1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909
|
\input texinfo @c -*-texinfo-*-
@c %**start of header
@setfilename libgomp.info
@settitle GNU libgomp
@c %**end of header
@copying
Copyright @copyright{} 2006-2024 Free Software Foundation, Inc.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3 or
any later version published by the Free Software Foundation; with the
Invariant Sections being ``Funding Free Software'', the Front-Cover
texts being (a) (see below), and with the Back-Cover Texts being (b)
(see below). A copy of the license is included in the section entitled
``GNU Free Documentation License''.
(a) The FSF's Front-Cover Text is:
A GNU Manual
(b) The FSF's Back-Cover Text is:
You have freedom to copy and modify this GNU Manual, like GNU
software. Copies published by the Free Software Foundation raise
funds for GNU development.
@end copying
@ifinfo
@dircategory GNU Libraries
@direntry
* @value{fnlibgomp}: (@value{fnlibgomp}). GNU Offloading and Multi Processing Runtime Library.
@end direntry
This manual documents libgomp, the GNU Offloading and Multi Processing
Runtime library. This is the GNU implementation of the OpenMP and
OpenACC APIs for parallel and accelerator programming in C/C++ and
Fortran.
Published by the Free Software Foundation
51 Franklin Street, Fifth Floor
Boston, MA 02110-1301 USA
@insertcopying
@end ifinfo
@setchapternewpage odd
@titlepage
@title GNU Offloading and Multi Processing Runtime Library
@subtitle The GNU OpenMP and OpenACC Implementation
@page
@vskip 0pt plus 1filll
@comment For the @value{version-GCC} Version*
@sp 1
Published by the Free Software Foundation @*
51 Franklin Street, Fifth Floor@*
Boston, MA 02110-1301, USA@*
@sp 1
@insertcopying
@end titlepage
@summarycontents
@contents
@page
@node Top, Enabling OpenMP
@top Introduction
@cindex Introduction
This manual documents the usage of libgomp, the GNU Offloading and
Multi Processing Runtime Library. This includes the GNU
implementation of the @uref{https://www.openmp.org, OpenMP} Application
Programming Interface (API) for multi-platform shared-memory parallel
programming in C/C++ and Fortran, and the GNU implementation of the
@uref{https://www.openacc.org, OpenACC} Application Programming
Interface (API) for offloading of code to accelerator devices in C/C++
and Fortran.
Originally, libgomp implemented the GNU OpenMP Runtime Library. Based
on this, support for OpenACC and offloading (both OpenACC and OpenMP
4's target construct) has been added later on, and the library's name
changed to GNU Offloading and Multi Processing Runtime Library.
@comment
@comment When you add a new menu item, please keep the right hand
@comment aligned to the same column. Do not use tabs. This provides
@comment better formatting.
@comment
@menu
* Enabling OpenMP:: How to enable OpenMP for your applications.
* OpenMP Implementation Status:: List of implemented features by OpenMP version
* OpenMP Runtime Library Routines: Runtime Library Routines.
The OpenMP runtime application programming
interface.
* OpenMP Environment Variables: Environment Variables.
Influencing OpenMP runtime behavior with
environment variables.
* Enabling OpenACC:: How to enable OpenACC for your
applications.
* OpenACC Runtime Library Routines:: The OpenACC runtime application
programming interface.
* OpenACC Environment Variables:: Influencing OpenACC runtime behavior with
environment variables.
* CUDA Streams Usage:: Notes on the implementation of
asynchronous operations.
* OpenACC Library Interoperability:: OpenACC library interoperability with the
NVIDIA CUBLAS library.
* OpenACC Profiling Interface::
* OpenMP-Implementation Specifics:: Notes specifics of this OpenMP
implementation
* Offload-Target Specifics:: Notes on offload-target specific internals
* The libgomp ABI:: Notes on the external ABI presented by libgomp.
* Reporting Bugs:: How to report bugs in the GNU Offloading and
Multi Processing Runtime Library.
* Copying:: GNU general public license says
how you can copy and share libgomp.
* GNU Free Documentation License::
How you can copy and share this manual.
* Funding:: How to help assure continued work for free
software.
* Library Index:: Index of this documentation.
@end menu
@c ---------------------------------------------------------------------
@c Enabling OpenMP
@c ---------------------------------------------------------------------
@node Enabling OpenMP
@chapter Enabling OpenMP
To activate the OpenMP extensions for C/C++ and Fortran, the compile-time
flag @option{-fopenmp} must be specified. For C and C++, this enables
the handling of the OpenMP directives using @code{#pragma omp} and the
@code{[[omp::directive(...)]]}, @code{[[omp::sequence(...)]]} and
@code{[[omp::decl(...)]]} attributes. For Fortran, it enables for
free source form the @code{!$omp} sentinel for directives and the
@code{!$} conditional compilation sentinel and for fixed source form the
@code{c$omp}, @code{*$omp} and @code{!$omp} sentinels for directives and
the @code{c$}, @code{*$} and @code{!$} conditional compilation sentinels.
The flag also arranges for automatic linking of the OpenMP runtime library
(@ref{Runtime Library Routines}).
The @option{-fopenmp-simd} flag can be used to enable a subset of
OpenMP directives that do not require the linking of either the
OpenMP runtime library or the POSIX threads library.
A complete description of all OpenMP directives may be found in the
@uref{https://www.openmp.org, OpenMP Application Program Interface} manuals.
See also @ref{OpenMP Implementation Status}.
@c ---------------------------------------------------------------------
@c OpenMP Implementation Status
@c ---------------------------------------------------------------------
@node OpenMP Implementation Status
@chapter OpenMP Implementation Status
@menu
* OpenMP 4.5:: Feature completion status to 4.5 specification
* OpenMP 5.0:: Feature completion status to 5.0 specification
* OpenMP 5.1:: Feature completion status to 5.1 specification
* OpenMP 5.2:: Feature completion status to 5.2 specification
* OpenMP Technical Report 12:: Feature completion status to second 6.0 preview
@end menu
The @code{_OPENMP} preprocessor macro and Fortran's @code{openmp_version}
parameter, provided by @code{omp_lib.h} and the @code{omp_lib} module, have
the value @code{201511} (i.e. OpenMP 4.5).
@node OpenMP 4.5
@section OpenMP 4.5
The OpenMP 4.5 specification is fully supported.
@node OpenMP 5.0
@section OpenMP 5.0
@unnumberedsubsec New features listed in Appendix B of the OpenMP specification
@c This list is sorted as in OpenMP 5.1's B.3 not as in OpenMP 5.0's B.2
@multitable @columnfractions .60 .10 .25
@headitem Description @tab Status @tab Comments
@item Array shaping @tab N @tab
@item Array sections with non-unit strides in C and C++ @tab N @tab
@item Iterators @tab Y @tab
@item @code{metadirective} directive @tab N @tab
@item @code{declare variant} directive
@tab P @tab @emph{simd} traits not handled correctly
@item @var{target-offload-var} ICV and @code{OMP_TARGET_OFFLOAD}
env variable @tab Y @tab
@item Nested-parallel changes to @var{max-active-levels-var} ICV @tab Y @tab
@item @code{requires} directive @tab P
@tab complete but no non-host device provides @code{unified_shared_memory}
@item @code{teams} construct outside an enclosing target region @tab Y @tab
@item Non-rectangular loop nests @tab P
@tab Full support for C/C++, partial for Fortran
(@uref{https://gcc.gnu.org/PR110735,PR110735})
@item @code{!=} as relational-op in canonical loop form for C/C++ @tab Y @tab
@item @code{nonmonotonic} as default loop schedule modifier for worksharing-loop
constructs @tab Y @tab
@item Collapse of associated loops that are imperfectly nested loops @tab Y @tab
@item Clauses @code{if}, @code{nontemporal} and @code{order(concurrent)} in
@code{simd} construct @tab Y @tab
@item @code{atomic} constructs in @code{simd} @tab Y @tab
@item @code{loop} construct @tab Y @tab
@item @code{order(concurrent)} clause @tab Y @tab
@item @code{scan} directive and @code{in_scan} modifier for the
@code{reduction} clause @tab Y @tab
@item @code{in_reduction} clause on @code{task} constructs @tab Y @tab
@item @code{in_reduction} clause on @code{target} constructs @tab P
@tab @code{nowait} only stub
@item @code{task_reduction} clause with @code{taskgroup} @tab Y @tab
@item @code{task} modifier to @code{reduction} clause @tab Y @tab
@item @code{affinity} clause to @code{task} construct @tab Y @tab Stub only
@item @code{detach} clause to @code{task} construct @tab Y @tab
@item @code{omp_fulfill_event} runtime routine @tab Y @tab
@item @code{reduction} and @code{in_reduction} clauses on @code{taskloop}
and @code{taskloop simd} constructs @tab Y @tab
@item @code{taskloop} construct cancelable by @code{cancel} construct
@tab Y @tab
@item @code{mutexinoutset} @emph{dependence-type} for @code{depend} clause
@tab Y @tab
@item Predefined memory spaces, memory allocators, allocator traits
@tab Y @tab See also @ref{Memory allocation}
@item Memory management routines @tab Y @tab
@item @code{allocate} directive @tab P
@tab Only C for stack/automatic and Fortran for stack/automatic
and allocatable/pointer variables
@item @code{allocate} clause @tab P @tab Initial support
@item @code{use_device_addr} clause on @code{target data} @tab Y @tab
@item @code{ancestor} modifier on @code{device} clause @tab Y @tab
@item Implicit declare target directive @tab Y @tab
@item Discontiguous array section with @code{target update} construct
@tab N @tab
@item C/C++'s lvalue expressions in @code{to}, @code{from}
and @code{map} clauses @tab Y @tab
@item C/C++'s lvalue expressions in @code{depend} clauses @tab Y @tab
@item Nested @code{declare target} directive @tab Y @tab
@item Combined @code{master} constructs @tab Y @tab
@item @code{depend} clause on @code{taskwait} @tab Y @tab
@item Weak memory ordering clauses on @code{atomic} and @code{flush} construct
@tab Y @tab
@item @code{hint} clause on the @code{atomic} construct @tab Y @tab Stub only
@item @code{depobj} construct and depend objects @tab Y @tab
@item Lock hints were renamed to synchronization hints @tab Y @tab
@item @code{conditional} modifier to @code{lastprivate} clause @tab Y @tab
@item Map-order clarifications @tab P @tab
@item @code{close} @emph{map-type-modifier} @tab Y @tab
@item Mapping C/C++ pointer variables and to assign the address of
device memory mapped by an array section @tab P @tab
@item Mapping of Fortran pointer and allocatable variables, including pointer
and allocatable components of variables
@tab P @tab Mapping of vars with allocatable components unsupported
@item @code{defaultmap} extensions @tab Y @tab
@item @code{declare mapper} directive @tab N @tab
@item @code{omp_get_supported_active_levels} routine @tab Y @tab
@item Runtime routines and environment variables to display runtime thread
affinity information @tab Y @tab
@item @code{omp_pause_resource} and @code{omp_pause_resource_all} runtime
routines @tab Y @tab
@item @code{omp_get_device_num} runtime routine @tab Y @tab
@item OMPT interface @tab N @tab
@item OMPD interface @tab N @tab
@end multitable
@unnumberedsubsec Other new OpenMP 5.0 features
@multitable @columnfractions .60 .10 .25
@headitem Description @tab Status @tab Comments
@item Supporting C++'s range-based for loop @tab Y @tab
@end multitable
@node OpenMP 5.1
@section OpenMP 5.1
@unnumberedsubsec New features listed in Appendix B of the OpenMP specification
@multitable @columnfractions .60 .10 .25
@headitem Description @tab Status @tab Comments
@item OpenMP directive as C++ attribute specifiers @tab Y @tab
@item @code{omp_all_memory} reserved locator @tab Y @tab
@item @emph{target_device trait} in OpenMP Context @tab N @tab
@item @code{target_device} selector set in context selectors @tab N @tab
@item C/C++'s @code{declare variant} directive: elision support of
preprocessed code @tab N @tab
@item @code{declare variant}: new clauses @code{adjust_args} and
@code{append_args} @tab N @tab
@item @code{dispatch} construct @tab N @tab
@item device-specific ICV settings with environment variables @tab Y @tab
@item @code{assume} and @code{assumes} directives @tab Y @tab
@item @code{nothing} directive @tab Y @tab
@item @code{error} directive @tab Y @tab
@item @code{masked} construct @tab Y @tab
@item @code{scope} directive @tab Y @tab
@item Loop transformation constructs @tab N @tab
@item @code{strict} modifier in the @code{grainsize} and @code{num_tasks}
clauses of the @code{taskloop} construct @tab Y @tab
@item @code{align} clause in @code{allocate} directive @tab P
@tab Only C and Fortran (and not for static variables)
@item @code{align} modifier in @code{allocate} clause @tab Y @tab
@item @code{thread_limit} clause to @code{target} construct @tab Y @tab
@item @code{has_device_addr} clause to @code{target} construct @tab Y @tab
@item Iterators in @code{target update} motion clauses and @code{map}
clauses @tab N @tab
@item Indirect calls to the device version of a procedure or function in
@code{target} regions @tab Y @tab
@item @code{interop} directive @tab N @tab
@item @code{omp_interop_t} object support in runtime routines @tab N @tab
@item @code{nowait} clause in @code{taskwait} directive @tab Y @tab
@item Extensions to the @code{atomic} directive @tab Y @tab
@item @code{seq_cst} clause on a @code{flush} construct @tab Y @tab
@item @code{inoutset} argument to the @code{depend} clause @tab Y @tab
@item @code{private} and @code{firstprivate} argument to @code{default}
clause in C and C++ @tab Y @tab
@item @code{present} argument to @code{defaultmap} clause @tab Y @tab
@item @code{omp_set_num_teams}, @code{omp_set_teams_thread_limit},
@code{omp_get_max_teams}, @code{omp_get_teams_thread_limit} runtime
routines @tab Y @tab
@item @code{omp_target_is_accessible} runtime routine @tab Y @tab
@item @code{omp_target_memcpy_async} and @code{omp_target_memcpy_rect_async}
runtime routines @tab Y @tab
@item @code{omp_get_mapped_ptr} runtime routine @tab Y @tab
@item @code{omp_calloc}, @code{omp_realloc}, @code{omp_aligned_alloc} and
@code{omp_aligned_calloc} runtime routines @tab Y @tab
@item @code{omp_alloctrait_key_t} enum: @code{omp_atv_serialized} added,
@code{omp_atv_default} changed @tab Y @tab
@item @code{omp_display_env} runtime routine @tab Y @tab
@item @code{ompt_scope_endpoint_t} enum: @code{ompt_scope_beginend} @tab N @tab
@item @code{ompt_sync_region_t} enum additions @tab N @tab
@item @code{ompt_state_t} enum: @code{ompt_state_wait_barrier_implementation}
and @code{ompt_state_wait_barrier_teams} @tab N @tab
@item @code{ompt_callback_target_data_op_emi_t},
@code{ompt_callback_target_emi_t}, @code{ompt_callback_target_map_emi_t}
and @code{ompt_callback_target_submit_emi_t} @tab N @tab
@item @code{ompt_callback_error_t} type @tab N @tab
@item @code{OMP_PLACES} syntax extensions @tab Y @tab
@item @code{OMP_NUM_TEAMS} and @code{OMP_TEAMS_THREAD_LIMIT} environment
variables @tab Y @tab
@end multitable
@unnumberedsubsec Other new OpenMP 5.1 features
@multitable @columnfractions .60 .10 .25
@headitem Description @tab Status @tab Comments
@item Support of strictly structured blocks in Fortran @tab Y @tab
@item Support of structured block sequences in C/C++ @tab Y @tab
@item @code{unconstrained} and @code{reproducible} modifiers on @code{order}
clause @tab Y @tab
@item Support @code{begin/end declare target} syntax in C/C++ @tab Y @tab
@item Pointer predetermined firstprivate getting initialized
to address of matching mapped list item per 5.1, Sect. 2.21.7.2 @tab N @tab
@item For Fortran, diagnose placing declarative before/between @code{USE},
@code{IMPORT}, and @code{IMPLICIT} as invalid @tab N @tab
@item Optional comma between directive and clause in the @code{#pragma} form @tab Y @tab
@item @code{indirect} clause in @code{declare target} @tab Y @tab
@item @code{device_type(nohost)}/@code{device_type(host)} for variables @tab N @tab
@item @code{present} modifier to the @code{map}, @code{to} and @code{from}
clauses @tab Y @tab
@end multitable
@node OpenMP 5.2
@section OpenMP 5.2
@unnumberedsubsec New features listed in Appendix B of the OpenMP specification
@multitable @columnfractions .60 .10 .25
@headitem Description @tab Status @tab Comments
@item @code{omp_in_explicit_task} routine and @var{explicit-task-var} ICV
@tab Y @tab
@item @code{omp}/@code{ompx}/@code{omx} sentinels and @code{omp_}/@code{ompx_}
namespaces @tab N/A
@tab warning for @code{ompx/omx} sentinels@footnote{The @code{ompx}
sentinel as C/C++ pragma and C++ attributes are warned for with
@code{-Wunknown-pragmas} (implied by @code{-Wall}) and @code{-Wattributes}
(enabled by default), respectively; for Fortran free-source code, there is
a warning enabled by default and, for fixed-source code, the @code{omx}
sentinel is warned for with @code{-Wsurprising} (enabled by
@code{-Wall}). Unknown clauses are always rejected with an error.}
@item Clauses on @code{end} directive can be on directive @tab Y @tab
@item @code{destroy} clause with destroy-var argument on @code{depobj}
@tab Y @tab
@item Deprecation of no-argument @code{destroy} clause on @code{depobj}
@tab N @tab
@item @code{linear} clause syntax changes and @code{step} modifier @tab Y @tab
@item Deprecation of minus operator for reductions @tab N @tab
@item Deprecation of separating @code{map} modifiers without comma @tab N @tab
@item @code{declare mapper} with iterator and @code{present} modifiers
@tab N @tab
@item If a matching mapped list item is not found in the data environment, the
pointer retains its original value @tab Y @tab
@item New @code{enter} clause as alias for @code{to} on declare target directive
@tab Y @tab
@item Deprecation of @code{to} clause on declare target directive @tab N @tab
@item Extended list of directives permitted in Fortran pure procedures
@tab Y @tab
@item New @code{allocators} directive for Fortran @tab Y @tab
@item Deprecation of @code{allocate} directive for Fortran
allocatables/pointers @tab N @tab
@item Optional paired @code{end} directive with @code{dispatch} @tab N @tab
@item New @code{memspace} and @code{traits} modifiers for @code{uses_allocators}
@tab N @tab
@item Deprecation of traits array following the allocator_handle expression in
@code{uses_allocators} @tab N @tab
@item New @code{otherwise} clause as alias for @code{default} on metadirectives
@tab N @tab
@item Deprecation of @code{default} clause on metadirectives @tab N @tab
@item Deprecation of delimited form of @code{declare target} @tab N @tab
@item Reproducible semantics changed for @code{order(concurrent)} @tab N @tab
@item @code{allocate} and @code{firstprivate} clauses on @code{scope}
@tab Y @tab
@item @code{ompt_callback_work} @tab N @tab
@item Default map-type for the @code{map} clause in @code{target enter/exit data}
@tab Y @tab
@item New @code{doacross} clause as alias for @code{depend} with
@code{source}/@code{sink} modifier @tab Y @tab
@item Deprecation of @code{depend} with @code{source}/@code{sink} modifier
@tab N @tab
@item @code{omp_cur_iteration} keyword @tab Y @tab
@end multitable
@unnumberedsubsec Other new OpenMP 5.2 features
@multitable @columnfractions .60 .10 .25
@headitem Description @tab Status @tab Comments
@item For Fortran, optional comma between directive and clause @tab N @tab
@item Conforming device numbers and @code{omp_initial_device} and
@code{omp_invalid_device} enum/PARAMETER @tab Y @tab
@item Initial value of @var{default-device-var} ICV with
@code{OMP_TARGET_OFFLOAD=mandatory} @tab Y @tab
@item @code{all} as @emph{implicit-behavior} for @code{defaultmap} @tab Y @tab
@item @emph{interop_types} in any position of the modifier list for the @code{init} clause
of the @code{interop} construct @tab N @tab
@item Invoke virtual member functions of C++ objects created on the host device
on other devices @tab N @tab
@end multitable
@node OpenMP Technical Report 12
@section OpenMP Technical Report 12
Technical Report (TR) 12 is the second preview for OpenMP 6.0.
@unnumberedsubsec New features listed in Appendix B of the OpenMP specification
@multitable @columnfractions .60 .10 .25
@item Features deprecated in versions 5.2, 5.1 and 5.0 were removed
@tab N/A @tab Backward compatibility
@item Full support for C23 was added @tab P @tab
@item Full support for C++23 was added @tab P @tab
@item @code{_ALL} suffix to the device-scope environment variables
@tab P @tab Host device number wrongly accepted
@item @code{num_threads} now accepts a list @tab N @tab
@item Supporting increments with abstract names in @code{OMP_PLACES} @tab N @tab
@item Extension of @code{OMP_DEFAULT_DEVICE} and new
@code{OMP_AVAILABLE_DEVICES} environment vars @tab N @tab
@item New @code{OMP_THREADS_RESERVE} environment variable @tab N @tab
@item The @code{decl} attribute was added to the C++ attribute syntax
@tab Y @tab
@item The OpenMP directive syntax was extended to include C 23 attribute
specifiers @tab Y @tab
@item All inarguable clauses take now an optional Boolean argument @tab N @tab
@item For Fortran, @emph{locator list} can be also function reference with
data pointer result @tab N @tab
@item Concept of @emph{assumed-size arrays} in C and C++
@tab N @tab
@item @emph{directive-name-modifier} accepted in all clauses @tab N @tab
@item For Fortran, atomic with BLOCK construct and, for C/C++, with
unlimited curly braces supported @tab N @tab
@item For Fortran, atomic compare with storing the comparison result
@tab N @tab
@item New @code{looprange} clause @tab N @tab
@item Ref-count change for @code{use_device_ptr}/@code{use_device_addr}
@tab N @tab
@item Support for inductions @tab N @tab
@item Implicit reduction identifiers of C++ classes
@tab N @tab
@item Change of the @emph{map-type} property from @emph{ultimate} to
@emph{default} @tab N @tab
@item @code{self} modifier to @code{map} and @code{self} as
@code{defaultmap} argument @tab N @tab
@item Mapping of @emph{assumed-size arrays} in C, C++ and Fortran
@tab N @tab
@item @code{groupprivate} directive @tab N @tab
@item @code{local} clause to @code{declare target} directive @tab N @tab
@item @code{part_size} allocator trait @tab N @tab
@item @code{pin_device}, @code{preferred_device} and @code{target_access}
allocator traits
@tab N @tab
@item @code{access} allocator trait changes @tab N @tab
@item Extension of @code{interop} operation of @code{append_args}, allowing all
modifiers of the @code{init} clause
@tab N @tab
@item @code{interop} clause to @code{dispatch} @tab N @tab
@item @code{message} and @code{severity} clauses to @code{parallel} directive
@tab N @tab
@item @code{self} clause to @code{requires} directive @tab N @tab
@item @code{no_openmp_constructs} assumptions clause @tab N @tab
@item @code{reverse} loop-transformation construct @tab N @tab
@item @code{interchange} loop-transformation construct @tab N @tab
@item @code{fuse} loop-transformation construct @tab N @tab
@item @code{apply} code to loop-transforming constructs @tab N @tab
@item @code{omp_curr_progress_width} identifier @tab N @tab
@item @code{safesync} clause to the @code{parallel} construct @tab N @tab
@item @code{omp_get_max_progress_width} runtime routine @tab N @tab
@item @code{strict} modifier keyword to @code{num_threads} @tab N @tab
@item @code{atomic} permitted in a construct with @code{order(concurrent)}
@tab N @tab
@item @code{workdistribute} directive for Fortran @tab N
@tab Renamed just after TR12; added in TR12 as @code{coexecute}
@item Fortran DO CONCURRENT as associated loop in a @code{loop} construct
@tab N @tab
@item @code{threadset} clause in task-generating constructs @tab N @tab
@item @code{nowait} clause with reverse-offload @code{target} directives
@tab N @tab
@item Boolean argument to @code{nowait} and @code{nogroup} may be non constant
@tab N @tab
@item @code{memscope} clause to @code{atomic} and @code{flush} @tab N @tab
@item @code{omp_is_free_agent} and @code{omp_ancestor_is_free_agent} routines
@tab N @tab
@item @code{omp_target_memset} and @code{omp_target_memset_rect_async} routines
@tab N @tab
@item Routines for obtaining memory spaces/allocators for shared/device memory
@tab N @tab
@item @code{omp_get_memspace_num_resources} routine @tab N @tab
@item @code{omp_get_submemspace} routine @tab N @tab
@item @code{ompt_target_data_transfer} and @code{ompt_target_data_transfer_async}
values in @code{ompt_target_data_op_t} enum @tab N @tab
@item @code{ompt_get_buffer_limits} OMPT routine @tab N @tab
@end multitable
@unnumberedsubsec Other new TR 12 features
@multitable @columnfractions .60 .10 .25
@item Canonical loop nest enclosed in (multiple) curly braces (C/C++) or BLOCK constructs (Fortran)
@tab N @tab
@item Relaxed Fortran restrictions to the @code{aligned} clause @tab N @tab
@item Mapping lambda captures @tab N @tab
@item New @code{omp_pause_stop_tool} constant for omp_pause_resource @tab N @tab
@end multitable
@c ---------------------------------------------------------------------
@c OpenMP Runtime Library Routines
@c ---------------------------------------------------------------------
@node Runtime Library Routines
@chapter OpenMP Runtime Library Routines
The runtime routines described here are defined by Section 18 of the OpenMP
specification in version 5.2.
@menu
* Thread Team Routines::
* Thread Affinity Routines::
* Teams Region Routines::
* Tasking Routines::
* Resource Relinquishing Routines::
* Device Information Routines::
* Device Memory Routines::
* Lock Routines::
* Timing Routines::
* Event Routine::
@c * Interoperability Routines::
* Memory Management Routines::
@c * Tool Control Routine::
* Environment Display Routine::
@end menu
@node Thread Team Routines
@section Thread Team Routines
Routines controlling threads in the current contention group.
They have C linkage and do not throw exceptions.
@menu
* omp_set_num_threads:: Set upper team size limit
* omp_get_num_threads:: Size of the active team
* omp_get_max_threads:: Maximum number of threads of parallel region
* omp_get_thread_num:: Current thread ID
* omp_in_parallel:: Whether a parallel region is active
* omp_set_dynamic:: Enable/disable dynamic teams
* omp_get_dynamic:: Dynamic teams setting
* omp_get_cancellation:: Whether cancellation support is enabled
* omp_set_nested:: Enable/disable nested parallel regions
* omp_get_nested:: Nested parallel regions
* omp_set_schedule:: Set the runtime scheduling method
* omp_get_schedule:: Obtain the runtime scheduling method
* omp_get_teams_thread_limit:: Maximum number of threads imposed by teams
* omp_get_supported_active_levels:: Maximum number of active regions supported
* omp_set_max_active_levels:: Limits the number of active parallel regions
* omp_get_max_active_levels:: Current maximum number of active regions
* omp_get_level:: Number of parallel regions
* omp_get_ancestor_thread_num:: Ancestor thread ID
* omp_get_team_size:: Number of threads in a team
* omp_get_active_level:: Number of active parallel regions
@end menu
@node omp_set_num_threads
@subsection @code{omp_set_num_threads} -- Set upper team size limit
@table @asis
@item @emph{Description}:
Specifies the number of threads used by default in subsequent parallel
sections, if those do not specify a @code{num_threads} clause. The
argument of @code{omp_set_num_threads} shall be a positive integer.
