1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087
|
\input texinfo
@c -*-texinfo-*-
@c Copyright (C) 2001-2024 Free Software Foundation, Inc.
@c This is part of the GM2 manual.
@c User level documentation for GNU Modula-2
@c
@c header
@setfilename gm2.info
@settitle The GNU Modula-2 Compiler
@set version-python 3.5
@include gcc-common.texi
@c Copyright years for this manual.
@set copyrights-gm2 1999-2024
@copying
@c man begin COPYRIGHT
Copyright @copyright{} @value{copyrights-gm2} Free Software Foundation, Inc.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3 or
any later version published by the Free Software Foundation; with no
Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
A copy of the license is included in the
@c man end
section entitled ``GNU Free Documentation License''.
@ignore
@c man begin COPYRIGHT
man page gfdl(7).
@c man end
@end ignore
@end copying
@ifinfo
@format
@dircategory Software development
@direntry
* gm2: (gm2). A GCC-based compiler for the Modula-2 language
@end direntry
@end format
@insertcopying
@end ifinfo
@titlepage
@title The GNU Modula-2 Compiler
@versionsubtitle
@author Gaius Mulley
@page
@vskip 0pt plus 1filll
Published by the Free Software Foundation @*
51 Franklin Street, Fifth Floor@*
Boston, MA 02110-1301, USA@*
@sp 1
@insertcopying
@end titlepage
@contents
@page
@c `Top' Node and Master Menu
@node Top, Overview, (dir), (dir)
@top Introduction
@menu
* Overview:: What is GNU Modula-2.
* Using:: Using GNU Modula-2.
* License:: License of GNU Modula-2
* Copying:: GNU Public License V3.
* Contributing:: Contributing to GNU Modula-2
@c * Internals:: GNU Modula-2 internals.
* EBNF:: EBNF of GNU Modula-2
* Libraries:: PIM and ISO library definitions.
* Indices:: Document and function indices.
@end menu
@node Overview, Using, Top, Top
@chapter Overview of GNU Modula-2
@menu
* What is GNU Modula-2:: Brief description of GNU Modula-2.
* Why use GNU Modula-2:: Advantages of GNU Modula-2.
* Development:: How to get source code using git.
* Features:: GNU Modula-2 Features
@end menu
@node What is GNU Modula-2, Why use GNU Modula-2, , Overview
@section What is GNU Modula-2
GNU Modula-2 is a @uref{http://gcc.gnu.org/frontends.html, front end}
for the GNU Compiler Collection (@uref{http://gcc.gnu.org/, GCC}).
The GNU Modula-2 compiler is compliant with the PIM2, PIM3, PIM4 and
ISO dialects. Also implemented are a complete set of free ISO
libraries and PIM libraries.
@footnote{The four Modula-2 dialects supported are defined in the following
references:
PIM2: 'Programming in Modula-2', 2nd Edition, Springer Verlag, 1982,
1983 by Niklaus Wirth (PIM2).
PIM3: 'Programming in Modula-2', 3rd Corrected Edition, Springer Verlag,
1985 (PIM3).
PIM4: 'Programming in Modula-2', 4th Edition, Springer Verlag, 1988
(@uref{http://freepages.modula2.org/report4/modula-2.html, PIM4}).
ISO: the ISO Modula-2 language as defined in 'ISO/IEC Information
technology - programming languages - part 1: Modula-2 Language,
ISO/IEC 10514-1 (1996)'
}
@node Why use GNU Modula-2, Development, What is GNU Modula-2, Overview
@section Why use GNU Modula-2
There are a number of advantages of using GNU Modula-2 rather than
translate an existing project into another language.
The first advantage is of maintainability of the original sources
and the ability to debug the original project source code using a
combination of gm2 and gdb.
The second advantage is that gcc runs on many processors and
platforms. gm2 builds and runs on powerpc64le, amd64, i386, aarch64
to name but a few processors.
gm2 can produce swig interface headers to allow access from Python and
other scripting languages. It can also be used with C/C++ and
generate shared libraries.
The compiler provides semantic analysis and run time checking (full ISO
Modula-2 checking is implemented) and there is a plugin which can,
under certain conditions, detect run time errors at compile time.
The compiler supports PIM2, PIM3, PIM4 and ISO dialects of Modula-2,
work is underway to implement M2R10. Many of the GCC builtins are
available and access to assembly programming is achieved using the
same syntax as that used by GCC.
The gm2 driver allows third party libraries to be installed alongside
gm2 libraries. For example if the user specifies library @code{foo}
using @code{-flibs=foo} the driver will check the standard GCC install
directory for a sub directory @code{foo} containing the library
contents. The library module search path is altered accordingly
for compile and link.
@node Development, Features, Why use GNU Modula-2, Overview
@section How to get source code using git
GNU Modula-2 is now in the @url{https://gcc.gnu.org/git.html, GCC git
tree}.
@node Features, , Development, Overview
@section GNU Modula-2 Features
@itemize @bullet
@item
the compiler currently complies with Programming in Modula-2 Edition
2, 3, 4 and ISO Modula-2. Users can switch on specific language
features by using: @samp{-fpim}, @samp{-fpim2}, @samp{-fpim3},
@samp{-fpim4} or @samp{-fiso}.
@item
the option @samp{-fswig} will automatically create a swig interface
file which corresponds to the definition module of the file being
compiled.
@item
exception handling is compatible with C++ and swig. Modula-2 code can
be used with C or C++ code.
@item
Python can call GNU Modula-2 modules via swig.
@item
shared libraries can be built.
@item
fixed sized types are now available from @samp{SYSTEM}.
@c @item
@c support for dynamic @code{ARRAY}s has been added into @samp{gdb}.
@item
variables can be declared at addresses.
@item
much better dwarf-2 debugging support and when used with
@samp{gdb} the programmer can display @code{RECORD}s,
@code{ARRAY}s, @code{SET}s, subranges and constant char literals
in Modula-2 syntax.
@item
supports sets of any ordinal size (memory permitting).
@item
easy interface to C, and varargs can be passed to C routines.
@item
many Logitech libraries have been implemented and can be accessed via:
@samp{-flibs=m2log,m2pim,m2iso}.
@item
coroutines have been implemented in the PIM style and these are
accessible from SYSTEM. A number of supporting libraries (executive
and file descriptor mapping to interrupt vector libraries are
available through the @samp{-flibs=m2iso,m2pim} switch).
@item
can be built as a cross compiler (for embedded microprocessors
such as the AVR and the ARM).
@end itemize
@node Using, License, Overview, Top
@chapter Using GNU Modula-2
@menu
* Example usage:: Example compile and link.
* Compiler options:: GNU Modula-2 compiler options.
* Linking:: Linking options in more detail.
* Elementary data types:: Data types supported by GNU Modula-2.
* Standard procedures:: Permanently accessible base procedures.
* High procedure function:: Behavior of the high procedure function.
* Dialect:: GNU Modula-2 supported dialects.
* Exceptions:: Exception implementation
* Semantic checking:: How to detect run time problems at compile time.
* Extensions:: GNU Modula-2 language extensions.
* Type compatibility:: Data type compatibility.
* Unbounded by reference::Explanation of a language optimization.
* Building a shared library:: How to build a shared library.
* Interface for Python:: How to produce swig interface files.
* Producing a Python module:: How to produce a Python module.
* Interface to C:: Interfacing GNU Modula-2 to C.
* Assembly language:: Interface to assembly language.
* Alignment:: Data type alignment.
* Packed:: Packing data types.
* Built-ins:: Accessing GNU Modula-2 Built-ins.
* The PIM system module:: SYSTEM data types and procedures.
* The ISO system module:: SYSTEM data types, procedures and run time.
@c @ifnothtml
@c omit these nodes if generating gm2 webpage as these are hand written.
* Release map:: Release map.
* Documentation:: Placeholder for how to access the documentation online.
* Regression tests:: How to run the testsuite.
* Limitations:: Current limitations.
* Objectives:: Objectives of the implementation.
* FAQ:: Frequently asked questions.
* Community:: How to join the community.
* Other languages:: Other languages for GCC.
@c @end ifnothtml
@end menu
This document contains the user and design issues relevant to the
Modula-2 front end to gcc.
@node Example usage, Compiler options, Using, Using
@section Example compile and link
@ignore
@c man begin SYNOPSIS gm2
gm2 [@option{-c}|@option{-S}] [@option{-g}] [@option{-pg}]
[@option{-O}@var{level}] [@option{-W}@var{warn}@dots{}]
[@option{-I}@var{dir}@dots{}] [@option{-L}@var{dir}@dots{}]
[@option{-f}@var{option}@dots{}] [@option{-m}@var{machine-option}@dots{}]
[@option{-o} @var{outfile}] [@@@var{file}] @var{infile}@dots{}
Only the most useful options are listed here; see below for the
remainder.
@c man end
@c man begin SEEALSO
gpl(7), gfdl(7), fsf-funding(7), gcc(1)
and the Info entries for @file{gm2} and @file{gcc}.
@c man end
@end ignore
@c man begin DESCRIPTION gm2
The @command{gm2} command is the GNU compiler for the Modula-2 language and
supports many of the same options as @command{gcc}. @xref{Option Summary, ,
Option Summary, gcc, Using the GNU Compiler Collection (GCC)}.
This manual only documents the options specific to @command{gm2}.
@c man end
This section describes how to compile and link a simple hello world
program. It provides a few examples of using the different options
mentioned in @pxref{Compiler options, , ,gm2}. Assuming that you have
a file called @file{hello.mod} in your current directory which
contains:
@example
MODULE hello ;
FROM StrIO IMPORT WriteString, WriteLn ;
BEGIN
WriteString ('hello world') ; WriteLn
END hello.
@end example
You can compile and link it by: @samp{gm2 -g hello.mod}.
The result will be an @samp{a.out} file created in your directory.
You can split this command into two steps if you prefer. The compile
step can be achieved by: @samp{gm2 -g -c -fscaffold-main hello.mod}
and the link via: @samp{gm2 -g hello.o}.
@footnote{To see all the compile actions taken by @samp{gm2} users can also
add the @samp{-v} flag at the command line, for example:
@samp{gm2 -v -g -I. hello.mod}
This displays the sub processes initiated by @samp{gm2} which can be useful
when trouble shooting.}
@node Compiler options, Linking, Example usage, Using
@section Compiler options
This section describes the compiler options specific to GNU Modula-2
for generic flags details @xref{Invoking GCC, , ,gcc}.
@c man begin OPTIONS
For any given input file, the file name suffix determines what kind of
compilation is done. The following kinds of input file names are supported:
@table @gcctabopt
@item @var{file}.mod
Modula-2 implementation or program source files. See the
@samp{-fmod=} option if you wish to compile a project which uses a
different source file extension.
@item @var{file}.def
Modula-2 definition module source files. Definition modules are not
compiled separately, in GNU Modula-2 definition modules are parsed as
required when program or implementation modules are compiled. See the
@samp{-fdef=} option if you wish to compile a project which uses a
different source file extension.
@end table
You can specify more than one input file on the @command{gm2} command line,
@table @code
@item -g
create debugging information so that debuggers such as @file{gdb}
can inspect and control executable.
@item -I
used to specify the search path for definition and implementation
modules. An example is: @code{gm2 -g -c -I.:../../libs foo.mod}.
If this option is not specified then the default path is added
which consists of the current directory followed by the appropriate
language dialect library directories.
@c ordered list of options from here.
@item -fauto-init
turns on auto initialization of pointers to NIL. Whenever a block is
created all pointers declared within this scope will have their
addresses assigned to NIL.
@item -fbounds
turns on run time subrange, array index and indirection via @code{NIL}
pointer checking.
@item -fcase
turns on compile time checking to check whether a @code{CASE}
statement requires an @code{ELSE} clause when on was not specified.
@item -fcpp
preprocess the source with @samp{cpp -lang-asm -traditional-cpp}
For further details about these options @xref{Invocation, , ,cpp}.
