis_faligndatav4hi (v4si, v4si);
v8qi __builtin_vis_faligndatav8qi (v8qi, v8qi);
v4hi __builtin_vis_fexpand (v4qi);
v4hi __builtin_vis_fmul8x16 (v4qi, v4hi);
v4hi __builtin_vis_fmul8x16au (v4qi, v2hi);
v4hi __builtin_vis_fmul8x16al (v4qi, v2hi);
v4hi __builtin_vis_fmul8sux16 (v8qi, v4hi);
v4hi __builtin_vis_fmul8ulx16 (v8qi, v4hi);
v2si __builtin_vis_fmuld8sux16 (v4qi, v2hi);
v2si __builtin_vis_fmuld8ulx16 (v4qi, v2hi);
v4qi __builtin_vis_fpack16 (v4hi);
v8qi __builtin_vis_fpack32 (v2si, v8qi);
v2hi __builtin_vis_fpackfix (v2si);
v8qi __builtin_vis_fpmerge (v4qi, v4qi);
int64_t __builtin_vis_pdist (v8qi, v8qi, int64_t);
long __builtin_vis_edge8 (void *, void *);
long __builtin_vis_edge8l (void *, void *);
long __builtin_vis_edge16 (void *, void *);
long __builtin_vis_edge16l (void *, void *);
long __builtin_vis_edge32 (void *, void *);
long __builtin_vis_edge32l (void *, void *);
long __builtin_vis_fcmple16 (v4hi, v4hi);
long __builtin_vis_fcmple32 (v2si, v2si);
long __builtin_vis_fcmpne16 (v4hi, v4hi);
long __builtin_vis_fcmpne32 (v2si, v2si);
long __builtin_vis_fcmpgt16 (v4hi, v4hi);
long __builtin_vis_fcmpgt32 (v2si, v2si);
long __builtin_vis_fcmpeq16 (v4hi, v4hi);
long __builtin_vis_fcmpeq32 (v2si, v2si);
v4hi __builtin_vis_fpadd16 (v4hi, v4hi);
v2hi __builtin_vis_fpadd16s (v2hi, v2hi);
v2si __builtin_vis_fpadd32 (v2si, v2si);
v1si __builtin_vis_fpadd32s (v1si, v1si);
v4hi __builtin_vis_fpsub16 (v4hi, v4hi);
v2hi __builtin_vis_fpsub16s (v2hi, v2hi);
v2si __builtin_vis_fpsub32 (v2si, v2si);
v1si __builtin_vis_fpsub32s (v1si, v1si);
long __builtin_vis_array8 (long, long);
long __builtin_vis_array16 (long, long);
long __builtin_vis_array32 (long, long);
@end smallexample
When you use the @option{-mvis2} switch, the VIS version 2.0 built-in
functions also become available:
@smallexample
long __builtin_vis_bmask (long, long);
int64_t __builtin_vis_bshuffledi (int64_t, int64_t);
v2si __builtin_vis_bshufflev2si (v2si, v2si);
v4hi __builtin_vis_bshufflev2si (v4hi, v4hi);
v8qi __builtin_vis_bshufflev2si (v8qi, v8qi);
long __builtin_vis_edge8n (void *, void *);
long __builtin_vis_edge8ln (void *, void *);
long __builtin_vis_edge16n (void *, void *);
long __builtin_vis_edge16ln (void *, void *);
long __builtin_vis_edge32n (void *, void *);
long __builtin_vis_edge32ln (void *, void *);
@end smallexample
When you use the @option{-mvis3} switch, the VIS version 3.0 built-in
functions also become available:
@smallexample
void __builtin_vis_cmask8 (long);
void __builtin_vis_cmask16 (long);
void __builtin_vis_cmask32 (long);
v4hi __builtin_vis_fchksm16 (v4hi, v4hi);
v4hi __builtin_vis_fsll16 (v4hi, v4hi);
v4hi __builtin_vis_fslas16 (v4hi, v4hi);
v4hi __builtin_vis_fsrl16 (v4hi, v4hi);
v4hi __builtin_vis_fsra16 (v4hi, v4hi);
v2si __builtin_vis_fsll16 (v2si, v2si);
v2si __builtin_vis_fslas16 (v2si, v2si);
v2si __builtin_vis_fsrl16 (v2si, v2si);
v2si __builtin_vis_fsra16 (v2si, v2si);
long __builtin_vis_pdistn (v8qi, v8qi);
v4hi __builtin_vis_fmean16 (v4hi, v4hi);
int64_t __builtin_vis_fpadd64 (int64_t, int64_t);
int64_t __builtin_vis_fpsub64 (int64_t, int64_t);
v4hi __builtin_vis_fpadds16 (v4hi, v4hi);
v2hi __builtin_vis_fpadds16s (v2hi, v2hi);
v4hi __builtin_vis_fpsubs16 (v4hi, v4hi);
v2hi __builtin_vis_fpsubs16s (v2hi, v2hi);
v2si __builtin_vis_fpadds32 (v2si, v2si);
v1si __builtin_vis_fpadds32s (v1si, v1si);
v2si __builtin_vis_fpsubs32 (v2si, v2si);
v1si __builtin_vis_fpsubs32s (v1si, v1si);
long __builtin_vis_fucmple8 (v8qi, v8qi);
long __builtin_vis_fucmpne8 (v8qi, v8qi);
long __builtin_vis_fucmpgt8 (v8qi, v8qi);
long __builtin_vis_fucmpeq8 (v8qi, v8qi);
float __builtin_vis_fhadds (float, float);
double __builtin_vis_fhaddd (double, double);
float __builtin_vis_fhsubs (float, float);
double __builtin_vis_fhsubd (double, double);
float __builtin_vis_fnhadds (float, float);
double __builtin_vis_fnhaddd (double, double);
int64_t __builtin_vis_umulxhi (int64_t, int64_t);
int64_t __builtin_vis_xmulx (int64_t, int64_t);
int64_t __builtin_vis_xmulxhi (int64_t, int64_t);
@end smallexample
When you use the @option{-mvis4} switch, the VIS version 4.0 built-in
functions also become available:
@smallexample
v8qi __builtin_vis_fpadd8 (v8qi, v8qi);
v8qi __builtin_vis_fpadds8 (v8qi, v8qi);
v8qi __builtin_vis_fpaddus8 (v8qi, v8qi);
v4hi __builtin_vis_fpaddus16 (v4hi, v4hi);
v8qi __builtin_vis_fpsub8 (v8qi, v8qi);
v8qi __builtin_vis_fpsubs8 (v8qi, v8qi);
v8qi __builtin_vis_fpsubus8 (v8qi, v8qi);
v4hi __builtin_vis_fpsubus16 (v4hi, v4hi);
long __builtin_vis_fpcmple8 (v8qi, v8qi);
long __builtin_vis_fpcmpgt8 (v8qi, v8qi);
long __builtin_vis_fpcmpule16 (v4hi, v4hi);
long __builtin_vis_fpcmpugt16 (v4hi, v4hi);
long __builtin_vis_fpcmpule32 (v2si, v2si);
long __builtin_vis_fpcmpugt32 (v2si, v2si);
v8qi __builtin_vis_fpmax8 (v8qi, v8qi);
v4hi __builtin_vis_fpmax16 (v4hi, v4hi);
v2si __builtin_vis_fpmax32 (v2si, v2si);
v8qi __builtin_vis_fpmaxu8 (v8qi, v8qi);
v4hi __builtin_vis_fpmaxu16 (v4hi, v4hi);
v2si __builtin_vis_fpmaxu32 (v2si, v2si);
v8qi __builtin_vis_fpmin8 (v8qi, v8qi);
v4hi __builtin_vis_fpmin16 (v4hi, v4hi);
v2si __builtin_vis_fpmin32 (v2si, v2si);
v8qi __builtin_vis_fpminu8 (v8qi, v8qi);
v4hi __builtin_vis_fpminu16 (v4hi, v4hi);
v2si __builtin_vis_fpminu32 (v2si, v2si);
@end smallexample
When you use the @option{-mvis4b} switch, the VIS version 4.0B
built-in functions also become available:
@smallexample
v8qi __builtin_vis_dictunpack8 (double, int);
v4hi __builtin_vis_dictunpack16 (double, int);
v2si __builtin_vis_dictunpack32 (double, int);
long __builtin_vis_fpcmple8shl (v8qi, v8qi, int);
long __builtin_vis_fpcmpgt8shl (v8qi, v8qi, int);
long __builtin_vis_fpcmpeq8shl (v8qi, v8qi, int);
long __builtin_vis_fpcmpne8shl (v8qi, v8qi, int);
long __builtin_vis_fpcmple16shl (v4hi, v4hi, int);
long __builtin_vis_fpcmpgt16shl (v4hi, v4hi, int);
long __builtin_vis_fpcmpeq16shl (v4hi, v4hi, int);
long __builtin_vis_fpcmpne16shl (v4hi, v4hi, int);
long __builtin_vis_fpcmple32shl (v2si, v2si, int);
long __builtin_vis_fpcmpgt32shl (v2si, v2si, int);
long __builtin_vis_fpcmpeq32shl (v2si, v2si, int);
long __builtin_vis_fpcmpne32shl (v2si, v2si, int);
long __builtin_vis_fpcmpule8shl (v8qi, v8qi, int);
long __builtin_vis_fpcmpugt8shl (v8qi, v8qi, int);
long __builtin_vis_fpcmpule16shl (v4hi, v4hi, int);
long __builtin_vis_fpcmpugt16shl (v4hi, v4hi, int);
long __builtin_vis_fpcmpule32shl (v2si, v2si, int);
long __builtin_vis_fpcmpugt32shl (v2si, v2si, int);
long __builtin_vis_fpcmpde8shl (v8qi, v8qi, int);
long __builtin_vis_fpcmpde16shl (v4hi, v4hi, int);
long __builtin_vis_fpcmpde32shl (v2si, v2si, int);
long __builtin_vis_fpcmpur8shl (v8qi, v8qi, int);
long __builtin_vis_fpcmpur16shl (v4hi, v4hi, int);
long __builtin_vis_fpcmpur32shl (v2si, v2si, int);
@end smallexample
@node TI C6X Built-in Functions
@subsection TI C6X Built-in Functions
GCC provides intrinsics to access certain instructions of the TI C6X
processors. These intrinsics, listed below, are available after
inclusion of the @code{c6x_intrinsics.h} header file. They map directly
to C6X instructions.
@smallexample
int _sadd (int, int);
int _ssub (int, int);
int _sadd2 (int, int);
int _ssub2 (int, int);
long long _mpy2 (int, int);
long long _smpy2 (int, int);
int _add4 (int, int);
int _sub4 (int, int);
int _saddu4 (int, int);
int _smpy (int, int);
int _smpyh (int, int);
int _smpyhl (int, int);
int _smpylh (int, int);
int _sshl (int, int);
int _subc (int, int);
int _avg2 (int, int);
int _avgu4 (int, int);
int _clrr (int, int);
int _extr (int, int);
int _extru (int, int);
int _abs (int);
int _abs2 (int);
@end smallexample
@node TILE-Gx Built-in Functions
@subsection TILE-Gx Built-in Functions
GCC provides intrinsics to access every instruction of the TILE-Gx
processor. The intrinsics are of the form:
@smallexample
unsigned long long __insn_@var{op} (...)
@end smallexample
Where @var{op} is the name of the instruction. Refer to the ISA manual
for the complete list of instructions.
GCC also provides intrinsics to directly access the network registers.
The intrinsics are:
@smallexample
unsigned long long __tile_idn0_receive (void);
unsigned long long __tile_idn1_receive (void);
unsigned long long __tile_udn0_receive (void);
unsigned long long __tile_udn1_receive (void);
unsigned long long __tile_udn2_receive (void);
unsigned long long __tile_udn3_receive (void);
void __tile_idn_send (unsigned long long);
void __tile_udn_send (unsigned long long);
@end smallexample
The intrinsic @code{void __tile_network_barrier (void)} is used to
guarantee that no network operations before it are reordered with
those after it.
@node TILEPro Built-in Functions
@subsection TILEPro Built-in Functions
GCC provides intrinsics to access every instruction of the TILEPro
processor. The intrinsics are of the form:
@smallexample
unsigned __insn_@var{op} (...)
@end smallexample
@noindent
where @var{op} is the name of the instruction. Refer to the ISA manual
for the complete list of instructions.
GCC also provides intrinsics to directly access the network registers.
The intrinsics are:
@smallexample
unsigned __tile_idn0_receive (void);
unsigned __tile_idn1_receive (void);
unsigned __tile_sn_receive (void);
unsigned __tile_udn0_receive (void);
unsigned __tile_udn1_receive (void);
unsigned __tile_udn2_receive (void);
unsigned __tile_udn3_receive (void);
void __tile_idn_send (unsigned);
void __tile_sn_send (unsigned);
void __tile_udn_send (unsigned);
@end smallexample
The intrinsic @code{void __tile_network_barrier (void)} is used to
guarantee that no network operations before it are reordered with
those after it.
@node x86 Built-in Functions
@subsection x86 Built-in Functions
These built-in functions are available for the x86-32 and x86-64 family
of computers, depending on the command-line switches used.
If you specify command-line switches such as @option{-msse},
the compiler could use the extended instruction sets even if the built-ins
are not used explicitly in the program. For this reason, applications
that perform run-time CPU detection must compile separate files for each
supported architecture, using the appropriate flags. In particular,
the file containing the CPU detection code should be compiled without
these options.
The following machine modes are available for use with MMX built-in functions
(@pxref{Vector Extensions}): @code{V2SI} for a vector of two 32-bit integers,
@code{V4HI} for a vector of four 16-bit integers, and @code{V8QI} for a
vector of eight 8-bit integers. Some of the built-in functions operate on
MMX registers as a whole 64-bit entity, these use @code{V1DI} as their mode.
If 3DNow!@: extensions are enabled, @code{V2SF} is used as a mode for a vector
of two 32-bit floating-point values.
If SSE extensions are enabled, @code{V4SF} is used for a vector of four 32-bit
floating-point values. Some instructions use a vector of four 32-bit
integers, these use @code{V4SI}. Finally, some instructions operate on an
entire vector register, interpreting it as a 128-bit integer, these use mode
@code{TI}.
The x86-32 and x86-64 family of processors use additional built-in
functions for efficient use of @code{TF} (@code{__float128}) 128-bit
floating point and @code{TC} 128-bit complex floating-point values.
The following floating-point built-in functions are always available. All
of them implement the function that is part of the name.
@smallexample
__float128 __builtin_fabsq (__float128)
__float128 __builtin_copysignq (__float128, __float128)
@end smallexample
The following built-in functions are always available.
@table @code
@item __float128 __builtin_infq (void)
Similar to @code{__builtin_inf}, except the return type is @code{__float128}.
@findex __builtin_infq
@item __float128 __builtin_huge_valq (void)
Similar to @code{__builtin_huge_val}, except the return type is @code{__float128}.
@findex __builtin_huge_valq
@item __float128 __builtin_nanq (void)
Similar to @code{__builtin_nan}, except the return type is @code{__float128}.
@findex __builtin_nanq
@item __float128 __builtin_nansq (void)
Similar to @code{__builtin_nans}, except the return type is @code{__float128}.
@findex __builtin_nansq
@end table
The following built-in function is always available.
@table @code
@item void __builtin_ia32_pause (void)
Generates the @code{pause} machine instruction with a compiler memory
barrier.
@end table
The following built-in functions are always available and can be used to
check the target platform type.
@deftypefn {Built-in Function} void __builtin_cpu_init (void)
This function runs the CPU detection code to check the type of CPU and the
features supported. This built-in function needs to be invoked along with the built-in functions
to check CPU type and features, @code{__builtin_cpu_is} and
@code{__builtin_cpu_supports}, only when used in a function that is
executed before any constructors are called. The CPU detection code is
automatically executed in a very high priority constructor.
For example, this function has to be used in @code{ifunc} resolvers that
check for CPU type using the built-in functions @code{__builtin_cpu_is}
and @code{__builtin_cpu_supports}, or in constructors on targets that
don't support constructor priority.
@smallexample
static void (*resolve_memcpy (void)) (void)
@{
// ifunc resolvers fire before constructors, explicitly call the init
// function.
__builtin_cpu_init ();
if (__builtin_cpu_supports ("ssse3"))
return ssse3_memcpy; // super fast memcpy with ssse3 instructions.
else
return default_memcpy;
@}
void *memcpy (void *, const void *, size_t)
__attribute__ ((ifunc ("resolve_memcpy")));
@end smallexample
@end deftypefn
@deftypefn {Built-in Function} int __builtin_cpu_is (const char *@var{cpuname})
This function returns a positive integer if the run-time CPU
is of type @var{cpuname}
and returns @code{0} otherwise. The following CPU names can be detected:
@table @samp
@item amd
AMD CPU.
@item intel
Intel CPU.
@item atom
Intel Atom CPU.
@item slm
Intel Silvermont CPU.
@item core2
Intel Core 2 CPU.
@item corei7
Intel Core i7 CPU.
@item nehalem
Intel Core i7 Nehalem CPU.
@item westmere
Intel Core i7 Westmere CPU.
@item sandybridge
Intel Core i7 Sandy Bridge CPU.
@item ivybridge
Intel Core i7 Ivy Bridge CPU.
@item haswell
Intel Core i7 Haswell CPU.
@item broadwell
Intel Core i7 Broadwell CPU.
@item skylake
Intel Core i7 Skylake CPU.
@item skylake-avx512
Intel Core i7 Skylake AVX512 CPU.
@item cannonlake
Intel Core i7 Cannon Lake CPU.
@item icelake-client
Intel Core i7 Ice Lake Client CPU.
@item icelake-server
Intel Core i7 Ice Lake Server CPU.
@item cascadelake
Intel Core i7 Cascadelake CPU.
@item tigerlake
Intel Core i7 Tigerlake CPU.
@item cooperlake
Intel Core i7 Cooperlake CPU.
@item sapphirerapids
Intel Core i7 sapphirerapids CPU.
@item alderlake
Intel Core i7 Alderlake CPU.
@item rocketlake
Intel Core i7 Rocketlake CPU.
@item bonnell
Intel Atom Bonnell CPU.
@item silvermont
Intel Atom Silvermont CPU.
@item goldmont
Intel Atom Goldmont CPU.
@item goldmont-plus
Intel Atom Goldmont Plus CPU.
@item tremont
Intel Atom Tremont CPU.
@item knl
Intel Knights Landing CPU.
@item knm
Intel Knights Mill CPU.
@item amdfam10h
AMD Family 10h CPU.
@item barcelona
AMD Family 10h Barcelona CPU.
@item shanghai
AMD Family 10h Shanghai CPU.
@item istanbul
AMD Family 10h Istanbul CPU.
@item btver1
AMD Family 14h CPU.
@item amdfam15h
AMD Family 15h CPU.
@item bdver1
AMD Family 15h Bulldozer version 1.
@item bdver2
AMD Family 15h Bulldozer version 2.
@item bdver3
AMD Family 15h Bulldozer version 3.
@item bdver4
AMD Family 15h Bulldozer version 4.
@item btver2
AMD Family 16h CPU.
@item amdfam17h
AMD Family 17h CPU.
@item znver1
AMD Family 17h Zen version 1.
@item znver2
AMD Family 17h Zen version 2.
@item amdfam19h
AMD Family 19h CPU.
@item znver3
AMD Family 19h Zen version 3.
@item x86-64
Baseline x86-64 microarchitecture level (as defined in x86-64 psABI).
@item x86-64-v2
x86-64-v2 microarchitecture level.
@item x86-64-v3
x86-64-v3 microarchitecture level.
@item x86-64-v4
x86-64-v4 microarchitecture level.
@end table
Here is an example:
@smallexample
if (__builtin_cpu_is ("corei7"))
@{
do_corei7 (); // Core i7 specific implementation.
@}
else
@{
do_generic (); // Generic implementation.
@}
@end smallexample
@end deftypefn
@deftypefn {Built-in Function} int __builtin_cpu_supports (const char *@var{feature})
This function returns a positive integer if the run-time CPU
supports @var{feature}
and returns @code{0} otherwise. The following features can be detected:
@table @samp
@item cmov
CMOV instruction.
@item mmx
MMX instructions.
@item popcnt
POPCNT instruction.
@item sse
SSE instructions.
@item sse2
SSE2 instructions.
@item sse3
SSE3 instructions.
@item ssse3
SSSE3 instructions.
@item sse4.1
SSE4.1 instructions.
@item sse4.2
SSE4.2 instructions.
@item avx
AVX instructions.
@item avx2
AVX2 instructions.
@item sse4a
SSE4A instructions.
@item fma4
FMA4 instructions.
@item xop
XOP instructions.
@item fma
FMA instructions.
@item avx512f
AVX512F instructions.