@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{void omp_set_num_threads(int num_threads);}
@end multitable
@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{subroutine omp_set_num_threads(num_threads)}
@item @tab @code{integer, intent(in) :: num_threads}
@end multitable
@item @emph{See also}:
@ref{OMP_NUM_THREADS}, @ref{omp_get_num_threads}, @ref{omp_get_max_threads}
@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.2.1.
@end table
@node omp_get_num_threads
@subsection @code{omp_get_num_threads} -- Size of the active team
@table @asis
@item @emph{Description}:
Returns the number of threads in the current team. In a sequential section of
the program @code{omp_get_num_threads} returns 1.
The default team size may be initialized at startup by the
@env{OMP_NUM_THREADS} environment variable. At runtime, the size
of the current team may be set either by the @code{NUM_THREADS}
clause or by @code{omp_set_num_threads}. If none of the above were
used to define a specific value and @env{OMP_DYNAMIC} is disabled,
one thread per CPU online is used.
@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{int omp_get_num_threads(void);}
@end multitable
@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{integer function omp_get_num_threads()}
@end multitable
@item @emph{See also}:
@ref{omp_get_max_threads}, @ref{omp_set_num_threads}, @ref{OMP_NUM_THREADS}
@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.2.2.
@end table
@node omp_get_max_threads
@subsection @code{omp_get_max_threads} -- Maximum number of threads of parallel region
@table @asis
@item @emph{Description}:
Return the maximum number of threads used for the current parallel region
that does not use the clause @code{num_threads}.
@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{int omp_get_max_threads(void);}
@end multitable
@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{integer function omp_get_max_threads()}
@end multitable
@item @emph{See also}:
@ref{omp_set_num_threads}, @ref{omp_set_dynamic}, @ref{omp_get_thread_limit}
@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.2.3.
@end table
@node omp_get_thread_num
@subsection @code{omp_get_thread_num} -- Current thread ID
@table @asis
@item @emph{Description}:
Returns a unique thread identification number within the current team.
In a sequential parts of the program, @code{omp_get_thread_num}
always returns 0. In parallel regions the return value varies
from 0 to @code{omp_get_num_threads}-1 inclusive. The return
value of the primary thread of a team is always 0.
@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{int omp_get_thread_num(void);}
@end multitable
@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{integer function omp_get_thread_num()}
@end multitable
@item @emph{See also}:
@ref{omp_get_num_threads}, @ref{omp_get_ancestor_thread_num}
@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.2.4.
@end table
@node omp_in_parallel
@subsection @code{omp_in_parallel} -- Whether a parallel region is active
@table @asis
@item @emph{Description}:
This function returns @code{true} if currently running in parallel,
@code{false} otherwise. Here, @code{true} and @code{false} represent
their language-specific counterparts.
@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{int omp_in_parallel(void);}
@end multitable
@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{logical function omp_in_parallel()}
@end multitable
@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.2.6.
@end table
@node omp_set_dynamic
@subsection @code{omp_set_dynamic} -- Enable/disable dynamic teams
@table @asis
@item @emph{Description}:
Enable or disable the dynamic adjustment of the number of threads
within a team. The function takes the language-specific equivalent
of @code{true} and @code{false}, where @code{true} enables dynamic
adjustment of team sizes and @code{false} disables it.
@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{void omp_set_dynamic(int dynamic_threads);}
@end multitable
@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{subroutine omp_set_dynamic(dynamic_threads)}
@item @tab @code{logical, intent(in) :: dynamic_threads}
@end multitable
@item @emph{See also}:
@ref{OMP_DYNAMIC}, @ref{omp_get_dynamic}
@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.2.7.
@end table
@node omp_get_dynamic
@subsection @code{omp_get_dynamic} -- Dynamic teams setting
@table @asis
@item @emph{Description}:
This function returns @code{true} if enabled, @code{false} otherwise.
Here, @code{true} and @code{false} represent their language-specific
counterparts.
The dynamic team setting may be initialized at startup by the
@env{OMP_DYNAMIC} environment variable or at runtime using
@code{omp_set_dynamic}. If undefined, dynamic adjustment is
disabled by default.
@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{int omp_get_dynamic(void);}
@end multitable
@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{logical function omp_get_dynamic()}
@end multitable
@item @emph{See also}:
@ref{omp_set_dynamic}, @ref{OMP_DYNAMIC}
@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.2.8.
@end table
@node omp_get_cancellation
@subsection @code{omp_get_cancellation} -- Whether cancellation support is enabled
@table @asis
@item @emph{Description}:
This function returns @code{true} if cancellation is activated, @code{false}
otherwise. Here, @code{true} and @code{false} represent their language-specific
counterparts. Unless @env{OMP_CANCELLATION} is set true, cancellations are
deactivated.
@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{int omp_get_cancellation(void);}
@end multitable
@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{logical function omp_get_cancellation()}
@end multitable
@item @emph{See also}:
@ref{OMP_CANCELLATION}
@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.2.9.
@end table
@node omp_set_nested
@subsection @code{omp_set_nested} -- Enable/disable nested parallel regions
@table @asis
@item @emph{Description}:
Enable or disable nested parallel regions, i.e., whether team members
are allowed to create new teams. The function takes the language-specific
equivalent of @code{true} and @code{false}, where @code{true} enables
dynamic adjustment of team sizes and @code{false} disables it.
Enabling nested parallel regions also sets the maximum number of
active nested regions to the maximum supported. Disabling nested parallel
regions sets the maximum number of active nested regions to one.
Note that the @code{omp_set_nested} API routine was deprecated
in the OpenMP specification 5.2 in favor of @code{omp_set_max_active_levels}.
@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{void omp_set_nested(int nested);}
@end multitable
@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{subroutine omp_set_nested(nested)}
@item @tab @code{logical, intent(in) :: nested}
@end multitable
@item @emph{See also}:
@ref{omp_get_nested}, @ref{omp_set_max_active_levels},
@ref{OMP_MAX_ACTIVE_LEVELS}, @ref{OMP_NESTED}
@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.2.10.
@end table
@node omp_get_nested
@subsection @code{omp_get_nested} -- Nested parallel regions
@table @asis
@item @emph{Description}:
This function returns @code{true} if nested parallel regions are
enabled, @code{false} otherwise. Here, @code{true} and @code{false}
represent their language-specific counterparts.
The state of nested parallel regions at startup depends on several
environment variables. If @env{OMP_MAX_ACTIVE_LEVELS} is defined
and is set to greater than one, then nested parallel regions will be
enabled. If not defined, then the value of the @env{OMP_NESTED}
environment variable will be followed if defined. If neither are
defined, then if either @env{OMP_NUM_THREADS} or @env{OMP_PROC_BIND}
are defined with a list of more than one value, then nested parallel
regions are enabled. If none of these are defined, then nested parallel
regions are disabled by default.
Nested parallel regions can be enabled or disabled at runtime using
@code{omp_set_nested}, or by setting the maximum number of nested
regions with @code{omp_set_max_active_levels} to one to disable, or
above one to enable.
Note that the @code{omp_get_nested} API routine was deprecated
in the OpenMP specification 5.2 in favor of @code{omp_get_max_active_levels}.
@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{int omp_get_nested(void);}
@end multitable
@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{logical function omp_get_nested()}
@end multitable
@item @emph{See also}:
@ref{omp_get_max_active_levels}, @ref{omp_set_nested},
@ref{OMP_MAX_ACTIVE_LEVELS}, @ref{OMP_NESTED}
@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.2.11.
@end table
@node omp_set_schedule
@subsection @code{omp_set_schedule} -- Set the runtime scheduling method
@table @asis
@item @emph{Description}:
Sets the runtime scheduling method. The @var{kind} argument can have the
value @code{omp_sched_static}, @code{omp_sched_dynamic},
@code{omp_sched_guided} or @code{omp_sched_auto}. Except for
@code{omp_sched_auto}, the chunk size is set to the value of
@var{chunk_size} if positive, or to the default value if zero or negative.
For @code{omp_sched_auto} the @var{chunk_size} argument is ignored.
@item @emph{C/C++}
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{void omp_set_schedule(omp_sched_t kind, int chunk_size);}
@end multitable
@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{subroutine omp_set_schedule(kind, chunk_size)}
@item @tab @code{integer(kind=omp_sched_kind) kind}
@item @tab @code{integer chunk_size}
@end multitable
@item @emph{See also}:
@ref{omp_get_schedule}
@ref{OMP_SCHEDULE}
@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.2.12.
@end table
@node omp_get_schedule
@subsection @code{omp_get_schedule} -- Obtain the runtime scheduling method
@table @asis
@item @emph{Description}:
Obtain the runtime scheduling method. The @var{kind} argument is set to
@code{omp_sched_static}, @code{omp_sched_dynamic},
@code{omp_sched_guided} or @code{omp_sched_auto}. The second argument,
@var{chunk_size}, is set to the chunk size.
@item @emph{C/C++}
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{void omp_get_schedule(omp_sched_t *kind, int *chunk_size);}
@end multitable
@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{subroutine omp_get_schedule(kind, chunk_size)}
@item @tab @code{integer(kind=omp_sched_kind) kind}
@item @tab @code{integer chunk_size}
@end multitable
@item @emph{See also}:
@ref{omp_set_schedule}, @ref{OMP_SCHEDULE}
@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.2.13.
@end table
@node omp_get_teams_thread_limit
@subsection @code{omp_get_teams_thread_limit} -- Maximum number of threads imposed by teams
@table @asis
@item @emph{Description}:
Return the maximum number of threads that are able to participate in
each team created by a teams construct.
@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{int omp_get_teams_thread_limit(void);}
@end multitable
@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{integer function omp_get_teams_thread_limit()}
@end multitable
@item @emph{See also}:
@ref{omp_set_teams_thread_limit}, @ref{OMP_TEAMS_THREAD_LIMIT}
@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v5.1}, Section 3.4.6.
@end table
@node omp_get_supported_active_levels
@subsection @code{omp_get_supported_active_levels} -- Maximum number of active regions supported
@table @asis
@item @emph{Description}:
This function returns the maximum number of nested, active parallel regions
supported by this implementation.
@item @emph{C/C++}
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{int omp_get_supported_active_levels(void);}
@end multitable
@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{integer function omp_get_supported_active_levels()}
@end multitable
@item @emph{See also}:
@ref{omp_get_max_active_levels}, @ref{omp_set_max_active_levels}
@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v5.0}, Section 3.2.15.
@end table
@node omp_set_max_active_levels
@subsection @code{omp_set_max_active_levels} -- Limits the number of active parallel regions
@table @asis
@item @emph{Description}:
This function limits the maximum allowed number of nested, active
parallel regions. @var{max_levels} must be less or equal to
the value returned by @code{omp_get_supported_active_levels}.
@item @emph{C/C++}
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{void omp_set_max_active_levels(int max_levels);}
@end multitable
@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{subroutine omp_set_max_active_levels(max_levels)}
@item @tab @code{integer max_levels}
@end multitable
@item @emph{See also}:
@ref{omp_get_max_active_levels}, @ref{omp_get_active_level},
@ref{omp_get_supported_active_levels}
@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.2.15.
@end table
@node omp_get_max_active_levels
@subsection @code{omp_get_max_active_levels} -- Current maximum number of active regions
@table @asis
@item @emph{Description}:
This function obtains the maximum allowed number of nested, active parallel regions.
@item @emph{C/C++}
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{int omp_get_max_active_levels(void);}
@end multitable
@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{integer function omp_get_max_active_levels()}
@end multitable
@item @emph{See also}:
@ref{omp_set_max_active_levels}, @ref{omp_get_active_level}
@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.2.16.
@end table
@node omp_get_level
@subsection @code{omp_get_level} -- Obtain the current nesting level
@table @asis
@item @emph{Description}:
This function returns the nesting level for the parallel blocks,
which enclose the calling call.
@item @emph{C/C++}
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{int omp_get_level(void);}
@end multitable
@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{integer function omp_level()}
@end multitable
@item @emph{See also}:
@ref{omp_get_active_level}
@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.2.17.
@end table
@node omp_get_ancestor_thread_num
@subsection @code{omp_get_ancestor_thread_num} -- Ancestor thread ID
@table @asis
@item @emph{Description}:
This function returns the thread identification number for the given
nesting level of the current thread. For values of @var{level} outside
zero to @code{omp_get_level} -1 is returned; if @var{level} is
@code{omp_get_level} the result is identical to @code{omp_get_thread_num}.
@item @emph{C/C++}
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{int omp_get_ancestor_thread_num(int level);}
@end multitable
@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{integer function omp_get_ancestor_thread_num(level)}
@item @tab @code{integer level}
@end multitable
@item @emph{See also}:
@ref{omp_get_level}, @ref{omp_get_thread_num}, @ref{omp_get_team_size}
@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.2.18.
@end table
@node omp_get_team_size
@subsection @code{omp_get_team_size} -- Number of threads in a team
@table @asis
@item @emph{Description}:
This function returns the number of threads in a thread team to which
either the current thread or its ancestor belongs. For values of @var{level}
outside zero to @code{omp_get_level}, -1 is returned; if @var{level} is zero,
1 is returned, and for @code{omp_get_level}, the result is identical
to @code{omp_get_num_threads}.
@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{int omp_get_team_size(int level);}
@end multitable
@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{integer function omp_get_team_size(level)}
@item @tab @code{integer level}
@end multitable
@item @emph{See also}:
@ref{omp_get_num_threads}, @ref{omp_get_level}, @ref{omp_get_ancestor_thread_num}
@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.2.19.
@end table
@node omp_get_active_level
@subsection @code{omp_get_active_level} -- Number of parallel regions
@table @asis
@item @emph{Description}:
This function returns the nesting level for the active parallel blocks,
which enclose the calling call.
@item @emph{C/C++}
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{int omp_get_active_level(void);}
@end multitable
@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{integer function omp_get_active_level()}
@end multitable
@item @emph{See also}:
@ref{omp_get_level}, @ref{omp_get_max_active_levels}, @ref{omp_set_max_active_levels}
@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.2.20.
@end table
@node Thread Affinity Routines
@section Thread Affinity Routines
Routines controlling and accessing thread-affinity policies.
They have C linkage and do not throw exceptions.
@menu
* omp_get_proc_bind:: Whether threads may be moved between CPUs
@c * omp_get_num_places:: <fixme>
@c * omp_get_place_num_procs:: <fixme>
@c * omp_get_place_proc_ids:: <fixme>
@c * omp_get_place_num:: <fixme>
@c * omp_get_partition_num_places:: <fixme>
@c * omp_get_partition_place_nums:: <fixme>
@c * omp_set_affinity_format:: <fixme>
@c * omp_get_affinity_format:: <fixme>
@c * omp_display_affinity:: <fixme>
@c * omp_capture_affinity:: <fixme>
@end menu
@node omp_get_proc_bind
@subsection @code{omp_get_proc_bind} -- Whether threads may be moved between CPUs
@table @asis
@item @emph{Description}:
This functions returns the currently active thread affinity policy, which is
set via @env{OMP_PROC_BIND}. Possible values are @code{omp_proc_bind_false},
@code{omp_proc_bind_true}, @code{omp_proc_bind_primary},
@code{omp_proc_bind_master}, @code{omp_proc_bind_close} and @code{omp_proc_bind_spread},
where @code{omp_proc_bind_master} is an alias for @code{omp_proc_bind_primary}.
@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{omp_proc_bind_t omp_get_proc_bind(void);}
@end multitable
@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{integer(kind=omp_proc_bind_kind) function omp_get_proc_bind()}
@end multitable
@item @emph{See also}:
@ref{OMP_PROC_BIND}, @ref{OMP_PLACES}, @ref{GOMP_CPU_AFFINITY},
@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.2.22.
@end table
@node Teams Region Routines
@section Teams Region Routines
Routines controlling the league of teams that are executed in a @code{teams}
region. They have C linkage and do not throw exceptions.
@menu
* omp_get_num_teams:: Number of teams
* omp_get_team_num:: Get team number
* omp_set_num_teams:: Set upper teams limit for teams region
* omp_get_max_teams:: Maximum number of teams for teams region
* omp_set_teams_thread_limit:: Set upper thread limit for teams construct
* omp_get_thread_limit:: Maximum number of threads
@end menu
@node omp_get_num_teams
@subsection @code{omp_get_num_teams} -- Number of teams
@table @asis
@item @emph{Description}:
Returns the number of teams in the current team region.
@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{int omp_get_num_teams(void);}
@end multitable
@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{integer function omp_get_num_teams()}
@end multitable
@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.2.32.
@end table
@node omp_get_team_num
@subsection @code{omp_get_team_num} -- Get team number
@table @asis
@item @emph{Description}:
Returns the team number of the calling thread.
@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{int omp_get_team_num(void);}
@end multitable
@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{integer function omp_get_team_num()}
@end multitable
@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.2.33.
@end table
@node omp_set_num_teams
@subsection @code{omp_set_num_teams} -- Set upper teams limit for teams construct
@table @asis
@item @emph{Description}:
Specifies the upper bound for number of teams created by the teams construct
which does not specify a @code{num_teams} clause. The
argument of @code{omp_set_num_teams} shall be a positive integer.
@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{void omp_set_num_teams(int num_teams);}
@end multitable
@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{subroutine omp_set_num_teams(num_teams)}
@item @tab @code{integer, intent(in) :: num_teams}
@end multitable
@item @emph{See also}:
@ref{OMP_NUM_TEAMS}, @ref{omp_get_num_teams}, @ref{omp_get_max_teams}
@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v5.1}, Section 3.4.3.
@end table
@node omp_get_max_teams
@subsection @code{omp_get_max_teams} -- Maximum number of teams of teams region
@table @asis
@item @emph{Description}:
Return the maximum number of teams used for the teams region
that does not use the clause @code{num_teams}.
@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{int omp_get_max_teams(void);}
@end multitable
@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{integer function omp_get_max_teams()}
@end multitable
@item @emph{See also}:
@ref{omp_set_num_teams}, @ref{omp_get_num_teams}
@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v5.1}, Section 3.4.4.
@end table
@node omp_set_teams_thread_limit
@subsection @code{omp_set_teams_thread_limit} -- Set upper thread limit for teams construct
@table @asis
@item @emph{Description}:
Specifies the upper bound for number of threads that are available
for each team created by the teams construct which does not specify a
@code{thread_limit} clause. The argument of
@code{omp_set_teams_thread_limit} shall be a positive integer.
@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{void omp_set_teams_thread_limit(int thread_limit);}
@end multitable
@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{subroutine omp_set_teams_thread_limit(thread_limit)}
@item @tab @code{integer, intent(in) :: thread_limit}
@end multitable
@item @emph{See also}:
@ref{OMP_TEAMS_THREAD_LIMIT}, @ref{omp_get_teams_thread_limit}, @ref{omp_get_thread_limit}
@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v5.1}, Section 3.4.5.
@end table
@node omp_get_thread_limit
@subsection @code{omp_get_thread_limit} -- Maximum number of threads
@table @asis
@item @emph{Description}:
Return the maximum number of threads of the program.
@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{int omp_get_thread_limit(void);}
@end multitable
@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{integer function omp_get_thread_limit()}
@end multitable
@item @emph{See also}:
@ref{omp_get_max_threads}, @ref{OMP_THREAD_LIMIT}
@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.2.14.
@end table
@node Tasking Routines
@section Tasking Routines
Routines relating to explicit tasks.
They have C linkage and do not throw exceptions.
@menu
* omp_get_max_task_priority:: Maximum task priority value that can be set
* omp_in_explicit_task:: Whether a given task is an explicit task
* omp_in_final:: Whether in final or included task region
@c * omp_is_free_agent:: <fixme>/TR12
@c * omp_ancestor_is_free_agent:: <fixme>/TR12
@end menu
@node omp_get_max_task_priority
@subsection @code{omp_get_max_task_priority} -- Maximum priority value
that can be set for tasks.
@table @asis
@item @emph{Description}:
This function obtains the maximum allowed priority number for tasks.
@item @emph{C/C++}
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{int omp_get_max_task_priority(void);}
@end multitable
@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{integer function omp_get_max_task_priority()}
@end multitable
@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.2.29.
@end table
@node omp_in_explicit_task
@subsection @code{omp_in_explicit_task} -- Whether a given task is an explicit task
@table @asis
@item @emph{Description}:
The function returns the @var{explicit-task-var} ICV; it returns true when the
encountering task was generated by a task-generating construct such as
@code{target}, @code{task} or @code{taskloop}. Otherwise, the encountering task
is in an implicit task region such as generated by the implicit or explicit
@code{parallel} region and @code{omp_in_explicit_task} returns false.
@item @emph{C/C++}
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{int omp_in_explicit_task(void);}
@end multitable
@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{logical function omp_in_explicit_task()}
@end multitable
@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v5.2}, Section 18.5.2.
@end table
@node omp_in_final
@subsection @code{omp_in_final} -- Whether in final or included task region
@table @asis
@item @emph{Description}:
This function returns @code{true} if currently running in a final
or included task region, @code{false} otherwise. Here, @code{true}
and @code{false} represent their language-specific counterparts.
@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{int omp_in_final(void);}
@end multitable
@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{logical function omp_in_final()}
@end multitable
@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.2.21.
@end table
@node Resource Relinquishing Routines
@section Resource Relinquishing Routines
Routines releasing resources used by the OpenMP runtime.
They have C linkage and do not throw exceptions.
@menu
* omp_pause_resource:: Release OpenMP resources on a device
* omp_pause_resource_all:: Release OpenMP resources on all devices
@end menu
@node omp_pause_resource
@subsection @code{omp_pause_resource} -- Release OpenMP resources on a device
@table @asis
@item @emph{Description}:
Free resources used by the OpenMP program and the runtime library on and for the
device specified by @var{device_num}; on success, zero is returned and non-zero
otherwise.
The value of @var{device_num} must be a conforming device number. The routine
may not be called from within any explicit region and all explicit threads that
do not bind to the implicit parallel region have finalized execution.
@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{int omp_pause_resource(omp_pause_resource_t kind, int device_num);}
@end multitable
@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{integer function omp_pause_resource(kind, device_num)}
@item @tab @code{integer (kind=omp_pause_resource_kind) kind}
@item @tab @code{integer device_num}
@end multitable
@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v5.0}, Section 3.2.43.
@end table
@node omp_pause_resource_all
@subsection @code{omp_pause_resource_all} -- Release OpenMP resources on all devices
@table @asis
@item @emph{Description}:
Free resources used by the OpenMP program and the runtime library on all devices,
including the host. On success, zero is returned and non-zero otherwise.
The routine may not be called from within any explicit region and all explicit
threads that do not bind to the implicit parallel region have finalized execution.
@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{int omp_pause_resource(omp_pause_resource_t kind);}
@end multitable
@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{integer function omp_pause_resource(kind)}
@item @tab @code{integer (kind=omp_pause_resource_kind) kind}
@end multitable
@item @emph{See also}:
@ref{omp_pause_resource}
@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v5.0}, Section 3.2.44.
@end table
@node Device Information Routines
@section Device Information Routines
Routines related to devices available to an OpenMP program.
They have C linkage and do not throw exceptions.
@menu
* omp_get_num_procs:: Number of processors online
@c * omp_get_max_progress_width:: <fixme>/TR11
* omp_set_default_device:: Set the default device for target regions
* omp_get_default_device:: Get the default device for target regions
* omp_get_num_devices:: Number of target devices
* omp_get_device_num:: Get device that current thread is running on
* omp_is_initial_device:: Whether executing on the host device
* omp_get_initial_device:: Device number of host device
@end menu
@node omp_get_num_procs
@subsection @code{omp_get_num_procs} -- Number of processors online
@table @asis
@item @emph{Description}:
Returns the number of processors online on that device.
@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{int omp_get_num_procs(void);}
@end multitable
@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{integer function omp_get_num_procs()}
@end multitable
@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.2.5.
@end table
@node omp_set_default_device
@subsection @code{omp_set_default_device} -- Set the default device for target regions
@table @asis
@item @emph{Description}:
Set the default device for target regions without device clause. The argument
shall be a nonnegative device number.
@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{void omp_set_default_device(int device_num);}
@end multitable
@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{subroutine omp_set_default_device(device_num)}
@item @tab @code{integer device_num}
@end multitable
@item @emph{See also}:
@ref{OMP_DEFAULT_DEVICE}, @ref{omp_get_default_device}
@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.2.29.
@end table
@node omp_get_default_device
@subsection @code{omp_get_default_device} -- Get the default device for target regions
@table @asis
@item @emph{Description}:
Get the default device for target regions without device clause.
@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{int omp_get_default_device(void);}
@end multitable
@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{integer function omp_get_default_device()}
@end multitable
@item @emph{See also}:
@ref{OMP_DEFAULT_DEVICE}, @ref{omp_set_default_device}
@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.2.30.
@end table
@node omp_get_num_devices
@subsection @code{omp_get_num_devices} -- Number of target devices
@table @asis
@item @emph{Description}:
Returns the number of target devices.
@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{int omp_get_num_devices(void);}
@end multitable
@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{integer function omp_get_num_devices()}
@end multitable
@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.2.31.
@end table
@node omp_get_device_num
@subsection @code{omp_get_device_num} -- Return device number of current device
@table @asis
@item @emph{Description}:
This function returns a device number that represents the device that the
current thread is executing on. For OpenMP 5.0, this must be equal to the
value returned by the @code{omp_get_initial_device} function when called
from the host.
@item @emph{C/C++}
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{int omp_get_device_num(void);}
@end multitable
@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{integer function omp_get_device_num()}
@end multitable
@item @emph{See also}:
@ref{omp_get_initial_device}
@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v5.0}, Section 3.2.37.
@end table
@node omp_is_initial_device
@subsection @code{omp_is_initial_device} -- Whether executing on the host device
@table @asis
@item @emph{Description}:
This function returns @code{true} if currently running on the host device,
@code{false} otherwise. Here, @code{true} and @code{false} represent
their language-specific counterparts.
@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{int omp_is_initial_device(void);}
@end multitable
@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{logical function omp_is_initial_device()}
@end multitable
@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.2.34.
@end table
@node omp_get_initial_device
@subsection @code{omp_get_initial_device} -- Return device number of initial device
@table @asis
@item @emph{Description}:
This function returns a device number that represents the host device.
For OpenMP 5.1, this must be equal to the value returned by the
@code{omp_get_num_devices} function.
@item @emph{C/C++}
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{int omp_get_initial_device(void);}
@end multitable
@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{integer function omp_get_initial_device()}
@end multitable
@item @emph{See also}:
@ref{omp_get_num_devices}
@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.2.35.