If @samp{-fcpp} is supplied then all definition modules and
implementation modules which are parsed will be prepossessed by
@samp{cpp}.
@c fcpp-end
@c Modula-2
@c passed to the preprocessor if -fcpp is used (internal switch)
@c fcpp-begin
@c Modula-2
@c passed to the preprocessor if -fcpp is used (internal switch)
@item -fdebug-builtins
call a real function, rather than the builtin equivalent. This can
be useful for debugging parameter values to a builtin function as
it allows users to single step code into an intrinsic function.
@c fd
@c Modula-2
@c turn on internal debugging of the compiler (internal switch)
@c fdebug-function-line-numbers
@c Modula-2
@c turn on the Modula-2 function line number generation (internal switch)
@item -fdef=
recognize the specified suffix as a definition module filename.
The default implementation and module filename suffix is @file{.def}.
If this option is used GNU Modula-2 will still fall back to this
default if a requested definition module is not found.
@item -fdump-system-exports
display all inbuilt system items.
This is an internal command line option.
@item -fexceptions
turn on exception handling code. By default this option is on.
Exception handling can be disabled by @samp{-fno-exceptions}
and no references are made to the run time exception libraries.
@item -fextended-opaque
allows opaque types to be implemented as any type. This is a GNU
Modula-2 extension and it requires that the implementation module
defining the opaque type is available so that it can be resolved when
compiling the module which imports the opaque type.
@item -ffloatvalue
turns on run time checking to check whether a floating point number is
about to exceed range.
@item -fgen-module-list=@file{filename}
attempt to find all modules when linking and generate a module list.
If the @file{filename} is @samp{-} then the contents are not written
and only used to force the linking of all module ctors.
This option cannot be used if @samp{-fuse-list=} is enabled.
@item -findex
generate code to check whether array index values are out of bounds.
Array index checking can be disabled via @samp{-fno-index}.
@item -fiso
turn on ISO standard features. Currently this enables the ISO
@code{SYSTEM} module and alters the default library search path so
that the ISO libraries are searched before the PIM libraries. It also
effects the behavior of @code{DIV} and @code{MOD} operators.
@xref{Dialect, , ,gm2}.
@item -flibs=
modifies the default library search path. The libraries supplied are:
m2pim, m2iso, m2min, m2log and m2cor. These map onto the
Programming in Modula-2 base libraries, ISO standard libraries, minimal
library support, Logitech compatible library and Programming in
Modula-2 with coroutines.
Multiple libraries can be specified and are comma separated with precedence
going to the first in the list. It is not necessary to use -flibs=m2pim or
-flibs=m2iso if you also specify -fpim, -fpim2, -fpim3, -fpim4 or
-fiso. Unless you are using -flibs=m2min you should include m2pim as
the they provide the base modules which all other dialects utilize.
The option @samp{-fno-libs=-} disables the @samp{gm2} driver from
modifying the search and library paths.
@item -static-libgm2
On systems that provide the m2 runtimes as both shared and static libraries,
this option forces the use of the static version.
@c flocation=
@c Modula-2 Joined
@c set all location values to a specific value (internal switch)
@c fm2-debug-trace=
@c Modula-2 Joined
@c turn on trace debugging using a comma separated list:
@c line,token,quad,all.
@item -fm2-g
improve the debugging experience for new programmers at the expense
of generating @code{nop} instructions if necessary to ensure single
stepping precision over all code related keywords. An example
of this is in termination of a list of nested @code{IF} statements
where multiple @code{END} keywords are mapped onto a sequence of
@code{nop} instructions.
@item -fm2-lower-case
render keywords in error messages using lower case.
@item -fm2-pathname=
specify the module mangled prefix name for all modules in the
following include paths.
@item -fm2-pathnameI
for internal use only: used by the driver to copy the user facing -I
option.
@item -fm2-plugin
insert plugin to identify run time errors at compile time (default on).
@item -fm2-prefix=
specify the module mangled prefix name. All exported symbols from a
definition module will have the prefix name.
@item -fm2-statistics
generates quadruple information: number of quadruples generated,
number of quadruples remaining after optimization and number of source
lines compiled.
@item -fm2-strict-type
experimental flag to turn on the new strict type checker.
@item -fm2-whole-program
compile all implementation modules and program module at once. Notice
that you need to take care if you are compiling different dialect
modules (particularly with the negative operands to modulus). But
this option, when coupled together with @code{-O3}, can deliver huge
performance improvements.
@item -fmod=
recognize the specified suffix as implementation and module filenames.
The default implementation and module filename suffix is @file{.mod}.
If this option is used GNU Modula-2 will still fall back to this
default if it needs to read an implementation module and the specified
suffixed filename does not exist.
@item -fnil
generate code to detect accessing data through a @code{NIL} value
pointer. Dereferencing checking through a @code{NIL} pointer can be
disabled by @samp{-fno-nil}.
@item -fpim
turn on PIM standard features. Currently this enables the PIM
@code{SYSTEM} module and determines which identifiers are pervasive
(declared in the base module). If no other @samp{-fpim[234]} switch is
used then division and modulus operators behave as defined in PIM4.
@xref{Dialect, , ,gm2}.
@item -fpim2
turn on PIM-2 standard features. Currently this removes @code{SIZE}
from being a pervasive identifier (declared in the base module). It
places @code{SIZE} in the @code{SYSTEM} module. It also effects the
behavior of @code{DIV} and @code{MOD} operators.
@xref{Dialect, , ,gm2}.
@item -fpim3
turn on PIM-3 standard features. Currently this only effects the
behavior of @code{DIV} and @code{MOD} operators.
@xref{Dialect, , ,gm2}.
@item -fpim4
turn on PIM-4 standard features. Currently this only effects the
behavior of @code{DIV} and @code{MOD} operators.
@xref{Dialect, , ,gm2}.
@item -fpositive-mod-floor-div
forces the @code{DIV} and @code{MOD} operators to behave as defined by PIM4.
All modulus results are positive and the results from the division are
rounded to the floor.
@xref{Dialect, , ,gm2}.
@item -fpthread
link against the pthread library. By default this option is on. It
can be disabled by @samp{-fno-pthread}. GNU Modula-2 uses the GCC
pthread libraries to implement coroutines (see the SYSTEM
implementation module).
@c -fq
@c -Modula-2
@c -internal compiler debugging information, dump the list of quadruples
@item -frange
generate code to check the assignment range, return value range
set range and constructor range. Range checking can be disabled
via @samp{-fno-range}.
@item -freturn
generate code to check that functions always exit with a @code{RETURN}
and do not fall out at the end. Return checking can be disabled
via @samp{-fno-return}.
@item -fruntime-modules=
specify, using a comma separated list, the run time modules and their
order. These modules will initialized first before any other modules
in the application dependency. By default the run time modules list
is set to @code{m2iso:RTentity,m2iso:Storage,m2iso:SYSTEM,}
@code{m2iso:M2RTS,m2iso:RTExceptions,m2iso:IOLink}. Note that these
modules will only be linked into your executable if they are required.
Adding a long list of dependent modules will not effect the size of
the executable it merely states the initialization order should they
be required.
@item -fscaffold-dynamic
the option ensures that @samp{gm2} will generate a dynamic scaffold
infrastructure when compiling implementation and program modules.
By default this option is on. Use @samp{-fno-scaffold-dynamic}
to turn it off or select @samp{-fno-scaffold-static}.
@item -fscaffold-c
generate a C source scaffold for the current module being compiled.
@item -fscaffold-c++
generate a C++ source scaffold for the current module being compiled.
@item -fscaffold-main
force the generation of the @samp{main} function. This is not
necessary if the @samp{-c} is omitted.
@item -fscaffold-static
the option ensures that @samp{gm2} will generate a static scaffold
within the program module. The static scaffold consists of sequences
of calls to all dependent module initialization and finalization
procedures. The static scaffold is useful for debugging and single
stepping the initialization blocks of implementation modules.
@item -fshared
generate a shared library from the module.
@item -fsoft-check-all
turns on all run time checks. This is the same as invoking
GNU Modula-2 using the command options
@code{-fnil} @code{-frange} @code{-findex}
@code{-fwholevalue}
@code{-fwholediv} @code{-fcase} @code{-freturn}.
@item -fsources
displays the path to the source of each module. This option
can be used at compile time to check the correct definition module
is being used.
@item -fswig
generate a swig interface file.
@item -funbounded-by-reference
enable optimization of unbounded parameters by attempting to pass non
@code{VAR} unbounded parameters by reference. This optimization
avoids the implicit copy inside the callee procedure. GNU Modula-2
will only allow unbounded parameters to be passed by reference if,
inside the callee procedure, they are not written to, no address is
calculated on the array and it is not passed as a @code{VAR}
parameter. Note that it is possible to write code to break this
optimization, therefore this option should be used carefully.
For example it would be possible to take the address of an array, pass
the address and the array to a procedure, read from the array in
the procedure and write to the location using the address parameter.
Due to the dangerous nature of this option it is not enabled
when the @samp{-O} option is specified.
@item -fuse-list=@file{filename}
if @samp{-fscaffold-static} is enabled then use the file
@file{filename} for the initialization order of modules. Whereas if
@samp{-fscaffold-dynamic} is enabled then use this file to force
linking of all module ctors.
This option cannot be used if @samp{-fgen-module-list=} is enabled.
@item -fwholediv
generate code to detect whole number division by zero or modulus by
zero.
@item -fwholevalue
generate code to detect whole number overflow and underflow.
@item -Wcase-enum
generate a warning if a @code{CASE} statement selects on an enumerated
type expression and the statement is missing one or more @code{CASE}
labels. No warning is issued if the @code{CASE} statement has a default
@code{ELSE} clause.
The option @samp{-Wall} will turn on this flag.
@item -Wuninit-variable-checking
issue a warning if a variable is used before it is initialized.
The checking only occurs in the first basic block in each procedure.
It does not check parameters, array types or set types.
@item -Wuninit-variable-checking=all,known,cond
issue a warning if a variable is used before it is initialized.
The checking will only occur in the first basic block in each
procedure if @samp{known} is specified. If @samp{cond} or @samp{all}
is specified then checking continues into conditional branches of the
flow graph. All checking will stop when a procedure call is invoked
or the top of a loop is encountered.
The option @samp{-Wall} will turn on this flag with
@samp{-Wuninit-variable-checking=known}.
The @samp{-Wuninit-variable-checking=all} will increase compile time.
@c the following warning options are complete but need to be
@c regression tested against all other front ends
@c to ensure the options do not conflict.
@c @item -Wall
@c turn on all Modula-2 warnings.
@c @item -Wpedantic
@c forces the compiler to reject nested @code{WITH} statements
@c referencing the same record type. Does not allow multiple imports of
@c the same item from a module. It also checks that: procedure variables
@c are written to before being read; variables are not only written to
@c but read from; variables are declared and used. If the compiler
@c encounters a variable being read before written it will terminate with
@c a message. It will check that @code{FOR} loop indices are not used
@c outside the end of this loop without being reset.
@c @item -Wpedantic-cast
@c warns if the ISO system function is used and if the size of
@c the variable is different from that of the type. This is legal
@c in ISO Modula-2, however it can be dangerous. Some users may prefer
@c to use @code{VAL} instead in these situations and use @code{CAST}
@c exclusively for changes in type on objects which have the same size.
@c @item -Wpedantic-param-names
@c procedure parameter names are checked in the definition module
@c against their implementation module counterpart. This is not
@c necessary in ISO or PIM versions of Modula-2.
@c @item -Wstyle
@c checks for poor programming style. This option is aimed at new users of
@c Modula-2 in that it checks for situations which might cause confusion
@c and thus mistakes. It checks whether variables of the same name are
@c declared in different scopes and whether variables look like keywords.
@c Experienced users might find this option too aggressive.
