1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
|
.. Copyright (C) 2014-2022 Free Software Foundation, Inc.
Originally contributed by David Malcolm <dmalcolm@redhat.com>
This is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see
<https://www.gnu.org/licenses/>.
.. default-domain:: cpp
Tutorial part 4: Adding JIT-compilation to a toy interpreter
------------------------------------------------------------
In this example we construct a "toy" interpreter, and add JIT-compilation
to it.
Our toy interpreter
*******************
It's a stack-based interpreter, and is intended as a (very simple) example
of the kind of bytecode interpreter seen in dynamic languages such as
Python, Ruby etc.
For the sake of simplicity, our toy virtual machine is very limited:
* The only data type is `int`
* It can only work on one function at a time (so that the only
function call that can be made is to recurse).
* Functions can only take one parameter.
* Functions have a stack of `int` values.
* We'll implement function call within the interpreter by calling a
function in our implementation, rather than implementing our own
frame stack.
* The parser is only good enough to get the examples to work.
Naturally, a real interpreter would be much more complicated that this.
The following operations are supported:
====================== ======================== =============== ==============
Operation Meaning Old Stack New Stack
====================== ======================== =============== ==============
DUP Duplicate top of stack. ``[..., x]`` ``[..., x, x]``
ROT Swap top two elements ``[..., x, y]`` ``[..., y, x]``
of stack.
BINARY_ADD Add the top two elements ``[..., x, y]`` ``[..., (x+y)]``
on the stack.
BINARY_SUBTRACT Likewise, but subtract. ``[..., x, y]`` ``[..., (x-y)]``
BINARY_MULT Likewise, but multiply. ``[..., x, y]`` ``[..., (x*y)]``
BINARY_COMPARE_LT Compare the top two ``[..., x, y]`` ``[..., (x<y)]``
elements on the stack
and push a nonzero/zero
if (x<y).
RECURSE Recurse, passing the top ``[..., x]`` ``[..., fn(x)]``
of the stack, and
popping the result.
RETURN Return the top of the ``[x]`` ``[]``
stack.
PUSH_CONST `arg` Push an int const. ``[...]`` ``[..., arg]``
JUMP_ABS_IF_TRUE `arg` Pop; if top of stack was ``[..., x]`` ``[...]``
nonzero, jump to
``arg``.
====================== ======================== =============== ==============
Programs can be interpreted, disassembled, and compiled to machine code.
The interpreter reads ``.toy`` scripts. Here's what a simple recursive
factorial program looks like, the script ``factorial.toy``.
The parser ignores lines beginning with a `#`.
.. literalinclude:: ../../examples/tut04-toyvm/factorial.toy
:lines: 1-
:language: c
The interpreter is a simple infinite loop with a big ``switch`` statement
based on what the next opcode is:
.. literalinclude:: ../../examples/tut04-toyvm/toyvm.cc
:start-after: /* Execute the given function. */
:end-before: /* JIT compilation. */
:language: c++
Compiling to machine code
*************************
We want to generate machine code that can be cast to this type and
then directly executed in-process:
.. literalinclude:: ../../examples/tut04-toyvm/toyvm.cc
:start-after: /* Functions are compiled to this function ptr type. */
:end-before: enum opcode
:language: c++
Our compiler isn't very sophisticated; it takes the implementation of
each opcode above, and maps it directly to the operations supported by
the libgccjit API.