@item bmi
BMI instructions.
@item bmi2
BMI2 instructions.
@item aes
AES instructions.
@item pclmul
PCLMUL instructions.
@item avx512vl
AVX512VL instructions.
@item avx512bw
AVX512BW instructions.
@item avx512dq
AVX512DQ instructions.
@item avx512cd
AVX512CD instructions.
@item avx512er
AVX512ER instructions.
@item avx512pf
AVX512PF instructions.
@item avx512vbmi
AVX512VBMI instructions.
@item avx512ifma
AVX512IFMA instructions.
@item avx5124vnniw
AVX5124VNNIW instructions.
@item avx5124fmaps
AVX5124FMAPS instructions.
@item avx512vpopcntdq
AVX512VPOPCNTDQ instructions.
@item avx512vbmi2
AVX512VBMI2 instructions.
@item gfni
GFNI instructions.
@item vpclmulqdq
VPCLMULQDQ instructions.
@item avx512vnni
AVX512VNNI instructions.
@item avx512bitalg
AVX512BITALG instructions.
@end table
Here is an example:
@smallexample
if (__builtin_cpu_supports ("popcnt"))
@{
asm("popcnt %1,%0" : "=r"(count) : "rm"(n) : "cc");
@}
else
@{
count = generic_countbits (n); //generic implementation.
@}
@end smallexample
@end deftypefn
The following built-in functions are made available by @option{-mmmx}.
All of them generate the machine instruction that is part of the name.
@smallexample
v8qi __builtin_ia32_paddb (v8qi, v8qi);
v4hi __builtin_ia32_paddw (v4hi, v4hi);
v2si __builtin_ia32_paddd (v2si, v2si);
v8qi __builtin_ia32_psubb (v8qi, v8qi);
v4hi __builtin_ia32_psubw (v4hi, v4hi);
v2si __builtin_ia32_psubd (v2si, v2si);
v8qi __builtin_ia32_paddsb (v8qi, v8qi);
v4hi __builtin_ia32_paddsw (v4hi, v4hi);
v8qi __builtin_ia32_psubsb (v8qi, v8qi);
v4hi __builtin_ia32_psubsw (v4hi, v4hi);
v8qi __builtin_ia32_paddusb (v8qi, v8qi);
v4hi __builtin_ia32_paddusw (v4hi, v4hi);
v8qi __builtin_ia32_psubusb (v8qi, v8qi);
v4hi __builtin_ia32_psubusw (v4hi, v4hi);
v4hi __builtin_ia32_pmullw (v4hi, v4hi);
v4hi __builtin_ia32_pmulhw (v4hi, v4hi);
di __builtin_ia32_pand (di, di);
di __builtin_ia32_pandn (di,di);
di __builtin_ia32_por (di, di);
di __builtin_ia32_pxor (di, di);
v8qi __builtin_ia32_pcmpeqb (v8qi, v8qi);
v4hi __builtin_ia32_pcmpeqw (v4hi, v4hi);
v2si __builtin_ia32_pcmpeqd (v2si, v2si);
v8qi __builtin_ia32_pcmpgtb (v8qi, v8qi);
v4hi __builtin_ia32_pcmpgtw (v4hi, v4hi);
v2si __builtin_ia32_pcmpgtd (v2si, v2si);
v8qi __builtin_ia32_punpckhbw (v8qi, v8qi);
v4hi __builtin_ia32_punpckhwd (v4hi, v4hi);
v2si __builtin_ia32_punpckhdq (v2si, v2si);
v8qi __builtin_ia32_punpcklbw (v8qi, v8qi);
v4hi __builtin_ia32_punpcklwd (v4hi, v4hi);
v2si __builtin_ia32_punpckldq (v2si, v2si);
v8qi __builtin_ia32_packsswb (v4hi, v4hi);
v4hi __builtin_ia32_packssdw (v2si, v2si);
v8qi __builtin_ia32_packuswb (v4hi, v4hi);
v4hi __builtin_ia32_psllw (v4hi, v4hi);
v2si __builtin_ia32_pslld (v2si, v2si);
v1di __builtin_ia32_psllq (v1di, v1di);
v4hi __builtin_ia32_psrlw (v4hi, v4hi);
v2si __builtin_ia32_psrld (v2si, v2si);
v1di __builtin_ia32_psrlq (v1di, v1di);
v4hi __builtin_ia32_psraw (v4hi, v4hi);
v2si __builtin_ia32_psrad (v2si, v2si);
v4hi __builtin_ia32_psllwi (v4hi, int);
v2si __builtin_ia32_pslldi (v2si, int);
v1di __builtin_ia32_psllqi (v1di, int);
v4hi __builtin_ia32_psrlwi (v4hi, int);
v2si __builtin_ia32_psrldi (v2si, int);
v1di __builtin_ia32_psrlqi (v1di, int);
v4hi __builtin_ia32_psrawi (v4hi, int);
v2si __builtin_ia32_psradi (v2si, int);
@end smallexample
The following built-in functions are made available either with
@option{-msse}, or with @option{-m3dnowa}. All of them generate
the machine instruction that is part of the name.
@smallexample
v4hi __builtin_ia32_pmulhuw (v4hi, v4hi);
v8qi __builtin_ia32_pavgb (v8qi, v8qi);
v4hi __builtin_ia32_pavgw (v4hi, v4hi);
v1di __builtin_ia32_psadbw (v8qi, v8qi);
v8qi __builtin_ia32_pmaxub (v8qi, v8qi);
v4hi __builtin_ia32_pmaxsw (v4hi, v4hi);
v8qi __builtin_ia32_pminub (v8qi, v8qi);
v4hi __builtin_ia32_pminsw (v4hi, v4hi);
int __builtin_ia32_pmovmskb (v8qi);
void __builtin_ia32_maskmovq (v8qi, v8qi, char *);
void __builtin_ia32_movntq (di *, di);
void __builtin_ia32_sfence (void);
@end smallexample
The following built-in functions are available when @option{-msse} is used.
All of them generate the machine instruction that is part of the name.
@smallexample
int __builtin_ia32_comieq (v4sf, v4sf);
int __builtin_ia32_comineq (v4sf, v4sf);
int __builtin_ia32_comilt (v4sf, v4sf);
int __builtin_ia32_comile (v4sf, v4sf);
int __builtin_ia32_comigt (v4sf, v4sf);
int __builtin_ia32_comige (v4sf, v4sf);
int __builtin_ia32_ucomieq (v4sf, v4sf);
int __builtin_ia32_ucomineq (v4sf, v4sf);
int __builtin_ia32_ucomilt (v4sf, v4sf);
int __builtin_ia32_ucomile (v4sf, v4sf);
int __builtin_ia32_ucomigt (v4sf, v4sf);
int __builtin_ia32_ucomige (v4sf, v4sf);
v4sf __builtin_ia32_addps (v4sf, v4sf);
v4sf __builtin_ia32_subps (v4sf, v4sf);
v4sf __builtin_ia32_mulps (v4sf, v4sf);
v4sf __builtin_ia32_divps (v4sf, v4sf);
v4sf __builtin_ia32_addss (v4sf, v4sf);
v4sf __builtin_ia32_subss (v4sf, v4sf);
v4sf __builtin_ia32_mulss (v4sf, v4sf);
v4sf __builtin_ia32_divss (v4sf, v4sf);
v4sf __builtin_ia32_cmpeqps (v4sf, v4sf);
v4sf __builtin_ia32_cmpltps (v4sf, v4sf);
v4sf __builtin_ia32_cmpleps (v4sf, v4sf);
v4sf __builtin_ia32_cmpgtps (v4sf, v4sf);
v4sf __builtin_ia32_cmpgeps (v4sf, v4sf);
v4sf __builtin_ia32_cmpunordps (v4sf, v4sf);
v4sf __builtin_ia32_cmpneqps (v4sf, v4sf);
v4sf __builtin_ia32_cmpnltps (v4sf, v4sf);
v4sf __builtin_ia32_cmpnleps (v4sf, v4sf);
v4sf __builtin_ia32_cmpngtps (v4sf, v4sf);
v4sf __builtin_ia32_cmpngeps (v4sf, v4sf);
v4sf __builtin_ia32_cmpordps (v4sf, v4sf);
v4sf __builtin_ia32_cmpeqss (v4sf, v4sf);
v4sf __builtin_ia32_cmpltss (v4sf, v4sf);
v4sf __builtin_ia32_cmpless (v4sf, v4sf);
v4sf __builtin_ia32_cmpunordss (v4sf, v4sf);
v4sf __builtin_ia32_cmpneqss (v4sf, v4sf);
v4sf __builtin_ia32_cmpnltss (v4sf, v4sf);
v4sf __builtin_ia32_cmpnless (v4sf, v4sf);
v4sf __builtin_ia32_cmpordss (v4sf, v4sf);
v4sf __builtin_ia32_maxps (v4sf, v4sf);
v4sf __builtin_ia32_maxss (v4sf, v4sf);
v4sf __builtin_ia32_minps (v4sf, v4sf);
v4sf __builtin_ia32_minss (v4sf, v4sf);
v4sf __builtin_ia32_andps (v4sf, v4sf);
v4sf __builtin_ia32_andnps (v4sf, v4sf);
v4sf __builtin_ia32_orps (v4sf, v4sf);
v4sf __builtin_ia32_xorps (v4sf, v4sf);
v4sf __builtin_ia32_movss (v4sf, v4sf);
v4sf __builtin_ia32_movhlps (v4sf, v4sf);
v4sf __builtin_ia32_movlhps (v4sf, v4sf);
v4sf __builtin_ia32_unpckhps (v4sf, v4sf);
v4sf __builtin_ia32_unpcklps (v4sf, v4sf);
v4sf __builtin_ia32_cvtpi2ps (v4sf, v2si);
v4sf __builtin_ia32_cvtsi2ss (v4sf, int);
v2si __builtin_ia32_cvtps2pi (v4sf);
int __builtin_ia32_cvtss2si (v4sf);
v2si __builtin_ia32_cvttps2pi (v4sf);
int __builtin_ia32_cvttss2si (v4sf);
v4sf __builtin_ia32_rcpps (v4sf);
v4sf __builtin_ia32_rsqrtps (v4sf);
v4sf __builtin_ia32_sqrtps (v4sf);
v4sf __builtin_ia32_rcpss (v4sf);
v4sf __builtin_ia32_rsqrtss (v4sf);
v4sf __builtin_ia32_sqrtss (v4sf);
v4sf __builtin_ia32_shufps (v4sf, v4sf, int);
void __builtin_ia32_movntps (float *, v4sf);
int __builtin_ia32_movmskps (v4sf);
@end smallexample
The following built-in functions are available when @option{-msse} is used.
@table @code
@item v4sf __builtin_ia32_loadups (float *)
Generates the @code{movups} machine instruction as a load from memory.
@item void __builtin_ia32_storeups (float *, v4sf)
Generates the @code{movups} machine instruction as a store to memory.
@item v4sf __builtin_ia32_loadss (float *)
Generates the @code{movss} machine instruction as a load from memory.
@item v4sf __builtin_ia32_loadhps (v4sf, const v2sf *)
Generates the @code{movhps} machine instruction as a load from memory.
@item v4sf __builtin_ia32_loadlps (v4sf, const v2sf *)
Generates the @code{movlps} machine instruction as a load from memory
@item void __builtin_ia32_storehps (v2sf *, v4sf)
Generates the @code{movhps} machine instruction as a store to memory.
@item void __builtin_ia32_storelps (v2sf *, v4sf)
Generates the @code{movlps} machine instruction as a store to memory.
@end table
The following built-in functions are available when @option{-msse2} is used.
All of them generate the machine instruction that is part of the name.
@smallexample
int __builtin_ia32_comisdeq (v2df, v2df);
int __builtin_ia32_comisdlt (v2df, v2df);
int __builtin_ia32_comisdle (v2df, v2df);
int __builtin_ia32_comisdgt (v2df, v2df);
int __builtin_ia32_comisdge (v2df, v2df);
int __builtin_ia32_comisdneq (v2df, v2df);
int __builtin_ia32_ucomisdeq (v2df, v2df);
int __builtin_ia32_ucomisdlt (v2df, v2df);
int __builtin_ia32_ucomisdle (v2df, v2df);
int __builtin_ia32_ucomisdgt (v2df, v2df);
int __builtin_ia32_ucomisdge (v2df, v2df);
int __builtin_ia32_ucomisdneq (v2df, v2df);
v2df __builtin_ia32_cmpeqpd (v2df, v2df);
v2df __builtin_ia32_cmpltpd (v2df, v2df);
v2df __builtin_ia32_cmplepd (v2df, v2df);
v2df __builtin_ia32_cmpgtpd (v2df, v2df);
v2df __builtin_ia32_cmpgepd (v2df, v2df);
v2df __builtin_ia32_cmpunordpd (v2df, v2df);
v2df __builtin_ia32_cmpneqpd (v2df, v2df);
v2df __builtin_ia32_cmpnltpd (v2df, v2df);
v2df __builtin_ia32_cmpnlepd (v2df, v2df);
v2df __builtin_ia32_cmpngtpd (v2df, v2df);
v2df __builtin_ia32_cmpngepd (v2df, v2df);
v2df __builtin_ia32_cmpordpd (v2df, v2df);
v2df __builtin_ia32_cmpeqsd (v2df, v2df);
v2df __builtin_ia32_cmpltsd (v2df, v2df);
v2df __builtin_ia32_cmplesd (v2df, v2df);
v2df __builtin_ia32_cmpunordsd (v2df, v2df);
v2df __builtin_ia32_cmpneqsd (v2df, v2df);
v2df __builtin_ia32_cmpnltsd (v2df, v2df);
v2df __builtin_ia32_cmpnlesd (v2df, v2df);
v2df __builtin_ia32_cmpordsd (v2df, v2df);
v2di __builtin_ia32_paddq (v2di, v2di);
v2di __builtin_ia32_psubq (v2di, v2di);
v2df __builtin_ia32_addpd (v2df, v2df);
v2df __builtin_ia32_subpd (v2df, v2df);
v2df __builtin_ia32_mulpd (v2df, v2df);
v2df __builtin_ia32_divpd (v2df, v2df);
v2df __builtin_ia32_addsd (v2df, v2df);
v2df __builtin_ia32_subsd (v2df, v2df);
v2df __builtin_ia32_mulsd (v2df, v2df);
v2df __builtin_ia32_divsd (v2df, v2df);
v2df __builtin_ia32_minpd (v2df, v2df);
v2df __builtin_ia32_maxpd (v2df, v2df);
v2df __builtin_ia32_minsd (v2df, v2df);
v2df __builtin_ia32_maxsd (v2df, v2df);
v2df __builtin_ia32_andpd (v2df, v2df);
v2df __builtin_ia32_andnpd (v2df, v2df);
v2df __builtin_ia32_orpd (v2df, v2df);
v2df __builtin_ia32_xorpd (v2df, v2df);
v2df __builtin_ia32_movsd (v2df, v2df);
v2df __builtin_ia32_unpckhpd (v2df, v2df);
v2df __builtin_ia32_unpcklpd (v2df, v2df);
v16qi __builtin_ia32_paddb128 (v16qi, v16qi);
v8hi __builtin_ia32_paddw128 (v8hi, v8hi);
v4si __builtin_ia32_paddd128 (v4si, v4si);
v2di __builtin_ia32_paddq128 (v2di, v2di);
v16qi __builtin_ia32_psubb128 (v16qi, v16qi);
v8hi __builtin_ia32_psubw128 (v8hi, v8hi);
v4si __builtin_ia32_psubd128 (v4si, v4si);
v2di __builtin_ia32_psubq128 (v2di, v2di);
v8hi __builtin_ia32_pmullw128 (v8hi, v8hi);
v8hi __builtin_ia32_pmulhw128 (v8hi, v8hi);
v2di __builtin_ia32_pand128 (v2di, v2di);
v2di __builtin_ia32_pandn128 (v2di, v2di);
v2di __builtin_ia32_por128 (v2di, v2di);
v2di __builtin_ia32_pxor128 (v2di, v2di);
v16qi __builtin_ia32_pavgb128 (v16qi, v16qi);
v8hi __builtin_ia32_pavgw128 (v8hi, v8hi);
v16qi __builtin_ia32_pcmpeqb128 (v16qi, v16qi);
v8hi __builtin_ia32_pcmpeqw128 (v8hi, v8hi);
v4si __builtin_ia32_pcmpeqd128 (v4si, v4si);
v16qi __builtin_ia32_pcmpgtb128 (v16qi, v16qi);
v8hi __builtin_ia32_pcmpgtw128 (v8hi, v8hi);
v4si __builtin_ia32_pcmpgtd128 (v4si, v4si);
v16qi __builtin_ia32_pmaxub128 (v16qi, v16qi);
v8hi __builtin_ia32_pmaxsw128 (v8hi, v8hi);
v16qi __builtin_ia32_pminub128 (v16qi, v16qi);
v8hi __builtin_ia32_pminsw128 (v8hi, v8hi);
v16qi __builtin_ia32_punpckhbw128 (v16qi, v16qi);
v8hi __builtin_ia32_punpckhwd128 (v8hi, v8hi);
v4si __builtin_ia32_punpckhdq128 (v4si, v4si);
v2di __builtin_ia32_punpckhqdq128 (v2di, v2di);
v16qi __builtin_ia32_punpcklbw128 (v16qi, v16qi);
v8hi __builtin_ia32_punpcklwd128 (v8hi, v8hi);
v4si __builtin_ia32_punpckldq128 (v4si, v4si);
v2di __builtin_ia32_punpcklqdq128 (v2di, v2di);
v16qi __builtin_ia32_packsswb128 (v8hi, v8hi);
v8hi __builtin_ia32_packssdw128 (v4si, v4si);
v16qi __builtin_ia32_packuswb128 (v8hi, v8hi);
v8hi __builtin_ia32_pmulhuw128 (v8hi, v8hi);
void __builtin_ia32_maskmovdqu (v16qi, v16qi);
v2df __builtin_ia32_loadupd (double *);
void __builtin_ia32_storeupd (double *, v2df);
v2df __builtin_ia32_loadhpd (v2df, double const *);
v2df __builtin_ia32_loadlpd (v2df, double const *);
int __builtin_ia32_movmskpd (v2df);
int __builtin_ia32_pmovmskb128 (v16qi);
void __builtin_ia32_movnti (int *, int);
void __builtin_ia32_movnti64 (long long int *, long long int);
void __builtin_ia32_movntpd (double *, v2df);
void __builtin_ia32_movntdq (v2df *, v2df);
v4si __builtin_ia32_pshufd (v4si, int);
v8hi __builtin_ia32_pshuflw (v8hi, int);
v8hi __builtin_ia32_pshufhw (v8hi, int);
v2di __builtin_ia32_psadbw128 (v16qi, v16qi);
v2df __builtin_ia32_sqrtpd (v2df);
v2df __builtin_ia32_sqrtsd (v2df);
v2df __builtin_ia32_shufpd (v2df, v2df, int);
v2df __builtin_ia32_cvtdq2pd (v4si);
v4sf __builtin_ia32_cvtdq2ps (v4si);
v4si __builtin_ia32_cvtpd2dq (v2df);
v2si __builtin_ia32_cvtpd2pi (v2df);
v4sf __builtin_ia32_cvtpd2ps (v2df);
v4si __builtin_ia32_cvttpd2dq (v2df);
v2si __builtin_ia32_cvttpd2pi (v2df);
v2df __builtin_ia32_cvtpi2pd (v2si);
int __builtin_ia32_cvtsd2si (v2df);
int __builtin_ia32_cvttsd2si (v2df);
long long __builtin_ia32_cvtsd2si64 (v2df);
long long __builtin_ia32_cvttsd2si64 (v2df);
v4si __builtin_ia32_cvtps2dq (v4sf);
v2df __builtin_ia32_cvtps2pd (v4sf);
v4si __builtin_ia32_cvttps2dq (v4sf);
v2df __builtin_ia32_cvtsi2sd (v2df, int);
v2df __builtin_ia32_cvtsi642sd (v2df, long long);
v4sf __builtin_ia32_cvtsd2ss (v4sf, v2df);
v2df __builtin_ia32_cvtss2sd (v2df, v4sf);
void __builtin_ia32_clflush (const void *);
void __builtin_ia32_lfence (void);
void __builtin_ia32_mfence (void);
v16qi __builtin_ia32_loaddqu (const char *);
void __builtin_ia32_storedqu (char *, v16qi);
v1di __builtin_ia32_pmuludq (v2si, v2si);
v2di __builtin_ia32_pmuludq128 (v4si, v4si);
v8hi __builtin_ia32_psllw128 (v8hi, v8hi);
v4si __builtin_ia32_pslld128 (v4si, v4si);
v2di __builtin_ia32_psllq128 (v2di, v2di);
v8hi __builtin_ia32_psrlw128 (v8hi, v8hi);
v4si __builtin_ia32_psrld128 (v4si, v4si);
v2di __builtin_ia32_psrlq128 (v2di, v2di);
v8hi __builtin_ia32_psraw128 (v8hi, v8hi);
v4si __builtin_ia32_psrad128 (v4si, v4si);
v2di __builtin_ia32_pslldqi128 (v2di, int);
v8hi __builtin_ia32_psllwi128 (v8hi, int);
v4si __builtin_ia32_pslldi128 (v4si, int);
v2di __builtin_ia32_psllqi128 (v2di, int);
v2di __builtin_ia32_psrldqi128 (v2di, int);
v8hi __builtin_ia32_psrlwi128 (v8hi, int);
v4si __builtin_ia32_psrldi128 (v4si, int);
v2di __builtin_ia32_psrlqi128 (v2di, int);
v8hi __builtin_ia32_psrawi128 (v8hi, int);
v4si __builtin_ia32_psradi128 (v4si, int);
v4si __builtin_ia32_pmaddwd128 (v8hi, v8hi);
v2di __builtin_ia32_movq128 (v2di);
@end smallexample
The following built-in functions are available when @option{-msse3} is used.