@c @item -Wunused-variable
@c warns if a variable has been declared and it not used.
@c @item -Wunused-parameter
@c warns if a parameter has been declared and it not used.
@c @item -Wverbose-unbounded
@c inform the user which non @code{VAR} unbounded parameters will be
@c passed by reference. This only produces output if the option
@c @samp{-funbounded-by-reference} is also supplied on the command line.
@end table
@c man end
@node Linking, Elementary data types, Compiler options, Using
This section describes the linking related options. There are three
linking strategies available which are dynamic scaffold, static
scaffold and user defined. The dynamic scaffold is enabled by default
and each module will register itself to the run time @samp{M2RTS} via
a constructor. The static scaffold mechanism will invoke each modules
@samp{_init} and @samp{_finish} function in turn via a sequence of
calls from within @samp{main}. Lastly the user defined strategy
can be implemented by turning off the dynamic and static options via
@samp{-fno-scaffold-dynamic} and @samp{-fno-scaffold-static}.
In the simple test below:
@example
$ gm2 hello.mod
@end example
the driver will add the options @samp{-fscaffold-dynamic} and
@samp{-fgen-module-list=-} which generate a list of application
modules and also creates the @samp{main} function with calls to
@samp{M2RTS}. It can be useful to add the option @samp{-fsources}
which displays the source files as they are parsed and summarizes
whether the source file is required for compilation or linking.
If you wish to split the above command line into a compile and link
then you could use these steps:
@example
$ gm2 -c -fscaffold-main hello.mod
$ gm2 hello.o
@end example
The @samp{-fscaffold-main} informs the compiler to generate the
@samp{main} function and scaffold. You can enable the environment
variable @samp{GCC_M2LINK_RTFLAG} to trace the construction and
destruction of the application. The values for
@samp{GCC_M2LINK_RTFLAG} are shown in the table below:
@example
value | meaning
=================
all | turn on all flags below
module | trace modules as they register themselves
hex | display the hex address of the init/fini functions
warning | show any warnings
pre | generate module list prior to dependency resolution
dep | trace module dependency resolution
post | generate module list after dependency resolution
force | generate a module list after dependency and forced
| ordering is complete
@end example
The values can be combined using a comma separated list.
One of the advantages of the dynamic scaffold is that the driver
behaves in a similar way to the other front end drivers.
For example consider a small project consisting of 4 definition
implementation modules (@samp{a.def}, @samp{a.mod}, @samp{b.def},
@samp{b.mod}, @samp{c.def}, @samp{c.mod}, @samp{d.def}, @samp{d.mod})
and a program module @samp{program.mod}.
To link this project we could:
@example
$ gm2 -g -c a.mod
$ gm2 -g -c b.mod
$ gm2 -g -c c.mod
$ gm2 -g -c d.mod
$ gm2 -g program.mod a.o b.o c.o d.o
@end example
The module initialization sequence is defined by the ISO standard to
follow the import graph traversal. The initialization order is the
order in which the corresponding separate modules finish the
processing of their import lists.
However, if required, you can override this using
@samp{-fruntime-modules=a,b,c,d} for example which forces the
initialization sequence to @samp{a}, @samp{b}, @samp{c} and @samp{d}.
@node Elementary data types, Standard procedures, Linking, Using
@section Elementary data types
This section describes the elementary data types supported by GNU
Modula-2. It also describes the relationship between these data types
and the equivalent C data types.
The following data types are supported: @code{INTEGER},
@code{LONGINT}, @code{SHORTINT}, @code{CARDINAL}, @code{LONGCARD},
@code{SHORTCARD}, @code{BOOLEAN}, @code{REAL}, @code{LONGREAL},
@code{SHORTREAL}, @code{COMPLEX}, @code{LONGCOMPLEX},
@code{SHORTCOMPLEX} and @code{CHAR}.
An equivalence table is given below:
@example
GNU Modula-2 GNU C
======================================
INTEGER int
LONGINT long long int
SHORTINT short int
CARDINAL unsigned int
LONGCARD long long unsigned int
SHORTCARD short unsigned int
BOOLEAN bool
REAL double
LONGREAL long double
SHORTREAL float
CHAR char
SHORTCOMPLEX complex float
COMPLEX complex double
LONGCOMPLEX complex long double
@end example
Note that GNU Modula-2 also supports fixed sized data types which are
exported from the @code{SYSTEM} module.
@xref{The PIM system module, , ,gm2}.
@xref{The ISO system module, , ,gm2}.
@node Standard procedures, High procedure function, Elementary data types, Using
@section Permanently accessible base procedures.
This section describes the procedures and functions which are
always visible.
@subsection Standard procedures and functions common to PIM and ISO
The following procedures are implemented and conform with Programming
in Modula-2 and ISO Modula-2: @code{NEW}, @code{DISPOSE}, @code{INC},
@code{DEC}, @code{INCL}, @code{EXCL} and @code{HALT}. The standard
functions are: @code{ABS}, @code{CAP}, @code{CHR}, @code{FLOAT},
@code{HIGH}, @code{LFLOAT}, @code{LTRUNC}, @code{MIN}, @code{MAX},
@code{ODD}, @code{SFLOAT}, @code{STRUNC} @code{TRUNC} and
@code{VAL}. All these functions and procedures (except @code{HALT},
@code{NEW}, @code{DISPOSE} and, under non constant conditions,
@code{LENGTH}) generate in-line code for efficiency.
@example
(*
ABS - returns the positive value of i.
*)
@findex ABS
PROCEDURE ABS (i: <any signed type>) : <any signed type> ;
@end example
@example
(*
CAP - returns the capital of character ch providing
ch lies within the range 'a'..'z'. Otherwise ch
is returned unaltered.
*)
@findex CAP
PROCEDURE CAP (ch: CHAR) : CHAR ;
@end example
@example
(*
CHR - converts a value of a <whole number type> into a CHAR.
CHR(x) is shorthand for VAL(CHAR, x).
*)
@findex CHR
PROCEDURE CHR (x: <whole number type>) : CHAR ;
@end example
@example
(*
DISPOSE - the procedure DISPOSE is replaced by:
DEALLOCATE(p, TSIZE(p^)) ;
The user is expected to import the procedure DEALLOCATE
(normally found in the module, Storage.)
In: a variable p: of any pointer type which has been
initialized by a call to NEW.
Out: the area of memory
holding p^ is returned to the system.
Note that the underlying procedure DEALLOCATE
procedure in module Storage will assign p to NIL.
*)
@findex DISPOSE
PROCEDURE DISPOSE (VAR p:<any pointer type>) ;
@end example
@example
(*
DEC - can either take one or two parameters. If supplied
with one parameter then on the completion of the call to
DEC, v will have its predecessor value. If two
parameters are supplied then the value v will have its
n'th predecessor. For these reasons the value of n
must be >=0.
*)
@findex DEC
PROCEDURE DEC (VAR v: <any base type>; [n: <any base type> = 1]) ;
@end example
@example
(*
EXCL - excludes bit element e from a set type s.
*)
@findex EXCL
PROCEDURE EXCL (VAR s: <any set type>; e: <element of set type s>) ;
@end example
@example
(*
FLOAT - will return a REAL number whose value is the same as o.
*)
@findex FLOAT
PROCEDURE FLOAT (o: <any whole number type>) : REAL ;
@end example
@example
(*
FLOATS - will return a SHORTREAL number whose value is the same as o.
*)
@findex FLOATS
PROCEDURE FLOATS (o: <any whole number type>) : REAL ;
@end example
@example
(*
FLOATL - will return a LONGREAL number whose value is the same as o.
*)
@findex FLOATL
PROCEDURE FLOATL (o: <any whole number type>) : REAL ;
@end example
@example
(*
HALT - will call the HALT procedure inside the module M2RTS.
Users can replace M2RTS.
*)
@findex HALT
PROCEDURE HALT ;
@end example
@example
(*
HIGH - returns the last accessible index of an parameter declared as
ARRAY OF CHAR. Thus
PROCEDURE foo (a: ARRAY OF CHAR) ;
VAR
c: CARDINAL ;
BEGIN
c := HIGH(a)
END foo ;
BEGIN
foo('hello')
END
will cause the local variable c to contain the value 5
*)
@findex HIGH
PROCEDURE HIGH (a: ARRAY OF CHAR) : CARDINAL ;
@end example
@example
(*
INC - can either take one or two parameters. If supplied
with one parameter then on the completion of the call to
INC, v will have its successor value. If two
parameters are supplied then the value v will have its
n'th successor. For these reasons the value of n
must be >=0.
*)
@findex INC
PROCEDURE INC (VAR v: <any base type>; [n: <any base type> = 1]) ;
@end example
@example
(*
INCL - includes bit element e to a set type s.
*)
@findex INCL
PROCEDURE INCL (VAR s: <any set type>; e: <element of set type s>) ;
@end example
@example
(*
LFLOAT - will return a LONGREAL number whose value is the same as o.
*)
@findex LFLOAT
PROCEDURE LFLOAT (o: <any whole number type>) : LONGREAL ;
@end example
@example
(*
LTRUNC - will return a LONG<type> number whose value is the
same as o. PIM2, PIM3 and ISO Modula-2 will return
a LONGCARD whereas PIM4 returns LONGINT.
*)
@findex LTRUNC
PROCEDURE LTRUNC (o: <any floating point type>) : LONG<type> ;
@end example
@example
(*
MIN - returns the lowest legal value of an ordinal type.
*)
@findex MIN
PROCEDURE MIN (t: <ordinal type>) : <ordinal type> ;
@end example
@example
(*
MAX - returns the largest legal value of an ordinal type.
*)
@findex MAX
PROCEDURE MAX (t: <ordinal type>) : <ordinal type> ;
@end example
@example
(*
NEW - the procedure NEW is replaced by:
ALLOCATE(p, TSIZE(p^)) ;
The user is expected to import the procedure ALLOCATE
(normally found in the module, Storage.)
In: a variable p: of any pointer type.
Out: variable p is set to some allocated memory
which is large enough to hold all the contents of p^.
*)
@findex NEW
PROCEDURE NEW (VAR p:<any pointer type>) ;
@end example
@example
(*
ODD - returns TRUE if the value is not divisible by 2.
*)
@findex ODD
PROCEDURE ODD (x: <whole number type>) : BOOLEAN ;
@end example
@example
(*
SFLOAT - will return a SHORTREAL number whose value is the same
as o.
*)
@findex SFLOAT
PROCEDURE SFLOAT (o: <any whole number type>) : SHORTREAL ;
@end example
@example
(*
STRUNC - will return a SHORT<type> number whose value is the same
as o. PIM2, PIM3 and ISO Modula-2 will return a
SHORTCARD whereas PIM4 returns SHORTINT.
*)
@findex STRUNC
PROCEDURE STRUNC (o: <any floating point type>) : SHORT<type> ;
@end example
@example
(*
TRUNC - will return a <type> number whose value is the same as o.
PIM2, PIM3 and ISO Modula-2 will return a CARDINAL
whereas PIM4 returns INTEGER.
*)
@findex TRUNC
PROCEDURE TRUNC (o: <any floating point type>) : <type> ;
@end example
@example
(*
TRUNCS - will return a <type> number whose value is the same
as o. PIM2, PIM3 and ISO Modula-2 will return a
SHORTCARD whereas PIM4 returns SHORTINT.
*)
@findex TRUNCS
PROCEDURE TRUNCS (o: <any floating point type>) : <type> ;
@end example
@example
(*
TRUNCL - will return a <type> number whose value is the same
as o. PIM2, PIM3 and ISO Modula-2 will return a
LONGCARD whereas PIM4 returns LONGINT.
*)
@findex TRUNCL
PROCEDURE TRUNCL (o: <any floating point type>) : <type> ;
@end example
@example
(*
VAL - converts data i of <any simple data type 2> to
<any simple data type 1> and returns this value.
No range checking is performed during this conversion.