How should we handle the stack? In theory we could calculate what the
stack depth will be at each opcode, and optimize away the stack
manipulation "by hand". We'll see below that libgccjit is able to do
this for us, so we'll implement stack manipulation
in a direct way, by creating a ``stack`` array and ``stack_depth``
variables, local within the generated function, equivalent to this C code:
.. code-block:: c
int stack_depth;
int stack[MAX_STACK_DEPTH];
We'll also have local variables ``x`` and ``y`` for use when implementing
the opcodes, equivalent to this:
.. code-block:: c
int x;
int y;
This means our compiler has the following state:
.. literalinclude:: ../../examples/tut04-toyvm/toyvm.cc
:start-after: /* State. */
:end-before: };
:language: c++
Setting things up
*****************
First we create our types:
.. literalinclude:: ../../examples/tut04-toyvm/toyvm.cc
:start-after: /* Create types. */
:end-before: /* The constant value 1. */
:language: c++
along with extracting a useful `int` constant:
.. literalinclude:: ../../examples/tut04-toyvm/toyvm.cc
:start-after: /* The constant value 1. */
:end-before: /* Create locations. */
:language: c++
We'll implement push and pop in terms of the ``stack`` array and
``stack_depth``. Here are helper functions for adding statements to
a block, implementing pushing and popping values:
.. literalinclude:: ../../examples/tut04-toyvm/toyvm.cc
:start-after: /* Stack manipulation. */
:end-before: /* Create the context. */
:language: c++
We will support single-stepping through the generated code in the
debugger, so we need to create :type:`gccjit::location` instances, one
per operation in the source code. These will reference the lines of
e.g. ``factorial.toy``.
.. literalinclude:: ../../examples/tut04-toyvm/toyvm.cc
:start-after: /* Create locations. */
:end-before: /* Creating the function. */
:language: c++
Let's create the function itself. As usual, we create its parameter
first, then use the parameter to create the function:
.. literalinclude:: ../../examples/tut04-toyvm/toyvm.cc
:start-after: /* Creating the function. */
:end-before: /* Create stack lvalues. */
:language: c++
We create the locals within the function.
.. literalinclude:: ../../examples/tut04-toyvm/toyvm.cc
:start-after: /* Create stack lvalues. */
:end-before: /* 1st pass: create blocks, one per opcode.
:language: c++
Populating the function
***********************
There's some one-time initialization, and the API treats the first block
you create as the entrypoint of the function, so we need to create that
block first:
.. literalinclude:: ../../examples/tut04-toyvm/toyvm.cc
:start-after: first. */
:end-before: /* Create a block per operation. */
:language: c++
We can now create blocks for each of the operations. Most of these will
be consolidated into larger blocks when the optimizer runs.
.. literalinclude:: ../../examples/tut04-toyvm/toyvm.cc
:start-after: /* Create a block per operation. */
:end-before: /* Populate the initial block. */
:language: c++
Now that we have a block it can jump to when it's done, we can populate
the initial block:
.. literalinclude:: ../../examples/tut04-toyvm/toyvm.cc
:start-after: /* Populate the initial block. */
:end-before: /* 2nd pass: fill in instructions. */
:language: c++
We can now populate the blocks for the individual operations. We loop
through them, adding instructions to their blocks:
.. literalinclude:: ../../examples/tut04-toyvm/toyvm.cc
:start-after: /* 2nd pass: fill in instructions. */
:end-before: /* Helper macros. */
:language: c++
We're going to have another big ``switch`` statement for implementing
the opcodes, this time for compiling them, rather than interpreting
them. It's helpful to have macros for implementing push and pop, so that
we can make the ``switch`` statement that's coming up look as much as
possible like the one above within the interpreter:
.. literalinclude:: ../../examples/tut04-toyvm/toyvm.cc
:start-after: /* Helper macros. */
:end-before: block.add_comment
:language: c++
.. note::
A particularly clever implementation would have an *identical*
``switch`` statement shared by the interpreter and the compiler, with
some preprocessor "magic". We're not doing that here, for the sake
of simplicity.
When I first implemented this compiler, I accidentally missed an edit
when copying and pasting the ``Y_EQUALS_POP`` macro, so that popping the
stack into ``y`` instead erroneously assigned it to ``x``, leaving ``y``
uninitialized.