@end table
@node Device Memory Routines
@section Device Memory Routines
Routines related to memory allocation and managing corresponding
pointers on devices. They have C linkage and do not throw exceptions.
@menu
* omp_target_alloc:: Allocate device memory
* omp_target_free:: Free device memory
* omp_target_is_present:: Check whether storage is mapped
* omp_target_is_accessible:: Check whether memory is device accessible
* omp_target_memcpy:: Copy data between devices
* omp_target_memcpy_async:: Copy data between devices asynchronously
* omp_target_memcpy_rect:: Copy a subvolume of data between devices
* omp_target_memcpy_rect_async:: Copy a subvolume of data between devices asynchronously
@c * omp_target_memset:: <fixme>/TR12
@c * omp_target_memset_async:: <fixme>/TR12
* omp_target_associate_ptr:: Associate a device pointer with a host pointer
* omp_target_disassociate_ptr:: Remove device--host pointer association
* omp_get_mapped_ptr:: Return device pointer to a host pointer
@end menu
@node omp_target_alloc
@subsection @code{omp_target_alloc} -- Allocate device memory
@table @asis
@item @emph{Description}:
This routine allocates @var{size} bytes of memory in the device environment
associated with the device number @var{device_num}. If successful, a device
pointer is returned, otherwise a null pointer.
In GCC, when the device is the host or the device shares memory with the host,
the memory is allocated on the host; in that case, when @var{size} is zero,
either NULL or a unique pointer value that can later be successfully passed to
@code{omp_target_free} is returned. When the allocation is not performed on
the host, a null pointer is returned when @var{size} is zero; in that case,
additionally a diagnostic might be printed to standard error (stderr).
Running this routine in a @code{target} region except on the initial device
is not supported.
@item @emph{C/C++}
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{void *omp_target_alloc(size_t size, int device_num)}
@end multitable
@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{type(c_ptr) function omp_target_alloc(size, device_num) bind(C)}
@item @tab @code{use, intrinsic :: iso_c_binding, only: c_ptr, c_int, c_size_t}
@item @tab @code{integer(c_size_t), value :: size}
@item @tab @code{integer(c_int), value :: device_num}
@end multitable
@item @emph{See also}:
@ref{omp_target_free}, @ref{omp_target_associate_ptr}
@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v5.1}, Section 3.8.1
@end table
@node omp_target_free
@subsection @code{omp_target_free} -- Free device memory
@table @asis
@item @emph{Description}:
This routine frees memory allocated by the @code{omp_target_alloc} routine.
The @var{device_ptr} argument must be either a null pointer or a device pointer
returned by @code{omp_target_alloc} for the specified @code{device_num}. The
device number @var{device_num} must be a conforming device number.
Running this routine in a @code{target} region except on the initial device
is not supported.
@item @emph{C/C++}
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{void omp_target_free(void *device_ptr, int device_num)}
@end multitable
@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{subroutine omp_target_free(device_ptr, device_num) bind(C)}
@item @tab @code{use, intrinsic :: iso_c_binding, only: c_ptr, c_int}
@item @tab @code{type(c_ptr), value :: device_ptr}
@item @tab @code{integer(c_int), value :: device_num}
@end multitable
@item @emph{See also}:
@ref{omp_target_alloc}, @ref{omp_target_disassociate_ptr}
@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v5.1}, Section 3.8.2
@end table
@node omp_target_is_present
@subsection @code{omp_target_is_present} -- Check whether storage is mapped
@table @asis
@item @emph{Description}:
This routine tests whether storage, identified by the host pointer @var{ptr}
is mapped to the device specified by @var{device_num}. If so, it returns
a nonzero value and otherwise zero.
In GCC, this includes self mapping such that @code{omp_target_is_present}
returns @emph{true} when @var{device_num} specifies the host or when the host
and the device share memory. If @var{ptr} is a null pointer, @var{true} is
returned and if @var{device_num} is an invalid device number, @var{false} is
returned.
If those conditions do not apply, @emph{true} is returned if the association has
been established by an explicit or implicit @code{map} clause, the
@code{declare target} directive or a call to the @code{omp_target_associate_ptr}
routine.
Running this routine in a @code{target} region except on the initial device
is not supported.
@item @emph{C/C++}
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{int omp_target_is_present(const void *ptr,}
@item @tab @code{ int device_num)}
@end multitable
@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{integer(c_int) function omp_target_is_present(ptr, &}
@item @tab @code{ device_num) bind(C)}
@item @tab @code{use, intrinsic :: iso_c_binding, only: c_ptr, c_int}
@item @tab @code{type(c_ptr), value :: ptr}
@item @tab @code{integer(c_int), value :: device_num}
@end multitable
@item @emph{See also}:
@ref{omp_target_associate_ptr}
@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v5.1}, Section 3.8.3
@end table
@node omp_target_is_accessible
@subsection @code{omp_target_is_accessible} -- Check whether memory is device accessible
@table @asis
@item @emph{Description}:
This routine tests whether memory, starting at the address given by @var{ptr}
and extending @var{size} bytes, is accessibly on the device specified by
@var{device_num}. If so, it returns a nonzero value and otherwise zero.
The address given by @var{ptr} is interpreted to be in the address space of
the device and @var{size} must be positive.
Note that GCC's current implementation assumes that @var{ptr} is a valid host
pointer. Therefore, all addresses given by @var{ptr} are assumed to be
accessible on the initial device. And, to err on the safe side, this memory
is only available on a non-host device that can access all host memory
([uniform] shared memory access).
Running this routine in a @code{target} region except on the initial device
is not supported.
@item @emph{C/C++}
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{int omp_target_is_accessible(const void *ptr,}
@item @tab @code{ size_t size,}
@item @tab @code{ int device_num)}
@end multitable
@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{integer(c_int) function omp_target_is_accessible(ptr, &}
@item @tab @code{ size, device_num) bind(C)}
@item @tab @code{use, intrinsic :: iso_c_binding, only: c_ptr, c_size_t, c_int}
@item @tab @code{type(c_ptr), value :: ptr}
@item @tab @code{integer(c_size_t), value :: size}
@item @tab @code{integer(c_int), value :: device_num}
@end multitable
@item @emph{See also}:
@ref{omp_target_associate_ptr}
@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v5.1}, Section 3.8.4
@end table
@node omp_target_memcpy
@subsection @code{omp_target_memcpy} -- Copy data between devices
@table @asis
@item @emph{Description}:
This routine copies @var{length} of bytes of data from the device
identified by device number @var{src_device_num} to device @var{dst_device_num}.
The data is copied from the source device from the address provided by
@var{src}, shifted by the offset of @var{src_offset} bytes, to the destination
device's @var{dst} address shifted by @var{dst_offset}. The routine returns
zero on success and non-zero otherwise.
Running this routine in a @code{target} region except on the initial device
is not supported.
@item @emph{C/C++}
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{int omp_target_memcpy(void *dst,}
@item @tab @code{ const void *src,}
@item @tab @code{ size_t length,}
@item @tab @code{ size_t dst_offset,}
@item @tab @code{ size_t src_offset,}
@item @tab @code{ int dst_device_num,}
@item @tab @code{ int src_device_num)}
@end multitable
@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{integer(c_int) function omp_target_memcpy( &}
@item @tab @code{ dst, src, length, dst_offset, src_offset, &}
@item @tab @code{ dst_device_num, src_device_num) bind(C)}
@item @tab @code{use, intrinsic :: iso_c_binding, only: c_ptr, c_size_t, c_int}
@item @tab @code{type(c_ptr), value :: dst, src}
@item @tab @code{integer(c_size_t), value :: length, dst_offset, src_offset}
@item @tab @code{integer(c_int), value :: dst_device_num, src_device_num}
@end multitable
@item @emph{See also}:
@ref{omp_target_memcpy_async}, @ref{omp_target_memcpy_rect}
@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v5.1}, Section 3.8.5
@end table
@node omp_target_memcpy_async
@subsection @code{omp_target_memcpy_async} -- Copy data between devices asynchronously
@table @asis
@item @emph{Description}:
This routine copies asynchronously @var{length} of bytes of data from the
device identified by device number @var{src_device_num} to device
@var{dst_device_num}. The data is copied from the source device from the
address provided by @var{src}, shifted by the offset of @var{src_offset} bytes,
to the destination device's @var{dst} address shifted by @var{dst_offset}.
Task dependence is expressed by passing an array of depend objects to
@var{depobj_list}, where the number of array elements is passed as
@var{depobj_count}; if the count is zero, the @var{depobj_list} argument is
ignored. The routine returns zero if the copying process has successfully
been started and non-zero otherwise.
Running this routine in a @code{target} region except on the initial device
is not supported.
@item @emph{C/C++}
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{int omp_target_memcpy_async(void *dst,}
@item @tab @code{ const void *src,}
@item @tab @code{ size_t length,}
@item @tab @code{ size_t dst_offset,}
@item @tab @code{ size_t src_offset,}
@item @tab @code{ int dst_device_num,}
@item @tab @code{ int src_device_num,}
@item @tab @code{ int depobj_count,}
@item @tab @code{ omp_depend_t *depobj_list)}
@end multitable
@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{integer(c_int) function omp_target_memcpy_async( &}
@item @tab @code{ dst, src, length, dst_offset, src_offset, &}
@item @tab @code{ dst_device_num, src_device_num, &}
@item @tab @code{ depobj_count, depobj_list) bind(C)}
@item @tab @code{use, intrinsic :: iso_c_binding, only: c_ptr, c_size_t, c_int}
@item @tab @code{type(c_ptr), value :: dst, src}
@item @tab @code{integer(c_size_t), value :: length, dst_offset, src_offset}
@item @tab @code{integer(c_int), value :: dst_device_num, src_device_num, depobj_count}
@item @tab @code{integer(omp_depend_kind), optional :: depobj_list(*)}
@end multitable
@item @emph{See also}:
@ref{omp_target_memcpy}, @ref{omp_target_memcpy_rect_async}
@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v5.1}, Section 3.8.7
@end table
@node omp_target_memcpy_rect
@subsection @code{omp_target_memcpy_rect} -- Copy a subvolume of data between devices
@table @asis
@item @emph{Description}:
This routine copies a subvolume of data from the device identified by
device number @var{src_device_num} to device @var{dst_device_num}.
The array has @var{num_dims} dimensions and each array element has a size of
@var{element_size} bytes. The @var{volume} array specifies how many elements
per dimension are copied. The full sizes of the destination and source arrays
are given by the @var{dst_dimensions} and @var{src_dimensions} arguments,
respectively. The offset per dimension to the first element to be copied is
given by the @var{dst_offset} and @var{src_offset} arguments. The routine
returns zero on success and non-zero otherwise.
The OpenMP specification only requires that @var{num_dims} up to three is
supported. In order to find implementation-specific maximally supported number
of dimensions, the routine returns this value when invoked with a null pointer
to both the @var{dst} and @var{src} arguments. As GCC supports arbitrary
dimensions, it returns @code{INT_MAX}.
The device-number arguments must be conforming device numbers, the @var{src} and
@var{dst} must be either both null pointers or all of the following must be
fulfilled: @var{element_size} and @var{num_dims} must be positive and the
@var{volume}, offset and dimension arrays must have at least @var{num_dims}
dimensions.
Running this routine in a @code{target} region is not supported except on
the initial device.
@item @emph{C/C++}
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{int omp_target_memcpy_rect(void *dst,}
@item @tab @code{ const void *src,}
@item @tab @code{ size_t element_size,}
@item @tab @code{ int num_dims,}
@item @tab @code{ const size_t *volume,}
@item @tab @code{ const size_t *dst_offset,}
@item @tab @code{ const size_t *src_offset,}
@item @tab @code{ const size_t *dst_dimensions,}
@item @tab @code{ const size_t *src_dimensions,}
@item @tab @code{ int dst_device_num,}
@item @tab @code{ int src_device_num)}
@end multitable
@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{integer(c_int) function omp_target_memcpy_rect( &}
@item @tab @code{ dst, src, element_size, num_dims, volume, &}
@item @tab @code{ dst_offset, src_offset, dst_dimensions, &}
@item @tab @code{ src_dimensions, dst_device_num, src_device_num) bind(C)}
@item @tab @code{use, intrinsic :: iso_c_binding, only: c_ptr, c_size_t, c_int}
@item @tab @code{type(c_ptr), value :: dst, src}
@item @tab @code{integer(c_size_t), value :: element_size, dst_offset, src_offset}
@item @tab @code{integer(c_size_t), value :: volume, dst_dimensions, src_dimensions}
@item @tab @code{integer(c_int), value :: num_dims, dst_device_num, src_device_num}
@end multitable
@item @emph{See also}:
@ref{omp_target_memcpy_rect_async}, @ref{omp_target_memcpy}
@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v5.1}, Section 3.8.6
@end table
@node omp_target_memcpy_rect_async
@subsection @code{omp_target_memcpy_rect_async} -- Copy a subvolume of data between devices asynchronously
@table @asis
@item @emph{Description}:
This routine copies asynchronously a subvolume of data from the device
identified by device number @var{src_device_num} to device @var{dst_device_num}.
The array has @var{num_dims} dimensions and each array element has a size of
@var{element_size} bytes. The @var{volume} array specifies how many elements
per dimension are copied. The full sizes of the destination and source arrays
are given by the @var{dst_dimensions} and @var{src_dimensions} arguments,
respectively. The offset per dimension to the first element to be copied is
given by the @var{dst_offset} and @var{src_offset} arguments. Task dependence
is expressed by passing an array of depend objects to @var{depobj_list}, where
the number of array elements is passed as @var{depobj_count}; if the count is
zero, the @var{depobj_list} argument is ignored. The routine
returns zero on success and non-zero otherwise.
The OpenMP specification only requires that @var{num_dims} up to three is
supported. In order to find implementation-specific maximally supported number
of dimensions, the routine returns this value when invoked with a null pointer
to both the @var{dst} and @var{src} arguments. As GCC supports arbitrary
dimensions, it returns @code{INT_MAX}.
The device-number arguments must be conforming device numbers, the @var{src} and
@var{dst} must be either both null pointers or all of the following must be
fulfilled: @var{element_size} and @var{num_dims} must be positive and the
@var{volume}, offset and dimension arrays must have at least @var{num_dims}
dimensions.
Running this routine in a @code{target} region is not supported except on
the initial device.
@item @emph{C/C++}
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{int omp_target_memcpy_rect_async(void *dst,}
@item @tab @code{ const void *src,}
@item @tab @code{ size_t element_size,}
@item @tab @code{ int num_dims,}
@item @tab @code{ const size_t *volume,}
@item @tab @code{ const size_t *dst_offset,}
@item @tab @code{ const size_t *src_offset,}
@item @tab @code{ const size_t *dst_dimensions,}
@item @tab @code{ const size_t *src_dimensions,}
@item @tab @code{ int dst_device_num,}
@item @tab @code{ int src_device_num,}
@item @tab @code{ int depobj_count,}
@item @tab @code{ omp_depend_t *depobj_list)}
@end multitable
@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{integer(c_int) function omp_target_memcpy_rect_async( &}
@item @tab @code{ dst, src, element_size, num_dims, volume, &}
@item @tab @code{ dst_offset, src_offset, dst_dimensions, &}
@item @tab @code{ src_dimensions, dst_device_num, src_device_num, &}
@item @tab @code{ depobj_count, depobj_list) bind(C)}
@item @tab @code{use, intrinsic :: iso_c_binding, only: c_ptr, c_size_t, c_int}
@item @tab @code{type(c_ptr), value :: dst, src}
@item @tab @code{integer(c_size_t), value :: element_size, dst_offset, src_offset}
@item @tab @code{integer(c_size_t), value :: volume, dst_dimensions, src_dimensions}
@item @tab @code{integer(c_int), value :: num_dims, dst_device_num, src_device_num}
@item @tab @code{integer(c_int), value :: depobj_count}
@item @tab @code{integer(omp_depend_kind), optional :: depobj_list(*)}
@end multitable
@item @emph{See also}:
@ref{omp_target_memcpy_rect}, @ref{omp_target_memcpy_async}
@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v5.1}, Section 3.8.8
@end table
@node omp_target_associate_ptr
@subsection @code{omp_target_associate_ptr} -- Associate a device pointer with a host pointer
@table @asis
@item @emph{Description}:
This routine associates storage on the host with storage on a device identified
by @var{device_num}. The device pointer is usually obtained by calling
@code{omp_target_alloc} or by other means (but not by using the @code{map}
clauses or the @code{declare target} directive). The host pointer should point
to memory that has a storage size of at least @var{size}.
The @var{device_offset} parameter specifies the offset into @var{device_ptr}
that is used as the base address for the device side of the mapping; the
storage size should be at least @var{device_offset} plus @var{size}.
After the association, the host pointer can be used in a @code{map} clause and
in the @code{to} and @code{from} clauses of the @code{target update} directive
to transfer data between the associated pointers. The reference count of such
associated storage is infinite. The association can be removed by calling
@code{omp_target_disassociate_ptr} which should be done before the lifetime
of either storage ends.
The routine returns nonzero (@code{EINVAL}) when the @var{device_num} invalid,
for when the initial device or the associated device shares memory with the
host. @code{omp_target_associate_ptr} returns zero if @var{host_ptr} points
into already associated storage that is fully inside of a previously associated
memory. Otherwise, if the association was successful zero is returned; if none
of the cases above apply, nonzero (@code{EINVAL}) is returned.
The @code{omp_target_is_present} routine can be used to test whether
associated storage for a device pointer exists.
Running this routine in a @code{target} region except on the initial device
is not supported.
@item @emph{C/C++}
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{int omp_target_associate_ptr(const void *host_ptr,}
@item @tab @code{ const void *device_ptr,}
@item @tab @code{ size_t size,}
@item @tab @code{ size_t device_offset,}
@item @tab @code{ int device_num)}
@end multitable
@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{integer(c_int) function omp_target_associate_ptr(host_ptr, &}
@item @tab @code{ device_ptr, size, device_offset, device_num) bind(C)}
@item @tab @code{use, intrinsic :: iso_c_binding, only: c_ptr, c_int, c_size_t}
@item @tab @code{type(c_ptr), value :: host_ptr, device_ptr}
@item @tab @code{integer(c_size_t), value :: size, device_offset}
@item @tab @code{integer(c_int), value :: device_num}
@end multitable
@item @emph{See also}:
@ref{omp_target_disassociate_ptr}, @ref{omp_target_is_present},
@ref{omp_target_alloc}
@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v5.1}, Section 3.8.9
@end table
@node omp_target_disassociate_ptr
@subsection @code{omp_target_disassociate_ptr} -- Remove device--host pointer association
@table @asis
@item @emph{Description}:
This routine removes the storage association established by calling
@code{omp_target_associate_ptr} and sets the reference count to zero,
even if @code{omp_target_associate_ptr} was invoked multiple times for
for host pointer @code{ptr}. If applicable, the device memory needs
to be freed by the user.
If an associated device storage location for the @var{device_num} was
found and has infinite reference count, the association is removed and
zero is returned. In all other cases, nonzero (@code{EINVAL}) is returned
and no other action is taken.
Note that passing a host pointer where the association to the device pointer
was established with the @code{declare target} directive yields undefined
behavior.
Running this routine in a @code{target} region except on the initial device
is not supported.
@item @emph{C/C++}
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{int omp_target_disassociate_ptr(const void *ptr,}
@item @tab @code{ int device_num)}
@end multitable
@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{integer(c_int) function omp_target_disassociate_ptr(ptr, &}
@item @tab @code{ device_num) bind(C)}
@item @tab @code{use, intrinsic :: iso_c_binding, only: c_ptr, c_int}
@item @tab @code{type(c_ptr), value :: ptr}
@item @tab @code{integer(c_int), value :: device_num}
@end multitable
@item @emph{See also}:
@ref{omp_target_associate_ptr}
@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v5.1}, Section 3.8.10
@end table
@node omp_get_mapped_ptr
@subsection @code{omp_get_mapped_ptr} -- Return device pointer to a host pointer
@table @asis
@item @emph{Description}:
If the device number is refers to the initial device or to a device with
memory accessible from the host (shared memory), the @code{omp_get_mapped_ptr}
routines returns the value of the passed @var{ptr}. Otherwise, if associated
storage to the passed host pointer @var{ptr} exists on device associated with
@var{device_num}, it returns that pointer. In all other cases and in cases of
an error, a null pointer is returned.
The association of storage location is established either via an explicit or
implicit @code{map} clause, the @code{declare target} directive or the
@code{omp_target_associate_ptr} routine.
Running this routine in a @code{target} region except on the initial device
is not supported.
@item @emph{C/C++}
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{void *omp_get_mapped_ptr(const void *ptr, int device_num);}
@end multitable
@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{type(c_ptr) function omp_get_mapped_ptr(ptr, device_num) bind(C)}
@item @tab @code{use, intrinsic :: iso_c_binding, only: c_ptr, c_int}
@item @tab @code{type(c_ptr), value :: ptr}
@item @tab @code{integer(c_int), value :: device_num}
@end multitable
@item @emph{See also}:
@ref{omp_target_associate_ptr}
@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v5.1}, Section 3.8.11
@end table
@node Lock Routines
@section Lock Routines
Initialize, set, test, unset and destroy simple and nested locks.
The routines have C linkage and do not throw exceptions.
@menu
* omp_init_lock:: Initialize simple lock
* omp_init_nest_lock:: Initialize nested lock
@c * omp_init_lock_with_hint:: <fixme>
@c * omp_init_nest_lock_with_hint:: <fixme>
* omp_destroy_lock:: Destroy simple lock
* omp_destroy_nest_lock:: Destroy nested lock
* omp_set_lock:: Wait for and set simple lock
* omp_set_nest_lock:: Wait for and set simple lock
* omp_unset_lock:: Unset simple lock
* omp_unset_nest_lock:: Unset nested lock
* omp_test_lock:: Test and set simple lock if available
* omp_test_nest_lock:: Test and set nested lock if available
@end menu
@node omp_init_lock
@subsection @code{omp_init_lock} -- Initialize simple lock
@table @asis
@item @emph{Description}:
Initialize a simple lock. After initialization, the lock is in
an unlocked state.
@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{void omp_init_lock(omp_lock_t *lock);}
@end multitable
@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{subroutine omp_init_lock(svar)}
@item @tab @code{integer(omp_lock_kind), intent(out) :: svar}
@end multitable
@item @emph{See also}:
@ref{omp_destroy_lock}
@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.3.1.
@end table
@node omp_init_nest_lock
@subsection @code{omp_init_nest_lock} -- Initialize nested lock
@table @asis
@item @emph{Description}:
Initialize a nested lock. After initialization, the lock is in
an unlocked state and the nesting count is set to zero.
@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{void omp_init_nest_lock(omp_nest_lock_t *lock);}
@end multitable
@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{subroutine omp_init_nest_lock(nvar)}
@item @tab @code{integer(omp_nest_lock_kind), intent(out) :: nvar}
@end multitable
@item @emph{See also}:
@ref{omp_destroy_nest_lock}
@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.3.1.
@end table
@node omp_destroy_lock
@subsection @code{omp_destroy_lock} -- Destroy simple lock
@table @asis
@item @emph{Description}:
Destroy a simple lock. In order to be destroyed, a simple lock must be
in the unlocked state.
@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{void omp_destroy_lock(omp_lock_t *lock);}
@end multitable
@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{subroutine omp_destroy_lock(svar)}
@item @tab @code{integer(omp_lock_kind), intent(inout) :: svar}
@end multitable
@item @emph{See also}:
@ref{omp_init_lock}
@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.3.3.
@end table
@node omp_destroy_nest_lock
@subsection @code{omp_destroy_nest_lock} -- Destroy nested lock
@table @asis
@item @emph{Description}:
Destroy a nested lock. In order to be destroyed, a nested lock must be
in the unlocked state and its nesting count must equal zero.
@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{void omp_destroy_nest_lock(omp_nest_lock_t *);}
@end multitable
@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{subroutine omp_destroy_nest_lock(nvar)}
@item @tab @code{integer(omp_nest_lock_kind), intent(inout) :: nvar}
@end multitable
@item @emph{See also}:
@ref{omp_init_lock}
@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.3.3.
@end table
@node omp_set_lock
@subsection @code{omp_set_lock} -- Wait for and set simple lock
@table @asis
@item @emph{Description}:
Before setting a simple lock, the lock variable must be initialized by
@code{omp_init_lock}. The calling thread is blocked until the lock
is available. If the lock is already held by the current thread,
a deadlock occurs.
@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{void omp_set_lock(omp_lock_t *lock);}
@end multitable
@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{subroutine omp_set_lock(svar)}
@item @tab @code{integer(omp_lock_kind), intent(inout) :: svar}
@end multitable
@item @emph{See also}:
@ref{omp_init_lock}, @ref{omp_test_lock}, @ref{omp_unset_lock}
@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.3.4.
@end table
@node omp_set_nest_lock
@subsection @code{omp_set_nest_lock} -- Wait for and set nested lock
@table @asis
@item @emph{Description}:
Before setting a nested lock, the lock variable must be initialized by
@code{omp_init_nest_lock}. The calling thread is blocked until the lock
is available. If the lock is already held by the current thread, the
nesting count for the lock is incremented.
@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{void omp_set_nest_lock(omp_nest_lock_t *lock);}
@end multitable
@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{subroutine omp_set_nest_lock(nvar)}
@item @tab @code{integer(omp_nest_lock_kind), intent(inout) :: nvar}
@end multitable
@item @emph{See also}:
@ref{omp_init_nest_lock}, @ref{omp_unset_nest_lock}
@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.3.4.
@end table
@node omp_unset_lock
@subsection @code{omp_unset_lock} -- Unset simple lock
@table @asis
@item @emph{Description}:
A simple lock about to be unset must have been locked by @code{omp_set_lock}
or @code{omp_test_lock} before. In addition, the lock must be held by the
thread calling @code{omp_unset_lock}. Then, the lock becomes unlocked. If one
or more threads attempted to set the lock before, one of them is chosen to,
again, set the lock to itself.
@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{void omp_unset_lock(omp_lock_t *lock);}
@end multitable
@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{subroutine omp_unset_lock(svar)}
@item @tab @code{integer(omp_lock_kind), intent(inout) :: svar}
@end multitable
@item @emph{See also}:
@ref{omp_set_lock}, @ref{omp_test_lock}
@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.3.5.
@end table
@node omp_unset_nest_lock
@subsection @code{omp_unset_nest_lock} -- Unset nested lock
@table @asis
@item @emph{Description}:
A nested lock about to be unset must have been locked by @code{omp_set_nested_lock}
or @code{omp_test_nested_lock} before. In addition, the lock must be held by the
thread calling @code{omp_unset_nested_lock}. If the nesting count drops to zero, the
lock becomes unlocked. If one ore more threads attempted to set the lock before,
one of them is chosen to, again, set the lock to itself.
@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{void omp_unset_nest_lock(omp_nest_lock_t *lock);}
@end multitable
@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{subroutine omp_unset_nest_lock(nvar)}
@item @tab @code{integer(omp_nest_lock_kind), intent(inout) :: nvar}
@end multitable
@item @emph{See also}:
@ref{omp_set_nest_lock}
@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.3.5.