*)
@findex VAL
PROCEDURE VAL (<any simple data type 1>,
i: <any simple data type 2>) : <any simple data type 1> ;
@end example
@subsection ISO specific standard procedures and functions
The standard function @code{LENGTH} is specific to ISO Modula-2 and
is defined as:
@example
(*
IM - returns the imaginary component of a complex type.
The return value will the same type as the imaginary field
within the complex type.
*)
@findex IM
PROCEDURE IM (c: <any complex type>) : <floating point type> ;
@end example
@example
(*
INT - returns an INTEGER value which has the same value as v.
This function is equivalent to: VAL(INTEGER, v).
*)
@findex INT
PROCEDURE INT (v: <any ordinal type>) : INTEGER ;
@end example
@example
(*
LENGTH - returns the length of string a.
*)
@findex LENGTH
PROCEDURE LENGTH (a: ARRAY OF CHAR) : CARDINAL ;
@end example
This function is evaluated at compile time, providing that string
@code{a} is a constant. If @code{a} cannot be evaluated then a call is
made to @code{M2RTS.Length}.
@example
(*
ODD - returns a BOOLEAN indicating whether the whole number
value, v, is odd.
*)
@findex ODD
PROCEDURE ODD (v: <any whole number type>) : BOOLEAN ;
@end example
@example
(*
RE - returns the real component of a complex type.
The return value will the same type as the real field
within the complex type.
*)
@findex RE
PROCEDURE RE (c: <any complex type>) : <floating point type> ;
@end example
@node High procedure function, Dialect, Standard procedures, Using
@section Behavior of the high procedure function
This section describes the behavior of the standard procedure function
@code{HIGH} and it includes a table of parameters with the expected
return result. The standard procedure function will return the last
accessible indice of an @code{ARRAY}. If the parameter to @code{HIGH}
is a static array then the result will be a @code{CARDINAL} value
matching the upper bound in the @code{ARRAY} declaration.
The section also describes the behavior of a string literal actual
parameter and how it relates to @code{HIGH}.
The PIM2, PIM3, PIM4 and ISO standard is silent on the issue of
whether a @code{nul} is present in an @code{ARRAY} @code{OF}
@code{CHAR} actual parameter.
If the first parameter to @code{HIGH} is an unbounded @code{ARRAY} the
return value from @code{HIGH} will be the last accessible element in
the array. If a constant string literal is passed as an actual
parameter then it will be @code{nul} terminated. The table and
example code below describe the effect of passing an actual parameter
and the expected @code{HIGH} value.
@example
MODULE example1 ;
PROCEDURE test (a: ARRAY OF CHAR) ;
VAR
x: CARDINAL ;
BEGIN
x := HIGH (a) ;
...
END test ;
BEGIN
test ('') ;
test ('1') ;
test ('12') ;
test ('123') ;
END example1.
Actual parameter | HIGH (a) | a[HIGH (a)] = nul
===============================================
'' | 0 | TRUE
'1' | 1 | TRUE
'12' | 2 | TRUE
'123' | 3 | TRUE
@end example
A constant string literal will be passed to an @code{ARRAY} @code{OF}
@code{CHAR} with an appended @code{nul} @code{CHAR}. Thus if the
constant string literal @code{''} is passed as an actual parameter (in
example1) then the result from @code{HIGH(a)} will be @code{0}.
@example
MODULE example2 ;
PROCEDURE test (a: ARRAY OF CHAR) ;
VAR
x: CARDINAL ;
BEGIN
x := HIGH (a) ;
...
END test ;
VAR
str0: ARRAY [0..0] OF CHAR ;
str1: ARRAY [0..1] OF CHAR ;
str2: ARRAY [0..2] OF CHAR ;
str3: ARRAY [0..3] OF CHAR ;
BEGIN
str0 := 'a' ; (* No room for the nul terminator. *)
test (str0) ;
str1 := 'ab' ; (* No room for the nul terminator. *)
test (str1) ;
str2 := 'ab' ; (* Terminated with a nul. *)
test (str2) ;
str2 := 'abc' ; (* Terminated with a nul. *)
test (str3) ;
END example2.
Actual parameter | HIGH (a) | a[HIGH (a)] = nul
===============================================
str0 | 0 | FALSE
str1 | 1 | FALSE
atr2 | 2 | TRUE
str3 | 3 | TRUE
@end example
@node Dialect, Exceptions, High procedure function, Using
@section GNU Modula-2 supported dialects
This section describes the dialects understood by GNU Modula-2.
It also describes the differences between the dialects and
any command line switches which determine dialect behaviour.
The GNU Modula-2 compiler is compliant with four dialects of Modula-2.
The language as defined in 'Programming in Modula-2' 2nd Edition,
Springer Verlag, 1982, 1983 by Niklaus Wirth (PIM2), 'Programming in
Modula-2', 3rd Corrected Edition, Springer Verlag, 1985 (PIM3) and
'Programming in Modula-2', 4th Edition, Springer Verlag, 1988 (PIM4)
@uref{http://freepages.modula2.org/report4/modula-2.html} and the ISO
Modula-2 language as defined in ISO/IEC Information technology -
programming languages - part 1: Modula-2 Language, ISO/IEC 10514-1
(1996) (ISO).
The command line switches @samp{-fpim2}, @samp{-fpim3}, @samp{-fpim4}
and @samp{-fiso} can be used to force mutually exclusive
features. However by default the compiler will not aggressively fail
if a non mutually exclusive feature is used from another dialect. For
example it is possible to specify @samp{-fpim2} and still utilize
@samp{DEFINITION} @samp{MODULES} which have no export list.
Some dialect differences will force a compile time error, for example
in PIM2 the user must @code{IMPORT} @code{SIZE} from the module
@code{SYSTEM}, whereas in PIM3 and PIM4 @code{SIZE} is a pervasive
function. Thus compiling PIM4 source code with the @samp{-fpim2}
switch will cause a compile time error. This can be fixed quickly
with an additional @code{IMPORT} or alternatively by compiling with
the @samp{-fpim4} switch.
However there are some very important differences between the dialects
which are mutually exclusive and therefore it is vital that users
choose the dialects with care when these language features are used.
@subsection Integer division, remainder and modulus
The most dangerous set of mutually exclusive features found in the
four dialects supported by GNU Modula-2 are the @code{INTEGER}
division, remainder and modulus arithmetic operators. It is important
to note that the same source code can be compiled to give different
run time results depending upon these switches! The reference manual
for the various dialects of Modula-2 are quite clear about this
behavior and sadly there are three distinct definitions.
The table below illustrates the problem when a negative operand is
used.
@example
Pim2/3 Pim4 ISO
----------- ----------- ----------------------
lval rval DIV MOD DIV MOD DIV MOD / REM
31 10 3 1 3 1 3 1 3 1
-31 10 -3 -1 -4 9 -4 9 -3 -1
31 -10 -3 1 -3 1 Exception -3 1
-31 -10 3 -1 4 9 Exception 3 -1
@end example
See also P24 of PIM2, P27 of PIM3, P29 of PIM4 and P201 of the ISO
Standard. At present all dialect division, remainder and modulus are
implemented as above, apart from the exception calling in the ISO
dialect. Instead of exception handling the results are the same as the
PIM4 dialect. This is a temporary implementation situation.
@node Exceptions, Semantic checking, Dialect, Using
@section Exception implementation
This section describes how exceptions are implemented in GNU Modula-2
and how command line switches affect their behavior. The option
@samp{-fsoft-check-all} enables all software checking of nil
dereferences, division by zero etc. Additional code is produced to
check these conditions and exception handlers are invoked if the
conditions prevail.
Without @samp{-fsoft-check-all} these exceptions will be caught by
hardware (assuming the hardware support exists) and a signal handler
is invoked. The signal handler will in turn @code{THROW} an exception
which will be caught by the appropriate Modula-2 handler. However the
action of throwing an exception from within a signal handler is
implementation defined (according to the C++ documentation). For
example on the x86_64 architecture this works whereas on the i686
architecture it does not. Therefore to ensure portability it is
recommended to use @samp{-fsoft-check-all}.
@footnote{@samp{-fsoft-check-all} can be effectively combined with
@samp{-O2} to semantically analyze source code for possible run time
errors at compile time.}
@node Semantic checking, Extensions, Exceptions, Using
@section How to detect run time problems at compile time
Consider the following program:
@example
MODULE assignvalue ; (*!m2iso+gm2*)
PROCEDURE bad () : INTEGER ;
VAR
i: INTEGER ;
BEGIN
i := -1 ;
RETURN i
END bad ;
VAR
foo: CARDINAL ;
BEGIN
(* The m2rte plugin will detect this as an error, post
optimization. *)
foo := bad ()
END assignvalue.
@end example
here we see that the programmer has overlooked that the return value
from @samp{bad} will cause an overflow to @samp{foo}. If we compile
the code with the following options:
@example
$ gm2 -g -fsoft-check-all -O2 -c assignvalue.mod
assignvalue.mod:16:0:inevitable that this error will occur at run time,
assignment will result in an overflow
@end example
The gm2 semantic plugin is automatically run and will generate a
warning message for every exception call which is known as reachable.
It is highly advised to run the optimizer (@samp{-O2} or @samp{-O3})
with @samp{-fsoft-check-all} so that the compiler is able to run the
optimizer and perform variable and flow analysis before the semantic
plugin is invoked.
The @samp{-Wuninit-variable-checking} can be used to identify
uninitialized variables within the first basic block in a procedure.
The checking is limited to variables so long as they are
not an array or set or a variant record or var parameter.
The following example detects whether a sub component within a record
is uninitialized.
@example
MODULE testlarge2 ;
TYPE
color = RECORD
r, g, b: CARDINAL ;
END ;
pixel = RECORD
fg, bg: color ;
END ;
PROCEDURE test ;
VAR
p: pixel ;
BEGIN
p.fg.r := 1 ;
p.fg.g := 2 ;
p.fg.g := 3 ; (* Deliberate typo should be p.fg.b. *)
p.bg := p.fg ; (* Accessing an uninitialized field. *)
END test ;
BEGIN
test
END testlarge2.
@end example
@example
$ gm2 -c -Wuninit-variable-checking testlarge2.mod
testlarge2.mod:19:13: warning: In procedure ‘test’: attempting to
access expression before it has been initialized
19 | p.bg := p.fg ; (* Accessing an uninitialized field. *)
| ~^~~
@end example
The following example detects if an individual field is uninitialized.
@example
MODULE testwithnoptr ;
TYPE
Vec = RECORD
x, y: CARDINAL ;
END ;
PROCEDURE test ;
VAR
p: Vec ;
BEGIN
WITH p DO
x := 1 ;
x := 2 (* Deliberate typo, user meant y. *)
END ;
IF p.y = 2
THEN
END
END test ;
BEGIN
test
END testwithnoptr.
@end example
The following example detects a record is uninitialized via a
pointer variable in a @samp{WITH} block.
@example
$ gm2 -g -c -Wuninit-variable-checking testwithnoptr.mod
testwithnoptr.mod:21:8: warning: In procedure ‘test’: attempting to
access expression before it has been initialized
21 | IF p.y = 2
| ~^~
@end example
@example
MODULE testnew6 ;
FROM Storage IMPORT ALLOCATE ;
TYPE
PtrToVec = POINTER TO RECORD
x, y: INTEGER ;
END ;
PROCEDURE test ;
VAR
p: PtrToVec ;
BEGIN
NEW (p) ;
WITH p^ DO
x := 1 ;
x := 2 (* Deliberate typo, user meant y. *)
END ;
IF p^.y = 2
THEN
END
END test ;
BEGIN
test
END testnew6.
@end example
@example
$ gm2 -g -c -Wuninit-variable-checking testnew6.mod
testnew6.mod:19:9: warning: In procedure ‘test’: attempting to
access expression before it has been initialized
19 | IF p^.y = 2
| ~~^~
@end example
@node Extensions, Type compatibility, Semantic checking, Using
@section GNU Modula-2 language extensions
This section introduces the GNU Modula-2 language extensions.