To track this kind of thing down, we can use
:func:`gccjit::block::add_comment` to add descriptive comments
to the internal representation. This is invaluable when looking through
the generated IR for, say ``factorial``:
.. literalinclude:: ../../examples/tut04-toyvm/toyvm.cc
:start-after: PUSH_RVALUE (y)
:end-before: /* Handle the individual opcodes. */
:language: c++
We can now write the big ``switch`` statement that implements the
individual opcodes, populating the relevant block with statements:
.. literalinclude:: ../../examples/tut04-toyvm/toyvm.cc
:start-after: /* Handle the individual opcodes. */
:end-before: /* Go to the next block. */
:language: c++
Every block must be terminated, via a call to one of the
``gccjit::block::end_with_`` entrypoints. This has been done for two
of the opcodes, but we need to do it for the other ones, by jumping
to the next block.
.. literalinclude:: ../../examples/tut04-toyvm/toyvm.cc
:start-after: /* Go to the next block. */
:end-before: /* end of loop on PC locations. */
:language: c++
This is analogous to simply incrementing the program counter.
Verifying the control flow graph
********************************
Having finished looping over the blocks, the context is complete.
As before, we can verify that the control flow and statements are sane by
using :func:`gccjit::function::dump_to_dot`:
.. code-block:: c++
fn.dump_to_dot ("/tmp/factorial.dot");
and viewing the result. Note how the label names, comments, and
variable names show up in the dump, to make it easier to spot
errors in our compiler.
.. figure:: ../../intro/factorial.png
:alt: image of a control flow graph
Compiling the context
*********************
Having finished looping over the blocks and populating them with
statements, the context is complete.
We can now compile it, extract machine code from the result, and
run it:
.. literalinclude:: ../../examples/tut04-toyvm/toyvm.cc
:start-after: /* Wrapper around a gcc_jit_result *. */
:end-before: /* Functions are compiled to this function ptr type. */
:language: c++
.. literalinclude:: ../../examples/tut04-toyvm/toyvm.cc
:start-after: /* JIT-compilation. */
:end-before: return 0;
:language: c++
Single-stepping through the generated code
******************************************
It's possible to debug the generated code. To do this we need to both:
* Set up source code locations for our statements, so that we can
meaningfully step through the code. We did this above by
calling :func:`gccjit::context::new_location` and using the
results.
* Enable the generation of debugging information, by setting
:c:macro:`GCC_JIT_BOOL_OPTION_DEBUGINFO` on the
:type:`gccjit::context` via
:func:`gccjit::context::set_bool_option`:
.. code-block:: c++
ctxt.set_bool_option (GCC_JIT_BOOL_OPTION_DEBUGINFO, 1);
Having done this, we can put a breakpoint on the generated function:
.. code-block:: console
$ gdb --args ./toyvm factorial.toy 10
(gdb) break factorial
Function "factorial" not defined.
Make breakpoint pending on future shared library load? (y or [n]) y
Breakpoint 1 (factorial) pending.
(gdb) run
Breakpoint 1, factorial (arg=10) at factorial.toy:14
14 DUP
We've set up location information, which references ``factorial.toy``.
This allows us to use e.g. ``list`` to see where we are in the script:
.. code-block:: console
(gdb) list
9
10 # Initial state:
11 # stack: [arg]
12
13 # 0:
14 DUP
15 # stack: [arg, arg]
16
17 # 1:
18 PUSH_CONST 2
and to step through the function, examining the data:
.. code-block:: console
(gdb) n
18 PUSH_CONST 2
(gdb) n
22 BINARY_COMPARE_LT
(gdb) print stack
$5 = {10, 10, 2, 0, -7152, 32767, 0, 0}
(gdb) print stack_depth
$6 = 3
You'll see that the parts of the ``stack`` array that haven't been
touched yet are uninitialized.
.. note::
Turning on optimizations may lead to unpredictable results when
stepping through the generated code: the execution may appear to
"jump around" the source code. This is analogous to turning up the
optimization level in a regular compiler.
Examining the generated code
****************************
How good is the optimized code?