All of them generate the machine instruction that is part of the name.
@smallexample
v2df __builtin_ia32_addsubpd (v2df, v2df);
v4sf __builtin_ia32_addsubps (v4sf, v4sf);
v2df __builtin_ia32_haddpd (v2df, v2df);
v4sf __builtin_ia32_haddps (v4sf, v4sf);
v2df __builtin_ia32_hsubpd (v2df, v2df);
v4sf __builtin_ia32_hsubps (v4sf, v4sf);
v16qi __builtin_ia32_lddqu (char const *);
void __builtin_ia32_monitor (void *, unsigned int, unsigned int);
v4sf __builtin_ia32_movshdup (v4sf);
v4sf __builtin_ia32_movsldup (v4sf);
void __builtin_ia32_mwait (unsigned int, unsigned int);
@end smallexample
The following built-in functions are available when @option{-mssse3} is used.
All of them generate the machine instruction that is part of the name.
@smallexample
v2si __builtin_ia32_phaddd (v2si, v2si);
v4hi __builtin_ia32_phaddw (v4hi, v4hi);
v4hi __builtin_ia32_phaddsw (v4hi, v4hi);
v2si __builtin_ia32_phsubd (v2si, v2si);
v4hi __builtin_ia32_phsubw (v4hi, v4hi);
v4hi __builtin_ia32_phsubsw (v4hi, v4hi);
v4hi __builtin_ia32_pmaddubsw (v8qi, v8qi);
v4hi __builtin_ia32_pmulhrsw (v4hi, v4hi);
v8qi __builtin_ia32_pshufb (v8qi, v8qi);
v8qi __builtin_ia32_psignb (v8qi, v8qi);
v2si __builtin_ia32_psignd (v2si, v2si);
v4hi __builtin_ia32_psignw (v4hi, v4hi);
v1di __builtin_ia32_palignr (v1di, v1di, int);
v8qi __builtin_ia32_pabsb (v8qi);
v2si __builtin_ia32_pabsd (v2si);
v4hi __builtin_ia32_pabsw (v4hi);
@end smallexample
The following built-in functions are available when @option{-mssse3} is used.
All of them generate the machine instruction that is part of the name.
@smallexample
v4si __builtin_ia32_phaddd128 (v4si, v4si);
v8hi __builtin_ia32_phaddw128 (v8hi, v8hi);
v8hi __builtin_ia32_phaddsw128 (v8hi, v8hi);
v4si __builtin_ia32_phsubd128 (v4si, v4si);
v8hi __builtin_ia32_phsubw128 (v8hi, v8hi);
v8hi __builtin_ia32_phsubsw128 (v8hi, v8hi);
v8hi __builtin_ia32_pmaddubsw128 (v16qi, v16qi);
v8hi __builtin_ia32_pmulhrsw128 (v8hi, v8hi);
v16qi __builtin_ia32_pshufb128 (v16qi, v16qi);
v16qi __builtin_ia32_psignb128 (v16qi, v16qi);
v4si __builtin_ia32_psignd128 (v4si, v4si);
v8hi __builtin_ia32_psignw128 (v8hi, v8hi);
v2di __builtin_ia32_palignr128 (v2di, v2di, int);
v16qi __builtin_ia32_pabsb128 (v16qi);
v4si __builtin_ia32_pabsd128 (v4si);
v8hi __builtin_ia32_pabsw128 (v8hi);
@end smallexample
The following built-in functions are available when @option{-msse4.1} is
used. All of them generate the machine instruction that is part of the
name.
@smallexample
v2df __builtin_ia32_blendpd (v2df, v2df, const int);
v4sf __builtin_ia32_blendps (v4sf, v4sf, const int);
v2df __builtin_ia32_blendvpd (v2df, v2df, v2df);
v4sf __builtin_ia32_blendvps (v4sf, v4sf, v4sf);
v2df __builtin_ia32_dppd (v2df, v2df, const int);
v4sf __builtin_ia32_dpps (v4sf, v4sf, const int);
v4sf __builtin_ia32_insertps128 (v4sf, v4sf, const int);
v2di __builtin_ia32_movntdqa (v2di *);
v16qi __builtin_ia32_mpsadbw128 (v16qi, v16qi, const int);
v8hi __builtin_ia32_packusdw128 (v4si, v4si);
v16qi __builtin_ia32_pblendvb128 (v16qi, v16qi, v16qi);
v8hi __builtin_ia32_pblendw128 (v8hi, v8hi, const int);
v2di __builtin_ia32_pcmpeqq (v2di, v2di);
v8hi __builtin_ia32_phminposuw128 (v8hi);
v16qi __builtin_ia32_pmaxsb128 (v16qi, v16qi);
v4si __builtin_ia32_pmaxsd128 (v4si, v4si);
v4si __builtin_ia32_pmaxud128 (v4si, v4si);
v8hi __builtin_ia32_pmaxuw128 (v8hi, v8hi);
v16qi __builtin_ia32_pminsb128 (v16qi, v16qi);
v4si __builtin_ia32_pminsd128 (v4si, v4si);
v4si __builtin_ia32_pminud128 (v4si, v4si);
v8hi __builtin_ia32_pminuw128 (v8hi, v8hi);
v4si __builtin_ia32_pmovsxbd128 (v16qi);
v2di __builtin_ia32_pmovsxbq128 (v16qi);
v8hi __builtin_ia32_pmovsxbw128 (v16qi);
v2di __builtin_ia32_pmovsxdq128 (v4si);
v4si __builtin_ia32_pmovsxwd128 (v8hi);
v2di __builtin_ia32_pmovsxwq128 (v8hi);
v4si __builtin_ia32_pmovzxbd128 (v16qi);
v2di __builtin_ia32_pmovzxbq128 (v16qi);
v8hi __builtin_ia32_pmovzxbw128 (v16qi);
v2di __builtin_ia32_pmovzxdq128 (v4si);
v4si __builtin_ia32_pmovzxwd128 (v8hi);
v2di __builtin_ia32_pmovzxwq128 (v8hi);
v2di __builtin_ia32_pmuldq128 (v4si, v4si);
v4si __builtin_ia32_pmulld128 (v4si, v4si);
int __builtin_ia32_ptestc128 (v2di, v2di);
int __builtin_ia32_ptestnzc128 (v2di, v2di);
int __builtin_ia32_ptestz128 (v2di, v2di);
v2df __builtin_ia32_roundpd (v2df, const int);
v4sf __builtin_ia32_roundps (v4sf, const int);
v2df __builtin_ia32_roundsd (v2df, v2df, const int);
v4sf __builtin_ia32_roundss (v4sf, v4sf, const int);
@end smallexample
The following built-in functions are available when @option{-msse4.1} is
used.
@table @code
@item v4sf __builtin_ia32_vec_set_v4sf (v4sf, float, const int)
Generates the @code{insertps} machine instruction.
@item int __builtin_ia32_vec_ext_v16qi (v16qi, const int)
Generates the @code{pextrb} machine instruction.
@item v16qi __builtin_ia32_vec_set_v16qi (v16qi, int, const int)
Generates the @code{pinsrb} machine instruction.
@item v4si __builtin_ia32_vec_set_v4si (v4si, int, const int)
Generates the @code{pinsrd} machine instruction.
@item v2di __builtin_ia32_vec_set_v2di (v2di, long long, const int)
Generates the @code{pinsrq} machine instruction in 64bit mode.
@end table
The following built-in functions are changed to generate new SSE4.1
instructions when @option{-msse4.1} is used.
@table @code
@item float __builtin_ia32_vec_ext_v4sf (v4sf, const int)
Generates the @code{extractps} machine instruction.
@item int __builtin_ia32_vec_ext_v4si (v4si, const int)
Generates the @code{pextrd} machine instruction.
@item long long __builtin_ia32_vec_ext_v2di (v2di, const int)
Generates the @code{pextrq} machine instruction in 64bit mode.
@end table
The following built-in functions are available when @option{-msse4.2} is
used. All of them generate the machine instruction that is part of the
name.
@smallexample
v16qi __builtin_ia32_pcmpestrm128 (v16qi, int, v16qi, int, const int);
int __builtin_ia32_pcmpestri128 (v16qi, int, v16qi, int, const int);
int __builtin_ia32_pcmpestria128 (v16qi, int, v16qi, int, const int);
int __builtin_ia32_pcmpestric128 (v16qi, int, v16qi, int, const int);
int __builtin_ia32_pcmpestrio128 (v16qi, int, v16qi, int, const int);
int __builtin_ia32_pcmpestris128 (v16qi, int, v16qi, int, const int);
int __builtin_ia32_pcmpestriz128 (v16qi, int, v16qi, int, const int);
v16qi __builtin_ia32_pcmpistrm128 (v16qi, v16qi, const int);
int __builtin_ia32_pcmpistri128 (v16qi, v16qi, const int);
int __builtin_ia32_pcmpistria128 (v16qi, v16qi, const int);
int __builtin_ia32_pcmpistric128 (v16qi, v16qi, const int);
int __builtin_ia32_pcmpistrio128 (v16qi, v16qi, const int);
int __builtin_ia32_pcmpistris128 (v16qi, v16qi, const int);
int __builtin_ia32_pcmpistriz128 (v16qi, v16qi, const int);
v2di __builtin_ia32_pcmpgtq (v2di, v2di);
@end smallexample
The following built-in functions are available when @option{-msse4.2} is
used.
@table @code
@item unsigned int __builtin_ia32_crc32qi (unsigned int, unsigned char)
Generates the @code{crc32b} machine instruction.
@item unsigned int __builtin_ia32_crc32hi (unsigned int, unsigned short)
Generates the @code{crc32w} machine instruction.
@item unsigned int __builtin_ia32_crc32si (unsigned int, unsigned int)
Generates the @code{crc32l} machine instruction.
@item unsigned long long __builtin_ia32_crc32di (unsigned long long, unsigned long long)
Generates the @code{crc32q} machine instruction.
@end table
The following built-in functions are changed to generate new SSE4.2
instructions when @option{-msse4.2} is used.
@table @code
@item int __builtin_popcount (unsigned int)
Generates the @code{popcntl} machine instruction.
@item int __builtin_popcountl (unsigned long)
Generates the @code{popcntl} or @code{popcntq} machine instruction,
depending on the size of @code{unsigned long}.
@item int __builtin_popcountll (unsigned long long)
Generates the @code{popcntq} machine instruction.
@end table
The following built-in functions are available when @option{-mavx} is
used. All of them generate the machine instruction that is part of the
name.
@smallexample
v4df __builtin_ia32_addpd256 (v4df,v4df);
v8sf __builtin_ia32_addps256 (v8sf,v8sf);
v4df __builtin_ia32_addsubpd256 (v4df,v4df);
v8sf __builtin_ia32_addsubps256 (v8sf,v8sf);
v4df __builtin_ia32_andnpd256 (v4df,v4df);
v8sf __builtin_ia32_andnps256 (v8sf,v8sf);
v4df __builtin_ia32_andpd256 (v4df,v4df);
v8sf __builtin_ia32_andps256 (v8sf,v8sf);
v4df __builtin_ia32_blendpd256 (v4df,v4df,int);
v8sf __builtin_ia32_blendps256 (v8sf,v8sf,int);
v4df __builtin_ia32_blendvpd256 (v4df,v4df,v4df);
v8sf __builtin_ia32_blendvps256 (v8sf,v8sf,v8sf);
v2df __builtin_ia32_cmppd (v2df,v2df,int);
v4df __builtin_ia32_cmppd256 (v4df,v4df,int);
v4sf __builtin_ia32_cmpps (v4sf,v4sf,int);
v8sf __builtin_ia32_cmpps256 (v8sf,v8sf,int);
v2df __builtin_ia32_cmpsd (v2df,v2df,int);
v4sf __builtin_ia32_cmpss (v4sf,v4sf,int);
v4df __builtin_ia32_cvtdq2pd256 (v4si);
v8sf __builtin_ia32_cvtdq2ps256 (v8si);
v4si __builtin_ia32_cvtpd2dq256 (v4df);
v4sf __builtin_ia32_cvtpd2ps256 (v4df);
v8si __builtin_ia32_cvtps2dq256 (v8sf);
v4df __builtin_ia32_cvtps2pd256 (v4sf);
v4si __builtin_ia32_cvttpd2dq256 (v4df);
v8si __builtin_ia32_cvttps2dq256 (v8sf);
v4df __builtin_ia32_divpd256 (v4df,v4df);
v8sf __builtin_ia32_divps256 (v8sf,v8sf);
v8sf __builtin_ia32_dpps256 (v8sf,v8sf,int);
v4df __builtin_ia32_haddpd256 (v4df,v4df);
v8sf __builtin_ia32_haddps256 (v8sf,v8sf);
v4df __builtin_ia32_hsubpd256 (v4df,v4df);
v8sf __builtin_ia32_hsubps256 (v8sf,v8sf);
v32qi __builtin_ia32_lddqu256 (pcchar);
v32qi __builtin_ia32_loaddqu256 (pcchar);
v4df __builtin_ia32_loadupd256 (pcdouble);
v8sf __builtin_ia32_loadups256 (pcfloat);
v2df __builtin_ia32_maskloadpd (pcv2df,v2df);
v4df __builtin_ia32_maskloadpd256 (pcv4df,v4df);
v4sf __builtin_ia32_maskloadps (pcv4sf,v4sf);
v8sf __builtin_ia32_maskloadps256 (pcv8sf,v8sf);
void __builtin_ia32_maskstorepd (pv2df,v2df,v2df);
void __builtin_ia32_maskstorepd256 (pv4df,v4df,v4df);
void __builtin_ia32_maskstoreps (pv4sf,v4sf,v4sf);
void __builtin_ia32_maskstoreps256 (pv8sf,v8sf,v8sf);
v4df __builtin_ia32_maxpd256 (v4df,v4df);
v8sf __builtin_ia32_maxps256 (v8sf,v8sf);
v4df __builtin_ia32_minpd256 (v4df,v4df);
v8sf __builtin_ia32_minps256 (v8sf,v8sf);
v4df __builtin_ia32_movddup256 (v4df);
int __builtin_ia32_movmskpd256 (v4df);
int __builtin_ia32_movmskps256 (v8sf);
v8sf __builtin_ia32_movshdup256 (v8sf);
v8sf __builtin_ia32_movsldup256 (v8sf);
v4df __builtin_ia32_mulpd256 (v4df,v4df);
v8sf __builtin_ia32_mulps256 (v8sf,v8sf);
v4df __builtin_ia32_orpd256 (v4df,v4df);
v8sf __builtin_ia32_orps256 (v8sf,v8sf);
v2df __builtin_ia32_pd_pd256 (v4df);
v4df __builtin_ia32_pd256_pd (v2df);
v4sf __builtin_ia32_ps_ps256 (v8sf);
v8sf __builtin_ia32_ps256_ps (v4sf);
int __builtin_ia32_ptestc256 (v4di,v4di,ptest);
int __builtin_ia32_ptestnzc256 (v4di,v4di,ptest);
int __builtin_ia32_ptestz256 (v4di,v4di,ptest);
v8sf __builtin_ia32_rcpps256 (v8sf);
v4df __builtin_ia32_roundpd256 (v4df,int);
v8sf __builtin_ia32_roundps256 (v8sf,int);
v8sf __builtin_ia32_rsqrtps_nr256 (v8sf);
v8sf __builtin_ia32_rsqrtps256 (v8sf);
v4df __builtin_ia32_shufpd256 (v4df,v4df,int);
v8sf __builtin_ia32_shufps256 (v8sf,v8sf,int);
v4si __builtin_ia32_si_si256 (v8si);
v8si __builtin_ia32_si256_si (v4si);
v4df __builtin_ia32_sqrtpd256 (v4df);
v8sf __builtin_ia32_sqrtps_nr256 (v8sf);
v8sf __builtin_ia32_sqrtps256 (v8sf);
void __builtin_ia32_storedqu256 (pchar,v32qi);
void __builtin_ia32_storeupd256 (pdouble,v4df);
void __builtin_ia32_storeups256 (pfloat,v8sf);
v4df __builtin_ia32_subpd256 (v4df,v4df);
v8sf __builtin_ia32_subps256 (v8sf,v8sf);
v4df __builtin_ia32_unpckhpd256 (v4df,v4df);
v8sf __builtin_ia32_unpckhps256 (v8sf,v8sf);
v4df __builtin_ia32_unpcklpd256 (v4df,v4df);
v8sf __builtin_ia32_unpcklps256 (v8sf,v8sf);
v4df __builtin_ia32_vbroadcastf128_pd256 (pcv2df);
v8sf __builtin_ia32_vbroadcastf128_ps256 (pcv4sf);
v4df __builtin_ia32_vbroadcastsd256 (pcdouble);
v4sf __builtin_ia32_vbroadcastss (pcfloat);
v8sf __builtin_ia32_vbroadcastss256 (pcfloat);
v2df __builtin_ia32_vextractf128_pd256 (v4df,int);
v4sf __builtin_ia32_vextractf128_ps256 (v8sf,int);
v4si __builtin_ia32_vextractf128_si256 (v8si,int);
v4df __builtin_ia32_vinsertf128_pd256 (v4df,v2df,int);
v8sf __builtin_ia32_vinsertf128_ps256 (v8sf,v4sf,int);
v8si __builtin_ia32_vinsertf128_si256 (v8si,v4si,int);
v4df __builtin_ia32_vperm2f128_pd256 (v4df,v4df,int);
v8sf __builtin_ia32_vperm2f128_ps256 (v8sf,v8sf,int);
v8si __builtin_ia32_vperm2f128_si256 (v8si,v8si,int);
v2df __builtin_ia32_vpermil2pd (v2df,v2df,v2di,int);
v4df __builtin_ia32_vpermil2pd256 (v4df,v4df,v4di,int);
v4sf __builtin_ia32_vpermil2ps (v4sf,v4sf,v4si,int);
v8sf __builtin_ia32_vpermil2ps256 (v8sf,v8sf,v8si,int);
v2df __builtin_ia32_vpermilpd (v2df,int);
v4df __builtin_ia32_vpermilpd256 (v4df,int);
v4sf __builtin_ia32_vpermilps (v4sf,int);
v8sf __builtin_ia32_vpermilps256 (v8sf,int);
v2df __builtin_ia32_vpermilvarpd (v2df,v2di);
v4df __builtin_ia32_vpermilvarpd256 (v4df,v4di);
v4sf __builtin_ia32_vpermilvarps (v4sf,v4si);
v8sf __builtin_ia32_vpermilvarps256 (v8sf,v8si);
int __builtin_ia32_vtestcpd (v2df,v2df,ptest);
int __builtin_ia32_vtestcpd256 (v4df,v4df,ptest);
int __builtin_ia32_vtestcps (v4sf,v4sf,ptest);
int __builtin_ia32_vtestcps256 (v8sf,v8sf,ptest);
int __builtin_ia32_vtestnzcpd (v2df,v2df,ptest);
int __builtin_ia32_vtestnzcpd256 (v4df,v4df,ptest);
int __builtin_ia32_vtestnzcps (v4sf,v4sf,ptest);
int __builtin_ia32_vtestnzcps256 (v8sf,v8sf,ptest);
int __builtin_ia32_vtestzpd (v2df,v2df,ptest);
int __builtin_ia32_vtestzpd256 (v4df,v4df,ptest);
int __builtin_ia32_vtestzps (v4sf,v4sf,ptest);
int __builtin_ia32_vtestzps256 (v8sf,v8sf,ptest);
void __builtin_ia32_vzeroall (void);
void __builtin_ia32_vzeroupper (void);
v4df __builtin_ia32_xorpd256 (v4df,v4df);
v8sf __builtin_ia32_xorps256 (v8sf,v8sf);
@end smallexample
The following built-in functions are available when @option{-mavx2} is
used. All of them generate the machine instruction that is part of the
name.