The GNU Modula-2 compiler allows abstract data types to be any type,
not just restricted to a pointer type providing the
@samp{-fextended-opaque} option is supplied
@xref{Compiler options, , ,gm2}.
Declarations can be made in any order, whether they are
types, constants, procedures, nested modules or variables.
@c (@xref{Passes, , ,}.)
GNU Modula-2 also allows programmers to interface to @code{C} and
assembly language.
GNU Modula-2 provides support for the special tokens @code{__LINE__},
@code{__FILE__}, @code{__FUNCTION__} and @code{__DATE__}. Support for
these tokens will occur even if the @samp{-fcpp} option is not
supplied. A table of these identifiers and their data type and values
is given below:
@example
Scope GNU Modula-2 token Data type and example value
anywhere __LINE__ Constant Literal compatible
with CARDINAL, INTEGER and WORD.
Example 1234
anywhere __FILE__ Constant string compatible
with parameter ARRAY OF CHAR or
an ARRAY whose SIZE is >= string
length. Example
"hello.mod"
procedure __FUNCTION__ Constant string compatible
with parameter ARRAY OF CHAR or
an ARRAY whose SIZE is >= string
length. Example
"calc"
module __FUNCTION__ Example
"module hello initialization"
anywhere __DATE__ Constant string compatible
with parameter ARRAY OF CHAR or
an ARRAY whose SIZE is >= string
length. Example
"Thu Apr 29 10:07:16 BST 2004"
anywhere __COLUMN__ Gives a constant literal number
determining the left hand column
where the first _ appears in
__COLUMN__. The left most column
is 1.
@end example
The preprocessor @samp{cpp} can be invoked via the @samp{-fcpp}
command line option. This in turn invokes @samp{cpp} with the
following arguments @samp{-traditional -lang-asm}. These options
preserve comments and all quotations. @samp{gm2} treats a @samp{#}
character in the first column as a preprocessor directive unless
@samp{-fno-cpp} is supplied.
For example here is a module which calls @code{FatalError}
via the macro @code{ERROR}.
@example
MODULE cpp ;
FROM SYSTEM IMPORT ADR, SIZE ;
FROM libc IMPORT exit, printf, malloc ;
PROCEDURE FatalError (a, file: ARRAY OF CHAR;
line: CARDINAL;
func: ARRAY OF CHAR) ;
BEGIN
printf ("%s:%d:fatal error, %s, in %s\n",
ADR (file), line, ADR (a), ADR (func)) ;
exit (1)
END FatalError ;
#define ERROR(X) FatalError(X, __FILE__, __LINE__, __FUNCTION__)
VAR
pc: POINTER TO CARDINAL;
BEGIN
pc := malloc (SIZE (CARDINAL)) ;
IF pc = NIL
THEN
ERROR ('out of memory')
END
END cpp.
@end example
Another use for the C preprocessor in Modula-2 might be to turn on
debugging code. For example the library module
@file{FormatStrings.mod} uses procedures from @file{DynamicStrings.mod}
and to track down memory leaks it was useful to track the source file
and line where each string was created. Here is a section of
@file{FormatStrings.mod} which shows how the debugging code was
enabled and disabled by adding @code{-fcpp} to the command line.
@example
FROM DynamicStrings IMPORT String, InitString, InitStringChar, Mark,
ConCat, Slice, Index, char,
Assign, Length, Mult, Dup, ConCatChar,
PushAllocation, PopAllocationExemption,
InitStringDB, InitStringCharStarDB,
InitStringCharDB, MultDB, DupDB, SliceDB ;
(*
#define InitString(X) InitStringDB(X, __FILE__, __LINE__)
#define InitStringCharStar(X) InitStringCharStarDB(X, __FILE__, \
__LINE__)
#define InitStringChar(X) InitStringCharDB(X, __FILE__, __LINE__)
#define Mult(X,Y) MultDB(X, Y, __FILE__, __LINE__)
#define Dup(X) DupDB(X, __FILE__, __LINE__)
#define Slice(X,Y,Z) SliceDB(X, Y, Z, __FILE__, __LINE__)
*)
PROCEDURE doDSdbEnter ;
BEGIN
PushAllocation
END doDSdbEnter ;
PROCEDURE doDSdbExit (s: String) ;
BEGIN
s := PopAllocationExemption (TRUE, s)
END doDSdbExit ;
PROCEDURE DSdbEnter ;
BEGIN
END DSdbEnter ;
PROCEDURE DSdbExit (s: String) ;
BEGIN
END DSdbExit ;
(*
#define DBsbEnter doDBsbEnter
#define DBsbExit doDBsbExit
*)
PROCEDURE Sprintf1 (s: String; w: ARRAY OF BYTE) : String ;
BEGIN
DSdbEnter ;
s := FormatString (HandleEscape (s), w) ;
DSdbExit (s) ;
RETURN s
END Sprintf1 ;
@end example
It is worth noting that the overhead of this code once @code{-fcpp} is
not present and -O2 is used will be zero since the local empty
procedures @code{DSdbEnter} and @code{DSdbExit} will be thrown away by
the optimization passes of the GCC backend.
@subsection Optional procedure parameter
GNU Modula-2 allows the last parameter to a procedure or function
parameter to be optional. For example in the ISO library
@file{COROUTINES.def} the procedure @code{NEWCOROUTINE} is defined as
having an optional fifth argument (@code{initProtection}) which, if
absent, is automatically replaced by @code{NIL}.
@example
@findex NEWCOROUTINE
PROCEDURE NEWCOROUTINE (procBody: PROC; workspace: SYSTEM.ADDRESS;
size: CARDINAL; VAR cr: COROUTINE;
[initProtection: PROTECTION = NIL]);
(* Creates a new coroutine whose body is given by procBody,
and returns the identity of the coroutine in cr.
workspace is a pointer to the work space allocated to
the coroutine; size specifies the size of this workspace
in terms of SYSTEM.LOC.
The optional fifth argument may contain a single parameter
which specifies the initial protection level of the coroutine.
*)
@end example
The implementation module @file{COROUTINES.mod} implements this
procedure using the following syntax:
@example
PROCEDURE NEWCOROUTINE (procBody: PROC; workspace: SYSTEM.ADDRESS;
size: CARDINAL; VAR cr: COROUTINE;
[initProtection: PROTECTION]);
BEGIN
END NEWCOROUTINE ;
@end example
Note that it is illegal for this declaration to contain an initializer
value for @code{initProtection}. However it is necessary to surround
this parameter with the brackets @code{[} and @code{]}. This serves to
remind the programmer that the last parameter was declared as optional
in the definition module.
Local procedures can be declared to have an optional final parameter
in which case the initializer is mandatory in the implementation or
program module.
GNU Modula-2 also provides additional fixed sized data types which
are all exported from the @code{SYSTEM} module.
@xref{The PIM system module, , ,gm2}.
@xref{The ISO system module, , ,gm2}.
@node Type compatibility, Unbounded by reference, Extensions, Using
@section Type compatibility
This section discuss the issues surrounding assignment, expression
and parameter compatibility, their effect of the additional
fixed sized datatypes and also their effect of run time checking.
The data types supported by the compiler are:
@example
GNU Modula-2 scope switches
=============================================
INTEGER pervasive
LONGINT pervasive
SHORTINT pervasive
CARDINAL pervasive
LONGCARD pervasive
SHORTCARD pervasive
BOOLEAN pervasive
BITSET pervasive
REAL pervasive
LONGREAL pervasive
SHORTREAL pervasive
CHAR pervasive
SHORTCOMPLEX pervasive
COMPLEX pervasive
LONGCOMPLEX pervasive
LOC SYSTEM -fiso
BYTE SYSTEM
WORD SYSTEM
ADDRESS SYSTEM
The following extensions are supported for
most architectures (please check SYSTEM.def).
=============================================
INTEGER8 SYSTEM
INTEGER16 SYSTEM
INTEGER32 SYSTEM
INTEGER64 SYSTEM
CARDINAL8 SYSTEM
CARDINAL16 SYSTEM
CARDINAL32 SYSTEM
CARDINAL64 SYSTEM
BITSET8 SYSTEM
BITSET16 SYSTEM
BITSET32 SYSTEM
WORD16 SYSTEM
WORD32 SYSTEM
WORD64 SYSTEM
REAL32 SYSTEM
REAL64 SYSTEM
REAL96 SYSTEM
REAL128 SYSTEM
COMPLEX32 SYSTEM
COMPLEX64 SYSTEM
COMPLEX96 SYSTEM
COMPLEX128 SYSTEM
@end example
The Modula-2 language categorizes compatibility between entities of
possibly differing types into three sub components: expressions,
assignments, and parameters. Parameter compatibility is further
divided into two sections for pass by reference and pass by value
compatibility.
For more detail on the Modula-2 type compatibility see the Modula-2
ISO standard BS ISO/IEC 10514-1:1996 page 121-125. For detail on the
PIM type compatibility see Programming in Modula-2 Edition 4 page 29,
(Elementary Data Types).
@subsection Expression compatibility
Modula-2 restricts the types of expressions to the same type.
Expression compatibility is a symmetric relation.
For example two sub expressions of @code{INTEGER} and @code{CARDINAL}
are not expression compatible
(@uref{http://freepages.modula2.org/report4/modula-2.html} and ISO
Modula-2).
In GNU Modula-2 this rule is also extended across all fixed sized data
types (imported from SYSTEM).
@subsection Assignment compatibility
This section discusses the assignment issues surrounding assignment
compatibility of elementary types (@code{INTEGER}, @code{CARDINAL},
@code{REAL} and @code{CHAR} for example). The information here is
found in more detail in the Modula-2 ISO standard BS ISO/IEC
10514-1:1996 page 122.
Assignment compatibility exists between the same sized elementary
types.
Same type family of different sizes are
also compatible as long as the @code{MAX(}type@code{)} and
@code{MIN(}type@code{)} is known. So for example this includes the
@code{INTEGER} family, @code{CARDINAL} family and the @code{REAL}
family.
The reason for this is that when the assignment is performed
the compiler will check to see that the expression (on the right of
the @code{:=}) lies within the range of the designator type (on the
left hand side of the @code{:=}). Thus these ordinal types can be
assignment compatible. However it does mean that @code{WORD32} is not
compatible with @code{WORD16} as @code{WORD32} does not have a minimum
or maximum value and therefore cannot be checked. The compiler does
not know which of the two bytes from @code{WORD32} should be copied
into @code{WORD16} and which two should be ignored. Currently the
types @code{BITSET8}, @code{BITSET16} and @code{BITSET32} are
assignment incompatible. However this restriction maybe lifted when
further run time checking is achieved.
Modula-2 does allow @code{INTEGER} to be assignment compatible with
@code{WORD} as they are the same size. Likewise GNU Modula-2 allows
@code{INTEGER16} to be compatible with @code{WORD16} and the same for
the other fixed sized types and their sized equivalent in either
@code{WORD}n, @code{BYTE} or @code{LOC} types. However it prohibits
assignment between @code{WORD} and @code{WORD32} even though on many
systems these sizes will be the same. The reasoning behind this rule
is that the extended fixed sized types are meant to be used by
applications requiring fixed sized data types and it is more portable
to forbid the blurring of the boundaries between fixed sized and
machine dependent sized types.
Intermediate code run time checking is always generated by the front
end. However this intermediate code is only translated into actual
code if the appropriate command line switches are specified. This
allows the compiler to perform limited range checking at compile time.
In the future it will allow the extensive GCC optimizations to
propagate constant values through to the range checks which if they
are found to exceed the type range will result in a compile time
error message.