@end table
@node omp_test_lock
@subsection @code{omp_test_lock} -- Test and set simple lock if available
@table @asis
@item @emph{Description}:
Before setting a simple lock, the lock variable must be initialized by
@code{omp_init_lock}. Contrary to @code{omp_set_lock}, @code{omp_test_lock}
does not block if the lock is not available. This function returns
@code{true} upon success, @code{false} otherwise. Here, @code{true} and
@code{false} represent their language-specific counterparts.
@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{int omp_test_lock(omp_lock_t *lock);}
@end multitable
@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{logical function omp_test_lock(svar)}
@item @tab @code{integer(omp_lock_kind), intent(inout) :: svar}
@end multitable
@item @emph{See also}:
@ref{omp_init_lock}, @ref{omp_set_lock}, @ref{omp_set_lock}
@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.3.6.
@end table
@node omp_test_nest_lock
@subsection @code{omp_test_nest_lock} -- Test and set nested lock if available
@table @asis
@item @emph{Description}:
Before setting a nested lock, the lock variable must be initialized by
@code{omp_init_nest_lock}. Contrary to @code{omp_set_nest_lock},
@code{omp_test_nest_lock} does not block if the lock is not available.
If the lock is already held by the current thread, the new nesting count
is returned. Otherwise, the return value equals zero.
@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{int omp_test_nest_lock(omp_nest_lock_t *lock);}
@end multitable
@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{logical function omp_test_nest_lock(nvar)}
@item @tab @code{integer(omp_nest_lock_kind), intent(inout) :: nvar}
@end multitable
@item @emph{See also}:
@ref{omp_init_lock}, @ref{omp_set_lock}, @ref{omp_set_lock}
@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.3.6.
@end table
@node Timing Routines
@section Timing Routines
Portable, thread-based, wall clock timer.
The routines have C linkage and do not throw exceptions.
@menu
* omp_get_wtick:: Get timer precision.
* omp_get_wtime:: Elapsed wall clock time.
@end menu
@node omp_get_wtick
@subsection @code{omp_get_wtick} -- Get timer precision
@table @asis
@item @emph{Description}:
Gets the timer precision, i.e., the number of seconds between two
successive clock ticks.
@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{double omp_get_wtick(void);}
@end multitable
@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{double precision function omp_get_wtick()}
@end multitable
@item @emph{See also}:
@ref{omp_get_wtime}
@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.4.2.
@end table
@node omp_get_wtime
@subsection @code{omp_get_wtime} -- Elapsed wall clock time
@table @asis
@item @emph{Description}:
Elapsed wall clock time in seconds. The time is measured per thread, no
guarantee can be made that two distinct threads measure the same time.
Time is measured from some "time in the past", which is an arbitrary time
guaranteed not to change during the execution of the program.
@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{double omp_get_wtime(void);}
@end multitable
@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{double precision function omp_get_wtime()}
@end multitable
@item @emph{See also}:
@ref{omp_get_wtick}
@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.4.1.
@end table
@node Event Routine
@section Event Routine
Support for event objects.
The routine has C linkage and do not throw exceptions.
@menu
* omp_fulfill_event:: Fulfill and destroy an OpenMP event.
@end menu
@node omp_fulfill_event
@subsection @code{omp_fulfill_event} -- Fulfill and destroy an OpenMP event
@table @asis
@item @emph{Description}:
Fulfill the event associated with the event handle argument. Currently, it
is only used to fulfill events generated by detach clauses on task
constructs - the effect of fulfilling the event is to allow the task to
complete.
The result of calling @code{omp_fulfill_event} with an event handle other
than that generated by a detach clause is undefined. Calling it with an
event handle that has already been fulfilled is also undefined.
@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{void omp_fulfill_event(omp_event_handle_t event);}
@end multitable
@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{subroutine omp_fulfill_event(event)}
@item @tab @code{integer (kind=omp_event_handle_kind) :: event}
@end multitable
@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v5.0}, Section 3.5.1.
@end table
@c @node Interoperability Routines
@c @section Interoperability Routines
@c
@c Routines to obtain properties from an @code{omp_interop_t} object.
@c They have C linkage and do not throw exceptions.
@c
@c @menu
@c * omp_get_num_interop_properties:: <fixme>
@c * omp_get_interop_int:: <fixme>
@c * omp_get_interop_ptr:: <fixme>
@c * omp_get_interop_str:: <fixme>
@c * omp_get_interop_name:: <fixme>
@c * omp_get_interop_type_desc:: <fixme>
@c * omp_get_interop_rc_desc:: <fixme>
@c @end menu
@node Memory Management Routines
@section Memory Management Routines
Routines to manage and allocate memory on the current device.
They have C linkage and do not throw exceptions.
@menu
* omp_init_allocator:: Create an allocator
* omp_destroy_allocator:: Destroy an allocator
* omp_set_default_allocator:: Set the default allocator
* omp_get_default_allocator:: Get the default allocator
* omp_alloc:: Memory allocation with an allocator
* omp_aligned_alloc:: Memory allocation with an allocator and alignment
* omp_free:: Freeing memory allocated with OpenMP routines
* omp_calloc:: Allocate nullified memory with an allocator
* omp_aligned_calloc:: Allocate nullified aligned memory with an allocator
* omp_realloc:: Reallocate memory allocated with OpenMP routines
@c * omp_get_memspace_num_resources:: <fixme>/TR11
@c * omp_get_submemspace:: <fixme>/TR11
@end menu
@node omp_init_allocator
@subsection @code{omp_init_allocator} -- Create an allocator
@table @asis
@item @emph{Description}:
Create an allocator that uses the specified memory space and has the specified
traits; if an allocator that fulfills the requirements cannot be created,
@code{omp_null_allocator} is returned.
The predefined memory spaces and available traits can be found at
@ref{OMP_ALLOCATOR}, where the trait names have to be prefixed by
@code{omp_atk_} (e.g. @code{omp_atk_pinned}) and the named trait values by
@code{omp_atv_} (e.g. @code{omp_atv_true}); additionally, @code{omp_atv_default}
may be used as trait value to specify that the default value should be used.
@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{omp_allocator_handle_t omp_init_allocator(}
@item @tab @code{ omp_memspace_handle_t memspace,}
@item @tab @code{ int ntraits,}
@item @tab @code{ const omp_alloctrait_t traits[]);}
@end multitable
@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{function omp_init_allocator(memspace, ntraits, traits)}
@item @tab @code{integer (omp_allocator_handle_kind) :: omp_init_allocator}
@item @tab @code{integer (omp_memspace_handle_kind), intent(in) :: memspace}
@item @tab @code{integer, intent(in) :: ntraits}
@item @tab @code{type (omp_alloctrait), intent(in) :: traits(*)}
@end multitable
@item @emph{See also}:
@ref{OMP_ALLOCATOR}, @ref{Memory allocation}, @ref{omp_destroy_allocator}
@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v5.0}, Section 3.7.2
@end table
@node omp_destroy_allocator
@subsection @code{omp_destroy_allocator} -- Destroy an allocator
@table @asis
@item @emph{Description}:
Releases all resources used by a memory allocator, which must not represent
a predefined memory allocator. Accessing memory after its allocator has been
destroyed has unspecified behavior. Passing @code{omp_null_allocator} to the
routine is permitted but has no effect.
@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{void omp_destroy_allocator (omp_allocator_handle_t allocator);}
@end multitable
@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{subroutine omp_destroy_allocator(allocator)}
@item @tab @code{integer (omp_allocator_handle_kind), intent(in) :: allocator}
@end multitable
@item @emph{See also}:
@ref{omp_init_allocator}
@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v5.0}, Section 3.7.3
@end table
@node omp_set_default_allocator
@subsection @code{omp_set_default_allocator} -- Set the default allocator
@table @asis
@item @emph{Description}:
Sets the default allocator that is used when no allocator has been specified
in the @code{allocate} or @code{allocator} clause or if an OpenMP memory
routine is invoked with the @code{omp_null_allocator} allocator.
@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{void omp_set_default_allocator(omp_allocator_handle_t allocator);}
@end multitable
@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{subroutine omp_set_default_allocator(allocator)}
@item @tab @code{integer (omp_allocator_handle_kind), intent(in) :: allocator}
@end multitable
@item @emph{See also}:
@ref{omp_get_default_allocator}, @ref{omp_init_allocator}, @ref{OMP_ALLOCATOR},
@ref{Memory allocation}
@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v5.0}, Section 3.7.4
@end table
@node omp_get_default_allocator
@subsection @code{omp_get_default_allocator} -- Get the default allocator
@table @asis
@item @emph{Description}:
The routine returns the default allocator that is used when no allocator has
been specified in the @code{allocate} or @code{allocator} clause or if an
OpenMP memory routine is invoked with the @code{omp_null_allocator} allocator.
@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{omp_allocator_handle_t omp_get_default_allocator();}
@end multitable
@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{function omp_get_default_allocator()}
@item @tab @code{integer (omp_allocator_handle_kind) :: omp_get_default_allocator}
@end multitable
@item @emph{See also}:
@ref{omp_set_default_allocator}, @ref{OMP_ALLOCATOR}
@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v5.0}, Section 3.7.5
@end table
@node omp_alloc
@subsection @code{omp_alloc} -- Memory allocation with an allocator
@table @asis
@item @emph{Description}:
Allocate memory with the specified allocator, which can either be a predefined
allocator, an allocator handle or @code{omp_null_allocator}. If the allocators
is @code{omp_null_allocator}, the allocator specified by the
@var{def-allocator-var} ICV is used. @var{size} must be a nonnegative number
denoting the number of bytes to be allocated; if @var{size} is zero,
@code{omp_alloc} will return a null pointer. If successful, a pointer to the
allocated memory is returned, otherwise the @code{fallback} trait of the
allocator determines the behavior. The content of the allocated memory is
unspecified.
In @code{target} regions, either the @code{dynamic_allocators} clause must
appear on a @code{requires} directive in the same compilation unit -- or the
@var{allocator} argument may only be a constant expression with the value of
one of the predefined allocators and may not be @code{omp_null_allocator}.
Memory allocated by @code{omp_alloc} must be freed using @code{omp_free}.
@item @emph{C}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{void* omp_alloc(size_t size,}
@item @tab @code{ omp_allocator_handle_t allocator)}
@end multitable
@item @emph{C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{void* omp_alloc(size_t size,}
@item @tab @code{ omp_allocator_handle_t allocator=omp_null_allocator)}
@end multitable
@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{type(c_ptr) function omp_alloc(size, allocator) bind(C)}
@item @tab @code{use, intrinsic :: iso_c_binding, only : c_ptr, c_size_t}
@item @tab @code{integer (c_size_t), value :: size}
@item @tab @code{integer (omp_allocator_handle_kind), value :: allocator}
@end multitable
@item @emph{See also}:
@ref{OMP_ALLOCATOR}, @ref{Memory allocation}, @ref{omp_set_default_allocator},
@ref{omp_free}, @ref{omp_init_allocator}
@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v5.0}, Section 3.7.6
@end table
@node omp_aligned_alloc
@subsection @code{omp_aligned_alloc} -- Memory allocation with an allocator and alignment
@table @asis
@item @emph{Description}:
Allocate memory with the specified allocator, which can either be a predefined
allocator, an allocator handle or @code{omp_null_allocator}. If the allocators
is @code{omp_null_allocator}, the allocator specified by the
@var{def-allocator-var} ICV is used. @var{alignment} must be a positive power
of two and @var{size} must be a nonnegative number that is a multiple of the
alignment and denotes the number of bytes to be allocated; if @var{size} is
zero, @code{omp_aligned_alloc} will return a null pointer. The alignment will
be at least the maximal value required by @code{alignment} trait of the
allocator and the value of the passed @var{alignment} argument. If successful,
a pointer to the allocated memory is returned, otherwise the @code{fallback}
trait of the allocator determines the behavior. The content of the allocated
memory is unspecified.
In @code{target} regions, either the @code{dynamic_allocators} clause must
appear on a @code{requires} directive in the same compilation unit -- or the
@var{allocator} argument may only be a constant expression with the value of
one of the predefined allocators and may not be @code{omp_null_allocator}.
Memory allocated by @code{omp_aligned_alloc} must be freed using
@code{omp_free}.
@item @emph{C}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{void* omp_aligned_alloc(size_t alignment,}
@item @tab @code{ size_t size,}
@item @tab @code{ omp_allocator_handle_t allocator)}
@end multitable
@item @emph{C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{void* omp_aligned_alloc(size_t alignment,}
@item @tab @code{ size_t size,}
@item @tab @code{ omp_allocator_handle_t allocator=omp_null_allocator)}
@end multitable
@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{type(c_ptr) function omp_aligned_alloc(alignment, size, allocator) bind(C)}
@item @tab @code{use, intrinsic :: iso_c_binding, only : c_ptr, c_size_t}
@item @tab @code{integer (c_size_t), value :: alignment, size}
@item @tab @code{integer (omp_allocator_handle_kind), value :: allocator}
@end multitable
@item @emph{See also}:
@ref{OMP_ALLOCATOR}, @ref{Memory allocation}, @ref{omp_set_default_allocator},
@ref{omp_free}, @ref{omp_init_allocator}
@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v5.1}, Section 3.13.6
@end table
@node omp_free
@subsection @code{omp_free} -- Freeing memory allocated with OpenMP routines
@table @asis
@item @emph{Description}:
The @code{omp_free} routine deallocates memory previously allocated by an
OpenMP memory-management routine. The @var{ptr} argument must point to such
memory or be a null pointer; if it is a null pointer, no operation is
performed. If specified, the @var{allocator} argument must be either the
memory allocator that was used for the allocation or @code{omp_null_allocator};
if it is @code{omp_null_allocator}, the implementation will determine the value
automatically.
Calling @code{omp_free} invokes undefined behavior if the memory
was already deallocated or when the used allocator has already been destroyed.
@item @emph{C}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{void omp_free(void *ptr,}
@item @tab @code{ omp_allocator_handle_t allocator)}
@end multitable
@item @emph{C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{void omp_free(void *ptr,}
@item @tab @code{ omp_allocator_handle_t allocator=omp_null_allocator)}
@end multitable
@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{subroutine omp_free(ptr, allocator) bind(C)}
@item @tab @code{use, intrinsic :: iso_c_binding, only : c_ptr}
@item @tab @code{type (c_ptr), value :: ptr}
@item @tab @code{integer (omp_allocator_handle_kind), value :: allocator}
@end multitable
@item @emph{See also}:
@ref{omp_alloc}, @ref{omp_aligned_alloc}, @ref{omp_calloc},
@ref{omp_aligned_calloc}, @ref{omp_realloc}
@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v5.0}, Section 3.7.7
@end table
@node omp_calloc
@subsection @code{omp_calloc} -- Allocate nullified memory with an allocator
@table @asis
@item @emph{Description}:
Allocate zero-initialized memory with the specified allocator, which can either
be a predefined allocator, an allocator handle or @code{omp_null_allocator}. If
the allocators is @code{omp_null_allocator}, the allocator specified by the
@var{def-allocator-var} ICV is used. The to-be allocated memory is for an
array with @var{nmemb} elements, each having a size of @var{size} bytes. Both
@var{nmemb} and @var{size} must be nonnegative numbers; if either of them is
zero, @code{omp_calloc} will return a null pointer. If successful, a pointer to
the zero-initialized allocated memory is returned, otherwise the @code{fallback}
trait of the allocator determines the behavior.
In @code{target} regions, either the @code{dynamic_allocators} clause must
appear on a @code{requires} directive in the same compilation unit -- or the
@var{allocator} argument may only be a constant expression with the value of
one of the predefined allocators and may not be @code{omp_null_allocator}.
Memory allocated by @code{omp_calloc} must be freed using @code{omp_free}.
@item @emph{C}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{void* omp_calloc(size_t nmemb, size_t size,}
@item @tab @code{ omp_allocator_handle_t allocator)}
@end multitable
@item @emph{C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{void* omp_calloc(size_t nmemb, size_t size,}
@item @tab @code{ omp_allocator_handle_t allocator=omp_null_allocator)}
@end multitable
@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{type(c_ptr) function omp_calloc(nmemb, size, allocator) bind(C)}
@item @tab @code{use, intrinsic :: iso_c_binding, only : c_ptr, c_size_t}
@item @tab @code{integer (c_size_t), value :: nmemb, size}
@item @tab @code{integer (omp_allocator_handle_kind), value :: allocator}
@end multitable
@item @emph{See also}:
@ref{OMP_ALLOCATOR}, @ref{Memory allocation}, @ref{omp_set_default_allocator},
@ref{omp_free}, @ref{omp_init_allocator}
@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v5.1}, Section 3.13.8
@end table
@node omp_aligned_calloc
@subsection @code{omp_aligned_calloc} -- Allocate aligned nullified memory with an allocator
@table @asis
@item @emph{Description}:
Allocate zero-initialized memory with the specified allocator, which can either
be a predefined allocator, an allocator handle or @code{omp_null_allocator}. If
the allocators is @code{omp_null_allocator}, the allocator specified by the
@var{def-allocator-var} ICV is used. The to-be allocated memory is for an
array with @var{nmemb} elements, each having a size of @var{size} bytes. Both
@var{nmemb} and @var{size} must be nonnegative numbers; if either of them is
zero, @code{omp_aligned_calloc} will return a null pointer. @var{alignment}
must be a positive power of two and @var{size} must be a multiple of the
alignment; the alignment will be at least the maximal value required by
@code{alignment} trait of the allocator and the value of the passed
@var{alignment} argument. If successful, a pointer to the zero-initialized
allocated memory is returned, otherwise the @code{fallback} trait of the
allocator determines the behavior.
In @code{target} regions, either the @code{dynamic_allocators} clause must
appear on a @code{requires} directive in the same compilation unit -- or the
@var{allocator} argument may only be a constant expression with the value of
one of the predefined allocators and may not be @code{omp_null_allocator}.
Memory allocated by @code{omp_aligned_calloc} must be freed using
@code{omp_free}.
@item @emph{C}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{void* omp_aligned_calloc(size_t nmemb, size_t size,}
@item @tab @code{ omp_allocator_handle_t allocator)}
@end multitable
@item @emph{C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{void* omp_aligned_calloc(size_t nmemb, size_t size,}
@item @tab @code{ omp_allocator_handle_t allocator=omp_null_allocator)}
@end multitable
@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{type(c_ptr) function omp_aligned_calloc(nmemb, size, allocator) bind(C)}
@item @tab @code{use, intrinsic :: iso_c_binding, only : c_ptr, c_size_t}
@item @tab @code{integer (c_size_t), value :: nmemb, size}
@item @tab @code{integer (omp_allocator_handle_kind), value :: allocator}
@end multitable
@item @emph{See also}:
@ref{OMP_ALLOCATOR}, @ref{Memory allocation}, @ref{omp_set_default_allocator},
@ref{omp_free}, @ref{omp_init_allocator}
@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v5.1}, Section 3.13.8
@end table
@node omp_realloc
@subsection @code{omp_realloc} -- Reallocate memory allocated with OpenMP routines
@table @asis
@item @emph{Description}:
The @code{omp_realloc} routine deallocates memory to which @var{ptr} points to
and allocates new memory with the specified @var{allocator} argument; the
new memory will have the content of the old memory up to the minimum of the
old size and the new @var{size}, otherwise the content of the returned memory
is unspecified. If the new allocator is the same as the old one, the routine
tries to resize the existing memory allocation, returning the same address as
@var{ptr} if successful. @var{ptr} must point to memory allocated by an OpenMP
memory-management routine.
The @var{allocator} and @var{free_allocator} arguments must be a predefined
allocator, an allocator handle or @code{omp_null_allocator}. If
@var{free_allocator} is @code{omp_null_allocator}, the implementation
automatically determines the allocator used for the allocation of @var{ptr}.
If @var{allocator} is @code{omp_null_allocator} and @var{ptr} is not a
null pointer, the same allocator as @code{free_allocator} is used and
when @var{ptr} is a null pointer the allocator specified by the
@var{def-allocator-var} ICV is used.
The @var{size} must be a nonnegative number denoting the number of bytes to be
allocated; if @var{size} is zero, @code{omp_realloc} will return free the
memory and return a null pointer. When @var{size} is nonzero: if successful,
a pointer to the allocated memory is returned, otherwise the @code{fallback}
trait of the allocator determines the behavior.
In @code{target} regions, either the @code{dynamic_allocators} clause must
appear on a @code{requires} directive in the same compilation unit -- or the
@var{free_allocator} and @var{allocator} arguments may only be a constant
expression with the value of one of the predefined allocators and may not be
@code{omp_null_allocator}.
Memory allocated by @code{omp_realloc} must be freed using @code{omp_free}.
Calling @code{omp_free} invokes undefined behavior if the memory
was already deallocated or when the used allocator has already been destroyed.
@item @emph{C}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{void* omp_realloc(void *ptr, size_t size,}
@item @tab @code{ omp_allocator_handle_t allocator,}
@item @tab @code{ omp_allocator_handle_t free_allocator)}
@end multitable
@item @emph{C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{void* omp_realloc(void *ptr, size_t size,}
@item @tab @code{ omp_allocator_handle_t allocator=omp_null_allocator,}
@item @tab @code{ omp_allocator_handle_t free_allocator=omp_null_allocator)}
@end multitable
@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{type(c_ptr) function omp_realloc(ptr, size, allocator, free_allocator) bind(C)}
@item @tab @code{use, intrinsic :: iso_c_binding, only : c_ptr, c_size_t}
@item @tab @code{type(C_ptr), value :: ptr}
@item @tab @code{integer (c_size_t), value :: size}
@item @tab @code{integer (omp_allocator_handle_kind), value :: allocator, free_allocator}
@end multitable
@item @emph{See also}:
@ref{OMP_ALLOCATOR}, @ref{Memory allocation}, @ref{omp_set_default_allocator},
@ref{omp_free}, @ref{omp_init_allocator}
@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v5.0}, Section 3.7.9
@end table
@c @node Tool Control Routine
@c @section Tool Control Routine
@c
@c FIXME
@node Environment Display Routine
@section Environment Display Routine
Routine to display the OpenMP version number and the initial value of ICVs.
It has C linkage and does not throw exceptions.
@menu
* omp_display_env:: print the initial ICV values
@end menu
@node omp_display_env
@subsection @code{omp_display_env} -- print the initial ICV values
@table @asis
@item @emph{Description}:
Each time this routine is invoked, the OpenMP version number and initial value
of internal control variables (ICVs) is printed on @code{stderr}. The displayed
values are those at startup after evaluating the environment variables; later
calls to API routines or clauses used in enclosing constructs do not affect
the output.
If the @var{verbose} argument is @code{false}, only the OpenMP version and
standard OpenMP ICVs are shown; if it is @code{true}, additionally, the
GCC-specific ICVs are shown.
The output consists of multiple lines and starts with
@samp{OPENMP DISPLAY ENVIRONMENT BEGIN} followed by the name-value lines and
ends with @samp{OPENMP DISPLAY ENVIRONMENT END}. The @var{name} is followed by
an equal sign and the @var{value} is enclosed in single quotes.
The first line has as @var{name} either @samp{_OPENMP} or @samp{openmp_version}
and shows as value the supported OpenMP version number (4-digit year, 2-digit
month) of the implementation, matching the value of the @code{_OPENMP} macro
and, in Fortran, the named constant @code{openmp_version}.
In each of the succeeding lines, the @var{name} matches the environment-variable
name of an ICV and shows its value. Those line are might be prefixed by pair of
brackets and a space, where the brackets enclose a comma-separated list of
devices to which the ICV-value combination applies to; the value can either be a
numeric device number or an abstract name denoting all devices (@code{all}), the
initial host device (@code{host}) or all devices but the host (@code{device}).
Note that the same ICV might be printed multiple times for multiple devices,
even if all have the same value.
The effect when invoked from within a @code{target} region is unspecified.
@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{void omp_display_env(int verbose)}
@end multitable
@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{subroutine omp_display_env(vebose)}
@item @tab @code{logical, intent(in) :: verbose}
@end multitable
@item @emph{Example}:
Note that the GCC-specific ICVs, such as the shown @code{GOMP_SPINCOUNT},
are only printed when @var{varbose} set to @code{true}.
@smallexample
OPENMP DISPLAY ENVIRONMENT BEGIN
_OPENMP = '201511'
[host] OMP_DYNAMIC = 'FALSE'
[host] OMP_NESTED = 'FALSE'
[all] OMP_CANCELLATION = 'FALSE'
...
[host] GOMP_SPINCOUNT = '300000'
OPENMP DISPLAY ENVIRONMENT END
@end smallexample
@item @emph{See also}:
@ref{OMP_DISPLAY_ENV}, @ref{Environment Variables},
@ref{Implementation-defined ICV Initialization}
@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v5.1}, Section 3.15
@end table
@c ---------------------------------------------------------------------
@c OpenMP Environment Variables
@c ---------------------------------------------------------------------
@node Environment Variables
@chapter OpenMP Environment Variables
The environment variables which beginning with @env{OMP_} are defined by
section 4 of the OpenMP specification in version 4.5 or in a later version
of the specification, while those beginning with @env{GOMP_} are GNU extensions.
Most @env{OMP_} environment variables have an associated internal control
variable (ICV).
For any OpenMP environment variable that sets an ICV and is neither
@code{OMP_DEFAULT_DEVICE} nor has global ICV scope, associated
device-specific environment variables exist. For them, the environment
variable without suffix affects the host. The suffix @code{_DEV_} followed
by a non-negative device number less that the number of available devices sets
the ICV for the corresponding device. The suffix @code{_DEV} sets the ICV
of all non-host devices for which a device-specific corresponding environment
variable has not been set while the @code{_ALL} suffix sets the ICV of all
host and non-host devices for which a more specific corresponding environment
variable is not set.
@menu
* OMP_ALLOCATOR:: Set the default allocator
* OMP_AFFINITY_FORMAT:: Set the format string used for affinity display
* OMP_CANCELLATION:: Set whether cancellation is activated
* OMP_DISPLAY_AFFINITY:: Display thread affinity information
* OMP_DISPLAY_ENV:: Show OpenMP version and environment variables
* OMP_DEFAULT_DEVICE:: Set the device used in target regions
* OMP_DYNAMIC:: Dynamic adjustment of threads
* OMP_MAX_ACTIVE_LEVELS:: Set the maximum number of nested parallel regions
* OMP_MAX_TASK_PRIORITY:: Set the maximum task priority value
* OMP_NESTED:: Nested parallel regions
* OMP_NUM_TEAMS:: Specifies the number of teams to use by teams region
* OMP_NUM_THREADS:: Specifies the number of threads to use
* OMP_PROC_BIND:: Whether threads may be moved between CPUs
* OMP_PLACES:: Specifies on which CPUs the threads should be placed
* OMP_STACKSIZE:: Set default thread stack size
* OMP_SCHEDULE:: How threads are scheduled
* OMP_TARGET_OFFLOAD:: Controls offloading behavior
* OMP_TEAMS_THREAD_LIMIT:: Set the maximum number of threads imposed by teams
* OMP_THREAD_LIMIT:: Set the maximum number of threads
* OMP_WAIT_POLICY:: How waiting threads are handled
* GOMP_CPU_AFFINITY:: Bind threads to specific CPUs
* GOMP_DEBUG:: Enable debugging output
* GOMP_STACKSIZE:: Set default thread stack size
* GOMP_SPINCOUNT:: Set the busy-wait spin count
* GOMP_RTEMS_THREAD_POOLS:: Set the RTEMS specific thread pools
@end menu
@node OMP_ALLOCATOR
@section @env{OMP_ALLOCATOR} -- Set the default allocator
@cindex Environment Variable
@table @asis
@item @emph{ICV:} @var{def-allocator-var}
@item @emph{Scope:} data environment
@item @emph{Description}:
Sets the default allocator that is used when no allocator has been specified
in the @code{allocate} or @code{allocator} clause or if an OpenMP memory
routine is invoked with the @code{omp_null_allocator} allocator.