@smallexample
v32qi __builtin_ia32_mpsadbw256 (v32qi,v32qi,int);
v32qi __builtin_ia32_pabsb256 (v32qi);
v16hi __builtin_ia32_pabsw256 (v16hi);
v8si __builtin_ia32_pabsd256 (v8si);
v16hi __builtin_ia32_packssdw256 (v8si,v8si);
v32qi __builtin_ia32_packsswb256 (v16hi,v16hi);
v16hi __builtin_ia32_packusdw256 (v8si,v8si);
v32qi __builtin_ia32_packuswb256 (v16hi,v16hi);
v32qi __builtin_ia32_paddb256 (v32qi,v32qi);
v16hi __builtin_ia32_paddw256 (v16hi,v16hi);
v8si __builtin_ia32_paddd256 (v8si,v8si);
v4di __builtin_ia32_paddq256 (v4di,v4di);
v32qi __builtin_ia32_paddsb256 (v32qi,v32qi);
v16hi __builtin_ia32_paddsw256 (v16hi,v16hi);
v32qi __builtin_ia32_paddusb256 (v32qi,v32qi);
v16hi __builtin_ia32_paddusw256 (v16hi,v16hi);
v4di __builtin_ia32_palignr256 (v4di,v4di,int);
v4di __builtin_ia32_andsi256 (v4di,v4di);
v4di __builtin_ia32_andnotsi256 (v4di,v4di);
v32qi __builtin_ia32_pavgb256 (v32qi,v32qi);
v16hi __builtin_ia32_pavgw256 (v16hi,v16hi);
v32qi __builtin_ia32_pblendvb256 (v32qi,v32qi,v32qi);
v16hi __builtin_ia32_pblendw256 (v16hi,v16hi,int);
v32qi __builtin_ia32_pcmpeqb256 (v32qi,v32qi);
v16hi __builtin_ia32_pcmpeqw256 (v16hi,v16hi);
v8si __builtin_ia32_pcmpeqd256 (c8si,v8si);
v4di __builtin_ia32_pcmpeqq256 (v4di,v4di);
v32qi __builtin_ia32_pcmpgtb256 (v32qi,v32qi);
v16hi __builtin_ia32_pcmpgtw256 (16hi,v16hi);
v8si __builtin_ia32_pcmpgtd256 (v8si,v8si);
v4di __builtin_ia32_pcmpgtq256 (v4di,v4di);
v16hi __builtin_ia32_phaddw256 (v16hi,v16hi);
v8si __builtin_ia32_phaddd256 (v8si,v8si);
v16hi __builtin_ia32_phaddsw256 (v16hi,v16hi);
v16hi __builtin_ia32_phsubw256 (v16hi,v16hi);
v8si __builtin_ia32_phsubd256 (v8si,v8si);
v16hi __builtin_ia32_phsubsw256 (v16hi,v16hi);
v32qi __builtin_ia32_pmaddubsw256 (v32qi,v32qi);
v16hi __builtin_ia32_pmaddwd256 (v16hi,v16hi);
v32qi __builtin_ia32_pmaxsb256 (v32qi,v32qi);
v16hi __builtin_ia32_pmaxsw256 (v16hi,v16hi);
v8si __builtin_ia32_pmaxsd256 (v8si,v8si);
v32qi __builtin_ia32_pmaxub256 (v32qi,v32qi);
v16hi __builtin_ia32_pmaxuw256 (v16hi,v16hi);
v8si __builtin_ia32_pmaxud256 (v8si,v8si);
v32qi __builtin_ia32_pminsb256 (v32qi,v32qi);
v16hi __builtin_ia32_pminsw256 (v16hi,v16hi);
v8si __builtin_ia32_pminsd256 (v8si,v8si);
v32qi __builtin_ia32_pminub256 (v32qi,v32qi);
v16hi __builtin_ia32_pminuw256 (v16hi,v16hi);
v8si __builtin_ia32_pminud256 (v8si,v8si);
int __builtin_ia32_pmovmskb256 (v32qi);
v16hi __builtin_ia32_pmovsxbw256 (v16qi);
v8si __builtin_ia32_pmovsxbd256 (v16qi);
v4di __builtin_ia32_pmovsxbq256 (v16qi);
v8si __builtin_ia32_pmovsxwd256 (v8hi);
v4di __builtin_ia32_pmovsxwq256 (v8hi);
v4di __builtin_ia32_pmovsxdq256 (v4si);
v16hi __builtin_ia32_pmovzxbw256 (v16qi);
v8si __builtin_ia32_pmovzxbd256 (v16qi);
v4di __builtin_ia32_pmovzxbq256 (v16qi);
v8si __builtin_ia32_pmovzxwd256 (v8hi);
v4di __builtin_ia32_pmovzxwq256 (v8hi);
v4di __builtin_ia32_pmovzxdq256 (v4si);
v4di __builtin_ia32_pmuldq256 (v8si,v8si);
v16hi __builtin_ia32_pmulhrsw256 (v16hi, v16hi);
v16hi __builtin_ia32_pmulhuw256 (v16hi,v16hi);
v16hi __builtin_ia32_pmulhw256 (v16hi,v16hi);
v16hi __builtin_ia32_pmullw256 (v16hi,v16hi);
v8si __builtin_ia32_pmulld256 (v8si,v8si);
v4di __builtin_ia32_pmuludq256 (v8si,v8si);
v4di __builtin_ia32_por256 (v4di,v4di);
v16hi __builtin_ia32_psadbw256 (v32qi,v32qi);
v32qi __builtin_ia32_pshufb256 (v32qi,v32qi);
v8si __builtin_ia32_pshufd256 (v8si,int);
v16hi __builtin_ia32_pshufhw256 (v16hi,int);
v16hi __builtin_ia32_pshuflw256 (v16hi,int);
v32qi __builtin_ia32_psignb256 (v32qi,v32qi);
v16hi __builtin_ia32_psignw256 (v16hi,v16hi);
v8si __builtin_ia32_psignd256 (v8si,v8si);
v4di __builtin_ia32_pslldqi256 (v4di,int);
v16hi __builtin_ia32_psllwi256 (16hi,int);
v16hi __builtin_ia32_psllw256(v16hi,v8hi);
v8si __builtin_ia32_pslldi256 (v8si,int);
v8si __builtin_ia32_pslld256(v8si,v4si);
v4di __builtin_ia32_psllqi256 (v4di,int);
v4di __builtin_ia32_psllq256(v4di,v2di);
v16hi __builtin_ia32_psrawi256 (v16hi,int);
v16hi __builtin_ia32_psraw256 (v16hi,v8hi);
v8si __builtin_ia32_psradi256 (v8si,int);
v8si __builtin_ia32_psrad256 (v8si,v4si);
v4di __builtin_ia32_psrldqi256 (v4di, int);
v16hi __builtin_ia32_psrlwi256 (v16hi,int);
v16hi __builtin_ia32_psrlw256 (v16hi,v8hi);
v8si __builtin_ia32_psrldi256 (v8si,int);
v8si __builtin_ia32_psrld256 (v8si,v4si);
v4di __builtin_ia32_psrlqi256 (v4di,int);
v4di __builtin_ia32_psrlq256(v4di,v2di);
v32qi __builtin_ia32_psubb256 (v32qi,v32qi);
v32hi __builtin_ia32_psubw256 (v16hi,v16hi);
v8si __builtin_ia32_psubd256 (v8si,v8si);
v4di __builtin_ia32_psubq256 (v4di,v4di);
v32qi __builtin_ia32_psubsb256 (v32qi,v32qi);
v16hi __builtin_ia32_psubsw256 (v16hi,v16hi);
v32qi __builtin_ia32_psubusb256 (v32qi,v32qi);
v16hi __builtin_ia32_psubusw256 (v16hi,v16hi);
v32qi __builtin_ia32_punpckhbw256 (v32qi,v32qi);
v16hi __builtin_ia32_punpckhwd256 (v16hi,v16hi);
v8si __builtin_ia32_punpckhdq256 (v8si,v8si);
v4di __builtin_ia32_punpckhqdq256 (v4di,v4di);
v32qi __builtin_ia32_punpcklbw256 (v32qi,v32qi);
v16hi __builtin_ia32_punpcklwd256 (v16hi,v16hi);
v8si __builtin_ia32_punpckldq256 (v8si,v8si);
v4di __builtin_ia32_punpcklqdq256 (v4di,v4di);
v4di __builtin_ia32_pxor256 (v4di,v4di);
v4di __builtin_ia32_movntdqa256 (pv4di);
v4sf __builtin_ia32_vbroadcastss_ps (v4sf);
v8sf __builtin_ia32_vbroadcastss_ps256 (v4sf);
v4df __builtin_ia32_vbroadcastsd_pd256 (v2df);
v4di __builtin_ia32_vbroadcastsi256 (v2di);
v4si __builtin_ia32_pblendd128 (v4si,v4si);
v8si __builtin_ia32_pblendd256 (v8si,v8si);
v32qi __builtin_ia32_pbroadcastb256 (v16qi);
v16hi __builtin_ia32_pbroadcastw256 (v8hi);
v8si __builtin_ia32_pbroadcastd256 (v4si);
v4di __builtin_ia32_pbroadcastq256 (v2di);
v16qi __builtin_ia32_pbroadcastb128 (v16qi);
v8hi __builtin_ia32_pbroadcastw128 (v8hi);
v4si __builtin_ia32_pbroadcastd128 (v4si);
v2di __builtin_ia32_pbroadcastq128 (v2di);
v8si __builtin_ia32_permvarsi256 (v8si,v8si);
v4df __builtin_ia32_permdf256 (v4df,int);
v8sf __builtin_ia32_permvarsf256 (v8sf,v8sf);
v4di __builtin_ia32_permdi256 (v4di,int);
v4di __builtin_ia32_permti256 (v4di,v4di,int);
v4di __builtin_ia32_extract128i256 (v4di,int);
v4di __builtin_ia32_insert128i256 (v4di,v2di,int);
v8si __builtin_ia32_maskloadd256 (pcv8si,v8si);
v4di __builtin_ia32_maskloadq256 (pcv4di,v4di);
v4si __builtin_ia32_maskloadd (pcv4si,v4si);
v2di __builtin_ia32_maskloadq (pcv2di,v2di);
void __builtin_ia32_maskstored256 (pv8si,v8si,v8si);
void __builtin_ia32_maskstoreq256 (pv4di,v4di,v4di);
void __builtin_ia32_maskstored (pv4si,v4si,v4si);
void __builtin_ia32_maskstoreq (pv2di,v2di,v2di);
v8si __builtin_ia32_psllv8si (v8si,v8si);
v4si __builtin_ia32_psllv4si (v4si,v4si);
v4di __builtin_ia32_psllv4di (v4di,v4di);
v2di __builtin_ia32_psllv2di (v2di,v2di);
v8si __builtin_ia32_psrav8si (v8si,v8si);
v4si __builtin_ia32_psrav4si (v4si,v4si);
v8si __builtin_ia32_psrlv8si (v8si,v8si);
v4si __builtin_ia32_psrlv4si (v4si,v4si);
v4di __builtin_ia32_psrlv4di (v4di,v4di);
v2di __builtin_ia32_psrlv2di (v2di,v2di);
v2df __builtin_ia32_gathersiv2df (v2df, pcdouble,v4si,v2df,int);
v4df __builtin_ia32_gathersiv4df (v4df, pcdouble,v4si,v4df,int);
v2df __builtin_ia32_gatherdiv2df (v2df, pcdouble,v2di,v2df,int);
v4df __builtin_ia32_gatherdiv4df (v4df, pcdouble,v4di,v4df,int);
v4sf __builtin_ia32_gathersiv4sf (v4sf, pcfloat,v4si,v4sf,int);
v8sf __builtin_ia32_gathersiv8sf (v8sf, pcfloat,v8si,v8sf,int);
v4sf __builtin_ia32_gatherdiv4sf (v4sf, pcfloat,v2di,v4sf,int);
v4sf __builtin_ia32_gatherdiv4sf256 (v4sf, pcfloat,v4di,v4sf,int);
v2di __builtin_ia32_gathersiv2di (v2di, pcint64,v4si,v2di,int);
v4di __builtin_ia32_gathersiv4di (v4di, pcint64,v4si,v4di,int);
v2di __builtin_ia32_gatherdiv2di (v2di, pcint64,v2di,v2di,int);
v4di __builtin_ia32_gatherdiv4di (v4di, pcint64,v4di,v4di,int);
v4si __builtin_ia32_gathersiv4si (v4si, pcint,v4si,v4si,int);
v8si __builtin_ia32_gathersiv8si (v8si, pcint,v8si,v8si,int);
v4si __builtin_ia32_gatherdiv4si (v4si, pcint,v2di,v4si,int);
v4si __builtin_ia32_gatherdiv4si256 (v4si, pcint,v4di,v4si,int);
@end smallexample
The following built-in functions are available when @option{-maes} is
used. All of them generate the machine instruction that is part of the
name.
@smallexample
v2di __builtin_ia32_aesenc128 (v2di, v2di);
v2di __builtin_ia32_aesenclast128 (v2di, v2di);
v2di __builtin_ia32_aesdec128 (v2di, v2di);
v2di __builtin_ia32_aesdeclast128 (v2di, v2di);
v2di __builtin_ia32_aeskeygenassist128 (v2di, const int);
v2di __builtin_ia32_aesimc128 (v2di);
@end smallexample
The following built-in function is available when @option{-mpclmul} is
used.
@table @code
@item v2di __builtin_ia32_pclmulqdq128 (v2di, v2di, const int)
Generates the @code{pclmulqdq} machine instruction.
@end table
The following built-in function is available when @option{-mfsgsbase} is
used. All of them generate the machine instruction that is part of the
name.
@smallexample
unsigned int __builtin_ia32_rdfsbase32 (void);
unsigned long long __builtin_ia32_rdfsbase64 (void);
unsigned int __builtin_ia32_rdgsbase32 (void);
unsigned long long __builtin_ia32_rdgsbase64 (void);
void _writefsbase_u32 (unsigned int);
void _writefsbase_u64 (unsigned long long);
void _writegsbase_u32 (unsigned int);
void _writegsbase_u64 (unsigned long long);
@end smallexample
The following built-in function is available when @option{-mrdrnd} is
used. All of them generate the machine instruction that is part of the
name.
@smallexample
unsigned int __builtin_ia32_rdrand16_step (unsigned short *);
unsigned int __builtin_ia32_rdrand32_step (unsigned int *);
unsigned int __builtin_ia32_rdrand64_step (unsigned long long *);
@end smallexample
The following built-in function is available when @option{-mptwrite} is
used. All of them generate the machine instruction that is part of the
name.
@smallexample
void __builtin_ia32_ptwrite32 (unsigned);
void __builtin_ia32_ptwrite64 (unsigned long long);
@end smallexample
The following built-in functions are available when @option{-msse4a} is used.
All of them generate the machine instruction that is part of the name.
@smallexample
void __builtin_ia32_movntsd (double *, v2df);
void __builtin_ia32_movntss (float *, v4sf);
v2di __builtin_ia32_extrq (v2di, v16qi);
v2di __builtin_ia32_extrqi (v2di, const unsigned int, const unsigned int);
v2di __builtin_ia32_insertq (v2di, v2di);
v2di __builtin_ia32_insertqi (v2di, v2di, const unsigned int, const unsigned int);
@end smallexample
The following built-in functions are available when @option{-mxop} is used.
@smallexample
v2df __builtin_ia32_vfrczpd (v2df);
v4sf __builtin_ia32_vfrczps (v4sf);
v2df __builtin_ia32_vfrczsd (v2df);
v4sf __builtin_ia32_vfrczss (v4sf);
v4df __builtin_ia32_vfrczpd256 (v4df);
v8sf __builtin_ia32_vfrczps256 (v8sf);
v2di __builtin_ia32_vpcmov (v2di, v2di, v2di);
v2di __builtin_ia32_vpcmov_v2di (v2di, v2di, v2di);
v4si __builtin_ia32_vpcmov_v4si (v4si, v4si, v4si);
v8hi __builtin_ia32_vpcmov_v8hi (v8hi, v8hi, v8hi);
v16qi __builtin_ia32_vpcmov_v16qi (v16qi, v16qi, v16qi);
v2df __builtin_ia32_vpcmov_v2df (v2df, v2df, v2df);
v4sf __builtin_ia32_vpcmov_v4sf (v4sf, v4sf, v4sf);
v4di __builtin_ia32_vpcmov_v4di256 (v4di, v4di, v4di);
v8si __builtin_ia32_vpcmov_v8si256 (v8si, v8si, v8si);
v16hi __builtin_ia32_vpcmov_v16hi256 (v16hi, v16hi, v16hi);
v32qi __builtin_ia32_vpcmov_v32qi256 (v32qi, v32qi, v32qi);
v4df __builtin_ia32_vpcmov_v4df256 (v4df, v4df, v4df);
v8sf __builtin_ia32_vpcmov_v8sf256 (v8sf, v8sf, v8sf);
v16qi __builtin_ia32_vpcomeqb (v16qi, v16qi);
v8hi __builtin_ia32_vpcomeqw (v8hi, v8hi);
v4si __builtin_ia32_vpcomeqd (v4si, v4si);
v2di __builtin_ia32_vpcomeqq (v2di, v2di);
v16qi __builtin_ia32_vpcomequb (v16qi, v16qi);
v4si __builtin_ia32_vpcomequd (v4si, v4si);
v2di __builtin_ia32_vpcomequq (v2di, v2di);
v8hi __builtin_ia32_vpcomequw (v8hi, v8hi);
v8hi __builtin_ia32_vpcomeqw (v8hi, v8hi);
v16qi __builtin_ia32_vpcomfalseb (v16qi, v16qi);
v4si __builtin_ia32_vpcomfalsed (v4si, v4si);
v2di __builtin_ia32_vpcomfalseq (v2di, v2di);
v16qi __builtin_ia32_vpcomfalseub (v16qi, v16qi);
v4si __builtin_ia32_vpcomfalseud (v4si, v4si);
v2di __builtin_ia32_vpcomfalseuq (v2di, v2di);
v8hi __builtin_ia32_vpcomfalseuw (v8hi, v8hi);
v8hi __builtin_ia32_vpcomfalsew (v8hi, v8hi);
v16qi __builtin_ia32_vpcomgeb (v16qi, v16qi);
v4si __builtin_ia32_vpcomged (v4si, v4si);
v2di __builtin_ia32_vpcomgeq (v2di, v2di);
v16qi __builtin_ia32_vpcomgeub (v16qi, v16qi);
v4si __builtin_ia32_vpcomgeud (v4si, v4si);
v2di __builtin_ia32_vpcomgeuq (v2di, v2di);
v8hi __builtin_ia32_vpcomgeuw (v8hi, v8hi);
v8hi __builtin_ia32_vpcomgew (v8hi, v8hi);
v16qi __builtin_ia32_vpcomgtb (v16qi, v16qi);
v4si __builtin_ia32_vpcomgtd (v4si, v4si);
v2di __builtin_ia32_vpcomgtq (v2di, v2di);
v16qi __builtin_ia32_vpcomgtub (v16qi, v16qi);
v4si __builtin_ia32_vpcomgtud (v4si, v4si);
v2di __builtin_ia32_vpcomgtuq (v2di, v2di);
v8hi __builtin_ia32_vpcomgtuw (v8hi, v8hi);
v8hi __builtin_ia32_vpcomgtw (v8hi, v8hi);
v16qi __builtin_ia32_vpcomleb (v16qi, v16qi);
v4si __builtin_ia32_vpcomled (v4si, v4si);
v2di __builtin_ia32_vpcomleq (v2di, v2di);
v16qi __builtin_ia32_vpcomleub (v16qi, v16qi);
v4si __builtin_ia32_vpcomleud (v4si, v4si);
v2di __builtin_ia32_vpcomleuq (v2di, v2di);
v8hi __builtin_ia32_vpcomleuw (v8hi, v8hi);
v8hi __builtin_ia32_vpcomlew (v8hi, v8hi);
v16qi __builtin_ia32_vpcomltb (v16qi, v16qi);
v4si __builtin_ia32_vpcomltd (v4si, v4si);
v2di __builtin_ia32_vpcomltq (v2di, v2di);
v16qi __builtin_ia32_vpcomltub (v16qi, v16qi);
v4si __builtin_ia32_vpcomltud (v4si, v4si);
v2di __builtin_ia32_vpcomltuq (v2di, v2di);
v8hi __builtin_ia32_vpcomltuw (v8hi, v8hi);
v8hi __builtin_ia32_vpcomltw (v8hi, v8hi);
v16qi __builtin_ia32_vpcomneb (v16qi, v16qi);
v4si __builtin_ia32_vpcomned (v4si, v4si);
v2di __builtin_ia32_vpcomneq (v2di, v2di);
v16qi __builtin_ia32_vpcomneub (v16qi, v16qi);
v4si __builtin_ia32_vpcomneud (v4si, v4si);
v2di __builtin_ia32_vpcomneuq (v2di, v2di);
v8hi __builtin_ia32_vpcomneuw (v8hi, v8hi);
v8hi __builtin_ia32_vpcomnew (v8hi, v8hi);
v16qi __builtin_ia32_vpcomtrueb (v16qi, v16qi);
v4si __builtin_ia32_vpcomtrued (v4si, v4si);
v2di __builtin_ia32_vpcomtrueq (v2di, v2di);
v16qi __builtin_ia32_vpcomtrueub (v16qi, v16qi);
v4si __builtin_ia32_vpcomtrueud (v4si, v4si);
v2di __builtin_ia32_vpcomtrueuq (v2di, v2di);
v8hi __builtin_ia32_vpcomtrueuw (v8hi, v8hi);
v8hi __builtin_ia32_vpcomtruew (v8hi, v8hi);
v4si __builtin_ia32_vphaddbd (v16qi);
v2di __builtin_ia32_vphaddbq (v16qi);
v8hi __builtin_ia32_vphaddbw (v16qi);
v2di __builtin_ia32_vphadddq (v4si);
v4si __builtin_ia32_vphaddubd (v16qi);
v2di __builtin_ia32_vphaddubq (v16qi);
v8hi __builtin_ia32_vphaddubw (v16qi);
v2di __builtin_ia32_vphaddudq (v4si);
v4si __builtin_ia32_vphadduwd (v8hi);
v2di __builtin_ia32_vphadduwq (v8hi);
v4si __builtin_ia32_vphaddwd (v8hi);
v2di __builtin_ia32_vphaddwq (v8hi);
v8hi __builtin_ia32_vphsubbw (v16qi);
v2di __builtin_ia32_vphsubdq (v4si);
v4si __builtin_ia32_vphsubwd (v8hi);
v4si __builtin_ia32_vpmacsdd (v4si, v4si, v4si);
v2di __builtin_ia32_vpmacsdqh (v4si, v4si, v2di);
v2di __builtin_ia32_vpmacsdql (v4si, v4si, v2di);
v4si __builtin_ia32_vpmacssdd (v4si, v4si, v4si);
v2di __builtin_ia32_vpmacssdqh (v4si, v4si, v2di);
v2di __builtin_ia32_vpmacssdql (v4si, v4si, v2di);
v4si __builtin_ia32_vpmacsswd (v8hi, v8hi, v4si);
v8hi __builtin_ia32_vpmacssww (v8hi, v8hi, v8hi);
v4si __builtin_ia32_vpmacswd (v8hi, v8hi, v4si);
v8hi __builtin_ia32_vpmacsww (v8hi, v8hi, v8hi);
v4si __builtin_ia32_vpmadcsswd (v8hi, v8hi, v4si);
v4si __builtin_ia32_vpmadcswd (v8hi, v8hi, v4si);
v16qi __builtin_ia32_vpperm (v16qi, v16qi, v16qi);
v16qi __builtin_ia32_vprotb (v16qi, v16qi);
v4si __builtin_ia32_vprotd (v4si, v4si);
v2di __builtin_ia32_vprotq (v2di, v2di);
v8hi __builtin_ia32_vprotw (v8hi, v8hi);
v16qi __builtin_ia32_vpshab (v16qi, v16qi);
v4si __builtin_ia32_vpshad (v4si, v4si);
v2di __builtin_ia32_vpshaq (v2di, v2di);
v8hi __builtin_ia32_vpshaw (v8hi, v8hi);
v16qi __builtin_ia32_vpshlb (v16qi, v16qi);
v4si __builtin_ia32_vpshld (v4si, v4si);
v2di __builtin_ia32_vpshlq (v2di, v2di);
v8hi __builtin_ia32_vpshlw (v8hi, v8hi);
@end smallexample
The following built-in functions are available when @option{-mfma4} is used.