@subsection Parameter compatibility
Parameter compatibility is divided into two areas, pass by value and
pass by reference (@code{VAR}). In the case of pass by value the
rules are exactly the same as assignment. However in the second case,
pass by reference, the actual parameter and formal parameter must be
the same size and family. Furthermore @code{INTEGER} and
@code{CARDINAL}s are not treated as compatible in the pass by
reference case.
The types @code{BYTE}, @code{LOC}, @code{WORD} and @code{WORD}n
derivatives are assignment and parameter compatible with any data type
of the same size.
@node Unbounded by reference, Building a shared library, Type compatibility, Using
@section Unbounded by reference
This section documents a GNU Modula-2 compiler switch which implements
a language optimization surrounding the implementation of unbounded
arrays. In GNU Modula-2 the unbounded array is implemented by
utilizing an internal structure @code{struct @{dataType *address,
unsigned int high@}}. So given the Modula-2 procedure declaration:
@example
PROCEDURE foo (VAR a: ARRAY OF dataType) ;
BEGIN
IF a[2]= (* etc *)
END foo ;
@end example
it is translated into GCC @code{tree}s, which can be represented
in their C form thus:
@example
void foo (struct @{dataType *address, unsigned int high@} a)
@{
if (a.address[2] == /* etc */
@}
@end example
Whereas if the procedure @code{foo} was declared as:
@example
PROCEDURE foo (a: ARRAY OF dataType) ;
BEGIN
IF a[2]= (* etc *)
END foo ;
@end example
then it is implemented by being translated into the following
GCC @code{tree}s, which can be represented in their C form thus:
@example
void foo (struct @{dataType *address, unsigned int high@} a)
@{
dataType *copyContents = (dataType *)alloca (a.high+1);
memcpy(copyContents, a.address, a.high+1);
a.address = copyContents;
if (a.address[2] == /* etc */
@}
@end example
This implementation works, but it makes a copy of each non VAR
unbounded array when a procedure is entered. If the unbounded array
is not changed during procedure @code{foo} then this implementation
will be very inefficient. In effect Modula-2 lacks the @code{REF}
keyword of Ada. Consequently the programmer maybe tempted to
sacrifice semantic clarity for greater efficiency by declaring the
parameter using the @code{VAR} keyword in place of @code{REF}.
The @code{-funbounded-by-reference} switch instructs the compiler to
check and see if the programmer is modifying the content of any
unbounded array. If it is modified then a copy will be made upon
entry into the procedure. Conversely if the content is only read and
never modified then this non @code{VAR} unbounded array is a candidate
for being passed by reference. It is only a candidate as it is still
possible that passing this parameter by reference could alter the
meaning of the source code. For example consider the following case:
@example
PROCEDURE StrConCat (VAR a: ARRAY OF CHAR; b, c: ARRAY OF CHAR) ;
BEGIN
(* code which performs string a := b + c *)
END StrConCat ;
PROCEDURE foo ;
VAR
a: ARRAY [0..3] OF CHAR ;
BEGIN
a := 'q' ;
StrConCat(a, a, a)
END foo ;
@end example
In the code above we see that the same parameter, @code{a}, is being
passed three times to @code{StrConCat}. Clearly even though parameters
@code{b} and @code{c} are never modified it would be incorrect to
implement them as pass by reference. Therefore the compiler checks to
see if any non @code{VAR} parameter is type compatible with any
@code{VAR} parameter and if so it generates run time procedure entry
checks to determine whether the contents of parameters @code{b} or
@code{c} matches the contents of @code{a}. If a match is detected
then a copy is made and the @code{address} in the unbounded
@code{struct}ure is modified.
The compiler will check the address range of each candidate against
the address range of any @code{VAR} parameter, providing they are type
compatible. For example consider:
@example
PROCEDURE foo (a: ARRAY OF BYTE; VAR f: REAL) ;
BEGIN
f := 3.14 ;
IF a[0]=BYTE(0)
THEN
(* etc *)
END
END foo ;
PROCEDURE bar ;
BEGIN
r := 2.0 ;
foo(r, r)
END bar ;
@end example
Here we see that although parameter, @code{a}, is a candidate for the
passing by reference, it would be incorrect to use this
transformation. Thus the compiler detects that parameters, @code{a}
and @code{f} are type compatible and will produce run time checking
code to test whether the address range of their respective contents
intersect.
@node Building a shared library, Interface for Python, Unbounded by reference, Using
@section Building a shared library
This section describes building a tiny shared library implemented in
Modula-2 and built with @file{libtool}. Suppose a project consists of
two definition modules and two implementation modules and a program
module @file{a.def}, @file{a.mod}, @file{b.def}, @file{b.mod} and
@file{c.mod}. The first step is to compile the modules using position
independent code. This can be achieved by the following three
commands:
@example
libtool --tag=CC --mode=compile gm2 -g -c a.mod -o a.lo
libtool --tag=CC --mode=compile gm2 -g -c b.mod -o b.lo
libtool --tag=CC --mode=compile gm2 -g -c c.mod -o c.lo
@end example
The second step is to generate the shared library initialization and
finalization routines. We can do this by asking gm2 to generate a
list of dependent modules and then use this to generate the scaffold.
We also must compile the scaffold.
@example
gm2 -c -g -fmakelist c.mod
gm2 -c -g -fmakeinit -fshared c.mod
libtool --tag=CC --mode=compile g++ -g -c c_m2.cpp -o c_m2.lo
@end example
The third step is to link all these @file{.lo} files.
@example
libtool --mode=link gcc -g c_m2.lo a.lo b.lo c.lo \
-L$(prefix)/lib64 \
-rpath `pwd` -lgm2 -lstdc++ -lm -o libabc.la
@end example
At this point the shared library @file{libabc.so} will have been
created inside the directory @file{.libs}.
@node Interface for Python, Producing a Python module, Building a shared library, Using
@section How to produce swig interface files
This section describes how Modula-2 implementation modules can be
called from Python (and other scripting languages such as TCL and
Perl). GNU Modula-2 can be instructed to create a swig interface when
it is compiling an implementation module. Swig then uses the
interface file to generate all the necessary wrapping to that the
desired scripting language may access the implementation module.
Here is an example of how you might call upon the services of the
Modula-2 library module @code{NumberIO} from Python3.
The following commands can be used to generate the Python3 module:
@example
export src=@samp{directory to the sources}
export prefix=@samp{directory to where the compiler is installed}
gm2 -I$@{src@} -c -g -fswig $@{src@}/../../../gm2-libs/NumberIO.mod
gm2 -I$@{src@} -c -g -fmakelist $@{src@}/../../../gm2-libs/NumberIO.mod
gm2 -I$@{src@} -c -g -fmakeinit -fshared \
$@{src@}/../../../gm2-libs/NumberIO.mod
swig -c++ -python3 NumberIO.i
libtool --mode=compile g++ -g -c -I$@{src@} NumberIO_m2.cpp \
-o NumberIO_m2.lo
libtool --tag=CC --mode=compile gm2 -g -c \
-I$@{src@}../../../gm2-libs \
$@{src@}/../../../gm2-libs/NumberIO.mod -o NumberIO.lo
libtool --tag=CC --mode=compile g++ -g -c NumberIO_wrap.cxx \
-I/usr/include/python3 -o NumberIO_wrap.lo
libtool --mode=link gcc -g NumberIO_m2.lo NumberIO_wrap.lo \
-L$@{prefix@}/lib64 \
-rpath `pwd` -lgm2 -lstdc++ -lm -o libNumberIO.la
cp .libs/libNumberIO.so _NumberIO.so
@end example
The first four commands, generate the swig interface file
@file{NumberIO.i} and python wrap files @file{NumberIO_wrap.cxx} and
@file{NumberIO.py}. The next three @file{libtool} commnads compile
the C++ and Modula-2 source code into @file{.lo} objects. The last
@file{libtool} command links all the @file{.lo} files into a
@file{.la} file and includes all shared library dependencies.
Now it is possible to run the following Python script
(called @file{testnum.py}):
@example
import NumberIO
print ("1234 x 2 =", NumberIO.NumberIO_StrToInt("1234")*2)
@end example
like this:
@example
$ python3 testnum.py
1234 x 2 = 2468
@end example
@xref{Producing a Python module, , ,gm2} for another example which
uses the @code{UNQUALIFIED} keyword to reduce the module name clutter
from the viewport of Python3.
@subsection Limitations of automatic generated of Swig files
This section discusses the limitations of automatically generating
swig files. From the previous example we see that the module
@code{NumberIO} had a swig interface file @file{NumberIO.i}
automatically generated by the compiler. If we consider three of the
procedure definitions in @file{NumberIO.def} we can see the
success and limitations of the automatic interface generation.
@example
PROCEDURE StrToHex (a: ARRAY OF CHAR; VAR x: CARDINAL) ;
PROCEDURE StrToInt (a: ARRAY OF CHAR; VAR x: INTEGER) ;
PROCEDURE ReadInt (VAR x: CARDINAL) ;
@end example
Below are the swig interface prototypes:
@example
extern void NumberIO_StrToHex (char *_m2_address_a,
int _m2_high_a, unsigned int *OUTPUT);
/* parameters: x is known to be an OUTPUT */
extern void NumberIO_StrToInt (char *_m2_address_a,
int _m2_high_a, int *OUTPUT);
/* parameters: x is guessed to be an OUTPUT */
extern void NumberIO_ReadInt (int *x);
/* parameters: x is unknown */
@end example
In the case of @code{StrToHex} it can be seen that the compiler
detects that the last parameter is an output. It explicitly tells
swig this by using the parameter name @code{OUTPUT} and in the
following comment it informs the user that it knows this to be an
output parameter. In the second procedure @code{StrToInt} it marks
the final parameter as an output, but it tells the user that this is
only a guess. Finally in @code{ReadInt} it informs the user that
it does not know whether the parameter, @code{x}, is an output, input
or an inout parameter.
The compiler decides whether to mark a parameter as either:
@code{INPUT}, @code{OUTPUT} or @code{INOUT} if it is read before
written or visa versa in the first basic block. At this point
it will write output that the parameter is known. If it is not
read or written in the first basic block then subsequent basic blocks
are searched and the result is commented as a guess. Finally if
no read or write occurs then the parameter is commented as unknown.
However, clearly it is possible to fool this mechanism. Nevertheless
automatic generation of implementation module into swig interface files
was thought sufficiently useful despite these limitations.
In conclusion it would be wise to check all parameters in any
automatically generated swig interface file. Furthermore you can
force the automatic mechanism to generate correct interface files by
reading or writing to the @code{VAR} parameter in the first basic
block of a procedure.
@node Producing a Python module, Interface to C, Interface for Python, Using
@section How to produce a Python module
This section describes how it is possible to produce a Python module
from Modula-2 code. There are a number of advantages to this
approach, it ensures your code reaches a wider audience, maybe it is
easier to initialize your application in Python.
The example application here is a pedagogical two dimensional gravity
next event simulation. The Python module needs to have a clear API
which should be placed in a single definition module. Furthermore the
API should only use fundamental pervasive data types and strings.
Below the API is contained in the file @file{twoDsim.def}:
@example
DEFINITION MODULE twoDsim ;
EXPORT UNQUALIFIED gravity, box, poly3, poly5, poly6, mass,
fix, circle, pivot, velocity, accel, fps,
replayRate, simulateFor ;
(*
gravity - turn on gravity at: g m^2
*)
PROCEDURE gravity (g: REAL) ;
(*
box - place a box in the world at (x0,y0),(x0+i,y0+j)
*)
PROCEDURE box (x0, y0, i, j: REAL) : CARDINAL ;
(*
poly3 - place a triangle in the world at:
(x0,y0),(x1,y1),(x2,y2)
*)
PROCEDURE poly3 (x0, y0, x1, y1, x2, y2: REAL) : CARDINAL ;
(*
poly5 - place a pentagon in the world at:
(x0,y0),(x1,y1),(x2,y2),(x3,y3),(x4,y4)
*)
PROCEDURE poly5 (x0, y0, x1, y1,
x2, y2, x3, y3, x4, y4: REAL) : CARDINAL ;
(*
poly6 - place a hexagon in the world at:
(x0,y0),(x1,y1),(x2,y2),(x3,y3),(x4,y4),(x5,y5)
*)
PROCEDURE poly6 (x0, y0, x1, y1,
x2, y2, x3, y3,
x4, y4, x5, y5: REAL) : CARDINAL ;
(*
mass - specify the mass of an object and return the, id.