We can turn up optimizations, by calling
:cpp:func:`gccjit::context::set_int_option` with
:c:macro:`GCC_JIT_INT_OPTION_OPTIMIZATION_LEVEL`:
.. code-block:: c++
ctxt.set_int_option (GCC_JIT_INT_OPTION_OPTIMIZATION_LEVEL, 3);
One of GCC's internal representations is called "gimple". A dump of the
initial gimple representation of the code can be seen by setting:
.. code-block:: c++
ctxt.set_bool_option (GCC_JIT_BOOL_OPTION_DUMP_INITIAL_GIMPLE, 1);
With optimization on and source locations displayed, this gives:
.. We'll use "c" for gimple dumps
.. code-block:: c
factorial (signed int arg)
{
<unnamed type> D.80;
signed int D.81;
signed int D.82;
signed int D.83;
signed int D.84;
signed int D.85;
signed int y;
signed int x;
signed int stack_depth;
signed int stack[8];
try
{
initial:
stack_depth = 0;
stack[stack_depth] = arg;
stack_depth = stack_depth + 1;
goto instr0;
instr0:
/* DUP */:
stack_depth = stack_depth + -1;
x = stack[stack_depth];
stack[stack_depth] = x;
stack_depth = stack_depth + 1;
stack[stack_depth] = x;
stack_depth = stack_depth + 1;
goto instr1;
instr1:
/* PUSH_CONST */:
stack[stack_depth] = 2;
stack_depth = stack_depth + 1;
goto instr2;
/* etc */
You can see the generated machine code in assembly form via:
.. code-block:: c++
ctxt.set_bool_option (GCC_JIT_BOOL_OPTION_DUMP_GENERATED_CODE, 1);
result = ctxt.compile ();
which shows that (on this x86_64 box) the compiler has unrolled the loop
and is using MMX instructions to perform several multiplications
simultaneously:
.. code-block:: gas
.file "fake.c"
.text
.Ltext0:
.p2align 4,,15
.globl factorial
.type factorial, @function
factorial:
.LFB0:
.file 1 "factorial.toy"
.loc 1 14 0
.cfi_startproc
.LVL0:
.L2:
.loc 1 26 0
cmpl $1, %edi
jle .L13
leal -1(%rdi), %edx
movl %edx, %ecx
shrl $2, %ecx
leal 0(,%rcx,4), %esi
testl %esi, %esi
je .L14
cmpl $9, %edx
jbe .L14
leal -2(%rdi), %eax
movl %eax, -16(%rsp)
leal -3(%rdi), %eax
movd -16(%rsp), %xmm0
movl %edi, -16(%rsp)
movl %eax, -12(%rsp)
movd -16(%rsp), %xmm1
xorl %eax, %eax
movl %edx, -16(%rsp)
movd -12(%rsp), %xmm4
movd -16(%rsp), %xmm6
punpckldq %xmm4, %xmm0
movdqa .LC1(%rip), %xmm4
punpckldq %xmm6, %xmm1
punpcklqdq %xmm0, %xmm1
movdqa .LC0(%rip), %xmm0
jmp .L5
# etc - edited for brevity
This is clearly overkill for a function that will likely overflow the
``int`` type before the vectorization is worthwhile - but then again, this
is a toy example.
Turning down the optimization level to 2:
.. code-block:: c++
ctxt.set_int_option (GCC_JIT_INT_OPTION_OPTIMIZATION_LEVEL, 2);
yields this code, which is simple enough to quote in its entirety:
.. code-block:: gas
.file "fake.c"
.text
.p2align 4,,15
.globl factorial
.type factorial, @function
factorial:
.LFB0:
.cfi_startproc
.L2:
cmpl $1, %edi
jle .L8
movl $1, %edx
jmp .L4
.p2align 4,,10
.p2align 3
.L6:
movl %eax, %edi
.L4:
.L5:
leal -1(%rdi), %eax
imull %edi, %edx
cmpl $1, %eax
jne .L6
.L3:
.L7:
imull %edx, %eax
ret
.L8:
movl %edi, %eax
movl $1, %edx
jmp .L7
.cfi_endproc
.LFE0:
.size factorial, .-factorial
.ident "GCC: (GNU) 4.9.0 20131023 (Red Hat 0.2-%{gcc_release})"
.section .note.GNU-stack,"",@progbits
Note that the stack pushing and popping have been eliminated, as has the
recursive call (in favor of an iteration).