If unset, @code{omp_default_mem_alloc} is used.
The value can either be a predefined allocator or a predefined memory space
or a predefined memory space followed by a colon and a comma-separated list
of memory trait and value pairs, separated by @code{=}.
Note: The corresponding device environment variables are currently not
supported. Therefore, the non-host @var{def-allocator-var} ICVs are always
initialized to @code{omp_default_mem_alloc}. However, on all devices,
the @code{omp_set_default_allocator} API routine can be used to change
value.
@multitable @columnfractions .45 .45
@headitem Predefined allocators @tab Associated predefined memory spaces
@item omp_default_mem_alloc @tab omp_default_mem_space
@item omp_large_cap_mem_alloc @tab omp_large_cap_mem_space
@item omp_const_mem_alloc @tab omp_const_mem_space
@item omp_high_bw_mem_alloc @tab omp_high_bw_mem_space
@item omp_low_lat_mem_alloc @tab omp_low_lat_mem_space
@item omp_cgroup_mem_alloc @tab omp_low_lat_mem_space (implementation defined)
@item omp_pteam_mem_alloc @tab omp_low_lat_mem_space (implementation defined)
@item omp_thread_mem_alloc @tab omp_low_lat_mem_space (implementation defined)
@end multitable
The predefined allocators use the default values for the traits,
as listed below. Except that the last three allocators have the
@code{access} trait set to @code{cgroup}, @code{pteam}, and
@code{thread}, respectively.
@multitable @columnfractions .25 .40 .25
@headitem Trait @tab Allowed values @tab Default value
@item @code{sync_hint} @tab @code{contended}, @code{uncontended},
@code{serialized}, @code{private}
@tab @code{contended}
@item @code{alignment} @tab Positive integer being a power of two
@tab 1 byte
@item @code{access} @tab @code{all}, @code{cgroup},
@code{pteam}, @code{thread}
@tab @code{all}
@item @code{pool_size} @tab Positive integer
@tab See @ref{Memory allocation}
@item @code{fallback} @tab @code{default_mem_fb}, @code{null_fb},
@code{abort_fb}, @code{allocator_fb}
@tab See below
@item @code{fb_data} @tab @emph{unsupported as it needs an allocator handle}
@tab (none)
@item @code{pinned} @tab @code{true}, @code{false}
@tab @code{false}
@item @code{partition} @tab @code{environment}, @code{nearest},
@code{blocked}, @code{interleaved}
@tab @code{environment}
@end multitable
For the @code{fallback} trait, the default value is @code{null_fb} for the
@code{omp_default_mem_alloc} allocator and any allocator that is associated
with device memory; for all other allocators, it is @code{default_mem_fb}
by default.
Examples:
@smallexample
OMP_ALLOCATOR=omp_high_bw_mem_alloc
OMP_ALLOCATOR=omp_large_cap_mem_space
OMP_ALLOCATOR=omp_low_lat_mem_space:pinned=true,partition=nearest
@end smallexample
@item @emph{See also}:
@ref{Memory allocation}, @ref{omp_get_default_allocator},
@ref{omp_set_default_allocator}, @ref{Offload-Target Specifics}
@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v5.0}, Section 6.21
@end table
@node OMP_AFFINITY_FORMAT
@section @env{OMP_AFFINITY_FORMAT} -- Set the format string used for affinity display
@cindex Environment Variable
@table @asis
@item @emph{ICV:} @var{affinity-format-var}
@item @emph{Scope:} device
@item @emph{Description}:
Sets the format string used when displaying OpenMP thread affinity information.
Special values are output using @code{%} followed by an optional size
specification and then either the single-character field type or its long
name enclosed in curly braces; using @code{%%} displays a literal percent.
The size specification consists of an optional @code{0.} or @code{.} followed
by a positive integer, specifying the minimal width of the output. With
@code{0.} and numerical values, the output is padded with zeros on the left;
with @code{.}, the output is padded by spaces on the left; otherwise, the
output is padded by spaces on the right. If unset, the value is
``@code{level %L thread %i affinity %A}''.
Supported field types are:
@multitable @columnfractions .10 .25 .60
@item t @tab team_num @tab value returned by @code{omp_get_team_num}
@item T @tab num_teams @tab value returned by @code{omp_get_num_teams}
@item L @tab nesting_level @tab value returned by @code{omp_get_level}
@item n @tab thread_num @tab value returned by @code{omp_get_thread_num}
@item N @tab num_threads @tab value returned by @code{omp_get_num_threads}
@item a @tab ancestor_tnum
@tab value returned by
@code{omp_get_ancestor_thread_num(omp_get_level()-1)}
@item H @tab host @tab name of the host that executes the thread
@item P @tab process_id @tab process identifier
@item i @tab native_thread_id @tab native thread identifier
@item A @tab thread_affinity
@tab comma separated list of integer values or ranges, representing the
processors on which a process might execute, subject to affinity
mechanisms
@end multitable
For instance, after setting
@smallexample
OMP_AFFINITY_FORMAT="%0.2a!%n!%.4L!%N;%.2t;%0.2T;%@{team_num@};%@{num_teams@};%A"
@end smallexample
with either @code{OMP_DISPLAY_AFFINITY} being set or when calling
@code{omp_display_affinity} with @code{NULL} or an empty string, the program
might display the following:
@smallexample
00!0! 1!4; 0;01;0;1;0-11
00!3! 1!4; 0;01;0;1;0-11
00!2! 1!4; 0;01;0;1;0-11
00!1! 1!4; 0;01;0;1;0-11
@end smallexample
@item @emph{See also}:
@ref{OMP_DISPLAY_AFFINITY}
@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v5.0}, Section 6.14
@end table
@node OMP_CANCELLATION
@section @env{OMP_CANCELLATION} -- Set whether cancellation is activated
@cindex Environment Variable
@table @asis
@item @emph{ICV:} @var{cancel-var}
@item @emph{Scope:} global
@item @emph{Description}:
If set to @code{TRUE}, the cancellation is activated. If set to @code{FALSE} or
if unset, cancellation is disabled and the @code{cancel} construct is ignored.
@item @emph{See also}:
@ref{omp_get_cancellation}
@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 4.11
@end table
@node OMP_DISPLAY_AFFINITY
@section @env{OMP_DISPLAY_AFFINITY} -- Display thread affinity information
@cindex Environment Variable
@table @asis
@item @emph{ICV:} @var{display-affinity-var}
@item @emph{Scope:} global
@item @emph{Description}:
If set to @code{FALSE} or if unset, affinity displaying is disabled.
If set to @code{TRUE}, the runtime displays affinity information about
OpenMP threads in a parallel region upon entering the region and every time
any change occurs.
@item @emph{See also}:
@ref{OMP_AFFINITY_FORMAT}
@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v5.0}, Section 6.13
@end table
@node OMP_DISPLAY_ENV
@section @env{OMP_DISPLAY_ENV} -- Show OpenMP version and environment variables
@cindex Environment Variable
@table @asis
@item @emph{ICV:} none
@item @emph{Scope:} not applicable
@item @emph{Description}:
If set to @code{TRUE}, the runtime displays the same information to
@code{stderr} as shown by the @code{omp_display_env} routine invoked with
@var{verbose} argument set to @code{false}. If set to @code{VERBOSE}, the same
information is shown as invoking the routine with @var{verbose} set to
@code{true}. If unset or set to @code{FALSE}, this information is not shown.
The result for any other value is unspecified.
@item @emph{See also}:
@ref{omp_display_env}
@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 4.12
@end table
@node OMP_DEFAULT_DEVICE
@section @env{OMP_DEFAULT_DEVICE} -- Set the device used in target regions
@cindex Environment Variable
@table @asis
@item @emph{ICV:} @var{default-device-var}
@item @emph{Scope:} data environment
@item @emph{Description}:
Set to choose the device which is used in a @code{target} region, unless the
value is overridden by @code{omp_set_default_device} or by a @code{device}
clause. The value shall be the nonnegative device number. If no device with
the given device number exists, the code is executed on the host. If unset,
@env{OMP_TARGET_OFFLOAD} is @code{mandatory} and no non-host devices are
available, it is set to @code{omp_invalid_device}. Otherwise, if unset,
device number 0 is used.
@item @emph{See also}:
@ref{omp_get_default_device}, @ref{omp_set_default_device},
@ref{OMP_TARGET_OFFLOAD}
@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v5.2}, Section 21.2.7
@end table
@node OMP_DYNAMIC
@section @env{OMP_DYNAMIC} -- Dynamic adjustment of threads
@cindex Environment Variable
@table @asis
@item @emph{ICV:} @var{dyn-var}
@item @emph{Scope:} global
@item @emph{Description}:
Enable or disable the dynamic adjustment of the number of threads
within a team. The value of this environment variable shall be
@code{TRUE} or @code{FALSE}. If undefined, dynamic adjustment is
disabled by default.
@item @emph{See also}:
@ref{omp_set_dynamic}
@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 4.3
@end table
@node OMP_MAX_ACTIVE_LEVELS
@section @env{OMP_MAX_ACTIVE_LEVELS} -- Set the maximum number of nested parallel regions
@cindex Environment Variable
@table @asis
@item @emph{ICV:} @var{max-active-levels-var}
@item @emph{Scope:} data environment
@item @emph{Description}:
Specifies the initial value for the maximum number of nested parallel
regions. The value of this variable shall be a positive integer.
If undefined, then if @env{OMP_NESTED} is defined and set to true, or
if @env{OMP_NUM_THREADS} or @env{OMP_PROC_BIND} are defined and set to
a list with more than one item, the maximum number of nested parallel
regions is initialized to the largest number supported, otherwise
it is set to one.
@item @emph{See also}:
@ref{omp_set_max_active_levels}, @ref{OMP_NESTED}, @ref{OMP_PROC_BIND},
@ref{OMP_NUM_THREADS}
@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 4.9
@end table
@node OMP_MAX_TASK_PRIORITY
@section @env{OMP_MAX_TASK_PRIORITY} -- Set the maximum priority
number that can be set for a task.
@cindex Environment Variable
@table @asis
@item @emph{ICV:} @var{max-task-priority-var}
@item @emph{Scope:} global
@item @emph{Description}:
Specifies the initial value for the maximum priority value that can be
set for a task. The value of this variable shall be a non-negative
integer, and zero is allowed. If undefined, the default priority is
0.
@item @emph{See also}:
@ref{omp_get_max_task_priority}
@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 4.14
@end table
@node OMP_NESTED
@section @env{OMP_NESTED} -- Nested parallel regions
@cindex Environment Variable
@cindex Implementation specific setting
@table @asis
@item @emph{ICV:} @var{max-active-levels-var}
@item @emph{Scope:} data environment
@item @emph{Description}:
Enable or disable nested parallel regions, i.e., whether team members
are allowed to create new teams. The value of this environment variable
shall be @code{TRUE} or @code{FALSE}. If set to @code{TRUE}, the number
of maximum active nested regions supported is by default set to the
maximum supported, otherwise it is set to one. If
@env{OMP_MAX_ACTIVE_LEVELS} is defined, its setting overrides this
setting. If both are undefined, nested parallel regions are enabled if
@env{OMP_NUM_THREADS} or @env{OMP_PROC_BINDS} are defined to a list with
more than one item, otherwise they are disabled by default.
Note that the @code{OMP_NESTED} environment variable was deprecated in
the OpenMP specification 5.2 in favor of @code{OMP_MAX_ACTIVE_LEVELS}.
@item @emph{See also}:
@ref{omp_set_max_active_levels}, @ref{omp_set_nested},
@ref{OMP_MAX_ACTIVE_LEVELS}
@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 4.6
@end table
@node OMP_NUM_TEAMS
@section @env{OMP_NUM_TEAMS} -- Specifies the number of teams to use by teams region
@cindex Environment Variable
@table @asis
@item @emph{ICV:} @var{nteams-var}
@item @emph{Scope:} device
@item @emph{Description}:
Specifies the upper bound for number of teams to use in teams regions
without explicit @code{num_teams} clause. The value of this variable shall
be a positive integer. If undefined it defaults to 0 which means
implementation defined upper bound.
@item @emph{See also}:
@ref{omp_set_num_teams}
@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v5.1}, Section 6.23
@end table
@node OMP_NUM_THREADS
@section @env{OMP_NUM_THREADS} -- Specifies the number of threads to use
@cindex Environment Variable
@cindex Implementation specific setting
@table @asis
@item @emph{ICV:} @var{nthreads-var}
@item @emph{Scope:} data environment
@item @emph{Description}:
Specifies the default number of threads to use in parallel regions. The
value of this variable shall be a comma-separated list of positive integers;
the value specifies the number of threads to use for the corresponding nested
level. Specifying more than one item in the list automatically enables
nesting by default. If undefined one thread per CPU is used.
When a list with more than value is specified, it also affects the
@var{max-active-levels-var} ICV as described in @ref{OMP_MAX_ACTIVE_LEVELS}.
@item @emph{See also}:
@ref{omp_set_num_threads}, @ref{OMP_MAX_ACTIVE_LEVELS}
@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 4.2
@end table
@node OMP_PROC_BIND
@section @env{OMP_PROC_BIND} -- Whether threads may be moved between CPUs
@cindex Environment Variable
@table @asis
@item @emph{ICV:} @var{bind-var}
@item @emph{Scope:} data environment
@item @emph{Description}:
Specifies whether threads may be moved between processors. If set to
@code{TRUE}, OpenMP threads should not be moved; if set to @code{FALSE}
they may be moved. Alternatively, a comma separated list with the
values @code{PRIMARY}, @code{MASTER}, @code{CLOSE} and @code{SPREAD} can
be used to specify the thread affinity policy for the corresponding nesting
level. With @code{PRIMARY} and @code{MASTER} the worker threads are in the
same place partition as the primary thread. With @code{CLOSE} those are
kept close to the primary thread in contiguous place partitions. And
with @code{SPREAD} a sparse distribution
across the place partitions is used. Specifying more than one item in the
list automatically enables nesting by default.
When a list is specified, it also affects the @var{max-active-levels-var} ICV
as described in @ref{OMP_MAX_ACTIVE_LEVELS}.
When undefined, @env{OMP_PROC_BIND} defaults to @code{TRUE} when
@env{OMP_PLACES} or @env{GOMP_CPU_AFFINITY} is set and @code{FALSE} otherwise.
@item @emph{See also}:
@ref{omp_get_proc_bind}, @ref{GOMP_CPU_AFFINITY}, @ref{OMP_PLACES},
@ref{OMP_MAX_ACTIVE_LEVELS}
@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 4.4
@end table
@node OMP_PLACES
@section @env{OMP_PLACES} -- Specifies on which CPUs the threads should be placed
@cindex Environment Variable
@table @asis
@item @emph{ICV:} @var{place-partition-var}
@item @emph{Scope:} implicit tasks
@item @emph{Description}:
The thread placement can be either specified using an abstract name or by an
explicit list of the places. The abstract names @code{threads}, @code{cores},
@code{sockets}, @code{ll_caches} and @code{numa_domains} can be optionally
followed by a positive number in parentheses, which denotes the how many places
shall be created. With @code{threads} each place corresponds to a single
hardware thread; @code{cores} to a single core with the corresponding number of
hardware threads; with @code{sockets} the place corresponds to a single
socket; with @code{ll_caches} to a set of cores that shares the last level
cache on the device; and @code{numa_domains} to a set of cores for which their
closest memory on the device is the same memory and at a similar distance from
the cores. The resulting placement can be shown by setting the
@env{OMP_DISPLAY_ENV} environment variable.
Alternatively, the placement can be specified explicitly as comma-separated
list of places. A place is specified by set of nonnegative numbers in curly
braces, denoting the hardware threads. The curly braces can be omitted
when only a single number has been specified. The hardware threads
belonging to a place can either be specified as comma-separated list of
nonnegative thread numbers or using an interval. Multiple places can also be
either specified by a comma-separated list of places or by an interval. To
specify an interval, a colon followed by the count is placed after
the hardware thread number or the place. Optionally, the length can be
followed by a colon and the stride number -- otherwise a unit stride is
assumed. Placing an exclamation mark (@code{!}) directly before a curly
brace or numbers inside the curly braces (excluding intervals)
excludes those hardware threads.
For instance, the following specifies the same places list:
@code{"@{0,1,2@}, @{3,4,6@}, @{7,8,9@}, @{10,11,12@}"};
@code{"@{0:3@}, @{3:3@}, @{7:3@}, @{10:3@}"}; and @code{"@{0:2@}:4:3"}.
If @env{OMP_PLACES} and @env{GOMP_CPU_AFFINITY} are unset and
@env{OMP_PROC_BIND} is either unset or @code{false}, threads may be moved
between CPUs following no placement policy.
@item @emph{See also}:
@ref{OMP_PROC_BIND}, @ref{GOMP_CPU_AFFINITY}, @ref{omp_get_proc_bind},
@ref{OMP_DISPLAY_ENV}
@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 4.5
@end table
@node OMP_STACKSIZE
@section @env{OMP_STACKSIZE} -- Set default thread stack size
@cindex Environment Variable
@table @asis
@item @emph{ICV:} @var{stacksize-var}
@item @emph{Scope:} device
@item @emph{Description}:
Set the default thread stack size in kilobytes, unless the number
is suffixed by @code{B}, @code{K}, @code{M} or @code{G}, in which
case the size is, respectively, in bytes, kilobytes, megabytes
or gigabytes. This is different from @code{pthread_attr_setstacksize}
which gets the number of bytes as an argument. If the stack size cannot
be set due to system constraints, an error is reported and the initial
stack size is left unchanged. If undefined, the stack size is system
dependent.
@item @emph{See also}:
@ref{GOMP_STACKSIZE}
@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 4.7
@end table
@node OMP_SCHEDULE
@section @env{OMP_SCHEDULE} -- How threads are scheduled
@cindex Environment Variable
@cindex Implementation specific setting
@table @asis
@item @emph{ICV:} @var{run-sched-var}
@item @emph{Scope:} data environment
@item @emph{Description}:
Allows to specify @code{schedule type} and @code{chunk size}.
The value of the variable shall have the form: @code{type[,chunk]} where
@code{type} is one of @code{static}, @code{dynamic}, @code{guided} or @code{auto}
The optional @code{chunk} size shall be a positive integer. If undefined,
dynamic scheduling and a chunk size of 1 is used.
@item @emph{See also}:
@ref{omp_set_schedule}
@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v4.5}, Sections 2.7.1.1 and 4.1
@end table
@node OMP_TARGET_OFFLOAD
@section @env{OMP_TARGET_OFFLOAD} -- Controls offloading behavior
@cindex Environment Variable
@cindex Implementation specific setting
@table @asis
@item @emph{ICV:} @var{target-offload-var}
@item @emph{Scope:} global
@item @emph{Description}:
Specifies the behavior with regard to offloading code to a device. This
variable can be set to one of three values - @code{MANDATORY}, @code{DISABLED}
or @code{DEFAULT}.
If set to @code{MANDATORY}, the program terminates with an error if
any device construct or device memory routine uses a device that is unavailable
or not supported by the implementation, or uses a non-conforming device number.
If set to @code{DISABLED}, then offloading is disabled and all code runs on
the host. If set to @code{DEFAULT}, the program tries offloading to the
device first, then falls back to running code on the host if it cannot.
If undefined, then the program behaves as if @code{DEFAULT} was set.
Note: Even with @code{MANDATORY}, no run-time termination is performed when
the device number in a @code{device} clause or argument to a device memory
routine is for host, which includes using the device number in the
@var{default-device-var} ICV. However, the initial value of
the @var{default-device-var} ICV is affected by @code{MANDATORY}.
@item @emph{See also}:
@ref{OMP_DEFAULT_DEVICE}
@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v5.2}, Section 21.2.8
@end table
@node OMP_TEAMS_THREAD_LIMIT
@section @env{OMP_TEAMS_THREAD_LIMIT} -- Set the maximum number of threads imposed by teams
@cindex Environment Variable
@table @asis
@item @emph{ICV:} @var{teams-thread-limit-var}
@item @emph{Scope:} device
@item @emph{Description}:
Specifies an upper bound for the number of threads to use by each contention
group created by a teams construct without explicit @code{thread_limit}
clause. The value of this variable shall be a positive integer. If undefined,
the value of 0 is used which stands for an implementation defined upper
limit.
@item @emph{See also}:
@ref{OMP_THREAD_LIMIT}, @ref{omp_set_teams_thread_limit}
@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v5.1}, Section 6.24
@end table
@node OMP_THREAD_LIMIT
@section @env{OMP_THREAD_LIMIT} -- Set the maximum number of threads
@cindex Environment Variable
@table @asis
@item @emph{ICV:} @var{thread-limit-var}
@item @emph{Scope:} data environment
@item @emph{Description}:
Specifies the number of threads to use for the whole program. The
value of this variable shall be a positive integer. If undefined,
the number of threads is not limited.
@item @emph{See also}:
@ref{OMP_NUM_THREADS}, @ref{omp_get_thread_limit}
@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 4.10
@end table
@node OMP_WAIT_POLICY
@section @env{OMP_WAIT_POLICY} -- How waiting threads are handled
@cindex Environment Variable
@table @asis
@item @emph{Description}:
Specifies whether waiting threads should be active or passive. If
the value is @code{PASSIVE}, waiting threads should not consume CPU
power while waiting; while the value is @code{ACTIVE} specifies that
they should. If undefined, threads wait actively for a short time
before waiting passively.
@item @emph{See also}:
@ref{GOMP_SPINCOUNT}
@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 4.8
@end table
@node GOMP_CPU_AFFINITY
@section @env{GOMP_CPU_AFFINITY} -- Bind threads to specific CPUs
@cindex Environment Variable
@table @asis
@item @emph{Description}:
Binds threads to specific CPUs. The variable should contain a space-separated
or comma-separated list of CPUs. This list may contain different kinds of
entries: either single CPU numbers in any order, a range of CPUs (M-N)
or a range with some stride (M-N:S). CPU numbers are zero based. For example,
@code{GOMP_CPU_AFFINITY="0 3 1-2 4-15:2"} binds the initial thread
to CPU 0, the second to CPU 3, the third to CPU 1, the fourth to
CPU 2, the fifth to CPU 4, the sixth through tenth to CPUs 6, 8, 10, 12,
and 14 respectively and then starts assigning back from the beginning of
the list. @code{GOMP_CPU_AFFINITY=0} binds all threads to CPU 0.
There is no libgomp library routine to determine whether a CPU affinity
specification is in effect. As a workaround, language-specific library
functions, e.g., @code{getenv} in C or @code{GET_ENVIRONMENT_VARIABLE} in
Fortran, may be used to query the setting of the @code{GOMP_CPU_AFFINITY}
environment variable. A defined CPU affinity on startup cannot be changed
or disabled during the runtime of the application.
If both @env{GOMP_CPU_AFFINITY} and @env{OMP_PROC_BIND} are set,
@env{OMP_PROC_BIND} has a higher precedence. If neither has been set and
@env{OMP_PROC_BIND} is unset, or when @env{OMP_PROC_BIND} is set to
@code{FALSE}, the host system handles the assignment of threads to CPUs.
@item @emph{See also}:
@ref{OMP_PLACES}, @ref{OMP_PROC_BIND}
@end table
@node GOMP_DEBUG
@section @env{GOMP_DEBUG} -- Enable debugging output
@cindex Environment Variable
@table @asis
@item @emph{Description}:
Enable debugging output. The variable should be set to @code{0}
(disabled, also the default if not set), or @code{1} (enabled).
If enabled, some debugging output is printed during execution.
This is currently not specified in more detail, and subject to change.
@end table
@node GOMP_STACKSIZE
@section @env{GOMP_STACKSIZE} -- Set default thread stack size
@cindex Environment Variable
@cindex Implementation specific setting
@table @asis
@item @emph{Description}:
Set the default thread stack size in kilobytes. This is different from
@code{pthread_attr_setstacksize} which gets the number of bytes as an
argument. If the stack size cannot be set due to system constraints, an
error is reported and the initial stack size is left unchanged. If undefined,
the stack size is system dependent.
@item @emph{See also}:
@ref{OMP_STACKSIZE}
@item @emph{Reference}:
@uref{https://gcc.gnu.org/ml/gcc-patches/2006-06/msg00493.html,
GCC Patches Mailinglist},
@uref{https://gcc.gnu.org/ml/gcc-patches/2006-06/msg00496.html,
GCC Patches Mailinglist}
@end table
@node GOMP_SPINCOUNT
@section @env{GOMP_SPINCOUNT} -- Set the busy-wait spin count
@cindex Environment Variable
@cindex Implementation specific setting
@table @asis
@item @emph{Description}:
Determines how long a threads waits actively with consuming CPU power
before waiting passively without consuming CPU power. The value may be
either @code{INFINITE}, @code{INFINITY} to always wait actively or an
integer which gives the number of spins of the busy-wait loop. The
integer may optionally be followed by the following suffixes acting
as multiplication factors: @code{k} (kilo, thousand), @code{M} (mega,
million), @code{G} (giga, billion), or @code{T} (tera, trillion).
If undefined, 0 is used when @env{OMP_WAIT_POLICY} is @code{PASSIVE},
300,000 is used when @env{OMP_WAIT_POLICY} is undefined and
30 billion is used when @env{OMP_WAIT_POLICY} is @code{ACTIVE}.
If there are more OpenMP threads than available CPUs, 1000 and 100
spins are used for @env{OMP_WAIT_POLICY} being @code{ACTIVE} or
undefined, respectively; unless the @env{GOMP_SPINCOUNT} is lower
or @env{OMP_WAIT_POLICY} is @code{PASSIVE}.
@item @emph{See also}:
@ref{OMP_WAIT_POLICY}
@end table
@node GOMP_RTEMS_THREAD_POOLS
@section @env{GOMP_RTEMS_THREAD_POOLS} -- Set the RTEMS specific thread pools
@cindex Environment Variable
@cindex Implementation specific setting
@table @asis
@item @emph{Description}:
This environment variable is only used on the RTEMS real-time operating system.
It determines the scheduler instance specific thread pools. The format for
@env{GOMP_RTEMS_THREAD_POOLS} is a list of optional
@code{<thread-pool-count>[$<priority>]@@<scheduler-name>} configurations
separated by @code{:} where:
@itemize @bullet
@item @code{<thread-pool-count>} is the thread pool count for this scheduler
instance.