*)
PROCEDURE mass (id: CARDINAL; m: REAL) : CARDINAL ;
(*
fix - fix the object to the world.
*)
PROCEDURE fix (id: CARDINAL) : CARDINAL ;
(*
circle - adds a circle to the world. Center
defined by: x0, y0 radius, r.
*)
PROCEDURE circle (x0, y0, r: REAL) : CARDINAL ;
(*
velocity - give an object, id, a velocity, vx, vy.
*)
PROCEDURE velocity (id: CARDINAL; vx, vy: REAL) : CARDINAL ;
(*
accel - give an object, id, an acceleration, ax, ay.
*)
PROCEDURE accel (id: CARDINAL; ax, ay: REAL) : CARDINAL ;
(*
fps - set frames per second.
*)
PROCEDURE fps (f: REAL) ;
(*
replayRate - set frames per second during replay.
*)
PROCEDURE replayRate (f: REAL) ;
(*
simulateFor - render for, t, seconds.
*)
PROCEDURE simulateFor (t: REAL) ;
END twoDsim.
@end example
The keyword @code{UNQUALIFIED} can be used to ensure that the
compiler will provide externally accessible functions
@code{gravity}, @code{box}, @code{poly3}, @code{poly5}, @code{poly6},
@code{mass}, @code{fix}, @code{circle}, @code{pivot}, @code{velocity},
@code{accel}, @code{fps}, @code{replayRate}, @code{simulateFor}
rather than name mangled alternatives.
Hence in our Python3 application we could write:
@example
#!/usr/bin/env python3
from twoDsim import *
b = box (0.0, 0.0, 1.0, 1.0)
b = fix (b)
c1 = circle (0.7, 0.7, 0.05)
c1 = mass (c1, 0.01)
c2 = circle (0.7, 0.1, 0.05)
c2 = mass (c2, 0.01)
c2 = fix (c2)
gravity (-9.81)
fps (24.0*4.0)
replayRate (24.0)
print ("creating frames")
try:
simulateFor (1.0)
print ("all done")
except:
print ("exception raised")
@end example
which accesses the various functions defined and implemented by the
module @code{twoDsim}. The Modula-2 source code is compiled via:
@example
$ gm2 -g -fiso -c -fswig twoDsim.mod
$ gm2 -g -fiso -c -fmakelist twoDsim.mod
$ gm2 -g -fiso -c -fmakeinit twoDsim.mod
@end example
The first command both compiles the source file creating
@file{twoDsim.o} and produces a swig interface file @file{swig.i}. We
now use @code{swig} and @code{g++} to produce and compile the
interface wrappers:
@example
$ libtool --mode=compile g++ -g -c twoDsim_m2.cpp -o twoDsim_m2.lo
$ swig -c++ -python3 twoDsim.i
$ libtool --mode=compile g++ -c -fPIC twoDsim_wrap.cxx \
-I/usr/include/python3 -o twoDsim_wrap.lo
$ libtool --mode=compile gm2 -g -fPIC -fiso -c deviceGnuPic.mod
$ libtool --mode=compile gm2 -g -fPIC -fiso -c roots.mod
$ libtool --mode=compile gm2 -g -fPIC -fiso -c -fswig \
twoDsim.mod -o twoDsim.lo
@end example
Finally the application is linked into a shared library:
@example
$ libtool --mode=link gcc -g twoDsim_m2.lo twoDsim_wrap.lo \
roots.lo deviceGnuPic.lo \
-L$@{prefix@}/lib64 \
-rpath `pwd` -lgm2 -lstdc++ -lm -o libtwoDsim.la
cp .libs/libtwoDsim.so _twoDsim.so
@end example
The library name must start with @code{_} to comply with the Python3
module naming scheme.
@node Interface to C, Assembly language, Producing a Python module, Using
@section Interfacing GNU Modula-2 to C
The GNU Modula-2 compiler tries to use the C calling convention
wherever possible however some parameters have no C equivalent and
thus a language specific method is used. For example unbounded arrays
are passed as a @code{struct @{void *address, unsigned int high@}} and
the contents of these arrays are copied by callee functions when they
are declared as non @code{VAR} parameters. The @code{VAR} equivalent
unbounded array parameters need no copy, but still use the
@code{struct} representation.
The recommended method of interfacing GNU Modula-2 to C is by telling
the definition module that the implementation is in the C language.
This is achieved by using the tokens @code{DEFINITION MODULE FOR "C"}.
Here is an example @file{libprintf.def}.
@example
DEFINITION MODULE FOR "C" libprintf ;
EXPORT UNQUALIFIED printf ;
PROCEDURE printf (a: ARRAY OF CHAR; ...) : [ INTEGER ] ;
END libprintf.
@end example
the @code{UNQUALIFIED} keyword in the definition module informs
GNU Modula-2 not to prefix the module name to exported references
in the object file.
The @code{printf} declaration states that the first parameter
semantically matches @code{ARRAY OF CHAR} but since the module is for
the C language it will be mapped onto @code{char *}. The token
@code{...} indicates a variable number of arguments (varargs) and all
parameters passed here are mapped onto their C equivalents. Arrays and
constant strings are passed as pointers. Lastly @code{[ INTEGER ]}
states that the caller can ignore the function return result if desired.
The hello world program can be rewritten as:
@example
MODULE hello ;
FROM libprintf IMPORT printf ;
BEGIN
printf ("hello world\n")
END hello.
@end example
and it can be compiled by:
@samp{gm2 -g hello.mod -lc}
In reality the @samp{-lc} is redundant as libc is always included in the
linking process. It is shown here to emphasize that the C library or
object file containing @code{printf} must be present. The search path
for modules can be changed by using @samp{-I}.
If a procedure function is declared using varargs then some parameter
values are converted. The table below summarizes the default conversions
and default types used.
@example
Actual Parameter | Default conversion | Type of actual
| | value passed
===============================================================
123 | none | long long int
"hello world" | none | const char *
a: ARRAY OF CHAR | ADR (a) | char *
a: ARRAY [0..5] OF CHAR| ADR (a) | char *
3.14 | none | long double
@end example
If you wish to pass @code{int} values then you should explicitly
convert the constants using one of the conversion mechanisms.
For example: @code{INTEGER(10)} or @code{VAL(INTEGER, 10)} or
@code{CAST(INTEGER, 10)}.
@node Assembly language, Alignment, Interface to C, Using
@section Interface to assembly language
The interface for GNU Modula-2 to assembly language is almost
identical to GNU C. The only alterations are that the keywords
@code{asm} and @code{volatile} are in capitals, following the Modula-2
convention.
A simple, but highly non optimal, example is given below. Here we want
to add the two @code{CARDINAL}s @code{foo} and @code{bar} together and
return the result. The target processor is assumed to be executing
the x86_64 instruction set.
@example
PROCEDURE Example (foo, bar: CARDINAL) : CARDINAL ;
VAR
myout: CARDINAL ;
BEGIN
ASM VOLATILE ("movq %1,%%rax; addq %2,%%rax; movq %%rax,%0"
: "=rm" (myout) (* outputs *)
: "rm" (foo), "rm" (bar) (* inputs *)
: "rax") ; (* we trash *)
RETURN( myout )
END Example ;
@end example
For a full description of this interface we refer the reader to the GNU C manual.
@xref{Extended Asm, ,Extensions to the C Language Family,gcc}.
The same example can be written using the newer extensions of naming
the operands rather than using numbered arguments.
@example
PROCEDURE Example (foo, bar: CARDINAL) : CARDINAL ;
VAR
myout: CARDINAL ;
BEGIN
ASM VOLATILE (
"movq %[left],%%rax; addq %[right],%%rax; movq %%rax,%[output]"
: [output] "=rm" (myout) (* outputs *)
: [left] "rm" (foo), [right] "rm" (bar) (* inputs *)
: "rax") ; (* we trash *)
RETURN( myout )
END Example ;
@end example
Both examples generate exactly the same code. It is worth noting that
the specifier ``rm'' indicates that the operand can be either a
register or memory. Of course you must choose an instruction which
can take either, but this allows the compiler to take make more
efficient choices depending upon the optimization level given to the
compiler.
@node Alignment, Packed, Assembly language, Using
@section Data type alignment
GNU Modula-2 allows you to specify alignment for types and variables.
The syntax for alignment is to use the ISO pragma directives @code{<*}
@code{bytealignment (} expression @code{)} and @code{*>}. These directives
can be used after type and variable declarations.
The ebnf of the alignment production is:
@example
Alignment := [ ByteAlignment ] =:
ByteAlignment := '<*' AttributeExpression '*>' =:
AlignmentExpression := "(" ConstExpression ")" =:
@end example
The @code{Alignment} ebnf statement may be used during construction of
types, records, record fields, arrays, pointers and variables. Below
is an example of aligning a type so that the variable @code{bar} is
aligned on a 1024 address.
@example
MODULE align ;
TYPE
foo = INTEGER <* bytealignment(1024) *> ;
VAR
z : INTEGER ;
bar: foo ;
BEGIN
END align.
@end example
The next example aligns a variable on a 1024 byte boundary.
@example
MODULE align2 ;
VAR
x : CHAR ;
z : ARRAY [0..255] OF INTEGER <* bytealignment(1024) *> ;
BEGIN
END align2.
@end example
Here the example aligns a pointer on a 1024 byte boundary.
@example
MODULE align4 ;
FROM SYSTEM IMPORT ADR ;
FROM libc IMPORT exit ;
VAR
x : CHAR ;
z : POINTER TO INTEGER <* bytealignment(1024) *> ;
BEGIN
IF ADR(z) MOD 1024=0
THEN
exit(0)
ELSE
exit(1)
END
END align4.
@end example
In example @code{align5} record field @code{y} is aligned on a 1024
byte boundary.
@example
MODULE align5 ;
FROM SYSTEM IMPORT ADR ;
FROM libc IMPORT exit ;
TYPE
rec = RECORD
x: CHAR ;
y: CHAR <* bytealignment(1024) *> ;
END ;
VAR
r: rec ;
BEGIN
IF ADR(r.y) MOD 1024=0
THEN
exit(0)
ELSE
exit(1)
END
END align5.
@end example
In the example below module @code{align6} declares @code{foo} as an
array of 256 @code{INTEGER}s. The array @code{foo} is aligned on a
1024 byte boundary.
@example
MODULE align6 ;
FROM SYSTEM IMPORT ADR ;
FROM libc IMPORT exit ;
TYPE
foo = ARRAY [0..255] OF INTEGER <* bytealignment(1024) *> ;
VAR
x : CHAR ;
z : foo ;
BEGIN
IF ADR(z) MOD 1024=0
THEN
exit(0)
ELSE
exit(1)
END
END align6.
@end example
@node Packed, Built-ins, Alignment, Using
@section Packing data types
The pragma @code{<* bytealignment(0) *>} can be used to specify that
the fields within a @code{RECORD} are to be packed. Currently this
only applies to fields which are declared as subranges, ordinal types
and enumerated types. Here is an example of how two subranges might
be packed into a byte.
@example
TYPE
bits3c = [0..7] ;
bits3i = [-4..3] ;
byte = RECORD
<* bytealignment(0) *>
x: bits3c ;
<* bitsunused(2) *>
y: bits3i ;
END ;
@end example
Notice that the user has specified that in between fields @code{x} and
@code{y} there are two bits unused.