All of them generate the machine instruction that is part of the name.
@smallexample
v2df __builtin_ia32_vfmaddpd (v2df, v2df, v2df);
v4sf __builtin_ia32_vfmaddps (v4sf, v4sf, v4sf);
v2df __builtin_ia32_vfmaddsd (v2df, v2df, v2df);
v4sf __builtin_ia32_vfmaddss (v4sf, v4sf, v4sf);
v2df __builtin_ia32_vfmsubpd (v2df, v2df, v2df);
v4sf __builtin_ia32_vfmsubps (v4sf, v4sf, v4sf);
v2df __builtin_ia32_vfmsubsd (v2df, v2df, v2df);
v4sf __builtin_ia32_vfmsubss (v4sf, v4sf, v4sf);
v2df __builtin_ia32_vfnmaddpd (v2df, v2df, v2df);
v4sf __builtin_ia32_vfnmaddps (v4sf, v4sf, v4sf);
v2df __builtin_ia32_vfnmaddsd (v2df, v2df, v2df);
v4sf __builtin_ia32_vfnmaddss (v4sf, v4sf, v4sf);
v2df __builtin_ia32_vfnmsubpd (v2df, v2df, v2df);
v4sf __builtin_ia32_vfnmsubps (v4sf, v4sf, v4sf);
v2df __builtin_ia32_vfnmsubsd (v2df, v2df, v2df);
v4sf __builtin_ia32_vfnmsubss (v4sf, v4sf, v4sf);
v2df __builtin_ia32_vfmaddsubpd (v2df, v2df, v2df);
v4sf __builtin_ia32_vfmaddsubps (v4sf, v4sf, v4sf);
v2df __builtin_ia32_vfmsubaddpd (v2df, v2df, v2df);
v4sf __builtin_ia32_vfmsubaddps (v4sf, v4sf, v4sf);
v4df __builtin_ia32_vfmaddpd256 (v4df, v4df, v4df);
v8sf __builtin_ia32_vfmaddps256 (v8sf, v8sf, v8sf);
v4df __builtin_ia32_vfmsubpd256 (v4df, v4df, v4df);
v8sf __builtin_ia32_vfmsubps256 (v8sf, v8sf, v8sf);
v4df __builtin_ia32_vfnmaddpd256 (v4df, v4df, v4df);
v8sf __builtin_ia32_vfnmaddps256 (v8sf, v8sf, v8sf);
v4df __builtin_ia32_vfnmsubpd256 (v4df, v4df, v4df);
v8sf __builtin_ia32_vfnmsubps256 (v8sf, v8sf, v8sf);
v4df __builtin_ia32_vfmaddsubpd256 (v4df, v4df, v4df);
v8sf __builtin_ia32_vfmaddsubps256 (v8sf, v8sf, v8sf);
v4df __builtin_ia32_vfmsubaddpd256 (v4df, v4df, v4df);
v8sf __builtin_ia32_vfmsubaddps256 (v8sf, v8sf, v8sf);
@end smallexample
The following built-in functions are available when @option{-mlwp} is used.
@smallexample
void __builtin_ia32_llwpcb16 (void *);
void __builtin_ia32_llwpcb32 (void *);
void __builtin_ia32_llwpcb64 (void *);
void * __builtin_ia32_llwpcb16 (void);
void * __builtin_ia32_llwpcb32 (void);
void * __builtin_ia32_llwpcb64 (void);
void __builtin_ia32_lwpval16 (unsigned short, unsigned int, unsigned short);
void __builtin_ia32_lwpval32 (unsigned int, unsigned int, unsigned int);
void __builtin_ia32_lwpval64 (unsigned __int64, unsigned int, unsigned int);
unsigned char __builtin_ia32_lwpins16 (unsigned short, unsigned int, unsigned short);
unsigned char __builtin_ia32_lwpins32 (unsigned int, unsigned int, unsigned int);
unsigned char __builtin_ia32_lwpins64 (unsigned __int64, unsigned int, unsigned int);
@end smallexample
The following built-in functions are available when @option{-mbmi} is used.
All of them generate the machine instruction that is part of the name.
@smallexample
unsigned int __builtin_ia32_bextr_u32(unsigned int, unsigned int);
unsigned long long __builtin_ia32_bextr_u64 (unsigned long long, unsigned long long);
@end smallexample
The following built-in functions are available when @option{-mbmi2} is used.
All of them generate the machine instruction that is part of the name.
@smallexample
unsigned int _bzhi_u32 (unsigned int, unsigned int);
unsigned int _pdep_u32 (unsigned int, unsigned int);
unsigned int _pext_u32 (unsigned int, unsigned int);
unsigned long long _bzhi_u64 (unsigned long long, unsigned long long);
unsigned long long _pdep_u64 (unsigned long long, unsigned long long);
unsigned long long _pext_u64 (unsigned long long, unsigned long long);
@end smallexample
The following built-in functions are available when @option{-mlzcnt} is used.
All of them generate the machine instruction that is part of the name.
@smallexample
unsigned short __builtin_ia32_lzcnt_u16(unsigned short);
unsigned int __builtin_ia32_lzcnt_u32(unsigned int);
unsigned long long __builtin_ia32_lzcnt_u64 (unsigned long long);
@end smallexample
The following built-in functions are available when @option{-mfxsr} is used.
All of them generate the machine instruction that is part of the name.
@smallexample
void __builtin_ia32_fxsave (void *);
void __builtin_ia32_fxrstor (void *);
void __builtin_ia32_fxsave64 (void *);
void __builtin_ia32_fxrstor64 (void *);
@end smallexample
The following built-in functions are available when @option{-mxsave} is used.
All of them generate the machine instruction that is part of the name.
@smallexample
void __builtin_ia32_xsave (void *, long long);
void __builtin_ia32_xrstor (void *, long long);
void __builtin_ia32_xsave64 (void *, long long);
void __builtin_ia32_xrstor64 (void *, long long);
@end smallexample
The following built-in functions are available when @option{-mxsaveopt} is used.
All of them generate the machine instruction that is part of the name.
@smallexample
void __builtin_ia32_xsaveopt (void *, long long);
void __builtin_ia32_xsaveopt64 (void *, long long);
@end smallexample
The following built-in functions are available when @option{-mtbm} is used.
Both of them generate the immediate form of the bextr machine instruction.
@smallexample
unsigned int __builtin_ia32_bextri_u32 (unsigned int,
const unsigned int);
unsigned long long __builtin_ia32_bextri_u64 (unsigned long long,
const unsigned long long);
@end smallexample
The following built-in functions are available when @option{-m3dnow} is used.
All of them generate the machine instruction that is part of the name.
@smallexample
void __builtin_ia32_femms (void);
v8qi __builtin_ia32_pavgusb (v8qi, v8qi);
v2si __builtin_ia32_pf2id (v2sf);
v2sf __builtin_ia32_pfacc (v2sf, v2sf);
v2sf __builtin_ia32_pfadd (v2sf, v2sf);
v2si __builtin_ia32_pfcmpeq (v2sf, v2sf);
v2si __builtin_ia32_pfcmpge (v2sf, v2sf);
v2si __builtin_ia32_pfcmpgt (v2sf, v2sf);
v2sf __builtin_ia32_pfmax (v2sf, v2sf);
v2sf __builtin_ia32_pfmin (v2sf, v2sf);
v2sf __builtin_ia32_pfmul (v2sf, v2sf);
v2sf __builtin_ia32_pfrcp (v2sf);
v2sf __builtin_ia32_pfrcpit1 (v2sf, v2sf);
v2sf __builtin_ia32_pfrcpit2 (v2sf, v2sf);
v2sf __builtin_ia32_pfrsqrt (v2sf);
v2sf __builtin_ia32_pfsub (v2sf, v2sf);
v2sf __builtin_ia32_pfsubr (v2sf, v2sf);
v2sf __builtin_ia32_pi2fd (v2si);
v4hi __builtin_ia32_pmulhrw (v4hi, v4hi);
@end smallexample
The following built-in functions are available when @option{-m3dnowa} is used.
All of them generate the machine instruction that is part of the name.
@smallexample
v2si __builtin_ia32_pf2iw (v2sf);
v2sf __builtin_ia32_pfnacc (v2sf, v2sf);
v2sf __builtin_ia32_pfpnacc (v2sf, v2sf);
v2sf __builtin_ia32_pi2fw (v2si);
v2sf __builtin_ia32_pswapdsf (v2sf);
v2si __builtin_ia32_pswapdsi (v2si);
@end smallexample
The following built-in functions are available when @option{-mrtm} is used
They are used for restricted transactional memory. These are the internal
low level functions. Normally the functions in
@ref{x86 transactional memory intrinsics} should be used instead.
@smallexample
int __builtin_ia32_xbegin ();
void __builtin_ia32_xend ();
void __builtin_ia32_xabort (status);
int __builtin_ia32_xtest ();
@end smallexample
The following built-in functions are available when @option{-mmwaitx} is used.
All of them generate the machine instruction that is part of the name.
@smallexample
void __builtin_ia32_monitorx (void *, unsigned int, unsigned int);
void __builtin_ia32_mwaitx (unsigned int, unsigned int, unsigned int);
@end smallexample
The following built-in functions are available when @option{-mclzero} is used.
All of them generate the machine instruction that is part of the name.
@smallexample
void __builtin_i32_clzero (void *);
@end smallexample
The following built-in functions are available when @option{-mpku} is used.
They generate reads and writes to PKRU.
@smallexample
void __builtin_ia32_wrpkru (unsigned int);
unsigned int __builtin_ia32_rdpkru ();
@end smallexample
The following built-in functions are available when
@option{-mshstk} option is used. They support shadow stack
machine instructions from Intel Control-flow Enforcement Technology (CET).
Each built-in function generates the machine instruction that is part
of the function's name. These are the internal low-level functions.
Normally the functions in @ref{x86 control-flow protection intrinsics}
should be used instead.
@smallexample
unsigned int __builtin_ia32_rdsspd (void);
unsigned long long __builtin_ia32_rdsspq (void);
void __builtin_ia32_incsspd (unsigned int);
void __builtin_ia32_incsspq (unsigned long long);
void __builtin_ia32_saveprevssp(void);
void __builtin_ia32_rstorssp(void *);
void __builtin_ia32_wrssd(unsigned int, void *);
void __builtin_ia32_wrssq(unsigned long long, void *);
void __builtin_ia32_wrussd(unsigned int, void *);
void __builtin_ia32_wrussq(unsigned long long, void *);
void __builtin_ia32_setssbsy(void);
void __builtin_ia32_clrssbsy(void *);
@end smallexample
@node x86 transactional memory intrinsics
@subsection x86 Transactional Memory Intrinsics
These hardware transactional memory intrinsics for x86 allow you to use
memory transactions with RTM (Restricted Transactional Memory).
This support is enabled with the @option{-mrtm} option.
For using HLE (Hardware Lock Elision) see
@ref{x86 specific memory model extensions for transactional memory} instead.
A memory transaction commits all changes to memory in an atomic way,
as visible to other threads. If the transaction fails it is rolled back
and all side effects discarded.
Generally there is no guarantee that a memory transaction ever succeeds
and suitable fallback code always needs to be supplied.
@deftypefn {RTM Function} {unsigned} _xbegin ()
Start a RTM (Restricted Transactional Memory) transaction.
Returns @code{_XBEGIN_STARTED} when the transaction
started successfully (note this is not 0, so the constant has to be
explicitly tested).
If the transaction aborts, all side effects
are undone and an abort code encoded as a bit mask is returned.
The following macros are defined:
@table @code
@item _XABORT_EXPLICIT
Transaction was explicitly aborted with @code{_xabort}. The parameter passed
to @code{_xabort} is available with @code{_XABORT_CODE(status)}.
@item _XABORT_RETRY
Transaction retry is possible.
@item _XABORT_CONFLICT
Transaction abort due to a memory conflict with another thread.
@item _XABORT_CAPACITY
Transaction abort due to the transaction using too much memory.
@item _XABORT_DEBUG
Transaction abort due to a debug trap.
@item _XABORT_NESTED
Transaction abort in an inner nested transaction.
@end table
There is no guarantee
any transaction ever succeeds, so there always needs to be a valid
fallback path.
@end deftypefn
@deftypefn {RTM Function} {void} _xend ()
Commit the current transaction. When no transaction is active this faults.
All memory side effects of the transaction become visible
to other threads in an atomic manner.
@end deftypefn
@deftypefn {RTM Function} {int} _xtest ()
Return a nonzero value if a transaction is currently active, otherwise 0.
@end deftypefn
@deftypefn {RTM Function} {void} _xabort (status)
Abort the current transaction. When no transaction is active this is a no-op.
The @var{status} is an 8-bit constant; its value is encoded in the return
value from @code{_xbegin}.
@end deftypefn
Here is an example showing handling for @code{_XABORT_RETRY}
and a fallback path for other failures:
@smallexample
#include <immintrin.h>
int n_tries, max_tries;
unsigned status = _XABORT_EXPLICIT;
...
for (n_tries = 0; n_tries < max_tries; n_tries++)
@{
status = _xbegin ();
if (status == _XBEGIN_STARTED || !(status & _XABORT_RETRY))
break;
@}
if (status == _XBEGIN_STARTED)
@{
... transaction code...
_xend ();
@}
else
@{
... non-transactional fallback path...
@}
@end smallexample
@noindent
Note that, in most cases, the transactional and non-transactional code
must synchronize together to ensure consistency.
@node x86 control-flow protection intrinsics
@subsection x86 Control-Flow Protection Intrinsics
@deftypefn {CET Function} {ret_type} _get_ssp (void)
Get the current value of shadow stack pointer if shadow stack support
from Intel CET is enabled in the hardware or @code{0} otherwise.
The @code{ret_type} is @code{unsigned long long} for 64-bit targets
and @code{unsigned int} for 32-bit targets.
@end deftypefn
@deftypefn {CET Function} void _inc_ssp (unsigned int)
Increment the current shadow stack pointer by the size specified by the
function argument. The argument is masked to a byte value for security
reasons, so to increment by more than 255 bytes you must call the function
multiple times.
@end deftypefn
The shadow stack unwind code looks like:
@smallexample
#include <immintrin.h>
/* Unwind the shadow stack for EH. */
#define _Unwind_Frames_Extra(x) \
do \
@{ \
_Unwind_Word ssp = _get_ssp (); \
if (ssp != 0) \
@{ \
_Unwind_Word tmp = (x); \
while (tmp > 255) \
@{ \
_inc_ssp (tmp); \
tmp -= 255; \
@} \
_inc_ssp (tmp); \
@} \
@} \
while (0)
@end smallexample
@noindent
This code runs unconditionally on all 64-bit processors. For 32-bit
processors the code runs on those that support multi-byte NOP instructions.
@node Target Format Checks
@section Format Checks Specific to Particular Target Machines
For some target machines, GCC supports additional options to the
format attribute
(@pxref{Function Attributes,,Declaring Attributes of Functions}).
@menu
* Solaris Format Checks::
* Darwin Format Checks::
@end menu
@node Solaris Format Checks
@subsection Solaris Format Checks
Solaris targets support the @code{cmn_err} (or @code{__cmn_err__}) format
check. @code{cmn_err} accepts a subset of the standard @code{printf}
conversions, and the two-argument @code{%b} conversion for displaying
bit-fields. See the Solaris man page for @code{cmn_err} for more information.
@node Darwin Format Checks
@subsection Darwin Format Checks
In addition to the full set of format archetypes (attribute format style
arguments such as @code{printf}, @code{scanf}, @code{strftime}, and
@code{strfmon}), Darwin targets also support the @code{CFString} (or
@code{__CFString__}) archetype in the @code{format} attribute.
Declarations with this archetype are parsed for correct syntax
and argument types. However, parsing of the format string itself and
validating arguments against it in calls to such functions is currently
not performed.
Additionally, @code{CFStringRefs} (defined by the @code{CoreFoundation} headers) may
also be used as format arguments. Note that the relevant headers are only likely to be
available on Darwin (OSX) installations. On such installations, the XCode and system
documentation provide descriptions of @code{CFString}, @code{CFStringRefs} and
associated functions.
@node Pragmas
@section Pragmas Accepted by GCC
@cindex pragmas
@cindex @code{#pragma}
GCC supports several types of pragmas, primarily in order to compile
code originally written for other compilers. Note that in general
we do not recommend the use of pragmas; @xref{Function Attributes},
for further explanation.
The GNU C preprocessor recognizes several pragmas in addition to the
compiler pragmas documented here. Refer to the CPP manual for more
information.