Putting it all together
***********************
The complete example can be seen in the source tree at
``gcc/jit/docs/examples/tut04-toyvm/toyvm.cc``
along with a Makefile and a couple of sample .toy scripts:
.. code-block:: console
$ ls -al
drwxrwxr-x. 2 david david 4096 Sep 19 17:46 .
drwxrwxr-x. 3 david david 4096 Sep 19 15:26 ..
-rw-rw-r--. 1 david david 615 Sep 19 12:43 factorial.toy
-rw-rw-r--. 1 david david 834 Sep 19 13:08 fibonacci.toy
-rw-rw-r--. 1 david david 238 Sep 19 14:22 Makefile
-rw-rw-r--. 1 david david 16457 Sep 19 17:07 toyvm.cc
$ make toyvm
g++ -Wall -g -o toyvm toyvm.cc -lgccjit
$ ./toyvm factorial.toy 10
interpreter result: 3628800
compiler result: 3628800
$ ./toyvm fibonacci.toy 10
interpreter result: 55
compiler result: 55
Behind the curtain: How does our code get optimized?
****************************************************
Our example is done, but you may be wondering about exactly how the
compiler turned what we gave it into the machine code seen above.
We can examine what the compiler is doing in detail by setting:
.. code-block:: c++
state.ctxt.set_bool_option (GCC_JIT_BOOL_OPTION_DUMP_EVERYTHING, 1);
state.ctxt.set_bool_option (GCC_JIT_BOOL_OPTION_KEEP_INTERMEDIATES, 1);
This will dump detailed information about the compiler's state to a
directory under ``/tmp``, and keep it from being cleaned up.
The precise names and their formats of these files is subject to change.
Higher optimization levels lead to more files.
Here's what I saw (edited for brevity; there were almost 200 files):
.. code-block:: console
intermediate files written to /tmp/libgccjit-KPQbGw
$ ls /tmp/libgccjit-KPQbGw/
fake.c.000i.cgraph
fake.c.000i.type-inheritance
fake.c.004t.gimple
fake.c.007t.omplower
fake.c.008t.lower
fake.c.011t.eh
fake.c.012t.cfg
fake.c.014i.visibility
fake.c.015i.early_local_cleanups
fake.c.016t.ssa
# etc
The gimple code is converted into Static Single Assignment form,
with annotations for use when generating the debuginfo:
.. code-block:: console
$ less /tmp/libgccjit-KPQbGw/fake.c.016t.ssa
.. code-block:: c
;; Function factorial (factorial, funcdef_no=0, decl_uid=53, symbol_order=0)
factorial (signed int arg)
{
signed int stack[8];
signed int stack_depth;
signed int x;
signed int y;
<unnamed type> _20;
signed int _21;
signed int _38;
signed int _44;
signed int _51;
signed int _56;
initial:
stack_depth_3 = 0;
# DEBUG stack_depth => stack_depth_3
stack[stack_depth_3] = arg_5(D);
stack_depth_7 = stack_depth_3 + 1;
# DEBUG stack_depth => stack_depth_7
# DEBUG instr0 => NULL
# DEBUG /* DUP */ => NULL
stack_depth_8 = stack_depth_7 + -1;
# DEBUG stack_depth => stack_depth_8
x_9 = stack[stack_depth_8];
# DEBUG x => x_9
stack[stack_depth_8] = x_9;
stack_depth_11 = stack_depth_8 + 1;
# DEBUG stack_depth => stack_depth_11
stack[stack_depth_11] = x_9;
stack_depth_13 = stack_depth_11 + 1;