Now the user wishes to create a record with byte numbers zero and one
occupied and then an @code{INTEGER32} field which is four byte
aligned. In this case byte numbers two and three will be unused. The
pragma @code{bytealignment} can be issued at the start of the record
indicating the default alignment for the whole record and this can be
overridden by individual fields if necessary.
@example
rec = RECORD
<* bytealignment (1) *> ;
a, b: byte ;
x: INTEGER32 <* bytealignment(4) *> ;
END ;
@end example
In the following example the user has specified that a record has two
fields @code{p} and @code{q} but that there are three bytes unused between
these fields.
@example
header = RECORD
<* bytealignment(1) *>
p: byte ;
<* bytesunused(3) *>
q: byte ;
END ;
@end example
The pragma @code{<* bytesunused(x) *>} can only be used if the current
field is on a byte boundary. There is also a @code{SYSTEM} pseudo
procedure function @code{TBITSIZE(T)} which returns the minimum number of
bits necessary to represent type @code{T}.
Another example of packing record bit fields is given below:
@example
MODULE align21 ;
FROM libc IMPORT exit ;
TYPE
colour = (red, blue, green, purple, white, black) ;
soc = PACKEDSET OF colour ;
rec = RECORD
<* bytealignment(0) *>
x: soc ;
y: [-1..1] ;
END ;
VAR
r: rec ;
v: CARDINAL ;
BEGIN
v := SIZE(r) ;
IF SIZE(r)#1
THEN
exit(1)
END ;
r.x := soc@{blue@} ;
IF r.x#soc@{blue@}
THEN
exit(2)
END
END align21.
@end example
Here we see that the total size of this record is one byte and consists
of a six bit set type followed by a 2 bit integer subrange.
@node Built-ins, The PIM system module, Packed, Using
@section Accessing GNU Modula-2 Built-ins
This section describes the built-in constants and functions defined in
GNU Modula-2. The following compiler constants can be accessed using
the @code{__ATTRIBUTE__} @code{__BUILTIN__} keywords. These are not
part of the Modula-2 language and they may differ depending upon the
target architecture but they provide a method whereby common
libraries can interface to a different underlying architecture.
The built-in constants are: @code{BITS_PER_UNIT}, @code{BITS_PER_WORD},
@code{BITS_PER_CHAR} and @code{UNITS_PER_WORD}. They are integrated into
GNU Modula-2 by an extension to the @code{ConstFactor} rule:
@example
ConstFactor := ConstQualidentOrSet | Number | ConstString |
"(" ConstExpression ")" | "NOT" ConstFactor |
ConstAttribute =:
ConstAttribute := "__ATTRIBUTE__" "__BUILTIN__" "(" "(" Ident ")" ")" =:
@end example
Here is an example taken from the ISO library @code{SYSTEM.def}:
@example
CONST
BITSPERLOC = __ATTRIBUTE__ __BUILTIN__ ((BITS_PER_UNIT)) ;
LOCSPERWORD = __ATTRIBUTE__ __BUILTIN__ ((UNITS_PER_WORD)) ;
@end example
Built-in functions are transparent to the end user. All built-in
functions are declared in @code{DEFINITION MODULE}s and are imported
as and when required. Built-in functions are declared in definition
modules by using the @code{__BUILTIN__} keyword. Here is a section of
the ISO library @code{LongMath.def} which demonstrates this feature.
@example
PROCEDURE __BUILTIN__ sqrt (x: LONGREAL): LONGREAL;
(* Returns the square root of x *)
@end example
This indicates that the function @code{sqrt} will be implemented using
the gcc built-in maths library. If gcc cannot utilize the built-in
function (for example if the programmer requested the address of
@code{sqrt}) then code is generated to call the alternative function
implemented in the @code{IMPLEMENTATION} @code{MODULE}.
Sometimes a function exported from the @code{DEFINITION} @code{MODULE}
will have a different name from the built-in function within gcc. In
such cases the mapping between the GNU Modula-2 function name and the
gcc name is expressed using the keywords @code{__ATTRIBUTE__}
@code{__BUILTIN__} @code{((Ident))}. For example the function
@code{sqrt} in @code{LongMath.def} maps onto the gcc built-in function
@code{sqrtl} and this is expressed as:
@example
PROCEDURE __ATTRIBUTE__ __BUILTIN__ ((sqrtl)) sqrt
(x: LONGREAL) : LONGREAL;
(* Returns the positive square root of x *)
@end example
The following module @code{Builtins.def} enumerates the list of
built-in functions which can be accessed in GNU Modula-2. It also
serves to define the parameter and return value for each function:
@include m2/Builtins.texi
Although this module exists and will result in the generation of
in-line code if optimization flags are passed to GNU Modula-2, users
are advised to utilize the same functions from more generic libraries.
The built-in mechanism will be applied to these generic
libraries where appropriate. Note for the mathematical routines to
be in-lined you need to specify the @samp{-ffast-math -O} options.
@node The PIM system module, The ISO system module, Built-ins, Using
@section The PIM system module
@include m2/SYSTEM-pim.texi
The different dialects of Modula-2 PIM-[234] and ISO Modula-2 declare
the function @code{SIZE} in different places. PIM-[34] and ISO
Modula-2 declare @code{SIZE} as a pervasive function (declared in the
base module). PIM-2 defined @code{SIZE} in the @code{SYSTEM} module
(as shown above).
GNU Modula-2 allows users to specify the dialect of Modula-2 by using
the @code{-fiso} and @code{-fpim2} command line switches.
The data types @code{CSIZE_T} and @code{CSSIZE_T} are also exported from
the @code{SYSTEM} module. The type @code{CSIZE_T} is unsigned and is
mapped onto the target C data type @code{size_t} whereas the type
@code{CSSIZE_T} is mapped onto the signed C data type @code{ssize_t}.
It is anticipated that these should only be used to provide cross
platform definition modules for C libraries.
There are also a variety of fixed sized @code{INTEGER} and
@code{CARDINAL} types. The variety of the fixed sized types will
depend upon the target architecture.
@node The ISO system module, Release map, The PIM system module, Using
@section The ISO system module
@include m2/SYSTEM-iso.texi
The data types @code{CSIZE_T} and @code{CSSIZE_T} are also exported from
the @code{SYSTEM} module. The type @code{CSIZE_T} is unsigned and is
mapped onto the target C data type @code{size_t} whereas the type
@code{CSSIZE_T} is mapped onto the signed C data type @code{ssize_t}.
It is anticipated that these should only be used to provide cross
platform definition modules for C libraries.
There are also a variety of fixed sized @code{INTEGER} and
@code{CARDINAL} types. The variety of the fixed sized types will
depend upon the target architecture.
@node Release map, Documentation, The ISO system module, Using
@section Release map
GNU Modula-2 is now part of GCC and therefore will adopt the GCC
release schedule. It is intended that GNU Modula-2 implement more of
the GCC builtins (vararg access) and GCC features.
There is an intention to implement the ISO generics and the M2R10
dialect of Modula-2. It will also implement all language changes. If
you wish to see something different please email
@email{gm2@@nongnu.org} with your ideas.
@node Documentation, Regression tests, Release map, Using
@section Documentation
The GNU Modula-2 documentation is available on line
@url{https://gcc.gnu.org/onlinedocs}
or in the pdf, info, html file format.
@node Regression tests, Limitations, Documentation, Using
@section Regression tests for gm2 in the repository
The regression testsuite can be run from the gcc build directory:
@example
$ cd build-gcc
$ make check -j 24
@end example
which runs the complete testsuite for all compilers using 24 parallel
invocations of the compiler. Individual language testsuites can be
run by specifying the language, for example the Modula-2 testsuite can
be run using:
@example
$ cd build-gcc
$ make check-m2 -j 24
@end example
Finally the results of the testsuite can be emailed to the
@url{https://gcc.gnu.org/lists.html, gcc-testresults} list using the
@file{test_summary} script found in the gcc source tree:
@example
$ @samp{directory to the sources}/contrib/test_summary
@end example
@node Limitations, Objectives, Regression tests, Using
@section Limitations
Logitech compatibility library is incomplete. The principle modules
for this platform exist however for a comprehensive list of completed
modules please check the documentation
@url{gm2.html}.
@node Objectives, FAQ, Limitations, Using
@section Objectives
@itemize @bullet
@item
The intention of GNU Modula-2 is to provide a production Modula-2
front end to GCC.
@item
It should support all Niklaus Wirth PIM Dialects [234] and also ISO
Modula-2 including a re-implementation of all the ISO modules.
@item
There should be an easy interface to C.
@item
Exploit the features of GCC.
@item
Listen to the requests of the users.
@end itemize
@node FAQ, Community, Objectives, Using
@section FAQ
@subsection Why use the C++ exception mechanism in GCC, rather than a bespoke Modula-2 mechanism?
The C++ mechanism is tried and tested, it also provides GNU Modula-2
with the ability to link with C++ modules and via swig it can raise
Python exceptions.
@node Community, Other languages, FAQ, Using
@section Community
You can subscribe to the GNU Modula-2 mailing by sending an
email to:
@email{gm2-subscribe@@nongnu.org}
or by
@url{http://lists.nongnu.org/mailman/listinfo/gm2}.
The mailing list contents can be viewed
@url{http://lists.gnu.org/archive/html/gm2}.
@node Other languages, , Community, Using
@section Other languages for GCC
These exist and can be found on the frontends web page on the
@uref{http://gcc.gnu.org/frontends.html, gcc web site}.
@node License, Copying, Using, Top
@section License of GNU Modula-2
GNU Modula-2 is free software, the compiler is held under the GPL v3
@uref{http://www.gnu.org/licenses/gpl.txt},
its libraries (pim, iso and Logitech compatible) are under the
GPL v3 with the GCC run time library exception clause.
Under Section 7 of GPL version 3, you are granted additional
permissions described in the GCC Runtime Library Exception, version
3.1, as published by the Free Software Foundation.
You should have received a copy of the GNU General Public License and
a copy of the GCC Runtime Library Exception along with this program;
see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
<http://www.gnu.org/licenses/>.
More information on how these licenses work is available
@uref{http://www.gnu.org/licenses/licenses.html} on the GNU web site.
@node Copying, Contributing, License, Top
@include gpl_v3_without_node.texi
@node Contributing, EBNF, Copying, Top
@section Contributing to GNU Modula-2
Please do and please read the GNU Emacs info under
@example
* Standards: (standards). GNU coding standards.
* Intellectual Property:: Keeping Free Software Free
* Reading Non-Free Code:: Referring to Proprietary Programs
* Contributions:: Accepting Contributions
@end example
You might consider joining the GM2 Mailing list before you start
coding. The mailing list may be subscribed via a web interface
@uref{http://lists.nongnu.org/mailman/listinfo/gm2} or via email
@email{gm2-subscribe@@nongnu.org}.
Many thanks and enjoy your coding!
@c @node Internals, , ,
@c This section is still being written.
@c @include gm2-internals.texi
@node EBNF, Libraries, Contributing, Top
@chapter EBNF of GNU Modula-2
This chapter contains the EBNF of GNU Modula-2. This grammar currently
supports both PIM and ISO dialects. The rules here are automatically
extracted from the crammer files in GNU Modula-2 and serve to document
the syntax of the extensions described earlier and how they fit in
with the base language.
Note that the first six productions are built into the lexical analysis
phase.
@include m2/gm2-ebnf.texi
@node Libraries, Indices, EBNF, Top
@chapter PIM and ISO library definitions
This chapter contains M2F, PIM and ISO libraries.
@include m2/gm2-libs.texi
@node Indices, , Libraries, Top
@section Indices
@ifhtml
@menu
* Contents:: Section and subsections.
* Functions:: Function, constants, types, ebnf indices.
@end menu
@node Contents, , ,
@section Section and subsections
@printindex cp
@node Functions, , ,
@section Function, constants, types, ebnf indices.
@end ifhtml
@printindex fn
@summarycontents
@contents
@bye
|