@menu
* AArch64 Pragmas::
* ARM Pragmas::
* M32C Pragmas::
* MeP Pragmas::
* PRU Pragmas::
* RS/6000 and PowerPC Pragmas::
* S/390 Pragmas::
* Darwin Pragmas::
* Solaris Pragmas::
* Symbol-Renaming Pragmas::
* Structure-Layout Pragmas::
* Weak Pragmas::
* Diagnostic Pragmas::
* Visibility Pragmas::
* Push/Pop Macro Pragmas::
* Function Specific Option Pragmas::
* Loop-Specific Pragmas::
@end menu
@node AArch64 Pragmas
@subsection AArch64 Pragmas
The pragmas defined by the AArch64 target correspond to the AArch64
target function attributes. They can be specified as below:
@smallexample
#pragma GCC target("string")
@end smallexample
where @code{@var{string}} can be any string accepted as an AArch64 target
attribute. @xref{AArch64 Function Attributes}, for more details
on the permissible values of @code{string}.
@node ARM Pragmas
@subsection ARM Pragmas
The ARM target defines pragmas for controlling the default addition of
@code{long_call} and @code{short_call} attributes to functions.
@xref{Function Attributes}, for information about the effects of these
attributes.
@table @code
@item long_calls
@cindex pragma, long_calls
Set all subsequent functions to have the @code{long_call} attribute.
@item no_long_calls
@cindex pragma, no_long_calls
Set all subsequent functions to have the @code{short_call} attribute.
@item long_calls_off
@cindex pragma, long_calls_off
Do not affect the @code{long_call} or @code{short_call} attributes of
subsequent functions.
@end table
@node M32C Pragmas
@subsection M32C Pragmas
@table @code
@item GCC memregs @var{number}
@cindex pragma, memregs
Overrides the command-line option @code{-memregs=} for the current
file. Use with care! This pragma must be before any function in the
file, and mixing different memregs values in different objects may
make them incompatible. This pragma is useful when a
performance-critical function uses a memreg for temporary values,
as it may allow you to reduce the number of memregs used.
@item ADDRESS @var{name} @var{address}
@cindex pragma, address
For any declared symbols matching @var{name}, this does three things
to that symbol: it forces the symbol to be located at the given
address (a number), it forces the symbol to be volatile, and it
changes the symbol's scope to be static. This pragma exists for
compatibility with other compilers, but note that the common
@code{1234H} numeric syntax is not supported (use @code{0x1234}
instead). Example:
@smallexample
#pragma ADDRESS port3 0x103
char port3;
@end smallexample
@end table
@node MeP Pragmas
@subsection MeP Pragmas
@table @code
@item custom io_volatile (on|off)
@cindex pragma, custom io_volatile
Overrides the command-line option @code{-mio-volatile} for the current
file. Note that for compatibility with future GCC releases, this
option should only be used once before any @code{io} variables in each
file.
@item GCC coprocessor available @var{registers}
@cindex pragma, coprocessor available
Specifies which coprocessor registers are available to the register
allocator. @var{registers} may be a single register, register range
separated by ellipses, or comma-separated list of those. Example:
@smallexample
#pragma GCC coprocessor available $c0...$c10, $c28
@end smallexample
@item GCC coprocessor call_saved @var{registers}
@cindex pragma, coprocessor call_saved
Specifies which coprocessor registers are to be saved and restored by
any function using them. @var{registers} may be a single register,
register range separated by ellipses, or comma-separated list of
those. Example:
@smallexample
#pragma GCC coprocessor call_saved $c4...$c6, $c31
@end smallexample
@item GCC coprocessor subclass '(A|B|C|D)' = @var{registers}
@cindex pragma, coprocessor subclass
Creates and defines a register class. These register classes can be
used by inline @code{asm} constructs. @var{registers} may be a single
register, register range separated by ellipses, or comma-separated
list of those. Example:
@smallexample
#pragma GCC coprocessor subclass 'B' = $c2, $c4, $c6
asm ("cpfoo %0" : "=B" (x));
@end smallexample
@item GCC disinterrupt @var{name} , @var{name} @dots{}
@cindex pragma, disinterrupt
For the named functions, the compiler adds code to disable interrupts
for the duration of those functions. If any functions so named
are not encountered in the source, a warning is emitted that the pragma is
not used. Examples:
@smallexample
#pragma disinterrupt foo
#pragma disinterrupt bar, grill
int foo () @{ @dots{} @}
@end smallexample
@item GCC call @var{name} , @var{name} @dots{}
@cindex pragma, call
For the named functions, the compiler always uses a register-indirect
call model when calling the named functions. Examples:
@smallexample
extern int foo ();
#pragma call foo
@end smallexample
@end table
@node PRU Pragmas
@subsection PRU Pragmas
@table @code
@item ctable_entry @var{index} @var{constant_address}
@cindex pragma, ctable_entry
Specifies that the PRU CTABLE entry given by @var{index} has the value
@var{constant_address}. This enables GCC to emit LBCO/SBCO instructions
when the load/store address is known and can be addressed with some CTABLE
entry. For example:
@smallexample
/* will compile to "sbco Rx, 2, 0x10, 4" */
#pragma ctable_entry 2 0x4802a000
*(unsigned int *)0x4802a010 = val;
@end smallexample
@end table
@node RS/6000 and PowerPC Pragmas
@subsection RS/6000 and PowerPC Pragmas
The RS/6000 and PowerPC targets define one pragma for controlling
whether or not the @code{longcall} attribute is added to function
declarations by default. This pragma overrides the @option{-mlongcall}
option, but not the @code{longcall} and @code{shortcall} attributes.
@xref{RS/6000 and PowerPC Options}, for more information about when long
calls are and are not necessary.
@table @code
@item longcall (1)
@cindex pragma, longcall
Apply the @code{longcall} attribute to all subsequent function
declarations.
@item longcall (0)
Do not apply the @code{longcall} attribute to subsequent function
declarations.
@end table
@c Describe h8300 pragmas here.
@c Describe sh pragmas here.
@c Describe v850 pragmas here.
@node S/390 Pragmas
@subsection S/390 Pragmas
The pragmas defined by the S/390 target correspond to the S/390
target function attributes and some the additional options:
@table @samp
@item zvector
@itemx no-zvector
@end table
Note that options of the pragma, unlike options of the target
attribute, do change the value of preprocessor macros like
@code{__VEC__}. They can be specified as below:
@smallexample
#pragma GCC target("string[,string]...")
#pragma GCC target("string"[,"string"]...)
@end smallexample
@node Darwin Pragmas
@subsection Darwin Pragmas
The following pragmas are available for all architectures running the
Darwin operating system. These are useful for compatibility with other
Mac OS compilers.
@table @code
@item mark @var{tokens}@dots{}
@cindex pragma, mark
This pragma is accepted, but has no effect.
@item options align=@var{alignment}
@cindex pragma, options align
This pragma sets the alignment of fields in structures. The values of
@var{alignment} may be @code{mac68k}, to emulate m68k alignment, or
@code{power}, to emulate PowerPC alignment. Uses of this pragma nest
properly; to restore the previous setting, use @code{reset} for the
@var{alignment}.
@item segment @var{tokens}@dots{}
@cindex pragma, segment
This pragma is accepted, but has no effect.
@item unused (@var{var} [, @var{var}]@dots{})
@cindex pragma, unused
This pragma declares variables to be possibly unused. GCC does not
produce warnings for the listed variables. The effect is similar to
that of the @code{unused} attribute, except that this pragma may appear
anywhere within the variables' scopes.
@end table
@node Solaris Pragmas
@subsection Solaris Pragmas
The Solaris target supports @code{#pragma redefine_extname}
(@pxref{Symbol-Renaming Pragmas}). It also supports additional
@code{#pragma} directives for compatibility with the system compiler.
@table @code
@item align @var{alignment} (@var{variable} [, @var{variable}]...)
@cindex pragma, align
Increase the minimum alignment of each @var{variable} to @var{alignment}.
This is the same as GCC's @code{aligned} attribute @pxref{Variable
Attributes}). Macro expansion occurs on the arguments to this pragma
when compiling C and Objective-C@. It does not currently occur when
compiling C++, but this is a bug which may be fixed in a future
release.
@item fini (@var{function} [, @var{function}]...)
@cindex pragma, fini
This pragma causes each listed @var{function} to be called after
main, or during shared module unloading, by adding a call to the
@code{.fini} section.
@item init (@var{function} [, @var{function}]...)
@cindex pragma, init
This pragma causes each listed @var{function} to be called during
initialization (before @code{main}) or during shared module loading, by
adding a call to the @code{.init} section.
@end table
@node Symbol-Renaming Pragmas
@subsection Symbol-Renaming Pragmas
GCC supports a @code{#pragma} directive that changes the name used in
assembly for a given declaration. While this pragma is supported on all
platforms, it is intended primarily to provide compatibility with the
Solaris system headers. This effect can also be achieved using the asm
labels extension (@pxref{Asm Labels}).
@table @code
@item redefine_extname @var{oldname} @var{newname}
@cindex pragma, redefine_extname
This pragma gives the C function @var{oldname} the assembly symbol
@var{newname}. The preprocessor macro @code{__PRAGMA_REDEFINE_EXTNAME}
is defined if this pragma is available (currently on all platforms).
@end table
This pragma and the @code{asm} labels extension interact in a complicated
manner. Here are some corner cases you may want to be aware of:
@enumerate
@item This pragma silently applies only to declarations with external
linkage. The @code{asm} label feature does not have this restriction.
@item In C++, this pragma silently applies only to declarations with
``C'' linkage. Again, @code{asm} labels do not have this restriction.
@item If either of the ways of changing the assembly name of a
declaration are applied to a declaration whose assembly name has
already been determined (either by a previous use of one of these
features, or because the compiler needed the assembly name in order to
generate code), and the new name is different, a warning issues and
the name does not change.
@item The @var{oldname} used by @code{#pragma redefine_extname} is
always the C-language name.
@end enumerate
@node Structure-Layout Pragmas
@subsection Structure-Layout Pragmas
For compatibility with Microsoft Windows compilers, GCC supports a
set of @code{#pragma} directives that change the maximum alignment of
members of structures (other than zero-width bit-fields), unions, and
classes subsequently defined. The @var{n} value below always is required
to be a small power of two and specifies the new alignment in bytes.
@enumerate
@item @code{#pragma pack(@var{n})} simply sets the new alignment.
@item @code{#pragma pack()} sets the alignment to the one that was in
effect when compilation started (see also command-line option
@option{-fpack-struct[=@var{n}]} @pxref{Code Gen Options}).
@item @code{#pragma pack(push[,@var{n}])} pushes the current alignment
setting on an internal stack and then optionally sets the new alignment.
@item @code{#pragma pack(pop)} restores the alignment setting to the one
saved at the top of the internal stack (and removes that stack entry).
Note that @code{#pragma pack([@var{n}])} does not influence this internal
stack; thus it is possible to have @code{#pragma pack(push)} followed by
multiple @code{#pragma pack(@var{n})} instances and finalized by a single
@code{#pragma pack(pop)}.
@end enumerate
Some targets, e.g.@: x86 and PowerPC, support the @code{#pragma ms_struct}
directive which lays out structures and unions subsequently defined as the
documented @code{__attribute__ ((ms_struct))}.
@enumerate
@item @code{#pragma ms_struct on} turns on the Microsoft layout.
@item @code{#pragma ms_struct off} turns off the Microsoft layout.
@item @code{#pragma ms_struct reset} goes back to the default layout.
@end enumerate
Most targets also support the @code{#pragma scalar_storage_order} directive
which lays out structures and unions subsequently defined as the documented
@code{__attribute__ ((scalar_storage_order))}.
@enumerate
@item @code{#pragma scalar_storage_order big-endian} sets the storage order
of the scalar fields to big-endian.
@item @code{#pragma scalar_storage_order little-endian} sets the storage order
of the scalar fields to little-endian.
@item @code{#pragma scalar_storage_order default} goes back to the endianness
that was in effect when compilation started (see also command-line option
@option{-fsso-struct=@var{endianness}} @pxref{C Dialect Options}).
@end enumerate
@node Weak Pragmas
@subsection Weak Pragmas
For compatibility with SVR4, GCC supports a set of @code{#pragma}
directives for declaring symbols to be weak, and defining weak
aliases.
@table @code
@item #pragma weak @var{symbol}
@cindex pragma, weak
This pragma declares @var{symbol} to be weak, as if the declaration
had the attribute of the same name. The pragma may appear before
or after the declaration of @var{symbol}. It is not an error for
@var{symbol} to never be defined at all.
@item #pragma weak @var{symbol1} = @var{symbol2}
This pragma declares @var{symbol1} to be a weak alias of @var{symbol2}.
It is an error if @var{symbol2} is not defined in the current
translation unit.
@end table
@node Diagnostic Pragmas
@subsection Diagnostic Pragmas
GCC allows the user to selectively enable or disable certain types of
diagnostics, and change the kind of the diagnostic. For example, a
project's policy might require that all sources compile with
@option{-Werror} but certain files might have exceptions allowing
specific types of warnings. Or, a project might selectively enable
diagnostics and treat them as errors depending on which preprocessor
macros are defined.
@table @code
@item #pragma GCC diagnostic @var{kind} @var{option}
@cindex pragma, diagnostic
Modifies the disposition of a diagnostic. Note that not all
diagnostics are modifiable; at the moment only warnings (normally
controlled by @samp{-W@dots{}}) can be controlled, and not all of them.
Use @option{-fdiagnostics-show-option} to determine which diagnostics
are controllable and which option controls them.
@var{kind} is @samp{error} to treat this diagnostic as an error,
@samp{warning} to treat it like a warning (even if @option{-Werror} is
in effect), or @samp{ignored} if the diagnostic is to be ignored.
@var{option} is a double quoted string that matches the command-line
option.
@smallexample
#pragma GCC diagnostic warning "-Wformat"
#pragma GCC diagnostic error "-Wformat"
#pragma GCC diagnostic ignored "-Wformat"
@end smallexample
Note that these pragmas override any command-line options. GCC keeps
track of the location of each pragma, and issues diagnostics according
to the state as of that point in the source file. Thus, pragmas occurring
after a line do not affect diagnostics caused by that line.
@item #pragma GCC diagnostic push
@itemx #pragma GCC diagnostic pop
Causes GCC to remember the state of the diagnostics as of each
@code{push}, and restore to that point at each @code{pop}. If a
@code{pop} has no matching @code{push}, the command-line options are
restored.
@smallexample
#pragma GCC diagnostic error "-Wuninitialized"
foo(a); /* error is given for this one */
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wuninitialized"
foo(b); /* no diagnostic for this one */
#pragma GCC diagnostic pop
foo(c); /* error is given for this one */
#pragma GCC diagnostic pop
foo(d); /* depends on command-line options */
@end smallexample
@item #pragma GCC diagnostic ignored_attributes
Similarly to @option{-Wno-attributes=}, this pragma allows users to suppress
warnings about unknown scoped attributes (in C++11 and C2X). For example,
@code{#pragma GCC diagnostic ignored_attributes "vendor::attr"} disables
warning about the following declaration:
@smallexample
[[vendor::attr]] void f();
@end smallexample
whereas @code{#pragma GCC diagnostic ignored_attributes "vendor::"} prevents
warning about both of these declarations:
@smallexample
[[vendor::safe]] void f();
[[vendor::unsafe]] void f2();
@end smallexample
@end table
GCC also offers a simple mechanism for printing messages during
compilation.
@table @code
@item #pragma message @var{string}
@cindex pragma, diagnostic
Prints @var{string} as a compiler message on compilation. The message
is informational only, and is neither a compilation warning nor an
error. Newlines can be included in the string by using the @samp{\n}
escape sequence.
@smallexample
#pragma message "Compiling " __FILE__ "..."
@end smallexample
@var{string} may be parenthesized, and is printed with location
information. For example,
@smallexample
#define DO_PRAGMA(x) _Pragma (#x)
#define TODO(x) DO_PRAGMA(message ("TODO - " #x))
TODO(Remember to fix this)
@end smallexample
@noindent
prints @samp{/tmp/file.c:4: note: #pragma message:
TODO - Remember to fix this}.
@item #pragma GCC error @var{message}
@cindex pragma, diagnostic
Generates an error message. This pragma @emph{is} considered to
indicate an error in the compilation, and it will be treated as such.
Newlines can be included in the string by using the @samp{\n}
escape sequence. They will be displayed as newlines even if the
@option{-fmessage-length} option is set to zero.
The error is only generated if the pragma is present in the code after
pre-processing has been completed. It does not matter however if the
code containing the pragma is unreachable:
@smallexample
#if 0
#pragma GCC error "this error is not seen"
#endif
void foo (void)
@{
return;
#pragma GCC error "this error is seen"
@}
@end smallexample
@item #pragma GCC warning @var{message}
@cindex pragma, diagnostic
This is just like @samp{pragma GCC error} except that a warning
message is issued instead of an error message. Unless
@option{-Werror} is in effect, in which case this pragma will generate
an error as well.
@end table
@node Visibility Pragmas
@subsection Visibility Pragmas
@table @code
@item #pragma GCC visibility push(@var{visibility})
@itemx #pragma GCC visibility pop
@cindex pragma, visibility
This pragma allows the user to set the visibility for multiple
declarations without having to give each a visibility attribute
(@pxref{Function Attributes}).
In C++, @samp{#pragma GCC visibility} affects only namespace-scope
declarations. Class members and template specializations are not
affected; if you want to override the visibility for a particular
member or instantiation, you must use an attribute.
@end table
@node Push/Pop Macro Pragmas
@subsection Push/Pop Macro Pragmas
For compatibility with Microsoft Windows compilers, GCC supports
@samp{#pragma push_macro(@var{"macro_name"})}
and @samp{#pragma pop_macro(@var{"macro_name"})}.
@table @code
@item #pragma push_macro(@var{"macro_name"})
@cindex pragma, push_macro
This pragma saves the value of the macro named as @var{macro_name} to
the top of the stack for this macro.
@item #pragma pop_macro(@var{"macro_name"})
@cindex pragma, pop_macro
This pragma sets the value of the macro named as @var{macro_name} to
the value on top of the stack for this macro. If the stack for
@var{macro_name} is empty, the value of the macro remains unchanged.
@end table
For example:
@smallexample
#define X 1
#pragma push_macro("X")
#undef X
#define X -1
#pragma pop_macro("X")
int x [X];
@end smallexample
@noindent
In this example, the definition of X as 1 is saved by @code{#pragma
push_macro} and restored by @code{#pragma pop_macro}.
@node Function Specific Option Pragmas
@subsection Function Specific Option Pragmas
@table @code
@item #pragma GCC target (@var{string}, @dots{})
@cindex pragma GCC target
This pragma allows you to set target-specific options for functions
defined later in the source file. One or more strings can be
specified. Each function that is defined after this point is treated
as if it had been declared with one @code{target(}@var{string}@code{)}
attribute for each @var{string} argument. The parentheses around
the strings in the pragma are optional. @xref{Function Attributes},
for more information about the @code{target} attribute and the attribute
syntax.
The @code{#pragma GCC target} pragma is presently implemented for
x86, ARM, AArch64, PowerPC, S/390, and Nios II targets only.
@item #pragma GCC optimize (@var{string}, @dots{})
@cindex pragma GCC optimize
This pragma allows you to set global optimization options for functions
defined later in the source file. One or more strings can be
specified. Each function that is defined after this point is treated
as if it had been declared with one @code{optimize(}@var{string}@code{)}
attribute for each @var{string} argument. The parentheses around
the strings in the pragma are optional. @xref{Function Attributes},
for more information about the @code{optimize} attribute and the attribute
syntax.
@item #pragma GCC push_options
@itemx #pragma GCC pop_options
@cindex pragma GCC push_options
@cindex pragma GCC pop_options
These pragmas maintain a stack of the current target and optimization
options. It is intended for include files where you temporarily want
to switch to using a different @samp{#pragma GCC target} or
@samp{#pragma GCC optimize} and then to pop back to the previous
options.
@item #pragma GCC reset_options
@cindex pragma GCC reset_options
This pragma clears the current @code{#pragma GCC target} and
@code{#pragma GCC optimize} to use the default switches as specified
on the command line.
@end table
@node Loop-Specific Pragmas
@subsection Loop-Specific Pragmas
@table @code
@item #pragma GCC ivdep
@cindex pragma GCC ivdep
With this pragma, the programmer asserts that there are no loop-carried
dependencies which would prevent consecutive iterations of
the following loop from executing concurrently with SIMD
(single instruction multiple data) instructions.