# DEBUG stack_depth => stack_depth_13
# DEBUG instr1 => NULL
# DEBUG /* PUSH_CONST */ => NULL
stack[stack_depth_13] = 2;
/* etc; edited for brevity */
We can perhaps better see the code by turning off
:c:macro:`GCC_JIT_BOOL_OPTION_DEBUGINFO` to suppress all those ``DEBUG``
statements, giving:
.. code-block:: console
$ less /tmp/libgccjit-1Hywc0/fake.c.016t.ssa
.. code-block:: c
;; Function factorial (factorial, funcdef_no=0, decl_uid=53, symbol_order=0)
factorial (signed int arg)
{
signed int stack[8];
signed int stack_depth;
signed int x;
signed int y;
<unnamed type> _20;
signed int _21;
signed int _38;
signed int _44;
signed int _51;
signed int _56;
initial:
stack_depth_3 = 0;
stack[stack_depth_3] = arg_5(D);
stack_depth_7 = stack_depth_3 + 1;
stack_depth_8 = stack_depth_7 + -1;
x_9 = stack[stack_depth_8];
stack[stack_depth_8] = x_9;
stack_depth_11 = stack_depth_8 + 1;
stack[stack_depth_11] = x_9;
stack_depth_13 = stack_depth_11 + 1;
stack[stack_depth_13] = 2;
stack_depth_15 = stack_depth_13 + 1;
stack_depth_16 = stack_depth_15 + -1;
y_17 = stack[stack_depth_16];
stack_depth_18 = stack_depth_16 + -1;
x_19 = stack[stack_depth_18];
_20 = x_19 < y_17;
_21 = (signed int) _20;
stack[stack_depth_18] = _21;
stack_depth_23 = stack_depth_18 + 1;
stack_depth_24 = stack_depth_23 + -1;
x_25 = stack[stack_depth_24];
if (x_25 != 0)
goto <bb 4> (instr9);
else
goto <bb 3> (instr4);
instr4:
/* DUP */:
stack_depth_26 = stack_depth_24 + -1;
x_27 = stack[stack_depth_26];
stack[stack_depth_26] = x_27;
stack_depth_29 = stack_depth_26 + 1;
stack[stack_depth_29] = x_27;
stack_depth_31 = stack_depth_29 + 1;
stack[stack_depth_31] = 1;
stack_depth_33 = stack_depth_31 + 1;
stack_depth_34 = stack_depth_33 + -1;
y_35 = stack[stack_depth_34];
stack_depth_36 = stack_depth_34 + -1;
x_37 = stack[stack_depth_36];
_38 = x_37 - y_35;
stack[stack_depth_36] = _38;
stack_depth_40 = stack_depth_36 + 1;
stack_depth_41 = stack_depth_40 + -1;
x_42 = stack[stack_depth_41];
_44 = factorial (x_42);
stack[stack_depth_41] = _44;
stack_depth_46 = stack_depth_41 + 1;
stack_depth_47 = stack_depth_46 + -1;
y_48 = stack[stack_depth_47];
stack_depth_49 = stack_depth_47 + -1;
x_50 = stack[stack_depth_49];
_51 = x_50 * y_48;
stack[stack_depth_49] = _51;
stack_depth_53 = stack_depth_49 + 1;
# stack_depth_1 = PHI <stack_depth_24(2), stack_depth_53(3)>
instr9:
/* RETURN */:
stack_depth_54 = stack_depth_1 + -1;
x_55 = stack[stack_depth_54];
_56 = x_55;
stack ={v} {CLOBBER};
return _56;
}
Note in the above how all the :type:`gccjit::block` instances we
created have been consolidated into just 3 blocks in GCC's internal
representation: ``initial``, ``instr4`` and ``instr9``.
Optimizing away stack manipulation
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Recall our simple implementation of stack operations. Let's examine
how the stack operations are optimized away.