@item @code{$<priority>} is an optional priority for the worker threads of a
thread pool according to @code{pthread_setschedparam}. In case a priority
value is omitted, then a worker thread inherits the priority of the OpenMP
primary thread that created it. The priority of the worker thread is not
changed after creation, even if a new OpenMP primary thread using the worker has
a different priority.
@item @code{@@<scheduler-name>} is the scheduler instance name according to the
RTEMS application configuration.
@end itemize
In case no thread pool configuration is specified for a scheduler instance,
then each OpenMP primary thread of this scheduler instance uses its own
dynamically allocated thread pool. To limit the worker thread count of the
thread pools, each OpenMP primary thread must call @code{omp_set_num_threads}.
@item @emph{Example}:
Lets suppose we have three scheduler instances @code{IO}, @code{WRK0}, and
@code{WRK1} with @env{GOMP_RTEMS_THREAD_POOLS} set to
@code{"1@@WRK0:3$4@@WRK1"}. Then there are no thread pool restrictions for
scheduler instance @code{IO}. In the scheduler instance @code{WRK0} there is
one thread pool available. Since no priority is specified for this scheduler
instance, the worker thread inherits the priority of the OpenMP primary thread
that created it. In the scheduler instance @code{WRK1} there are three thread
pools available and their worker threads run at priority four.
@end table
@c ---------------------------------------------------------------------
@c Enabling OpenACC
@c ---------------------------------------------------------------------
@node Enabling OpenACC
@chapter Enabling OpenACC
To activate the OpenACC extensions for C/C++ and Fortran, the compile-time
flag @option{-fopenacc} must be specified. This enables the OpenACC directive
@samp{#pragma acc} in C/C++ and, in Fortran, the @samp{!$acc} sentinel in free
source form and the @samp{c$acc}, @samp{*$acc} and @samp{!$acc} sentinels in
fixed source form. The flag also arranges for automatic linking of the OpenACC
runtime library (@ref{OpenACC Runtime Library Routines}).
See @uref{https://gcc.gnu.org/wiki/OpenACC} for more information.
A complete description of all OpenACC directives accepted may be found in
the @uref{https://www.openacc.org, OpenACC} Application Programming
Interface manual, version 2.6.
@c ---------------------------------------------------------------------
@c OpenACC Runtime Library Routines
@c ---------------------------------------------------------------------
@node OpenACC Runtime Library Routines
@chapter OpenACC Runtime Library Routines
The runtime routines described here are defined by section 3 of the OpenACC
specifications in version 2.6.
They have C linkage, and do not throw exceptions.
Generally, they are available only for the host, with the exception of
@code{acc_on_device}, which is available for both the host and the
acceleration device.
@menu
* acc_get_num_devices:: Get number of devices for the given device
type.
* acc_set_device_type:: Set type of device accelerator to use.
* acc_get_device_type:: Get type of device accelerator to be used.
* acc_set_device_num:: Set device number to use.
* acc_get_device_num:: Get device number to be used.
* acc_get_property:: Get device property.
* acc_async_test:: Tests for completion of a specific asynchronous
operation.
* acc_async_test_all:: Tests for completion of all asynchronous
operations.
* acc_wait:: Wait for completion of a specific asynchronous
operation.
* acc_wait_all:: Waits for completion of all asynchronous
operations.
* acc_wait_all_async:: Wait for completion of all asynchronous
operations.
* acc_wait_async:: Wait for completion of asynchronous operations.
* acc_init:: Initialize runtime for a specific device type.
* acc_shutdown:: Shuts down the runtime for a specific device
type.
* acc_on_device:: Whether executing on a particular device
* acc_malloc:: Allocate device memory.
* acc_free:: Free device memory.
* acc_copyin:: Allocate device memory and copy host memory to
it.
* acc_present_or_copyin:: If the data is not present on the device,
allocate device memory and copy from host
memory.
* acc_create:: Allocate device memory and map it to host
memory.
* acc_present_or_create:: If the data is not present on the device,
allocate device memory and map it to host
memory.
* acc_copyout:: Copy device memory to host memory.
* acc_delete:: Free device memory.
* acc_update_device:: Update device memory from mapped host memory.
* acc_update_self:: Update host memory from mapped device memory.
* acc_map_data:: Map previously allocated device memory to host
memory.
* acc_unmap_data:: Unmap device memory from host memory.
* acc_deviceptr:: Get device pointer associated with specific
host address.
* acc_hostptr:: Get host pointer associated with specific
device address.
* acc_is_present:: Indicate whether host variable / array is
present on device.
* acc_memcpy_to_device:: Copy host memory to device memory.
* acc_memcpy_from_device:: Copy device memory to host memory.
* acc_attach:: Let device pointer point to device-pointer target.
* acc_detach:: Let device pointer point to host-pointer target.
API routines for target platforms.
* acc_get_current_cuda_device:: Get CUDA device handle.
* acc_get_current_cuda_context::Get CUDA context handle.
* acc_get_cuda_stream:: Get CUDA stream handle.
* acc_set_cuda_stream:: Set CUDA stream handle.
API routines for the OpenACC Profiling Interface.
* acc_prof_register:: Register callbacks.
* acc_prof_unregister:: Unregister callbacks.
* acc_prof_lookup:: Obtain inquiry functions.
* acc_register_library:: Library registration.
@end menu
@node acc_get_num_devices
@section @code{acc_get_num_devices} -- Get number of devices for given device type
@table @asis
@item @emph{Description}
This function returns a value indicating the number of devices available
for the device type specified in @var{devicetype}.
@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{int acc_get_num_devices(acc_device_t devicetype);}
@end multitable
@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{integer function acc_get_num_devices(devicetype)}
@item @tab @code{integer(kind=acc_device_kind) devicetype}
@end multitable
@item @emph{Reference}:
@uref{https://www.openacc.org, OpenACC specification v2.6}, section
3.2.1.
@end table
@node acc_set_device_type
@section @code{acc_set_device_type} -- Set type of device accelerator to use.
@table @asis
@item @emph{Description}
This function indicates to the runtime library which device type, specified
in @var{devicetype}, to use when executing a parallel or kernels region.
@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{acc_set_device_type(acc_device_t devicetype);}
@end multitable
@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{subroutine acc_set_device_type(devicetype)}
@item @tab @code{integer(kind=acc_device_kind) devicetype}
@end multitable
@item @emph{Reference}:
@uref{https://www.openacc.org, OpenACC specification v2.6}, section
3.2.2.
@end table
@node acc_get_device_type
@section @code{acc_get_device_type} -- Get type of device accelerator to be used.
@table @asis
@item @emph{Description}
This function returns what device type will be used when executing a
parallel or kernels region.
This function returns @code{acc_device_none} if
@code{acc_get_device_type} is called from
@code{acc_ev_device_init_start}, @code{acc_ev_device_init_end}
callbacks of the OpenACC Profiling Interface (@ref{OpenACC Profiling
Interface}), that is, if the device is currently being initialized.
@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{acc_device_t acc_get_device_type(void);}
@end multitable
@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{function acc_get_device_type(void)}
@item @tab @code{integer(kind=acc_device_kind) acc_get_device_type}
@end multitable
@item @emph{Reference}:
@uref{https://www.openacc.org, OpenACC specification v2.6}, section
3.2.3.
@end table
@node acc_set_device_num
@section @code{acc_set_device_num} -- Set device number to use.
@table @asis
@item @emph{Description}
This function will indicate to the runtime which device number,
specified by @var{devicenum}, associated with the specified device
type @var{devicetype}.
@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{acc_set_device_num(int devicenum, acc_device_t devicetype);}
@end multitable
@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{subroutine acc_set_device_num(devicenum, devicetype)}
@item @tab @code{integer devicenum}
@item @tab @code{integer(kind=acc_device_kind) devicetype}
@end multitable
@item @emph{Reference}:
@uref{https://www.openacc.org, OpenACC specification v2.6}, section
3.2.4.
@end table
@node acc_get_device_num
@section @code{acc_get_device_num} -- Get device number to be used.
@table @asis
@item @emph{Description}
This function returns which device number associated with the specified device
type @var{devicetype}, will be used when executing a parallel or kernels
region.
@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{int acc_get_device_num(acc_device_t devicetype);}
@end multitable
@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{function acc_get_device_num(devicetype)}
@item @tab @code{integer(kind=acc_device_kind) devicetype}
@item @tab @code{integer acc_get_device_num}
@end multitable
@item @emph{Reference}:
@uref{https://www.openacc.org, OpenACC specification v2.6}, section
3.2.5.
@end table
@node acc_get_property
@section @code{acc_get_property} -- Get device property.
@cindex acc_get_property
@cindex acc_get_property_string
@table @asis
@item @emph{Description}
These routines return the value of the specified @var{property} for the
device being queried according to @var{devicenum} and @var{devicetype}.
Integer-valued and string-valued properties are returned by
@code{acc_get_property} and @code{acc_get_property_string} respectively.
The Fortran @code{acc_get_property_string} subroutine returns the string
retrieved in its fourth argument while the remaining entry points are
functions, which pass the return value as their result.
Note for Fortran, only: the OpenACC technical committee corrected and, hence,
modified the interface introduced in OpenACC 2.6. The kind-value parameter
@code{acc_device_property} has been renamed to @code{acc_device_property_kind}
for consistency and the return type of the @code{acc_get_property} function is
now a @code{c_size_t} integer instead of a @code{acc_device_property} integer.
The parameter @code{acc_device_property} is still provided,
but might be removed in a future version of GCC.
@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{size_t acc_get_property(int devicenum, acc_device_t devicetype, acc_device_property_t property);}
@item @emph{Prototype}: @tab @code{const char *acc_get_property_string(int devicenum, acc_device_t devicetype, acc_device_property_t property);}
@end multitable
@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{function acc_get_property(devicenum, devicetype, property)}
@item @emph{Interface}: @tab @code{subroutine acc_get_property_string(devicenum, devicetype, property, string)}
@item @tab @code{use ISO_C_Binding, only: c_size_t}
@item @tab @code{integer devicenum}
@item @tab @code{integer(kind=acc_device_kind) devicetype}
@item @tab @code{integer(kind=acc_device_property_kind) property}
@item @tab @code{integer(kind=c_size_t) acc_get_property}
@item @tab @code{character(*) string}
@end multitable
@item @emph{Reference}:
@uref{https://www.openacc.org, OpenACC specification v2.6}, section
3.2.6.
@end table
@node acc_async_test
@section @code{acc_async_test} -- Test for completion of a specific asynchronous operation.
@table @asis
@item @emph{Description}
This function tests for completion of the asynchronous operation specified
in @var{arg}. In C/C++, a non-zero value is returned to indicate
the specified asynchronous operation has completed while Fortran returns
@code{true}. If the asynchronous operation has not completed, C/C++ returns
zero and Fortran returns @code{false}.
@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{int acc_async_test(int arg);}
@end multitable
@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{function acc_async_test(arg)}
@item @tab @code{integer(kind=acc_handle_kind) arg}
@item @tab @code{logical acc_async_test}
@end multitable
@item @emph{Reference}:
@uref{https://www.openacc.org, OpenACC specification v2.6}, section
3.2.9.
@end table
@node acc_async_test_all
@section @code{acc_async_test_all} -- Tests for completion of all asynchronous operations.
@table @asis
@item @emph{Description}
This function tests for completion of all asynchronous operations.
In C/C++, a non-zero value is returned to indicate all asynchronous
operations have completed while Fortran returns @code{true}. If
any asynchronous operation has not completed, C/C++ returns zero and
Fortran returns @code{false}.
@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{int acc_async_test_all(void);}
@end multitable
@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{function acc_async_test()}
@item @tab @code{logical acc_get_device_num}
@end multitable
@item @emph{Reference}:
@uref{https://www.openacc.org, OpenACC specification v2.6}, section
3.2.10.
@end table
@node acc_wait
@section @code{acc_wait} -- Wait for completion of a specific asynchronous operation.
@table @asis
@item @emph{Description}
This function waits for completion of the asynchronous operation
specified in @var{arg}.
@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{acc_wait(arg);}
@item @emph{Prototype (OpenACC 1.0 compatibility)}: @tab @code{acc_async_wait(arg);}
@end multitable
@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{subroutine acc_wait(arg)}
@item @tab @code{integer(acc_handle_kind) arg}
@item @emph{Interface (OpenACC 1.0 compatibility)}: @tab @code{subroutine acc_async_wait(arg)}
@item @tab @code{integer(acc_handle_kind) arg}
@end multitable
@item @emph{Reference}:
@uref{https://www.openacc.org, OpenACC specification v2.6}, section
3.2.11.
@end table
@node acc_wait_all
@section @code{acc_wait_all} -- Waits for completion of all asynchronous operations.
@table @asis
@item @emph{Description}
This function waits for the completion of all asynchronous operations.
@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{acc_wait_all(void);}
@item @emph{Prototype (OpenACC 1.0 compatibility)}: @tab @code{acc_async_wait_all(void);}
@end multitable
@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{subroutine acc_wait_all()}
@item @emph{Interface (OpenACC 1.0 compatibility)}: @tab @code{subroutine acc_async_wait_all()}
@end multitable
@item @emph{Reference}:
@uref{https://www.openacc.org, OpenACC specification v2.6}, section
3.2.13.
@end table
@node acc_wait_all_async
@section @code{acc_wait_all_async} -- Wait for completion of all asynchronous operations.
@table @asis
@item @emph{Description}
This function enqueues a wait operation on the queue @var{async} for any
and all asynchronous operations that have been previously enqueued on
any queue.
@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{acc_wait_all_async(int async);}
@end multitable
@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{subroutine acc_wait_all_async(async)}
@item @tab @code{integer(acc_handle_kind) async}
@end multitable
@item @emph{Reference}:
@uref{https://www.openacc.org, OpenACC specification v2.6}, section
3.2.14.
@end table
@node acc_wait_async
@section @code{acc_wait_async} -- Wait for completion of asynchronous operations.
@table @asis
@item @emph{Description}
This function enqueues a wait operation on queue @var{async} for any and all
asynchronous operations enqueued on queue @var{arg}.
@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{acc_wait_async(int arg, int async);}
@end multitable
@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{subroutine acc_wait_async(arg, async)}
@item @tab @code{integer(acc_handle_kind) arg, async}
@end multitable
@item @emph{Reference}:
@uref{https://www.openacc.org, OpenACC specification v2.6}, section
3.2.12.
@end table
@node acc_init
@section @code{acc_init} -- Initialize runtime for a specific device type.
@table @asis
@item @emph{Description}
This function initializes the runtime for the device type specified in
@var{devicetype}.
@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{acc_init(acc_device_t devicetype);}
@end multitable
@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{subroutine acc_init(devicetype)}
@item @tab @code{integer(acc_device_kind) devicetype}
@end multitable
@item @emph{Reference}:
@uref{https://www.openacc.org, OpenACC specification v2.6}, section
3.2.7.
@end table
@node acc_shutdown
@section @code{acc_shutdown} -- Shuts down the runtime for a specific device type.
@table @asis
@item @emph{Description}
This function shuts down the runtime for the device type specified in
@var{devicetype}.
@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{acc_shutdown(acc_device_t devicetype);}
@end multitable
@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{subroutine acc_shutdown(devicetype)}
@item @tab @code{integer(acc_device_kind) devicetype}
@end multitable
@item @emph{Reference}:
@uref{https://www.openacc.org, OpenACC specification v2.6}, section
3.2.8.
@end table
@node acc_on_device
@section @code{acc_on_device} -- Whether executing on a particular device
@table @asis
@item @emph{Description}:
This function returns whether the program is executing on a particular
device specified in @var{devicetype}. In C/C++ a non-zero value is
returned to indicate the device is executing on the specified device type.
In Fortran, @code{true} is returned. If the program is not executing
on the specified device type C/C++ returns zero, while Fortran
returns @code{false}.
@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{acc_on_device(acc_device_t devicetype);}
@end multitable
@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{function acc_on_device(devicetype)}
@item @tab @code{integer(acc_device_kind) devicetype}
@item @tab @code{logical acc_on_device}
@end multitable
@item @emph{Reference}:
@uref{https://www.openacc.org, OpenACC specification v2.6}, section
3.2.17.
@end table
@node acc_malloc
@section @code{acc_malloc} -- Allocate device memory.
@table @asis
@item @emph{Description}
This function allocates @var{bytes} bytes of device memory. It returns
the device address of the allocated memory.
@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{d_void* acc_malloc(size_t bytes);}
@end multitable
@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{type(c_ptr) function acc_malloc(bytes)}
@item @tab @code{integer(c_size_t), value :: bytes}
@end multitable
@item @emph{Reference}:
@uref{https://www.openacc.org, OpenACC specification v2.6}, section
3.2.18. @uref{https://www.openacc.org, openacc specification v3.3}, section
3.2.16.
@end table
@node acc_free
@section @code{acc_free} -- Free device memory.
@table @asis
@item @emph{Description}
Free previously allocated device memory at the device address @code{data_dev}.
@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{void acc_free(d_void *data_dev);}
@end multitable
@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{subroutine acc_free(data_dev)}
@item @tab @code{type(c_ptr), value :: data_dev}
@end multitable
@item @emph{Reference}:
@uref{https://www.openacc.org, OpenACC specification v2.6}, section
3.2.19. @uref{https://www.openacc.org, openacc specification v3.3}, section
3.2.17.
@end table
@node acc_copyin
@section @code{acc_copyin} -- Allocate device memory and copy host memory to it.
@table @asis
@item @emph{Description}
In C/C++, this function allocates @var{len} bytes of device memory
and maps it to the specified host address in @var{a}. The device
address of the newly allocated device memory is returned.
In Fortran, two (2) forms are supported. In the first form, @var{a} specifies
a contiguous array section. The second form @var{a} specifies a
variable or array element and @var{len} specifies the length in bytes.
@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{void *acc_copyin(h_void *a, size_t len);}
@item @emph{Prototype}: @tab @code{void *acc_copyin_async(h_void *a, size_t len, int async);}
@end multitable
@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{subroutine acc_copyin(a)}
@item @tab @code{type, dimension(:[,:]...) :: a}
@item @emph{Interface}: @tab @code{subroutine acc_copyin(a, len)}
@item @tab @code{type, dimension(:[,:]...) :: a}
@item @tab @code{integer len}
@item @emph{Interface}: @tab @code{subroutine acc_copyin_async(a, async)}
@item @tab @code{type, dimension(:[,:]...) :: a}
@item @tab @code{integer(acc_handle_kind) :: async}
@item @emph{Interface}: @tab @code{subroutine acc_copyin_async(a, len, async)}
@item @tab @code{type, dimension(:[,:]...) :: a}
@item @tab @code{integer len}
@item @tab @code{integer(acc_handle_kind) :: async}
@end multitable
@item @emph{Reference}:
@uref{https://www.openacc.org, OpenACC specification v2.6}, section
3.2.20.
@end table
@node acc_present_or_copyin
@section @code{acc_present_or_copyin} -- If the data is not present on the device, allocate device memory and copy from host memory.
@table @asis
@item @emph{Description}
This function tests if the host data specified by @var{a} and of length
@var{len} is present or not. If it is not present, device memory
is allocated and the host memory copied. The device address of
the newly allocated device memory is returned.
In Fortran, two (2) forms are supported. In the first form, @var{a} specifies
a contiguous array section. The second form @var{a} specifies a variable or
array element and @var{len} specifies the length in bytes.
Note that @code{acc_present_or_copyin} and @code{acc_pcopyin} exist for
backward compatibility with OpenACC 2.0; use @ref{acc_copyin} instead.
@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{void *acc_present_or_copyin(h_void *a, size_t len);}
@item @emph{Prototype}: @tab @code{void *acc_pcopyin(h_void *a, size_t len);}
@end multitable
@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{subroutine acc_present_or_copyin(a)}
@item @tab @code{type, dimension(:[,:]...) :: a}
@item @emph{Interface}: @tab @code{subroutine acc_present_or_copyin(a, len)}
@item @tab @code{type, dimension(:[,:]...) :: a}
@item @tab @code{integer len}
@item @emph{Interface}: @tab @code{subroutine acc_pcopyin(a)}
@item @tab @code{type, dimension(:[,:]...) :: a}
@item @emph{Interface}: @tab @code{subroutine acc_pcopyin(a, len)}
@item @tab @code{type, dimension(:[,:]...) :: a}
@item @tab @code{integer len}
@end multitable
@item @emph{Reference}:
@uref{https://www.openacc.org, OpenACC specification v2.6}, section
3.2.20.
@end table
@node acc_create
@section @code{acc_create} -- Allocate device memory and map it to host memory.
@table @asis
@item @emph{Description}
This function allocates device memory and maps it to host memory specified
by the host address @var{a} with a length of @var{len} bytes. In C/C++,
the function returns the device address of the allocated device memory.
In Fortran, two (2) forms are supported. In the first form, @var{a} specifies
a contiguous array section. The second form @var{a} specifies a variable or
array element and @var{len} specifies the length in bytes.
@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{void *acc_create(h_void *a, size_t len);}
@item @emph{Prototype}: @tab @code{void *acc_create_async(h_void *a, size_t len, int async);}
@end multitable
@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{subroutine acc_create(a)}
@item @tab @code{type, dimension(:[,:]...) :: a}
@item @emph{Interface}: @tab @code{subroutine acc_create(a, len)}
@item @tab @code{type, dimension(:[,:]...) :: a}
@item @tab @code{integer len}
@item @emph{Interface}: @tab @code{subroutine acc_create_async(a, async)}
@item @tab @code{type, dimension(:[,:]...) :: a}
@item @tab @code{integer(acc_handle_kind) :: async}
@item @emph{Interface}: @tab @code{subroutine acc_create_async(a, len, async)}
@item @tab @code{type, dimension(:[,:]...) :: a}
@item @tab @code{integer len}
@item @tab @code{integer(acc_handle_kind) :: async}
@end multitable
@item @emph{Reference}:
@uref{https://www.openacc.org, OpenACC specification v2.6}, section
3.2.21.
@end table
@node acc_present_or_create
@section @code{acc_present_or_create} -- If the data is not present on the device, allocate device memory and map it to host memory.
@table @asis
@item @emph{Description}
This function tests if the host data specified by @var{a} and of length
@var{len} is present or not. If it is not present, device memory
is allocated and mapped to host memory. In C/C++, the device address
of the newly allocated device memory is returned.
In Fortran, two (2) forms are supported. In the first form, @var{a} specifies
a contiguous array section. The second form @var{a} specifies a variable or
array element and @var{len} specifies the length in bytes.
Note that @code{acc_present_or_create} and @code{acc_pcreate} exist for
backward compatibility with OpenACC 2.0; use @ref{acc_create} instead.
@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{void *acc_present_or_create(h_void *a, size_t len)}
@item @emph{Prototype}: @tab @code{void *acc_pcreate(h_void *a, size_t len)}
@end multitable
@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{subroutine acc_present_or_create(a)}
@item @tab @code{type, dimension(:[,:]...) :: a}
@item @emph{Interface}: @tab @code{subroutine acc_present_or_create(a, len)}
@item @tab @code{type, dimension(:[,:]...) :: a}
@item @tab @code{integer len}
@item @emph{Interface}: @tab @code{subroutine acc_pcreate(a)}
@item @tab @code{type, dimension(:[,:]...) :: a}
@item @emph{Interface}: @tab @code{subroutine acc_pcreate(a, len)}
@item @tab @code{type, dimension(:[,:]...) :: a}
@item @tab @code{integer len}
@end multitable
@item @emph{Reference}:
@uref{https://www.openacc.org, OpenACC specification v2.6}, section
3.2.21.
@end table
@node acc_copyout
@section @code{acc_copyout} -- Copy device memory to host memory.
@table @asis
@item @emph{Description}
This function copies mapped device memory to host memory which is specified
by host address @var{a} for a length @var{len} bytes in C/C++.
In Fortran, two (2) forms are supported. In the first form, @var{a} specifies
a contiguous array section. The second form @var{a} specifies a variable or
array element and @var{len} specifies the length in bytes.
@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{acc_copyout(h_void *a, size_t len);}
@item @emph{Prototype}: @tab @code{acc_copyout_async(h_void *a, size_t len, int async);}
@item @emph{Prototype}: @tab @code{acc_copyout_finalize(h_void *a, size_t len);}
@item @emph{Prototype}: @tab @code{acc_copyout_finalize_async(h_void *a, size_t len, int async);}
@end multitable
@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{subroutine acc_copyout(a)}
@item @tab @code{type, dimension(:[,:]...) :: a}
@item @emph{Interface}: @tab @code{subroutine acc_copyout(a, len)}
@item @tab @code{type, dimension(:[,:]...) :: a}
@item @tab @code{integer len}
@item @emph{Interface}: @tab @code{subroutine acc_copyout_async(a, async)}
@item @tab @code{type, dimension(:[,:]...) :: a}
@item @tab @code{integer(acc_handle_kind) :: async}
@item @emph{Interface}: @tab @code{subroutine acc_copyout_async(a, len, async)}
@item @tab @code{type, dimension(:[,:]...) :: a}
@item @tab @code{integer len}
@item @tab @code{integer(acc_handle_kind) :: async}
@item @emph{Interface}: @tab @code{subroutine acc_copyout_finalize(a)}
@item @tab @code{type, dimension(:[,:]...) :: a}
@item @emph{Interface}: @tab @code{subroutine acc_copyout_finalize(a, len)}
@item @tab @code{type, dimension(:[,:]...) :: a}
@item @tab @code{integer len}
@item @emph{Interface}: @tab @code{subroutine acc_copyout_finalize_async(a, async)}
@item @tab @code{type, dimension(:[,:]...) :: a}
@item @tab @code{integer(acc_handle_kind) :: async}
@item @emph{Interface}: @tab @code{subroutine acc_copyout_finalize_async(a, len, async)}
@item @tab @code{type, dimension(:[,:]...) :: a}
@item @tab @code{integer len}
@item @tab @code{integer(acc_handle_kind) :: async}
@end multitable
@item @emph{Reference}:
@uref{https://www.openacc.org, OpenACC specification v2.6}, section
3.2.22.
@end table
@node acc_delete
@section @code{acc_delete} -- Free device memory.
@table @asis
@item @emph{Description}
This function frees previously allocated device memory specified by
the device address @var{a} and the length of @var{len} bytes.
In Fortran, two (2) forms are supported. In the first form, @var{a} specifies
a contiguous array section. The second form @var{a} specifies a variable or
array element and @var{len} specifies the length in bytes.