For example, the compiler can only unconditionally vectorize the following
loop with the pragma:
@smallexample
void foo (int n, int *a, int *b, int *c)
@{
int i, j;
#pragma GCC ivdep
for (i = 0; i < n; ++i)
a[i] = b[i] + c[i];
@}
@end smallexample
@noindent
In this example, using the @code{restrict} qualifier had the same
effect. In the following example, that would not be possible. Assume
@math{k < -m} or @math{k >= m}. Only with the pragma, the compiler knows
that it can unconditionally vectorize the following loop:
@smallexample
void ignore_vec_dep (int *a, int k, int c, int m)
@{
#pragma GCC ivdep
for (int i = 0; i < m; i++)
a[i] = a[i + k] * c;
@}
@end smallexample
@item #pragma GCC unroll @var{n}
@cindex pragma GCC unroll @var{n}
You can use this pragma to control how many times a loop should be unrolled.
It must be placed immediately before a @code{for}, @code{while} or @code{do}
loop or a @code{#pragma GCC ivdep}, and applies only to the loop that follows.
@var{n} is an integer constant expression specifying the unrolling factor.
The values of @math{0} and @math{1} block any unrolling of the loop.
@end table
@node Unnamed Fields
@section Unnamed Structure and Union Fields
@cindex @code{struct}
@cindex @code{union}
As permitted by ISO C11 and for compatibility with other compilers,
GCC allows you to define
a structure or union that contains, as fields, structures and unions
without names. For example:
@smallexample
struct @{
int a;
union @{
int b;
float c;
@};
int d;
@} foo;
@end smallexample
@noindent
In this example, you are able to access members of the unnamed
union with code like @samp{foo.b}. Note that only unnamed structs and
unions are allowed, you may not have, for example, an unnamed
@code{int}.
You must never create such structures that cause ambiguous field definitions.
For example, in this structure:
@smallexample
struct @{
int a;
struct @{
int a;
@};
@} foo;
@end smallexample
@noindent
it is ambiguous which @code{a} is being referred to with @samp{foo.a}.
The compiler gives errors for such constructs.
@opindex fms-extensions
Unless @option{-fms-extensions} is used, the unnamed field must be a
structure or union definition without a tag (for example, @samp{struct
@{ int a; @};}). If @option{-fms-extensions} is used, the field may
also be a definition with a tag such as @samp{struct foo @{ int a;
@};}, a reference to a previously defined structure or union such as
@samp{struct foo;}, or a reference to a @code{typedef} name for a
previously defined structure or union type.
@opindex fplan9-extensions
The option @option{-fplan9-extensions} enables
@option{-fms-extensions} as well as two other extensions. First, a
pointer to a structure is automatically converted to a pointer to an
anonymous field for assignments and function calls. For example:
@smallexample
struct s1 @{ int a; @};
struct s2 @{ struct s1; @};
extern void f1 (struct s1 *);
void f2 (struct s2 *p) @{ f1 (p); @}
@end smallexample
@noindent
In the call to @code{f1} inside @code{f2}, the pointer @code{p} is
converted into a pointer to the anonymous field.
Second, when the type of an anonymous field is a @code{typedef} for a
@code{struct} or @code{union}, code may refer to the field using the
name of the @code{typedef}.
@smallexample
typedef struct @{ int a; @} s1;
struct s2 @{ s1; @};
s1 f1 (struct s2 *p) @{ return p->s1; @}
@end smallexample
These usages are only permitted when they are not ambiguous.
@node Thread-Local
@section Thread-Local Storage
@cindex Thread-Local Storage
@cindex @acronym{TLS}
@cindex @code{__thread}
Thread-local storage (@acronym{TLS}) is a mechanism by which variables
are allocated such that there is one instance of the variable per extant
thread. The runtime model GCC uses to implement this originates
in the IA-64 processor-specific ABI, but has since been migrated
to other processors as well. It requires significant support from
the linker (@command{ld}), dynamic linker (@command{ld.so}), and
system libraries (@file{libc.so} and @file{libpthread.so}), so it
is not available everywhere.
At the user level, the extension is visible with a new storage
class keyword: @code{__thread}. For example:
@smallexample
__thread int i;
extern __thread struct state s;
static __thread char *p;
@end smallexample
The @code{__thread} specifier may be used alone, with the @code{extern}
or @code{static} specifiers, but with no other storage class specifier.
When used with @code{extern} or @code{static}, @code{__thread} must appear
immediately after the other storage class specifier.
The @code{__thread} specifier may be applied to any global, file-scoped
static, function-scoped static, or static data member of a class. It may
not be applied to block-scoped automatic or non-static data member.
When the address-of operator is applied to a thread-local variable, it is
evaluated at run time and returns the address of the current thread's
instance of that variable. An address so obtained may be used by any
thread. When a thread terminates, any pointers to thread-local variables
in that thread become invalid.
No static initialization may refer to the address of a thread-local variable.
In C++, if an initializer is present for a thread-local variable, it must
be a @var{constant-expression}, as defined in 5.19.2 of the ANSI/ISO C++
standard.
See @uref{https://www.akkadia.org/drepper/tls.pdf,
ELF Handling For Thread-Local Storage} for a detailed explanation of
the four thread-local storage addressing models, and how the runtime
is expected to function.
@menu
* C99 Thread-Local Edits::
* C++98 Thread-Local Edits::
@end menu
@node C99 Thread-Local Edits
@subsection ISO/IEC 9899:1999 Edits for Thread-Local Storage
The following are a set of changes to ISO/IEC 9899:1999 (aka C99)
that document the exact semantics of the language extension.
@itemize @bullet
@item
@cite{5.1.2 Execution environments}
Add new text after paragraph 1
@quotation
Within either execution environment, a @dfn{thread} is a flow of
control within a program. It is implementation defined whether
or not there may be more than one thread associated with a program.
It is implementation defined how threads beyond the first are
created, the name and type of the function called at thread
startup, and how threads may be terminated. However, objects
with thread storage duration shall be initialized before thread
startup.
@end quotation
@item
@cite{6.2.4 Storage durations of objects}
Add new text before paragraph 3
@quotation
An object whose identifier is declared with the storage-class
specifier @w{@code{__thread}} has @dfn{thread storage duration}.
Its lifetime is the entire execution of the thread, and its
stored value is initialized only once, prior to thread startup.
@end quotation
@item
@cite{6.4.1 Keywords}
Add @code{__thread}.
@item
@cite{6.7.1 Storage-class specifiers}
Add @code{__thread} to the list of storage class specifiers in
paragraph 1.
Change paragraph 2 to
@quotation
With the exception of @code{__thread}, at most one storage-class
specifier may be given [@dots{}]. The @code{__thread} specifier may
be used alone, or immediately following @code{extern} or
@code{static}.
@end quotation
Add new text after paragraph 6
@quotation
The declaration of an identifier for a variable that has
block scope that specifies @code{__thread} shall also
specify either @code{extern} or @code{static}.
The @code{__thread} specifier shall be used only with
variables.
@end quotation
@end itemize
@node C++98 Thread-Local Edits
@subsection ISO/IEC 14882:1998 Edits for Thread-Local Storage
The following are a set of changes to ISO/IEC 14882:1998 (aka C++98)
that document the exact semantics of the language extension.
@itemize @bullet
@item
@b{[intro.execution]}
New text after paragraph 4
@quotation
A @dfn{thread} is a flow of control within the abstract machine.
It is implementation defined whether or not there may be more than
one thread.
@end quotation
New text after paragraph 7
@quotation
It is unspecified whether additional action must be taken to
ensure when and whether side effects are visible to other threads.
@end quotation
@item
@b{[lex.key]}
Add @code{__thread}.
@item
@b{[basic.start.main]}
Add after paragraph 5
@quotation
The thread that begins execution at the @code{main} function is called
the @dfn{main thread}. It is implementation defined how functions
beginning threads other than the main thread are designated or typed.
A function so designated, as well as the @code{main} function, is called
a @dfn{thread startup function}. It is implementation defined what
happens if a thread startup function returns. It is implementation
defined what happens to other threads when any thread calls @code{exit}.
@end quotation
@item
@b{[basic.start.init]}
Add after paragraph 4
@quotation
The storage for an object of thread storage duration shall be
statically initialized before the first statement of the thread startup
function. An object of thread storage duration shall not require
dynamic initialization.
@end quotation
@item
@b{[basic.start.term]}
Add after paragraph 3
@quotation
The type of an object with thread storage duration shall not have a
non-trivial destructor, nor shall it be an array type whose elements
(directly or indirectly) have non-trivial destructors.
@end quotation
@item
@b{[basic.stc]}
Add ``thread storage duration'' to the list in paragraph 1.
Change paragraph 2
@quotation
Thread, static, and automatic storage durations are associated with
objects introduced by declarations [@dots{}].
@end quotation
Add @code{__thread} to the list of specifiers in paragraph 3.
@item
@b{[basic.stc.thread]}
New section before @b{[basic.stc.static]}
@quotation
The keyword @code{__thread} applied to a non-local object gives the
object thread storage duration.
A local variable or class data member declared both @code{static}
and @code{__thread} gives the variable or member thread storage
duration.
@end quotation
@item
@b{[basic.stc.static]}
Change paragraph 1
@quotation
All objects that have neither thread storage duration, dynamic
storage duration nor are local [@dots{}].
@end quotation
@item
@b{[dcl.stc]}
Add @code{__thread} to the list in paragraph 1.
Change paragraph 1
@quotation
With the exception of @code{__thread}, at most one
@var{storage-class-specifier} shall appear in a given
@var{decl-specifier-seq}. The @code{__thread} specifier may
be used alone, or immediately following the @code{extern} or
@code{static} specifiers. [@dots{}]
@end quotation
Add after paragraph 5
@quotation
The @code{__thread} specifier can be applied only to the names of objects
and to anonymous unions.
@end quotation
@item
@b{[class.mem]}
Add after paragraph 6
@quotation
Non-@code{static} members shall not be @code{__thread}.
@end quotation
@end itemize
@node Binary constants
@section Binary Constants using the @samp{0b} Prefix
@cindex Binary constants using the @samp{0b} prefix
Integer constants can be written as binary constants, consisting of a
sequence of @samp{0} and @samp{1} digits, prefixed by @samp{0b} or
@samp{0B}. This is particularly useful in environments that operate a
lot on the bit level (like microcontrollers).
The following statements are identical:
@smallexample
i = 42;
i = 0x2a;
i = 052;
i = 0b101010;
@end smallexample
The type of these constants follows the same rules as for octal or
hexadecimal integer constants, so suffixes like @samp{L} or @samp{UL}
can be applied.
@node C++ Extensions
@chapter Extensions to the C++ Language
@cindex extensions, C++ language
@cindex C++ language extensions
The GNU compiler provides these extensions to the C++ language (and you
can also use most of the C language extensions in your C++ programs). If you
want to write code that checks whether these features are available, you can
test for the GNU compiler the same way as for C programs: check for a
predefined macro @code{__GNUC__}. You can also use @code{__GNUG__} to
test specifically for GNU C++ (@pxref{Common Predefined Macros,,
Predefined Macros,@value{fncpp},The GNU C Preprocessor}).
@menu
* C++ Volatiles:: What constitutes an access to a volatile object.
* Restricted Pointers:: C99 restricted pointers and references.
* Vague Linkage:: Where G++ puts inlines, vtables and such.
* C++ Interface:: You can use a single C++ header file for both
declarations and definitions.
* Template Instantiation:: Methods for ensuring that exactly one copy of
each needed template instantiation is emitted.
* Bound member functions:: You can extract a function pointer to the
method denoted by a @samp{->*} or @samp{.*} expression.
* C++ Attributes:: Variable, function, and type attributes for C++ only.
* Function Multiversioning:: Declaring multiple function versions.
* Type Traits:: Compiler support for type traits.
* C++ Concepts:: Improved support for generic programming.
* Deprecated Features:: Things will disappear from G++.
* Backwards Compatibility:: Compatibilities with earlier definitions of C++.
@end menu
@node C++ Volatiles
@section When is a Volatile C++ Object Accessed?
@cindex accessing volatiles
@cindex volatile read
@cindex volatile write
@cindex volatile access
The C++ standard differs from the C standard in its treatment of
volatile objects. It fails to specify what constitutes a volatile
access, except to say that C++ should behave in a similar manner to C
with respect to volatiles, where possible. However, the different
lvalueness of expressions between C and C++ complicate the behavior.
G++ behaves the same as GCC for volatile access, @xref{C
Extensions,,Volatiles}, for a description of GCC's behavior.
The C and C++ language specifications differ when an object is
accessed in a void context:
@smallexample
volatile int *src = @var{somevalue};
*src;
@end smallexample
The C++ standard specifies that such expressions do not undergo lvalue
to rvalue conversion, and that the type of the dereferenced object may
be incomplete. The C++ standard does not specify explicitly that it
is lvalue to rvalue conversion that is responsible for causing an
access. There is reason to believe that it is, because otherwise
certain simple expressions become undefined. However, because it
would surprise most programmers, G++ treats dereferencing a pointer to
volatile object of complete type as GCC would do for an equivalent
type in C@. When the object has incomplete type, G++ issues a
warning; if you wish to force an error, you must force a conversion to
rvalue with, for instance, a static cast.
When using a reference to volatile, G++ does not treat equivalent
expressions as accesses to volatiles, but instead issues a warning that
no volatile is accessed. The rationale for this is that otherwise it
becomes difficult to determine where volatile access occur, and not
possible to ignore the return value from functions returning volatile
references. Again, if you wish to force a read, cast the reference to
an rvalue.
G++ implements the same behavior as GCC does when assigning to a
volatile object---there is no reread of the assigned-to object, the
assigned rvalue is reused. Note that in C++ assignment expressions
are lvalues, and if used as an lvalue, the volatile object is
referred to. For instance, @var{vref} refers to @var{vobj}, as
expected, in the following example:
@smallexample
volatile int vobj;
volatile int &vref = vobj = @var{something};
@end smallexample
@node Restricted Pointers
@section Restricting Pointer Aliasing
@cindex restricted pointers
@cindex restricted references
@cindex restricted this pointer
As with the C front end, G++ understands the C99 feature of restricted pointers,
specified with the @code{__restrict__}, or @code{__restrict} type
qualifier. Because you cannot compile C++ by specifying the @option{-std=c99}
language flag, @code{restrict} is not a keyword in C++.
In addition to allowing restricted pointers, you can specify restricted
references, which indicate that the reference is not aliased in the local
context.
@smallexample
void fn (int *__restrict__ rptr, int &__restrict__ rref)
@{
/* @r{@dots{}} */
@}
@end smallexample
@noindent
In the body of @code{fn}, @var{rptr} points to an unaliased integer and
@var{rref} refers to a (different) unaliased integer.
You may also specify whether a member function's @var{this} pointer is
unaliased by using @code{__restrict__} as a member function qualifier.
@smallexample
void T::fn () __restrict__
@{
/* @r{@dots{}} */
@}
@end smallexample
@noindent
Within the body of @code{T::fn}, @var{this} has the effective
definition @code{T *__restrict__ const this}. Notice that the
interpretation of a @code{__restrict__} member function qualifier is
different to that of @code{const} or @code{volatile} qualifier, in that it
is applied to the pointer rather than the object. This is consistent with
other compilers that implement restricted pointers.
As with all outermost parameter qualifiers, @code{__restrict__} is
ignored in function definition matching. This means you only need to
specify @code{__restrict__} in a function definition, rather than
in a function prototype as well.
@node Vague Linkage
@section Vague Linkage
@cindex vague linkage
There are several constructs in C++ that require space in the object
file but are not clearly tied to a single translation unit. We say that
these constructs have ``vague linkage''. Typically such constructs are
emitted wherever they are needed, though sometimes we can be more
clever.
@table @asis
@item Inline Functions
Inline functions are typically defined in a header file which can be
included in many different compilations. Hopefully they can usually be
inlined, but sometimes an out-of-line copy is necessary, if the address
of the function is taken or if inlining fails. In general, we emit an
out-of-line copy in all translation units where one is needed. As an
exception, we only emit inline virtual functions with the vtable, since
it always requires a copy.
Local static variables and string constants used in an inline function
are also considered to have vague linkage, since they must be shared
between all inlined and out-of-line instances of the function.
@item VTables
@cindex vtable
C++ virtual functions are implemented in most compilers using a lookup
table, known as a vtable. The vtable contains pointers to the virtual
functions provided by a class, and each object of the class contains a
pointer to its vtable (or vtables, in some multiple-inheritance
situations). If the class declares any non-inline, non-pure virtual
functions, the first one is chosen as the ``key method'' for the class,
and the vtable is only emitted in the translation unit where the key
method is defined.
@emph{Note:} If the chosen key method is later defined as inline, the
vtable is still emitted in every translation unit that defines it.
Make sure that any inline virtuals are declared inline in the class
body, even if they are not defined there.
@item @code{type_info} objects
@cindex @code{type_info}
@cindex RTTI
C++ requires information about types to be written out in order to
implement @samp{dynamic_cast}, @samp{typeid} and exception handling.
For polymorphic classes (classes with virtual functions), the @samp{type_info}
object is written out along with the vtable so that @samp{dynamic_cast}
can determine the dynamic type of a class object at run time. For all
other types, we write out the @samp{type_info} object when it is used: when
applying @samp{typeid} to an expression, throwing an object, or
referring to a type in a catch clause or exception specification.
@item Template Instantiations
Most everything in this section also applies to template instantiations,
but there are other options as well.
@xref{Template Instantiation,,Where's the Template?}.
@end table
When used with GNU ld version 2.8 or later on an ELF system such as
GNU/Linux or Solaris 2, or on Microsoft Windows, duplicate copies of
these constructs will be discarded at link time. This is known as
COMDAT support.
On targets that don't support COMDAT, but do support weak symbols, GCC
uses them. This way one copy overrides all the others, but
the unused copies still take up space in the executable.
For targets that do not support either COMDAT or weak symbols,
most entities with vague linkage are emitted as local symbols to
avoid duplicate definition errors from the linker. This does not happen
for local statics in inlines, however, as having multiple copies
almost certainly breaks things.
@xref{C++ Interface,,Declarations and Definitions in One Header}, for
another way to control placement of these constructs.
@node C++ Interface
@section C++ Interface and Implementation Pragmas
@cindex interface and implementation headers, C++
@cindex C++ interface and implementation headers
@cindex pragmas, interface and implementation
@code{#pragma interface} and @code{#pragma implementation} provide the
user with a way of explicitly directing the compiler to emit entities
with vague linkage (and debugging information) in a particular
translation unit.
@emph{Note:} These @code{#pragma}s have been superceded as of GCC 2.7.2
by COMDAT support and the ``key method'' heuristic
mentioned in @ref{Vague Linkage}. Using them can actually cause your
program to grow due to unnecessary out-of-line copies of inline
functions.
@table @code
@item #pragma interface
@itemx #pragma interface "@var{subdir}/@var{objects}.h"
@kindex #pragma interface
Use this directive in @emph{header files} that define object classes, to save
space in most of the object files that use those classes. Normally,
local copies of certain information (backup copies of inline member
functions, debugging information, and the internal tables that implement
virtual functions) must be kept in each object file that includes class
definitions. You can use this pragma to avoid such duplication. When a
header file containing @samp{#pragma interface} is included in a
compilation, this auxiliary information is not generated (unless
the main input source file itself uses @samp{#pragma implementation}).
Instead, the object files contain references to be resolved at link
time.
The second form of this directive is useful for the case where you have
multiple headers with the same name in different directories. If you
use this form, you must specify the same string to @samp{#pragma
implementation}.
@item #pragma implementation
@itemx #pragma implementation "@var{objects}.h"
@kindex #pragma implementation
Use this pragma in a @emph{main input file}, when you want full output from
included header files to be generated (and made globally visible). The
included header file, in turn, should use @samp{#pragma interface}.
Backup copies of inline member functions, debugging information, and the
internal tables used to implement virtual functions are all generated in
implementation files.
@cindex implied @code{#pragma implementation}
@cindex @code{#pragma implementation}, implied
@cindex naming convention, implementation headers
If you use @samp{#pragma implementation} with no argument, it applies to
an include file with the same basename@footnote{A file's @dfn{basename}
is the name stripped of all leading path information and of trailing
suffixes, such as @samp{.h} or @samp{.C} or @samp{.cc}.} as your source
file. For example, in @file{allclass.cc}, giving just
@samp{#pragma implementation}
by itself is equivalent to @samp{#pragma implementation "allclass.h"}.
Use the string argument if you want a single implementation file to
include code from multiple header files. (You must also use
@samp{#include} to include the header file; @samp{#pragma
implementation} only specifies how to use the file---it doesn't actually
include it.)
There is no way to split up the contents of a single header file into
multiple implementation files.
@end table
@cindex inlining and C++ pragmas
@cindex C++ pragmas, effect on inlining
@cindex pragmas in C++, effect on inlining
@samp{#pragma implementation} and @samp{#pragma interface} also have an
effect on function inlining.
If you define a class in a header file marked with @samp{#pragma
interface}, the effect on an inline function defined in that class is
similar to an explicit @code{extern} declaration---the compiler emits
no code at all to define an independent version of the function. Its
definition is used only for inlining with its callers.