After a pass of constant-propagation, the depth of the stack at each
opcode can be determined at compile-time:
.. code-block:: console
$ less /tmp/libgccjit-1Hywc0/fake.c.021t.ccp1
.. code-block:: c
;; Function factorial (factorial, funcdef_no=0, decl_uid=53, symbol_order=0)
factorial (signed int arg)
{
signed int stack[8];
signed int stack_depth;
signed int x;
signed int y;
<unnamed type> _20;
signed int _21;
signed int _38;
signed int _44;
signed int _51;
initial:
stack[0] = arg_5(D);
x_9 = stack[0];
stack[0] = x_9;
stack[1] = x_9;
stack[2] = 2;
y_17 = stack[2];
x_19 = stack[1];
_20 = x_19 < y_17;
_21 = (signed int) _20;
stack[1] = _21;
x_25 = stack[1];
if (x_25 != 0)
goto <bb 4> (instr9);
else
goto <bb 3> (instr4);
instr4:
/* DUP */:
x_27 = stack[0];
stack[0] = x_27;
stack[1] = x_27;
stack[2] = 1;
y_35 = stack[2];
x_37 = stack[1];
_38 = x_37 - y_35;
stack[1] = _38;
x_42 = stack[1];
_44 = factorial (x_42);
stack[1] = _44;
y_48 = stack[1];
x_50 = stack[0];
_51 = x_50 * y_48;
stack[0] = _51;
instr9:
/* RETURN */:
x_55 = stack[0];
x_56 = x_55;
stack ={v} {CLOBBER};
return x_56;
}
Note how, in the above, all those ``stack_depth`` values are now just
constants: we're accessing specific stack locations at each opcode.
The "esra" pass ("Early Scalar Replacement of Aggregates") breaks
out our "stack" array into individual elements:
.. code-block:: console
$ less /tmp/libgccjit-1Hywc0/fake.c.024t.esra
.. code-block:: c
;; Function factorial (factorial, funcdef_no=0, decl_uid=53, symbol_order=0)
Created a replacement for stack offset: 0, size: 32: stack$0
Created a replacement for stack offset: 32, size: 32: stack$1
Created a replacement for stack offset: 64, size: 32: stack$2
Symbols to be put in SSA form
{ D.89 D.90 D.91 }
Incremental SSA update started at block: 0
Number of blocks in CFG: 5
Number of blocks to update: 4 ( 80%)
factorial (signed int arg)
{
signed int stack$2;
signed int stack$1;
signed int stack$0;
signed int stack[8];
signed int stack_depth;
signed int x;
signed int y;
<unnamed type> _20;
signed int _21;
signed int _38;
signed int _44;
signed int _51;
initial:
stack$0_45 = arg_5(D);
x_9 = stack$0_45;
stack$0_39 = x_9;
stack$1_32 = x_9;
stack$2_30 = 2;
y_17 = stack$2_30;
x_19 = stack$1_32;
_20 = x_19 < y_17;
_21 = (signed int) _20;
stack$1_28 = _21;
x_25 = stack$1_28;
if (x_25 != 0)
goto <bb 4> (instr9);
else
goto <bb 3> (instr4);
instr4:
/* DUP */:
x_27 = stack$0_39;
stack$0_22 = x_27;
stack$1_14 = x_27;
stack$2_12 = 1;
y_35 = stack$2_12;
x_37 = stack$1_14;
_38 = x_37 - y_35;
stack$1_10 = _38;
x_42 = stack$1_10;
_44 = factorial (x_42);
stack$1_6 = _44;
y_48 = stack$1_6;
x_50 = stack$0_22;
_51 = x_50 * y_48;
stack$0_1 = _51;
# stack$0_52 = PHI <stack$0_39(2), stack$0_1(3)>
instr9:
/* RETURN */:
x_55 = stack$0_52;
x_56 = x_55;
stack ={v} {CLOBBER};
return x_56;
}
Hence at this point, all those pushes and pops of the stack are now
simply assignments to specific temporary variables.