@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{acc_delete(h_void *a, size_t len);}
@item @emph{Prototype}: @tab @code{acc_delete_async(h_void *a, size_t len, int async);}
@item @emph{Prototype}: @tab @code{acc_delete_finalize(h_void *a, size_t len);}
@item @emph{Prototype}: @tab @code{acc_delete_finalize_async(h_void *a, size_t len, int async);}
@end multitable
@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{subroutine acc_delete(a)}
@item @tab @code{type, dimension(:[,:]...) :: a}
@item @emph{Interface}: @tab @code{subroutine acc_delete(a, len)}
@item @tab @code{type, dimension(:[,:]...) :: a}
@item @tab @code{integer len}
@item @emph{Interface}: @tab @code{subroutine acc_delete_async(a, async)}
@item @tab @code{type, dimension(:[,:]...) :: a}
@item @tab @code{integer(acc_handle_kind) :: async}
@item @emph{Interface}: @tab @code{subroutine acc_delete_async(a, len, async)}
@item @tab @code{type, dimension(:[,:]...) :: a}
@item @tab @code{integer len}
@item @tab @code{integer(acc_handle_kind) :: async}
@item @emph{Interface}: @tab @code{subroutine acc_delete_finalize(a)}
@item @tab @code{type, dimension(:[,:]...) :: a}
@item @emph{Interface}: @tab @code{subroutine acc_delete_finalize(a, len)}
@item @tab @code{type, dimension(:[,:]...) :: a}
@item @tab @code{integer len}
@item @emph{Interface}: @tab @code{subroutine acc_delete_async_finalize(a, async)}
@item @tab @code{type, dimension(:[,:]...) :: a}
@item @tab @code{integer(acc_handle_kind) :: async}
@item @emph{Interface}: @tab @code{subroutine acc_delete_async_finalize(a, len, async)}
@item @tab @code{type, dimension(:[,:]...) :: a}
@item @tab @code{integer len}
@item @tab @code{integer(acc_handle_kind) :: async}
@end multitable
@item @emph{Reference}:
@uref{https://www.openacc.org, OpenACC specification v2.6}, section
3.2.23.
@end table
@node acc_update_device
@section @code{acc_update_device} -- Update device memory from mapped host memory.
@table @asis
@item @emph{Description}
This function updates the device copy from the previously mapped host memory.
The host memory is specified with the host address @var{a} and a length of
@var{len} bytes.
In Fortran, two (2) forms are supported. In the first form, @var{a} specifies
a contiguous array section. The second form @var{a} specifies a variable or
array element and @var{len} specifies the length in bytes.
@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{acc_update_device(h_void *a, size_t len);}
@item @emph{Prototype}: @tab @code{acc_update_device(h_void *a, size_t len, async);}
@end multitable
@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{subroutine acc_update_device(a)}
@item @tab @code{type, dimension(:[,:]...) :: a}
@item @emph{Interface}: @tab @code{subroutine acc_update_device(a, len)}
@item @tab @code{type, dimension(:[,:]...) :: a}
@item @tab @code{integer len}
@item @emph{Interface}: @tab @code{subroutine acc_update_device_async(a, async)}
@item @tab @code{type, dimension(:[,:]...) :: a}
@item @tab @code{integer(acc_handle_kind) :: async}
@item @emph{Interface}: @tab @code{subroutine acc_update_device_async(a, len, async)}
@item @tab @code{type, dimension(:[,:]...) :: a}
@item @tab @code{integer len}
@item @tab @code{integer(acc_handle_kind) :: async}
@end multitable
@item @emph{Reference}:
@uref{https://www.openacc.org, OpenACC specification v2.6}, section
3.2.24.
@end table
@node acc_update_self
@section @code{acc_update_self} -- Update host memory from mapped device memory.
@table @asis
@item @emph{Description}
This function updates the host copy from the previously mapped device memory.
The host memory is specified with the host address @var{a} and a length of
@var{len} bytes.
In Fortran, two (2) forms are supported. In the first form, @var{a} specifies
a contiguous array section. The second form @var{a} specifies a variable or
array element and @var{len} specifies the length in bytes.
@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{acc_update_self(h_void *a, size_t len);}
@item @emph{Prototype}: @tab @code{acc_update_self_async(h_void *a, size_t len, int async);}
@end multitable
@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{subroutine acc_update_self(a)}
@item @tab @code{type, dimension(:[,:]...) :: a}
@item @emph{Interface}: @tab @code{subroutine acc_update_self(a, len)}
@item @tab @code{type, dimension(:[,:]...) :: a}
@item @tab @code{integer len}
@item @emph{Interface}: @tab @code{subroutine acc_update_self_async(a, async)}
@item @tab @code{type, dimension(:[,:]...) :: a}
@item @tab @code{integer(acc_handle_kind) :: async}
@item @emph{Interface}: @tab @code{subroutine acc_update_self_async(a, len, async)}
@item @tab @code{type, dimension(:[,:]...) :: a}
@item @tab @code{integer len}
@item @tab @code{integer(acc_handle_kind) :: async}
@end multitable
@item @emph{Reference}:
@uref{https://www.openacc.org, OpenACC specification v2.6}, section
3.2.25.
@end table
@node acc_map_data
@section @code{acc_map_data} -- Map previously allocated device memory to host memory.
@table @asis
@item @emph{Description}
This function maps previously allocated device and host memory. The device
memory is specified with the device address @var{data_dev}. The host memory is
specified with the host address @var{data_arg} and a length of @var{bytes}.
@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{void acc_map_data(h_void *data_arg, d_void *data_dev, size_t bytes);}
@end multitable
@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{subroutine acc_map_data(data_arg, data_dev, bytes)}
@item @tab @code{type(*), dimension(*) :: data_arg}
@item @tab @code{type(c_ptr), value :: data_dev}
@item @tab @code{integer(c_size_t), value :: bytes}
@end multitable
@item @emph{Reference}:
@uref{https://www.openacc.org, OpenACC specification v2.6}, section
3.2.26. @uref{https://www.openacc.org, OpenACC specification v3.3}, section
3.2.21.
@end table
@node acc_unmap_data
@section @code{acc_unmap_data} -- Unmap device memory from host memory.
@table @asis
@item @emph{Description}
This function unmaps previously mapped device and host memory. The latter
specified by @var{data_arg}.
@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{void acc_unmap_data(h_void *data_arg);}
@end multitable
@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{subroutine acc_unmap_data(data_arg)}
@item @tab @code{type(*), dimension(*) :: data_arg}
@end multitable
@item @emph{Reference}:
@uref{https://www.openacc.org, OpenACC specification v2.6}, section
3.2.27. @uref{https://www.openacc.org, OpenACC specification v3.3}, section
3.2.22.
@end table
@node acc_deviceptr
@section @code{acc_deviceptr} -- Get device pointer associated with specific host address.
@table @asis
@item @emph{Description}
This function returns the device address that has been mapped to the
host address specified by @var{data_arg}.
@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{void *acc_deviceptr(h_void *data_arg);}
@end multitable
@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{type(c_ptr) function acc_deviceptr(data_arg)}
@item @tab @code{type(*), dimension(*) :: data_arg}
@end multitable
@item @emph{Reference}:
@uref{https://www.openacc.org, OpenACC specification v2.6}, section
3.2.28. @uref{https://www.openacc.org, OpenACC specification v3.3}, section
3.2.23.
@end table
@node acc_hostptr
@section @code{acc_hostptr} -- Get host pointer associated with specific device address.
@table @asis
@item @emph{Description}
This function returns the host address that has been mapped to the
device address specified by @var{data_dev}.
@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{void *acc_hostptr(d_void *data_dev);}
@end multitable
@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{type(c_ptr) function acc_hostptr(data_dev)}
@item @tab @code{type(c_ptr), value :: data_dev}
@end multitable
@item @emph{Reference}:
@uref{https://www.openacc.org, OpenACC specification v2.6}, section
3.2.29. @uref{https://www.openacc.org, OpenACC specification v3.3}, section
3.2.24.
@end table
@node acc_is_present
@section @code{acc_is_present} -- Indicate whether host variable / array is present on device.
@table @asis
@item @emph{Description}
This function indicates whether the specified host address in @var{a} and a
length of @var{len} bytes is present on the device. In C/C++, a non-zero
value is returned to indicate the presence of the mapped memory on the
device. A zero is returned to indicate the memory is not mapped on the
device.
In Fortran, two (2) forms are supported. In the first form, @var{a} specifies
a contiguous array section. The second form @var{a} specifies a variable or
array element and @var{len} specifies the length in bytes. If the host
memory is mapped to device memory, then a @code{true} is returned. Otherwise,
a @code{false} is return to indicate the mapped memory is not present.
@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{int acc_is_present(h_void *a, size_t len);}
@end multitable
@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{function acc_is_present(a)}
@item @tab @code{type, dimension(:[,:]...) :: a}
@item @tab @code{logical acc_is_present}
@item @emph{Interface}: @tab @code{function acc_is_present(a, len)}
@item @tab @code{type, dimension(:[,:]...) :: a}
@item @tab @code{integer len}
@item @tab @code{logical acc_is_present}
@end multitable
@item @emph{Reference}:
@uref{https://www.openacc.org, OpenACC specification v2.6}, section
3.2.30.
@end table
@node acc_memcpy_to_device
@section @code{acc_memcpy_to_device} -- Copy host memory to device memory.
@table @asis
@item @emph{Description}
This function copies host memory specified by host address of
@var{data_host_src} to device memory specified by the device address
@var{data_dev_dest} for a length of @var{bytes} bytes.
@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{void acc_memcpy_to_device(d_void* data_dev_dest,}
@item @tab @code{h_void* data_host_src, size_t bytes);}
@item @emph{Prototype}: @tab @code{void acc_memcpy_to_device_async(d_void* data_dev_dest,}
@item @tab @code{h_void* data_host_src, size_t bytes, int async_arg);}
@end multitable
@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{subroutine acc_memcpy_to_device(data_dev_dest, &}
@item @tab @code{data_host_src, bytes)}
@item @emph{Interface}: @tab @code{subroutine acc_memcpy_to_device_async(data_dev_dest, &}
@item @tab @code{data_host_src, bytes, async_arg)}
@item @tab @code{type(c_ptr), value :: data_dev_dest}
@item @tab @code{type(*), dimension(*) :: data_host_src}
@item @tab @code{integer(c_size_t), value :: bytes}
@item @tab @code{integer(acc_handle_kind), value :: async_arg}
@end multitable
@item @emph{Reference}:
@uref{https://www.openacc.org, OpenACC specification v2.6}, section
3.2.31 @uref{https://www.openacc.org, OpenACC specification v3.3}, section
3.2.26.
@end table
@node acc_memcpy_from_device
@section @code{acc_memcpy_from_device} -- Copy device memory to host memory.
@table @asis
@item @emph{Description}
This function copies device memory specified by device address of
@var{data_dev_src} to host memory specified by the host address
@var{data_host_dest} for a length of @var{bytes} bytes.
@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{void acc_memcpy_from_device(h_void* data_host_dest,}
@item @tab @code{d_void* data_dev_src, size_t bytes);}
@item @emph{Prototype}: @tab @code{void acc_memcpy_from_device_async(h_void* data_host_dest,}
@item @tab @code{d_void* data_dev_src, size_t bytes, int async_arg);}
@end multitable
@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{subroutine acc_memcpy_from_device(data_host_dest, &}
@item @tab @code{data_dev_src, bytes)}
@item @emph{Interface}: @tab @code{subroutine acc_memcpy_from_device_async(data_host_dest, &}
@item @tab @code{data_dev_src, bytes, async_arg)}
@item @tab @code{type(*), dimension(*) :: data_host_dest}
@item @tab @code{type(c_ptr), value :: data_dev_src}
@item @tab @code{integer(c_size_t), value :: bytes}
@item @tab @code{integer(acc_handle_kind), value :: async_arg}
@end multitable
@item @emph{Reference}:
@uref{https://www.openacc.org, OpenACC specification v2.6}, section
3.2.32. @uref{https://www.openacc.org, OpenACC specification v3.3}, section
3.2.27.
@end table
@node acc_attach
@section @code{acc_attach} -- Let device pointer point to device-pointer target.
@table @asis
@item @emph{Description}
This function updates a pointer on the device from pointing to a host-pointer
address to pointing to the corresponding device data.
@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{void acc_attach(h_void **ptr_addr);}
@item @emph{Prototype}: @tab @code{void acc_attach_async(h_void **ptr_addr, int async);}
@end multitable
@c @item @emph{Fortran}:
@c @multitable @columnfractions .20 .80
@c @item @emph{Interface}: @tab @code{subroutine acc_attach(ptr_addr)}
@c @item @emph{Interface}: @tab @code{subroutine acc_attach_async(ptr_addr, async_arg)}
@c @item @tab @code{type(*), dimension(..) :: ptr_addr}
@c @item @tab @code{integer(acc_handle_kind), value :: async_arg}
@c @end multitable
@item @emph{Reference}:
@uref{https://www.openacc.org, OpenACC specification v2.6}, section
3.2.34.
@c @uref{https://www.openacc.org, OpenACC specification v3.3}, section
@c 3.2.29.
@end table
@node acc_detach
@section @code{acc_detach} -- Let device pointer point to host-pointer target.
@table @asis
@item @emph{Description}
This function updates a pointer on the device from pointing to a device-pointer
address to pointing to the corresponding host data.
@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{void acc_detach(h_void **ptr_addr);}
@item @emph{Prototype}: @tab @code{void acc_detach_async(h_void **ptr_addr, int async);}
@item @emph{Prototype}: @tab @code{void acc_detach_finalize(h_void **ptr_addr);}
@item @emph{Prototype}: @tab @code{void acc_detach_finalize_async(h_void **ptr_addr, int async);}
@end multitable
@c @item @emph{Fortran}:
@c @multitable @columnfractions .20 .80
@c @item @emph{Interface}: @tab @code{subroutine acc_detach(ptr_addr)}
@c @item @emph{Interface}: @tab @code{subroutine acc_detach_async(ptr_addr, async_arg)}
@c @item @emph{Interface}: @tab @code{subroutine acc_detach_finalize(ptr_addr)}
@c @item @emph{Interface}: @tab @code{subroutine acc_detach_finalize_async(ptr_addr, async_arg)}
@c @item @tab @code{type(*), dimension(..) :: ptr_addr}
@c @item @tab @code{integer(acc_handle_kind), value :: async_arg}
@c @end multitable
@item @emph{Reference}:
@uref{https://www.openacc.org, OpenACC specification v2.6}, section
3.2.35.
@c @uref{https://www.openacc.org, OpenACC specification v3.3}, section
@c 3.2.29.
@end table
@node acc_get_current_cuda_device
@section @code{acc_get_current_cuda_device} -- Get CUDA device handle.
@table @asis
@item @emph{Description}
This function returns the CUDA device handle. This handle is the same
as used by the CUDA Runtime or Driver API's.
@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{void *acc_get_current_cuda_device(void);}
@end multitable
@item @emph{Reference}:
@uref{https://www.openacc.org, OpenACC specification v2.6}, section
A.2.1.1.
@end table
@node acc_get_current_cuda_context
@section @code{acc_get_current_cuda_context} -- Get CUDA context handle.
@table @asis
@item @emph{Description}
This function returns the CUDA context handle. This handle is the same
as used by the CUDA Runtime or Driver API's.
@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{void *acc_get_current_cuda_context(void);}
@end multitable
@item @emph{Reference}:
@uref{https://www.openacc.org, OpenACC specification v2.6}, section
A.2.1.2.
@end table
@node acc_get_cuda_stream
@section @code{acc_get_cuda_stream} -- Get CUDA stream handle.
@table @asis
@item @emph{Description}
This function returns the CUDA stream handle for the queue @var{async}.
This handle is the same as used by the CUDA Runtime or Driver API's.
@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{void *acc_get_cuda_stream(int async);}
@end multitable
@item @emph{Reference}:
@uref{https://www.openacc.org, OpenACC specification v2.6}, section
A.2.1.3.
@end table
@node acc_set_cuda_stream
@section @code{acc_set_cuda_stream} -- Set CUDA stream handle.
@table @asis
@item @emph{Description}
This function associates the stream handle specified by @var{stream} with
the queue @var{async}.
This cannot be used to change the stream handle associated with
@code{acc_async_sync}.
The return value is not specified.
@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{int acc_set_cuda_stream(int async, void *stream);}
@end multitable
@item @emph{Reference}:
@uref{https://www.openacc.org, OpenACC specification v2.6}, section
A.2.1.4.
@end table
@node acc_prof_register
@section @code{acc_prof_register} -- Register callbacks.
@table @asis
@item @emph{Description}:
This function registers callbacks.
@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{void acc_prof_register (acc_event_t, acc_prof_callback, acc_register_t);}
@end multitable
@item @emph{See also}:
@ref{OpenACC Profiling Interface}
@item @emph{Reference}:
@uref{https://www.openacc.org, OpenACC specification v2.6}, section
5.3.
@end table
@node acc_prof_unregister
@section @code{acc_prof_unregister} -- Unregister callbacks.
@table @asis
@item @emph{Description}:
This function unregisters callbacks.
@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{void acc_prof_unregister (acc_event_t, acc_prof_callback, acc_register_t);}
@end multitable
@item @emph{See also}:
@ref{OpenACC Profiling Interface}
@item @emph{Reference}:
@uref{https://www.openacc.org, OpenACC specification v2.6}, section
5.3.
@end table
@node acc_prof_lookup
@section @code{acc_prof_lookup} -- Obtain inquiry functions.
@table @asis
@item @emph{Description}:
Function to obtain inquiry functions.
@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{acc_query_fn acc_prof_lookup (const char *);}
@end multitable
@item @emph{See also}:
@ref{OpenACC Profiling Interface}
@item @emph{Reference}:
@uref{https://www.openacc.org, OpenACC specification v2.6}, section
5.3.
@end table
@node acc_register_library
@section @code{acc_register_library} -- Library registration.
@table @asis
@item @emph{Description}:
Function for library registration.
@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{void acc_register_library (acc_prof_reg, acc_prof_reg, acc_prof_lookup_func);}
@end multitable
@item @emph{See also}:
@ref{OpenACC Profiling Interface}, @ref{ACC_PROFLIB}
@item @emph{Reference}:
@uref{https://www.openacc.org, OpenACC specification v2.6}, section
5.3.
@end table
@c ---------------------------------------------------------------------
@c OpenACC Environment Variables
@c ---------------------------------------------------------------------
@node OpenACC Environment Variables
@chapter OpenACC Environment Variables
The variables @env{ACC_DEVICE_TYPE} and @env{ACC_DEVICE_NUM}
are defined by section 4 of the OpenACC specification in version 2.0.
The variable @env{ACC_PROFLIB}
is defined by section 4 of the OpenACC specification in version 2.6.
@menu
* ACC_DEVICE_TYPE::
* ACC_DEVICE_NUM::
* ACC_PROFLIB::
@end menu
@node ACC_DEVICE_TYPE
@section @code{ACC_DEVICE_TYPE}
@table @asis
@item @emph{Description}:
Control the default device type to use when executing compute regions.
If unset, the code can be run on any device type, favoring a non-host
device type.
Supported values in GCC (if compiled in) are
@itemize
@item @code{host}
@item @code{nvidia}
@item @code{radeon}
@end itemize
@item @emph{Reference}:
@uref{https://www.openacc.org, OpenACC specification v2.6}, section
4.1.
@end table
@node ACC_DEVICE_NUM
@section @code{ACC_DEVICE_NUM}
@table @asis
@item @emph{Description}:
Control which device, identified by device number, is the default device.
The value must be a nonnegative integer less than the number of devices.
If unset, device number zero is used.
@item @emph{Reference}:
@uref{https://www.openacc.org, OpenACC specification v2.6}, section
4.2.
@end table
@node ACC_PROFLIB
@section @code{ACC_PROFLIB}
@table @asis
@item @emph{Description}:
Semicolon-separated list of dynamic libraries that are loaded as profiling
libraries. Each library must provide at least the @code{acc_register_library}
routine. Each library file is found as described by the documentation of
@code{dlopen} of your operating system.
@item @emph{See also}:
@ref{acc_register_library}, @ref{OpenACC Profiling Interface}
@item @emph{Reference}:
@uref{https://www.openacc.org, OpenACC specification v2.6}, section
4.3.
@end table
@c ---------------------------------------------------------------------
@c CUDA Streams Usage
@c ---------------------------------------------------------------------
@node CUDA Streams Usage
@chapter CUDA Streams Usage
This applies to the @code{nvptx} plugin only.
The library provides elements that perform asynchronous movement of
data and asynchronous operation of computing constructs. This
asynchronous functionality is implemented by making use of CUDA
streams@footnote{See "Stream Management" in "CUDA Driver API",
TRM-06703-001, Version 5.5, for additional information}.
The primary means by that the asynchronous functionality is accessed
is through the use of those OpenACC directives which make use of the
@code{async} and @code{wait} clauses. When the @code{async} clause is
first used with a directive, it creates a CUDA stream. If an
@code{async-argument} is used with the @code{async} clause, then the
stream is associated with the specified @code{async-argument}.
Following the creation of an association between a CUDA stream and the
@code{async-argument} of an @code{async} clause, both the @code{wait}
clause and the @code{wait} directive can be used. When either the
clause or directive is used after stream creation, it creates a
rendezvous point whereby execution waits until all operations
associated with the @code{async-argument}, that is, stream, have
completed.
Normally, the management of the streams that are created as a result of
using the @code{async} clause, is done without any intervention by the
caller. This implies the association between the @code{async-argument}
and the CUDA stream is maintained for the lifetime of the program.
However, this association can be changed through the use of the library
function @code{acc_set_cuda_stream}. When the function
@code{acc_set_cuda_stream} is called, the CUDA stream that was
originally associated with the @code{async} clause is destroyed.
Caution should be taken when changing the association as subsequent
references to the @code{async-argument} refer to a different
CUDA stream.
@c ---------------------------------------------------------------------
@c OpenACC Library Interoperability
@c ---------------------------------------------------------------------
@node OpenACC Library Interoperability
@chapter OpenACC Library Interoperability
@section Introduction
The OpenACC library uses the CUDA Driver API, and may interact with
programs that use the Runtime library directly, or another library
based on the Runtime library, e.g., CUBLAS@footnote{See section 2.26,
"Interactions with the CUDA Driver API" in
"CUDA Runtime API", Version 5.5, and section 2.27, "VDPAU
Interoperability", in "CUDA Driver API", TRM-06703-001, Version 5.5,
for additional information on library interoperability.}.
This chapter describes the use cases and what changes are
required in order to use both the OpenACC library and the CUBLAS and Runtime
libraries within a program.
@section First invocation: NVIDIA CUBLAS library API
In this first use case (see below), a function in the CUBLAS library is called
prior to any of the functions in the OpenACC library. More specifically, the
function @code{cublasCreate()}.
When invoked, the function initializes the library and allocates the
hardware resources on the host and the device on behalf of the caller. Once
the initialization and allocation has completed, a handle is returned to the
caller. The OpenACC library also requires initialization and allocation of
hardware resources. Since the CUBLAS library has already allocated the
hardware resources for the device, all that is left to do is to initialize
the OpenACC library and acquire the hardware resources on the host.
Prior to calling the OpenACC function that initializes the library and
allocate the host hardware resources, you need to acquire the device number
that was allocated during the call to @code{cublasCreate()}. The invoking of the
runtime library function @code{cudaGetDevice()} accomplishes this. Once
acquired, the device number is passed along with the device type as
parameters to the OpenACC library function @code{acc_set_device_num()}.
Once the call to @code{acc_set_device_num()} has completed, the OpenACC
library uses the context that was created during the call to
@code{cublasCreate()}. In other words, both libraries share the
same context.
@smallexample
/* Create the handle */
s = cublasCreate(&h);
if (s != CUBLAS_STATUS_SUCCESS)
@{
fprintf(stderr, "cublasCreate failed %d\n", s);
exit(EXIT_FAILURE);
@}
/* Get the device number */
e = cudaGetDevice(&dev);
if (e != cudaSuccess)
@{
fprintf(stderr, "cudaGetDevice failed %d\n", e);
exit(EXIT_FAILURE);
@}
/* Initialize OpenACC library and use device 'dev' */
acc_set_device_num(dev, acc_device_nvidia);
@end smallexample
@center Use Case 1
@section First invocation: OpenACC library API
In this second use case (see below), a function in the OpenACC library is
called prior to any of the functions in the CUBLAS library. More specifically,
the function @code{acc_set_device_num()}.
In the use case presented here, the function @code{acc_set_device_num()}
is used to both initialize the OpenACC library and allocate the hardware
resources on the host and the device. In the call to the function, the
call parameters specify which device to use and what device
type to use, i.e., @code{acc_device_nvidia}. It should be noted that this
is but one method to initialize the OpenACC library and allocate the
appropriate hardware resources. Other methods are available through the
use of environment variables and these is discussed in the next section.
Once the call to @code{acc_set_device_num()} has completed, other OpenACC
functions can be called as seen with multiple calls being made to
@code{acc_copyin()}. In addition, calls can be made to functions in the
CUBLAS library. In the use case a call to @code{cublasCreate()} is made
subsequent to the calls to @code{acc_copyin()}.
As seen in the previous use case, a call to @code{cublasCreate()}
initializes the CUBLAS library and allocates the hardware resources on the
host and the device. However, since the device has already been allocated,
@code{cublasCreate()} only initializes the CUBLAS library and allocates
the appropriate hardware resources on the host. The context that was created
as part of the OpenACC initialization is shared with the CUBLAS library,
similarly to the first use case.
@smallexample
dev = 0;
acc_set_device_num(dev, acc_device_nvidia);
/* Copy the first set to the device */
d_X = acc_copyin(&h_X[0], N * sizeof (float));
if (d_X == NULL)
@{
fprintf(stderr, "copyin error h_X\n");
exit(EXIT_FAILURE);
@}
/* Copy the second set to the device */
d_Y = acc_copyin(&h_Y1[0], N * sizeof (float));
if (d_Y == NULL)
@{
fprintf(stderr, "copyin error h_Y1\n");
exit(EXIT_FAILURE);
@}
/* Create the handle */
s = cublasCreate(&h);
if (s != CUBLAS_STATUS_SUCCESS)
@{
fprintf(stderr, "cublasCreate failed %d\n", s);
exit(EXIT_FAILURE);
@}
/* Perform saxpy using CUBLAS library function */
s = cublasSaxpy(h, N, &alpha, d_X, 1, d_Y, 1);
if (s != CUBLAS_STATUS_SUCCESS)
@{
fprintf(stderr, "cublasSaxpy failed %d\n", s);
exit(EXIT_FAILURE);
@}
/* Copy the results from the device */
acc_memcpy_from_device(&h_Y1[0], d_Y, N * sizeof (float));
@end smallexample
@center Use Case 2
@section OpenACC library and environment variables
There are two environment variables associated with the OpenACC library
that may be used to control the device type and device number:
@env{ACC_DEVICE_TYPE} and @env{ACC_DEVICE_NUM}, respectively. These two
environment variables can be used as an alternative to calling
@code{acc_set_device_num()}. As seen in the second use case, the device
type and device number were specified using @code{acc_set_device_num()}.
If however, the aforementioned environment variables were set, then the
call to @code{acc_set_device_num()} would not be required.
The use of the environment variables is only relevant when an OpenACC function
is called prior to a call to @code{cudaCreate()}. If @code{cudaCreate()}
is called prior to a call to an OpenACC function, then you must call
@code{acc_set_device_num()}@footnote{More complete information
about @env{ACC_DEVICE_TYPE} and @env{ACC_DEVICE_NUM} can be found in
sections 4.1 and 4.2 of the @uref{https://www.openacc.org, OpenACC}
Application Programming Interface”, Version 2.6.}
@c ---------------------------------------------------------------------
@c OpenACC Profiling Interface
@c ---------------------------------------------------------------------
@node OpenACC Profiling Interface
@chapter OpenACC Profiling Interface
@section Implementation Status and Implementation-Defined Behavior
We're implementing the OpenACC Profiling Interface as defined by the
OpenACC 2.6 specification. We're clarifying some aspects here as
@emph{implementation-defined behavior}, while they're still under
discussion within the OpenACC Technical Committee.