@opindex fno-implement-inlines
Conversely, when you include the same header file in a main source file
that declares it as @samp{#pragma implementation}, the compiler emits
code for the function itself; this defines a version of the function
that can be found via pointers (or by callers compiled without
inlining). If all calls to the function can be inlined, you can avoid
emitting the function by compiling with @option{-fno-implement-inlines}.
If any calls are not inlined, you will get linker errors.
@node Template Instantiation
@section Where's the Template?
@cindex template instantiation
C++ templates were the first language feature to require more
intelligence from the environment than was traditionally found on a UNIX
system. Somehow the compiler and linker have to make sure that each
template instance occurs exactly once in the executable if it is needed,
and not at all otherwise. There are two basic approaches to this
problem, which are referred to as the Borland model and the Cfront model.
@table @asis
@item Borland model
Borland C++ solved the template instantiation problem by adding the code
equivalent of common blocks to their linker; the compiler emits template
instances in each translation unit that uses them, and the linker
collapses them together. The advantage of this model is that the linker
only has to consider the object files themselves; there is no external
complexity to worry about. The disadvantage is that compilation time
is increased because the template code is being compiled repeatedly.
Code written for this model tends to include definitions of all
templates in the header file, since they must be seen to be
instantiated.
@item Cfront model
The AT&T C++ translator, Cfront, solved the template instantiation
problem by creating the notion of a template repository, an
automatically maintained place where template instances are stored. A
more modern version of the repository works as follows: As individual
object files are built, the compiler places any template definitions and
instantiations encountered in the repository. At link time, the link
wrapper adds in the objects in the repository and compiles any needed
instances that were not previously emitted. The advantages of this
model are more optimal compilation speed and the ability to use the
system linker; to implement the Borland model a compiler vendor also
needs to replace the linker. The disadvantages are vastly increased
complexity, and thus potential for error; for some code this can be
just as transparent, but in practice it can been very difficult to build
multiple programs in one directory and one program in multiple
directories. Code written for this model tends to separate definitions
of non-inline member templates into a separate file, which should be
compiled separately.
@end table
G++ implements the Borland model on targets where the linker supports it,
including ELF targets (such as GNU/Linux), Mac OS X and Microsoft Windows.
Otherwise G++ implements neither automatic model.
You have the following options for dealing with template instantiations:
@enumerate
@item
Do nothing. Code written for the Borland model works fine, but
each translation unit contains instances of each of the templates it
uses. The duplicate instances will be discarded by the linker, but in
a large program, this can lead to an unacceptable amount of code
duplication in object files or shared libraries.
Duplicate instances of a template can be avoided by defining an explicit
instantiation in one object file, and preventing the compiler from doing
implicit instantiations in any other object files by using an explicit
instantiation declaration, using the @code{extern template} syntax:
@smallexample
extern template int max (int, int);
@end smallexample
This syntax is defined in the C++ 2011 standard, but has been supported by
G++ and other compilers since well before 2011.
Explicit instantiations can be used for the largest or most frequently
duplicated instances, without having to know exactly which other instances
are used in the rest of the program. You can scatter the explicit
instantiations throughout your program, perhaps putting them in the
translation units where the instances are used or the translation units
that define the templates themselves; you can put all of the explicit
instantiations you need into one big file; or you can create small files
like
@smallexample
#include "Foo.h"
#include "Foo.cc"
template class Foo<int>;
template ostream& operator <<
(ostream&, const Foo<int>&);
@end smallexample
@noindent
for each of the instances you need, and create a template instantiation
library from those.
This is the simplest option, but also offers flexibility and
fine-grained control when necessary. It is also the most portable
alternative and programs using this approach will work with most modern
compilers.
@item
@opindex fno-implicit-templates
Compile your code with @option{-fno-implicit-templates} to disable the
implicit generation of template instances, and explicitly instantiate
all the ones you use. This approach requires more knowledge of exactly
which instances you need than do the others, but it's less
mysterious and allows greater control if you want to ensure that only
the intended instances are used.
If you are using Cfront-model code, you can probably get away with not
using @option{-fno-implicit-templates} when compiling files that don't
@samp{#include} the member template definitions.
If you use one big file to do the instantiations, you may want to
compile it without @option{-fno-implicit-templates} so you get all of the
instances required by your explicit instantiations (but not by any
other files) without having to specify them as well.
In addition to forward declaration of explicit instantiations
(with @code{extern}), G++ has extended the template instantiation
syntax to support instantiation of the compiler support data for a
template class (i.e.@: the vtable) without instantiating any of its
members (with @code{inline}), and instantiation of only the static data
members of a template class, without the support data or member
functions (with @code{static}):
@smallexample
inline template class Foo<int>;
static template class Foo<int>;
@end smallexample
@end enumerate
@node Bound member functions
@section Extracting the Function Pointer from a Bound Pointer to Member Function
@cindex pmf
@cindex pointer to member function
@cindex bound pointer to member function
In C++, pointer to member functions (PMFs) are implemented using a wide
pointer of sorts to handle all the possible call mechanisms; the PMF
needs to store information about how to adjust the @samp{this} pointer,
and if the function pointed to is virtual, where to find the vtable, and
where in the vtable to look for the member function. If you are using
PMFs in an inner loop, you should really reconsider that decision. If
that is not an option, you can extract the pointer to the function that
would be called for a given object/PMF pair and call it directly inside
the inner loop, to save a bit of time.
Note that you still pay the penalty for the call through a
function pointer; on most modern architectures, such a call defeats the
branch prediction features of the CPU@. This is also true of normal
virtual function calls.
The syntax for this extension is
@smallexample
extern A a;
extern int (A::*fp)();
typedef int (*fptr)(A *);
fptr p = (fptr)(a.*fp);
@end smallexample
For PMF constants (i.e.@: expressions of the form @samp{&Klasse::Member}),
no object is needed to obtain the address of the function. They can be
converted to function pointers directly:
@smallexample
fptr p1 = (fptr)(&A::foo);
@end smallexample
@opindex Wno-pmf-conversions
You must specify @option{-Wno-pmf-conversions} to use this extension.
@node C++ Attributes
@section C++-Specific Variable, Function, and Type Attributes
Some attributes only make sense for C++ programs.
@table @code
@item abi_tag ("@var{tag}", ...)
@cindex @code{abi_tag} function attribute
@cindex @code{abi_tag} variable attribute
@cindex @code{abi_tag} type attribute
The @code{abi_tag} attribute can be applied to a function, variable, or class
declaration. It modifies the mangled name of the entity to
incorporate the tag name, in order to distinguish the function or
class from an earlier version with a different ABI; perhaps the class
has changed size, or the function has a different return type that is
not encoded in the mangled name.
The attribute can also be applied to an inline namespace, but does not
affect the mangled name of the namespace; in this case it is only used
for @option{-Wabi-tag} warnings and automatic tagging of functions and
variables. Tagging inline namespaces is generally preferable to
tagging individual declarations, but the latter is sometimes
necessary, such as when only certain members of a class need to be
tagged.
The argument can be a list of strings of arbitrary length. The
strings are sorted on output, so the order of the list is
unimportant.
A redeclaration of an entity must not add new ABI tags,
since doing so would change the mangled name.
The ABI tags apply to a name, so all instantiations and
specializations of a template have the same tags. The attribute will
be ignored if applied to an explicit specialization or instantiation.
The @option{-Wabi-tag} flag enables a warning about a class which does
not have all the ABI tags used by its subobjects and virtual functions; for users with code
that needs to coexist with an earlier ABI, using this option can help
to find all affected types that need to be tagged.
When a type involving an ABI tag is used as the type of a variable or
return type of a function where that tag is not already present in the
signature of the function, the tag is automatically applied to the
variable or function. @option{-Wabi-tag} also warns about this
situation; this warning can be avoided by explicitly tagging the
variable or function or moving it into a tagged inline namespace.
@item init_priority (@var{priority})
@cindex @code{init_priority} variable attribute
In Standard C++, objects defined at namespace scope are guaranteed to be
initialized in an order in strict accordance with that of their definitions
@emph{in a given translation unit}. No guarantee is made for initializations
across translation units. However, GNU C++ allows users to control the
order of initialization of objects defined at namespace scope with the
@code{init_priority} attribute by specifying a relative @var{priority},
a constant integral expression currently bounded between 101 and 65535
inclusive. Lower numbers indicate a higher priority.
In the following example, @code{A} would normally be created before
@code{B}, but the @code{init_priority} attribute reverses that order:
@smallexample
Some_Class A __attribute__ ((init_priority (2000)));
Some_Class B __attribute__ ((init_priority (543)));
@end smallexample
@noindent
Note that the particular values of @var{priority} do not matter; only their
relative ordering.
@item warn_unused
@cindex @code{warn_unused} type attribute
For C++ types with non-trivial constructors and/or destructors it is
impossible for the compiler to determine whether a variable of this
type is truly unused if it is not referenced. This type attribute
informs the compiler that variables of this type should be warned
about if they appear to be unused, just like variables of fundamental
types.
This attribute is appropriate for types which just represent a value,
such as @code{std::string}; it is not appropriate for types which
control a resource, such as @code{std::lock_guard}.
This attribute is also accepted in C, but it is unnecessary because C
does not have constructors or destructors.
@end table
@node Function Multiversioning
@section Function Multiversioning
@cindex function versions
With the GNU C++ front end, for x86 targets, you may specify multiple
versions of a function, where each function is specialized for a
specific target feature. At runtime, the appropriate version of the
function is automatically executed depending on the characteristics of
the execution platform. Here is an example.
@smallexample
__attribute__ ((target ("default")))
int foo ()
@{
// The default version of foo.
return 0;
@}
__attribute__ ((target ("sse4.2")))
int foo ()
@{
// foo version for SSE4.2
return 1;
@}
__attribute__ ((target ("arch=atom")))
int foo ()
@{
// foo version for the Intel ATOM processor
return 2;
@}
__attribute__ ((target ("arch=amdfam10")))
int foo ()
@{
// foo version for the AMD Family 0x10 processors.
return 3;
@}
int main ()
@{
int (*p)() = &foo;
assert ((*p) () == foo ());
return 0;
@}
@end smallexample
In the above example, four versions of function foo are created. The
first version of foo with the target attribute "default" is the default
version. This version gets executed when no other target specific
version qualifies for execution on a particular platform. A new version
of foo is created by using the same function signature but with a
different target string. Function foo is called or a pointer to it is
taken just like a regular function. GCC takes care of doing the
dispatching to call the right version at runtime. Refer to the
@uref{https://gcc.gnu.org/wiki/FunctionMultiVersioning, GCC wiki on
Function Multiversioning} for more details.
@node Type Traits
@section Type Traits
The C++ front end implements syntactic extensions that allow
compile-time determination of
various characteristics of a type (or of a
pair of types).
@table @code
@item __has_nothrow_assign (type)
If @code{type} is @code{const}-qualified or is a reference type then
the trait is @code{false}. Otherwise if @code{__has_trivial_assign (type)}
is @code{true} then the trait is @code{true}, else if @code{type} is
a cv-qualified class or union type with copy assignment operators that are
known not to throw an exception then the trait is @code{true}, else it is
@code{false}.
Requires: @code{type} shall be a complete type, (possibly cv-qualified)
@code{void}, or an array of unknown bound.
@item __has_nothrow_copy (type)
If @code{__has_trivial_copy (type)} is @code{true} then the trait is
@code{true}, else if @code{type} is a cv-qualified class or union type
with copy constructors that are known not to throw an exception then
the trait is @code{true}, else it is @code{false}.
Requires: @code{type} shall be a complete type, (possibly cv-qualified)
@code{void}, or an array of unknown bound.
@item __has_nothrow_constructor (type)
If @code{__has_trivial_constructor (type)} is @code{true} then the trait
is @code{true}, else if @code{type} is a cv class or union type (or array
thereof) with a default constructor that is known not to throw an
exception then the trait is @code{true}, else it is @code{false}.
Requires: @code{type} shall be a complete type, (possibly cv-qualified)
@code{void}, or an array of unknown bound.
@item __has_trivial_assign (type)
If @code{type} is @code{const}- qualified or is a reference type then
the trait is @code{false}. Otherwise if @code{__is_trivial (type)} is
@code{true} then the trait is @code{true}, else if @code{type} is
a cv-qualified class or union type with a trivial copy assignment
([class.copy]) then the trait is @code{true}, else it is @code{false}.
Requires: @code{type} shall be a complete type, (possibly cv-qualified)
@code{void}, or an array of unknown bound.
@item __has_trivial_copy (type)
If @code{__is_trivial (type)} is @code{true} or @code{type} is a reference
type then the trait is @code{true}, else if @code{type} is a cv class
or union type with a trivial copy constructor ([class.copy]) then the trait
is @code{true}, else it is @code{false}. Requires: @code{type} shall be
a complete type, (possibly cv-qualified) @code{void}, or an array of unknown
bound.
@item __has_trivial_constructor (type)
If @code{__is_trivial (type)} is @code{true} then the trait is @code{true},
else if @code{type} is a cv-qualified class or union type (or array thereof)
with a trivial default constructor ([class.ctor]) then the trait is @code{true},
else it is @code{false}.
Requires: @code{type} shall be a complete type, (possibly cv-qualified)
@code{void}, or an array of unknown bound.
@item __has_trivial_destructor (type)
If @code{__is_trivial (type)} is @code{true} or @code{type} is a reference type
then the trait is @code{true}, else if @code{type} is a cv class or union
type (or array thereof) with a trivial destructor ([class.dtor]) then
the trait is @code{true}, else it is @code{false}.
Requires: @code{type} shall be a complete type, (possibly cv-qualified)
@code{void}, or an array of unknown bound.
@item __has_virtual_destructor (type)
If @code{type} is a class type with a virtual destructor
([class.dtor]) then the trait is @code{true}, else it is @code{false}.
Requires: @code{type} shall be a complete type, (possibly cv-qualified)
@code{void}, or an array of unknown bound.
@item __is_abstract (type)
If @code{type} is an abstract class ([class.abstract]) then the trait
is @code{true}, else it is @code{false}.
Requires: @code{type} shall be a complete type, (possibly cv-qualified)
@code{void}, or an array of unknown bound.
@item __is_base_of (base_type, derived_type)
If @code{base_type} is a base class of @code{derived_type}
([class.derived]) then the trait is @code{true}, otherwise it is @code{false}.
Top-level cv-qualifications of @code{base_type} and
@code{derived_type} are ignored. For the purposes of this trait, a
class type is considered is own base.
Requires: if @code{__is_class (base_type)} and @code{__is_class (derived_type)}
are @code{true} and @code{base_type} and @code{derived_type} are not the same
type (disregarding cv-qualifiers), @code{derived_type} shall be a complete
type. A diagnostic is produced if this requirement is not met.
@item __is_class (type)
If @code{type} is a cv-qualified class type, and not a union type
([basic.compound]) the trait is @code{true}, else it is @code{false}.
@item __is_empty (type)
If @code{__is_class (type)} is @code{false} then the trait is @code{false}.
Otherwise @code{type} is considered empty if and only if: @code{type}
has no non-static data members, or all non-static data members, if
any, are bit-fields of length 0, and @code{type} has no virtual
members, and @code{type} has no virtual base classes, and @code{type}
has no base classes @code{base_type} for which
@code{__is_empty (base_type)} is @code{false}.
Requires: @code{type} shall be a complete type, (possibly cv-qualified)
@code{void}, or an array of unknown bound.
@item __is_enum (type)
If @code{type} is a cv enumeration type ([basic.compound]) the trait is
@code{true}, else it is @code{false}.
@item __is_literal_type (type)
If @code{type} is a literal type ([basic.types]) the trait is
@code{true}, else it is @code{false}.
Requires: @code{type} shall be a complete type, (possibly cv-qualified)
@code{void}, or an array of unknown bound.
@item __is_pod (type)
If @code{type} is a cv POD type ([basic.types]) then the trait is @code{true},
else it is @code{false}.
Requires: @code{type} shall be a complete type, (possibly cv-qualified)
@code{void}, or an array of unknown bound.
@item __is_polymorphic (type)
If @code{type} is a polymorphic class ([class.virtual]) then the trait
is @code{true}, else it is @code{false}.
Requires: @code{type} shall be a complete type, (possibly cv-qualified)
@code{void}, or an array of unknown bound.
@item __is_standard_layout (type)
If @code{type} is a standard-layout type ([basic.types]) the trait is
@code{true}, else it is @code{false}.
Requires: @code{type} shall be a complete type, (possibly cv-qualified)
@code{void}, or an array of unknown bound.
@item __is_trivial (type)
If @code{type} is a trivial type ([basic.types]) the trait is
@code{true}, else it is @code{false}.
Requires: @code{type} shall be a complete type, (possibly cv-qualified)
@code{void}, or an array of unknown bound.
@item __is_union (type)
If @code{type} is a cv union type ([basic.compound]) the trait is
@code{true}, else it is @code{false}.
@item __underlying_type (type)
The underlying type of @code{type}.
Requires: @code{type} shall be an enumeration type ([dcl.enum]).
@item __integer_pack (length)
When used as the pattern of a pack expansion within a template
definition, expands to a template argument pack containing integers
from @code{0} to @code{length-1}. This is provided for efficient
implementation of @code{std::make_integer_sequence}.
@end table
@node C++ Concepts
@section C++ Concepts
C++ concepts provide much-improved support for generic programming. In
particular, they allow the specification of constraints on template arguments.
The constraints are used to extend the usual overloading and partial
specialization capabilities of the language, allowing generic data structures
and algorithms to be ``refined'' based on their properties rather than their
type names.
The following keywords are reserved for concepts.
@table @code
@item assumes
States an expression as an assumption, and if possible, verifies that the
assumption is valid. For example, @code{assume(n > 0)}.
@item axiom
Introduces an axiom definition. Axioms introduce requirements on values.
@item forall
Introduces a universally quantified object in an axiom. For example,
@code{forall (int n) n + 0 == n}).
@item concept
Introduces a concept definition. Concepts are sets of syntactic and semantic
requirements on types and their values.
@item requires
Introduces constraints on template arguments or requirements for a member
function of a class template.
@end table
The front end also exposes a number of internal mechanism that can be used
to simplify the writing of type traits. Note that some of these traits are
likely to be removed in the future.
@table @code
@item __is_same (type1, type2)
A binary type trait: @code{true} whenever the type arguments are the same.
@end table
@node Deprecated Features
@section Deprecated Features
In the past, the GNU C++ compiler was extended to experiment with new
features, at a time when the C++ language was still evolving. Now that
the C++ standard is complete, some of those features are superseded by
superior alternatives. Using the old features might cause a warning in
some cases that the feature will be dropped in the future. In other
cases, the feature might be gone already.
G++ allows a virtual function returning @samp{void *} to be overridden
by one returning a different pointer type. This extension to the
covariant return type rules is now deprecated and will be removed from a
future version.
The use of default arguments in function pointers, function typedefs
and other places where they are not permitted by the standard is
deprecated and will be removed from a future version of G++.
G++ allows floating-point literals to appear in integral constant expressions,
e.g.@: @samp{ enum E @{ e = int(2.2 * 3.7) @} }
This extension is deprecated and will be removed from a future version.
G++ allows static data members of const floating-point type to be declared
with an initializer in a class definition. The standard only allows
initializers for static members of const integral types and const
enumeration types so this extension has been deprecated and will be removed
from a future version.
G++ allows attributes to follow a parenthesized direct initializer,
e.g.@: @samp{ int f (0) __attribute__ ((something)); } This extension
has been ignored since G++ 3.3 and is deprecated.
G++ allows anonymous structs and unions to have members that are not
public non-static data members (i.e.@: fields). These extensions are
deprecated.
@node Backwards Compatibility
@section Backwards Compatibility
@cindex Backwards Compatibility
@cindex ARM [Annotated C++ Reference Manual]
Now that there is a definitive ISO standard C++, G++ has a specification
to adhere to. The C++ language evolved over time, and features that
used to be acceptable in previous drafts of the standard, such as the ARM
[Annotated C++ Reference Manual], are no longer accepted. In order to allow
compilation of C++ written to such drafts, G++ contains some backwards
compatibilities. @emph{All such backwards compatibility features are
liable to disappear in future versions of G++.} They should be considered
deprecated. @xref{Deprecated Features}.
@table @code
@item Implicit C language
Old C system header files did not contain an @code{extern "C" @{@dots{}@}}
scope to set the language. On such systems, all system header files are
implicitly scoped inside a C language scope. Such headers must
correctly prototype function argument types, there is no leeway for
@code{()} to indicate an unspecified set of arguments.
@end table
@c LocalWords: emph deftypefn builtin ARCv2EM SIMD builtins msimd
@c LocalWords: typedef v4si v8hi DMA dma vdiwr vdowr
|