After some copy propagation, the stack manipulation has been completely
optimized away:
.. code-block:: console
$ less /tmp/libgccjit-1Hywc0/fake.c.026t.copyprop1
.. code-block:: c
;; Function factorial (factorial, funcdef_no=0, decl_uid=53, symbol_order=0)
factorial (signed int arg)
{
signed int stack$2;
signed int stack$1;
signed int stack$0;
signed int stack[8];
signed int stack_depth;
signed int x;
signed int y;
<unnamed type> _20;
signed int _21;
signed int _38;
signed int _44;
signed int _51;
initial:
stack$0_39 = arg_5(D);
_20 = arg_5(D) <= 1;
_21 = (signed int) _20;
if (_21 != 0)
goto <bb 4> (instr9);
else
goto <bb 3> (instr4);
instr4:
/* DUP */:
_38 = arg_5(D) + -1;
_44 = factorial (_38);
_51 = arg_5(D) * _44;
stack$0_1 = _51;
# stack$0_52 = PHI <arg_5(D)(2), _51(3)>
instr9:
/* RETURN */:
stack ={v} {CLOBBER};
return stack$0_52;
}
Later on, another pass finally eliminated ``stack_depth`` local and the
unused parts of the `stack`` array altogether:
.. code-block:: console
$ less /tmp/libgccjit-1Hywc0/fake.c.036t.release_ssa
.. code-block:: c
;; Function factorial (factorial, funcdef_no=0, decl_uid=53, symbol_order=0)
Released 44 names, 314.29%, removed 44 holes
factorial (signed int arg)
{
signed int stack$0;
signed int mult_acc_1;
<unnamed type> _5;
signed int _6;
signed int _7;
signed int mul_tmp_10;
signed int mult_acc_11;
signed int mult_acc_13;
# arg_9 = PHI <arg_8(D)(0)>
# mult_acc_13 = PHI <1(0)>
initial:
<bb 5>:
# arg_4 = PHI <arg_9(2), _7(3)>
# mult_acc_1 = PHI <mult_acc_13(2), mult_acc_11(3)>
_5 = arg_4 <= 1;
_6 = (signed int) _5;
if (_6 != 0)
goto <bb 4> (instr9);
else
goto <bb 3> (instr4);
instr4:
/* DUP */:
_7 = arg_4 + -1;
mult_acc_11 = mult_acc_1 * arg_4;
goto <bb 5>;
# stack$0_12 = PHI <arg_4(5)>
instr9:
/* RETURN */:
mul_tmp_10 = mult_acc_1 * stack$0_12;
return mul_tmp_10;
}
Elimination of tail recursion
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Another significant optimization is the detection that the call to
``factorial`` is tail recursion, which can be eliminated in favor of
an iteration:
.. code-block:: console
$ less /tmp/libgccjit-1Hywc0/fake.c.030t.tailr1
.. code-block:: c
;; Function factorial (factorial, funcdef_no=0, decl_uid=53, symbol_order=0)
Symbols to be put in SSA form
{ D.88 }
Incremental SSA update started at block: 0
Number of blocks in CFG: 5
Number of blocks to update: 4 ( 80%)
factorial (signed int arg)
{
signed int stack$2;
signed int stack$1;
signed int stack$0;
signed int stack[8];
signed int stack_depth;
signed int x;
signed int y;
signed int mult_acc_1;
<unnamed type> _20;
signed int _21;
signed int _38;
signed int mul_tmp_44;
signed int mult_acc_51;
# arg_5 = PHI <arg_39(D)(0), _38(3)>
# mult_acc_1 = PHI <1(0), mult_acc_51(3)>
initial:
_20 = arg_5 <= 1;
_21 = (signed int) _20;
if (_21 != 0)
goto <bb 4> (instr9);
else
goto <bb 3> (instr4);
instr4:
/* DUP */:
_38 = arg_5 + -1;
mult_acc_51 = mult_acc_1 * arg_5;
goto <bb 2> (initial);
# stack$0_52 = PHI <arg_5(2)>
instr9:
/* RETURN */:
stack ={v} {CLOBBER};
mul_tmp_44 = mult_acc_1 * stack$0_52;
return mul_tmp_44;
}
|