This implementation is tuned to keep the performance impact as low as
possible for the (very common) case that the Profiling Interface is
not enabled. This is relevant, as the Profiling Interface affects all
the @emph{hot} code paths (in the target code, not in the offloaded
code). Users of the OpenACC Profiling Interface can be expected to
understand that performance is impacted to some degree once the
Profiling Interface is enabled: for example, because of the
@emph{runtime} (libgomp) calling into a third-party @emph{library} for
every event that has been registered.
We're not yet accounting for the fact that @cite{OpenACC events may
occur during event processing}.
We just handle one case specially, as required by CUDA 9.0
@command{nvprof}, that @code{acc_get_device_type}
(@ref{acc_get_device_type})) may be called from
@code{acc_ev_device_init_start}, @code{acc_ev_device_init_end}
callbacks.
We're not yet implementing initialization via a
@code{acc_register_library} function that is either statically linked
in, or dynamically via @env{LD_PRELOAD}.
Initialization via @code{acc_register_library} functions dynamically
loaded via the @env{ACC_PROFLIB} environment variable does work, as
does directly calling @code{acc_prof_register},
@code{acc_prof_unregister}, @code{acc_prof_lookup}.
As currently there are no inquiry functions defined, calls to
@code{acc_prof_lookup} always returns @code{NULL}.
There aren't separate @emph{start}, @emph{stop} events defined for the
event types @code{acc_ev_create}, @code{acc_ev_delete},
@code{acc_ev_alloc}, @code{acc_ev_free}. It's not clear if these
should be triggered before or after the actual device-specific call is
made. We trigger them after.
Remarks about data provided to callbacks:
@table @asis
@item @code{acc_prof_info.event_type}
It's not clear if for @emph{nested} event callbacks (for example,
@code{acc_ev_enqueue_launch_start} as part of a parent compute
construct), this should be set for the nested event
(@code{acc_ev_enqueue_launch_start}), or if the value of the parent
construct should remain (@code{acc_ev_compute_construct_start}). In
this implementation, the value generally corresponds to the
innermost nested event type.
@item @code{acc_prof_info.device_type}
@itemize
@item
For @code{acc_ev_compute_construct_start}, and in presence of an
@code{if} clause with @emph{false} argument, this still refers to
the offloading device type.
It's not clear if that's the expected behavior.
@item
Complementary to the item before, for
@code{acc_ev_compute_construct_end}, this is set to
@code{acc_device_host} in presence of an @code{if} clause with
@emph{false} argument.
It's not clear if that's the expected behavior.
@end itemize
@item @code{acc_prof_info.thread_id}
Always @code{-1}; not yet implemented.
@item @code{acc_prof_info.async}
@itemize
@item
Not yet implemented correctly for
@code{acc_ev_compute_construct_start}.
@item
In a compute construct, for host-fallback
execution/@code{acc_device_host} it always is
@code{acc_async_sync}.
It is unclear if that is the expected behavior.
@item
For @code{acc_ev_device_init_start} and @code{acc_ev_device_init_end},
it will always be @code{acc_async_sync}.
It is unclear if that is the expected behavior.
@end itemize
@item @code{acc_prof_info.async_queue}
There is no @cite{limited number of asynchronous queues} in libgomp.
This always has the same value as @code{acc_prof_info.async}.
@item @code{acc_prof_info.src_file}
Always @code{NULL}; not yet implemented.
@item @code{acc_prof_info.func_name}
Always @code{NULL}; not yet implemented.
@item @code{acc_prof_info.line_no}
Always @code{-1}; not yet implemented.
@item @code{acc_prof_info.end_line_no}
Always @code{-1}; not yet implemented.
@item @code{acc_prof_info.func_line_no}
Always @code{-1}; not yet implemented.
@item @code{acc_prof_info.func_end_line_no}
Always @code{-1}; not yet implemented.
@item @code{acc_event_info.event_type}, @code{acc_event_info.*.event_type}
Relating to @code{acc_prof_info.event_type} discussed above, in this
implementation, this will always be the same value as
@code{acc_prof_info.event_type}.
@item @code{acc_event_info.*.parent_construct}
@itemize
@item
Will be @code{acc_construct_parallel} for all OpenACC compute
constructs as well as many OpenACC Runtime API calls; should be the
one matching the actual construct, or
@code{acc_construct_runtime_api}, respectively.
@item
Will be @code{acc_construct_enter_data} or
@code{acc_construct_exit_data} when processing variable mappings
specified in OpenACC @emph{declare} directives; should be
@code{acc_construct_declare}.
@item
For implicit @code{acc_ev_device_init_start},
@code{acc_ev_device_init_end}, and explicit as well as implicit
@code{acc_ev_alloc}, @code{acc_ev_free},
@code{acc_ev_enqueue_upload_start}, @code{acc_ev_enqueue_upload_end},
@code{acc_ev_enqueue_download_start}, and
@code{acc_ev_enqueue_download_end}, will be
@code{acc_construct_parallel}; should reflect the real parent
construct.
@end itemize
@item @code{acc_event_info.*.implicit}
For @code{acc_ev_alloc}, @code{acc_ev_free},
@code{acc_ev_enqueue_upload_start}, @code{acc_ev_enqueue_upload_end},
@code{acc_ev_enqueue_download_start}, and
@code{acc_ev_enqueue_download_end}, this currently will be @code{1}
also for explicit usage.
@item @code{acc_event_info.data_event.var_name}
Always @code{NULL}; not yet implemented.
@item @code{acc_event_info.data_event.host_ptr}
For @code{acc_ev_alloc}, and @code{acc_ev_free}, this is always
@code{NULL}.
@item @code{typedef union acc_api_info}
@dots{} as printed in @cite{5.2.3. Third Argument: API-Specific
Information}. This should obviously be @code{typedef @emph{struct}
acc_api_info}.
@item @code{acc_api_info.device_api}
Possibly not yet implemented correctly for
@code{acc_ev_compute_construct_start},
@code{acc_ev_device_init_start}, @code{acc_ev_device_init_end}:
will always be @code{acc_device_api_none} for these event types.
For @code{acc_ev_enter_data_start}, it will be
@code{acc_device_api_none} in some cases.
@item @code{acc_api_info.device_type}
Always the same as @code{acc_prof_info.device_type}.
@item @code{acc_api_info.vendor}
Always @code{-1}; not yet implemented.
@item @code{acc_api_info.device_handle}
Always @code{NULL}; not yet implemented.
@item @code{acc_api_info.context_handle}
Always @code{NULL}; not yet implemented.
@item @code{acc_api_info.async_handle}
Always @code{NULL}; not yet implemented.
@end table
Remarks about certain event types:
@table @asis
@item @code{acc_ev_device_init_start}, @code{acc_ev_device_init_end}
@itemize
@item
@c See 'DEVICE_INIT_INSIDE_COMPUTE_CONSTRUCT' in
@c 'libgomp.oacc-c-c++-common/acc_prof-kernels-1.c',
@c 'libgomp.oacc-c-c++-common/acc_prof-parallel-1.c'.
When a compute construct triggers implicit
@code{acc_ev_device_init_start} and @code{acc_ev_device_init_end}
events, they currently aren't @emph{nested within} the corresponding
@code{acc_ev_compute_construct_start} and
@code{acc_ev_compute_construct_end}, but they're currently observed
@emph{before} @code{acc_ev_compute_construct_start}.
It's not clear what to do: the standard asks us provide a lot of
details to the @code{acc_ev_compute_construct_start} callback, without
(implicitly) initializing a device before?
@item
Callbacks for these event types will not be invoked for calls to the
@code{acc_set_device_type} and @code{acc_set_device_num} functions.
It's not clear if they should be.
@end itemize
@item @code{acc_ev_enter_data_start}, @code{acc_ev_enter_data_end}, @code{acc_ev_exit_data_start}, @code{acc_ev_exit_data_end}
@itemize
@item
Callbacks for these event types will also be invoked for OpenACC
@emph{host_data} constructs.
It's not clear if they should be.
@item
Callbacks for these event types will also be invoked when processing
variable mappings specified in OpenACC @emph{declare} directives.
It's not clear if they should be.
@end itemize
@end table
Callbacks for the following event types will be invoked, but dispatch
and information provided therein has not yet been thoroughly reviewed:
@itemize
@item @code{acc_ev_alloc}
@item @code{acc_ev_free}
@item @code{acc_ev_update_start}, @code{acc_ev_update_end}
@item @code{acc_ev_enqueue_upload_start}, @code{acc_ev_enqueue_upload_end}
@item @code{acc_ev_enqueue_download_start}, @code{acc_ev_enqueue_download_end}
@end itemize
During device initialization, and finalization, respectively,
callbacks for the following event types will not yet be invoked:
@itemize
@item @code{acc_ev_alloc}
@item @code{acc_ev_free}
@end itemize
Callbacks for the following event types have not yet been implemented,
so currently won't be invoked:
@itemize
@item @code{acc_ev_device_shutdown_start}, @code{acc_ev_device_shutdown_end}
@item @code{acc_ev_runtime_shutdown}
@item @code{acc_ev_create}, @code{acc_ev_delete}
@item @code{acc_ev_wait_start}, @code{acc_ev_wait_end}
@end itemize
For the following runtime library functions, not all expected
callbacks will be invoked (mostly concerning implicit device
initialization):
@itemize
@item @code{acc_get_num_devices}
@item @code{acc_set_device_type}
@item @code{acc_get_device_type}
@item @code{acc_set_device_num}
@item @code{acc_get_device_num}
@item @code{acc_init}
@item @code{acc_shutdown}
@end itemize
Aside from implicit device initialization, for the following runtime
library functions, no callbacks will be invoked for shared-memory
offloading devices (it's not clear if they should be):
@itemize
@item @code{acc_malloc}
@item @code{acc_free}
@item @code{acc_copyin}, @code{acc_present_or_copyin}, @code{acc_copyin_async}
@item @code{acc_create}, @code{acc_present_or_create}, @code{acc_create_async}
@item @code{acc_copyout}, @code{acc_copyout_async}, @code{acc_copyout_finalize}, @code{acc_copyout_finalize_async}
@item @code{acc_delete}, @code{acc_delete_async}, @code{acc_delete_finalize}, @code{acc_delete_finalize_async}
@item @code{acc_update_device}, @code{acc_update_device_async}
@item @code{acc_update_self}, @code{acc_update_self_async}
@item @code{acc_map_data}, @code{acc_unmap_data}
@item @code{acc_memcpy_to_device}, @code{acc_memcpy_to_device_async}
@item @code{acc_memcpy_from_device}, @code{acc_memcpy_from_device_async}
@end itemize
@c ---------------------------------------------------------------------
@c OpenMP-Implementation Specifics
@c ---------------------------------------------------------------------
@node OpenMP-Implementation Specifics
@chapter OpenMP-Implementation Specifics
@menu
* Implementation-defined ICV Initialization::
* OpenMP Context Selectors::
* Memory allocation::
@end menu
@node Implementation-defined ICV Initialization
@section Implementation-defined ICV Initialization
@cindex Implementation specific setting
@multitable @columnfractions .30 .70
@item @var{affinity-format-var} @tab See @ref{OMP_AFFINITY_FORMAT}.
@item @var{def-allocator-var} @tab See @ref{OMP_ALLOCATOR}.
@item @var{max-active-levels-var} @tab See @ref{OMP_MAX_ACTIVE_LEVELS}.
@item @var{dyn-var} @tab See @ref{OMP_DYNAMIC}.
@item @var{nthreads-var} @tab See @ref{OMP_NUM_THREADS}.
@item @var{num-devices-var} @tab Number of non-host devices found
by GCC's run-time library
@item @var{num-procs-var} @tab The number of CPU cores on the
initial device, except that affinity settings might lead to a
smaller number. On non-host devices, the value of the
@var{nthreads-var} ICV.
@item @var{place-partition-var} @tab See @ref{OMP_PLACES}.
@item @var{run-sched-var} @tab See @ref{OMP_SCHEDULE}.
@item @var{stacksize-var} @tab See @ref{OMP_STACKSIZE}.
@item @var{thread-limit-var} @tab See @ref{OMP_TEAMS_THREAD_LIMIT}
@item @var{wait-policy-var} @tab See @ref{OMP_WAIT_POLICY} and
@ref{GOMP_SPINCOUNT}
@end multitable
@node OpenMP Context Selectors
@section OpenMP Context Selectors
@code{vendor} is always @code{gnu}. References are to the GCC manual.
@c NOTE: Only the following selectors have been implemented. To add
@c additional traits for target architecture, TARGET_OMP_DEVICE_KIND_ARCH_ISA
@c has to be implemented; cf. also PR target/105640.
@c For offload devices, add *additionally* gcc/config/*/t-omp-device.
For the host compiler, @code{kind} always matches @code{host}; for the
offloading architectures AMD GCN and Nvidia PTX, @code{kind} always matches
@code{gpu}. For the x86 family of computers, AMD GCN and Nvidia PTX
the following traits are supported in addition; while OpenMP is supported
on more architectures, GCC currently does not match any @code{arch} or
@code{isa} traits for those.
@multitable @columnfractions .65 .30
@headitem @code{arch} @tab @code{isa}
@item @code{x86}, @code{x86_64}, @code{i386}, @code{i486},
@code{i586}, @code{i686}, @code{ia32}
@tab See @code{-m...} flags in ``x86 Options'' (without @code{-m})
@item @code{amdgcn}, @code{gcn}
@tab See @code{-march=} in ``AMD GCN Options''@footnote{Additionally,
@code{gfx803} is supported as an alias for @code{fiji}.}
@item @code{nvptx}, @code{nvptx64}
@tab See @code{-march=} in ``Nvidia PTX Options''
@end multitable
@node Memory allocation
@section Memory allocation
The description below applies to:
@itemize
@item Explicit use of the OpenMP API routines, see
@ref{Memory Management Routines}.
@item The @code{allocate} clause, except when the @code{allocator} modifier is a
constant expression with value @code{omp_default_mem_alloc} and no
@code{align} modifier has been specified. (In that case, the normal
@code{malloc} allocation is used.)
@item Using the @code{allocate} directive for automatic/stack variables, except
when the @code{allocator} clause is a constant expression with value
@code{omp_default_mem_alloc} and no @code{align} clause has been
specified. (In that case, the normal allocation is used: stack allocation
and, sometimes for Fortran, also @code{malloc} [depending on flags such as
@option{-fstack-arrays}].)
@item Using the @code{allocate} directive for variable in static memory is
currently not supported (compile time error).
@item In Fortran, the @code{allocators} directive and the executable
@code{allocate} directive for Fortran pointers and allocatables is
supported, but requires that files containing those directives has to be
compiled with @option{-fopenmp-allocators}. Additionally, all files that
might explicitly or implicitly deallocate memory allocated that way must
also be compiled with that option.
@end itemize
For the available predefined allocators and, as applicable, their associated
predefined memory spaces and for the available traits and their default values,
see @ref{OMP_ALLOCATOR}. Predefined allocators without an associated memory
space use the @code{omp_default_mem_space} memory space.
For the memory spaces, the following applies:
@itemize
@item @code{omp_default_mem_space} is supported
@item @code{omp_const_mem_space} maps to @code{omp_default_mem_space}
@item @code{omp_low_lat_mem_space} is only available on supported devices,
and maps to @code{omp_default_mem_space} otherwise.
@item @code{omp_large_cap_mem_space} maps to @code{omp_default_mem_space},
unless the memkind library is available
@item @code{omp_high_bw_mem_space} maps to @code{omp_default_mem_space},
unless the memkind library is available
@end itemize
On Linux systems, where the @uref{https://github.com/memkind/memkind, memkind
library} (@code{libmemkind.so.0}) is available at runtime, it is used when
creating memory allocators requesting
@itemize
@item the memory space @code{omp_high_bw_mem_space}
@item the memory space @code{omp_large_cap_mem_space}
@item the @code{partition} trait @code{interleaved}; note that for
@code{omp_large_cap_mem_space} the allocation will not be interleaved
@end itemize
On Linux systems, where the @uref{https://github.com/numactl/numactl, numa
library} (@code{libnuma.so.1}) is available at runtime, it used when creating
memory allocators requesting
@itemize
@item the @code{partition} trait @code{nearest}, except when both the
libmemkind library is available and the memory space is either
@code{omp_large_cap_mem_space} or @code{omp_high_bw_mem_space}
@end itemize
Note that the numa library will round up the allocation size to a multiple of
the system page size; therefore, consider using it only with large data or
by sharing allocations via the @code{pool_size} trait. Furthermore, the Linux
kernel does not guarantee that an allocation will always be on the nearest NUMA
node nor that after reallocation the same node will be used. Note additionally
that, on Linux, the default setting of the memory placement policy is to use the
current node; therefore, unless the memory placement policy has been overridden,
the @code{partition} trait @code{environment} (the default) will be effectively
a @code{nearest} allocation.
Additional notes regarding the traits:
@itemize
@item The @code{pinned} trait is supported on Linux hosts, but is subject to
the OS @code{ulimit}/@code{rlimit} locked memory settings.
@item The default for the @code{pool_size} trait is no pool and for every
(re)allocation the associated library routine is called, which might
internally use a memory pool.
@item For the @code{partition} trait, the partition part size will be the same
as the requested size (i.e. @code{interleaved} or @code{blocked} has no
effect), except for @code{interleaved} when the memkind library is
available. Furthermore, for @code{nearest} and unless the numa library
is available, the memory might not be on the same NUMA node as thread
that allocated the memory; on Linux, this is in particular the case when
the memory placement policy is set to preferred.
@item The @code{access} trait has no effect such that memory is always
accessible by all threads.
@item The @code{sync_hint} trait has no effect.
@end itemize
See also:
@ref{Offload-Target Specifics}
@c ---------------------------------------------------------------------
@c Offload-Target Specifics
@c ---------------------------------------------------------------------
@node Offload-Target Specifics
@chapter Offload-Target Specifics
The following sections present notes on the offload-target specifics
@menu
* AMD Radeon::
* nvptx::
@end menu
@node AMD Radeon
@section AMD Radeon (GCN)
On the hardware side, there is the hierarchy (fine to coarse):
@itemize
@item work item (thread)
@item wavefront
@item work group
@item compute unit (CU)
@end itemize
All OpenMP and OpenACC levels are used, i.e.
@itemize
@item OpenMP's simd and OpenACC's vector map to work items (thread)
@item OpenMP's threads (``parallel'') and OpenACC's workers map
to wavefronts
@item OpenMP's teams and OpenACC's gang use a threadpool with the
size of the number of teams or gangs, respectively.
@end itemize
The used sizes are
@itemize
@item Number of teams is the specified @code{num_teams} (OpenMP) or
@code{num_gangs} (OpenACC) or otherwise the number of CU. It is limited
by two times the number of CU.
@item Number of wavefronts is 4 for gfx900 and 16 otherwise;
@code{num_threads} (OpenMP) and @code{num_workers} (OpenACC)
overrides this if smaller.
@item The wavefront has 102 scalars and 64 vectors
@item Number of workitems is always 64
@item The hardware permits maximally 40 workgroups/CU and
16 wavefronts/workgroup up to a limit of 40 wavefronts in total per CU.
@item 80 scalars registers and 24 vector registers in non-kernel functions
(the chosen procedure-calling API).
@item For the kernel itself: as many as register pressure demands (number of
teams and number of threads, scaled down if registers are exhausted)
@end itemize
The implementation remark:
@itemize
@item I/O within OpenMP target regions and OpenACC parallel/kernels is supported
using the C library @code{printf} functions and the Fortran
@code{print}/@code{write} statements.
@item Reverse offload regions (i.e. @code{target} regions with
@code{device(ancestor:1)}) are processed serially per @code{target} region
such that the next reverse offload region is only executed after the previous
one returned.
@item OpenMP code that has a @code{requires} directive with
@code{unified_shared_memory} will remove any GCN device from the list of
available devices (``host fallback'').
@item The available stack size can be changed using the @code{GCN_STACK_SIZE}
environment variable; the default is 32 kiB per thread.
@item Low-latency memory (@code{omp_low_lat_mem_space}) is supported when the
the @code{access} trait is set to @code{cgroup}. The default pool size
is automatically scaled to share the 64 kiB LDS memory between the number
of teams configured to run on each compute-unit, but may be adjusted at
runtime by setting environment variable
@code{GOMP_GCN_LOWLAT_POOL=@var{bytes}}.
@item @code{omp_low_lat_mem_alloc} cannot be used with true low-latency memory
because the definition implies the @code{omp_atv_all} trait; main
graphics memory is used instead.
@item @code{omp_cgroup_mem_alloc}, @code{omp_pteam_mem_alloc}, and
@code{omp_thread_mem_alloc}, all use low-latency memory as first
preference, and fall back to main graphics memory when the low-latency
pool is exhausted.
@end itemize
@node nvptx
@section nvptx
On the hardware side, there is the hierarchy (fine to coarse):
@itemize
@item thread
@item warp
@item thread block
@item streaming multiprocessor
@end itemize
All OpenMP and OpenACC levels are used, i.e.
@itemize
@item OpenMP's simd and OpenACC's vector map to threads
@item OpenMP's threads (``parallel'') and OpenACC's workers map to warps
@item OpenMP's teams and OpenACC's gang use a threadpool with the
size of the number of teams or gangs, respectively.
@end itemize
The used sizes are
@itemize
@item The @code{warp_size} is always 32
@item CUDA kernel launched: @code{dim=@{#teams,1,1@}, blocks=@{#threads,warp_size,1@}}.
@item The number of teams is limited by the number of blocks the device can
host simultaneously.
@end itemize
Additional information can be obtained by setting the environment variable to
@code{GOMP_DEBUG=1} (very verbose; grep for @code{kernel.*launch} for launch
parameters).
GCC generates generic PTX ISA code, which is just-in-time compiled by CUDA,
which caches the JIT in the user's directory (see CUDA documentation; can be
tuned by the environment variables @code{CUDA_CACHE_@{DISABLE,MAXSIZE,PATH@}}.
Note: While PTX ISA is generic, the @code{-mptx=} and @code{-march=} commandline
options still affect the used PTX ISA code and, thus, the requirements on
CUDA version and hardware.
The implementation remark:
@itemize
@item I/O within OpenMP target regions and OpenACC parallel/kernels is supported
using the C library @code{printf} functions. Note that the Fortran
@code{print}/@code{write} statements are not supported, yet.
@item Compilation OpenMP code that contains @code{requires reverse_offload}
requires at least @code{-march=sm_35}, compiling for @code{-march=sm_30}
is not supported.
@item For code containing reverse offload (i.e. @code{target} regions with
@code{device(ancestor:1)}), there is a slight performance penalty
for @emph{all} target regions, consisting mostly of shutdown delay
Per device, reverse offload regions are processed serially such that
the next reverse offload region is only executed after the previous
one returned.
@item OpenMP code that has a @code{requires} directive with
@code{unified_shared_memory} will remove any nvptx device from the
list of available devices (``host fallback'').
@item The default per-warp stack size is 128 kiB; see also @code{-msoft-stack}
in the GCC manual.
@item The OpenMP routines @code{omp_target_memcpy_rect} and
@code{omp_target_memcpy_rect_async} and the @code{target update}
directive for non-contiguous list items will use the 2D and 3D
memory-copy functions of the CUDA library. Higher dimensions will
call those functions in a loop and are therefore supported.
@item Low-latency memory (@code{omp_low_lat_mem_space}) is supported when the
the @code{access} trait is set to @code{cgroup}, the ISA is at least
@code{sm_53}, and the PTX version is at least 4.1. The default pool size
is 8 kiB per team, but may be adjusted at runtime by setting environment
variable @code{GOMP_NVPTX_LOWLAT_POOL=@var{bytes}}. The maximum value is
limited by the available hardware, and care should be taken that the
selected pool size does not unduly limit the number of teams that can
run simultaneously.
@item @code{omp_low_lat_mem_alloc} cannot be used with true low-latency memory
because the definition implies the @code{omp_atv_all} trait; main
graphics memory is used instead.
@item @code{omp_cgroup_mem_alloc}, @code{omp_pteam_mem_alloc}, and
@code{omp_thread_mem_alloc}, all use low-latency memory as first
preference, and fall back to main graphics memory when the low-latency
pool is exhausted.
@end itemize
@c ---------------------------------------------------------------------
@c The libgomp ABI
@c ---------------------------------------------------------------------
@node The libgomp ABI
@chapter The libgomp ABI
The following sections present notes on the external ABI as
presented by libgomp. Only maintainers should need them.
@menu
* Implementing MASTER construct::
* Implementing CRITICAL construct::
* Implementing ATOMIC construct::
* Implementing FLUSH construct::
* Implementing BARRIER construct::
* Implementing THREADPRIVATE construct::
* Implementing PRIVATE clause::
* Implementing FIRSTPRIVATE LASTPRIVATE COPYIN and COPYPRIVATE clauses::
* Implementing REDUCTION clause::
* Implementing PARALLEL construct::
* Implementing FOR construct::
* Implementing ORDERED construct::
* Implementing SECTIONS construct::
* Implementing SINGLE construct::
* Implementing OpenACC's PARALLEL construct::
@end menu
@node Implementing MASTER construct
@section Implementing MASTER construct
@smallexample
if (omp_get_thread_num () == 0)
block
@end smallexample
Alternately, we generate two copies of the parallel subfunction
and only include this in the version run by the primary thread.
Surely this is not worthwhile though...
@node Implementing CRITICAL construct
@section Implementing CRITICAL construct
Without a specified name,
@smallexample
void GOMP_critical_start (void);
void GOMP_critical_end (void);
@end smallexample
so that we don't get COPY relocations from libgomp to the main
application.
With a specified name, use omp_set_lock and omp_unset_lock with
name being transformed into a variable declared like
@smallexample
omp_lock_t gomp_critical_user_<name> __attribute__((common))
@end smallexample
Ideally the ABI would specify that all zero is a valid unlocked
state, and so we wouldn't need to initialize this at
startup.
@node Implementing ATOMIC construct
@section Implementing ATOMIC construct
The target should implement the @code{__sync} builtins.
Failing that we could add
@smallexample
void GOMP_atomic_enter (void)
void GOMP_atomic_exit (void)
@end smallexample
which reuses the regular lock code, but with yet another lock
object private to the library.
@node Implementing FLUSH construct
@section Implementing FLUSH construct
Expands to the @code{__sync_synchronize} builtin.
@node Implementing BARRIER construct
@section Implementing BARRIER construct
@smallexample
void GOMP_barrier (void)
@end smallexample
@node Implementing THREADPRIVATE construct
@section Implementing THREADPRIVATE construct
In _most_ cases we can map this directly to @code{__thread}. Except
that OMP allows constructors for C++ objects. We can either
refuse to support this (how often is it used?) or we can
implement something akin to .ctors.
Even more ideally, this ctor feature is handled by extensions
to the main pthreads library. Failing that, we can have a set
of entry points to register ctor functions to be called.
@node Implementing PRIVATE clause
@section Implementing PRIVATE clause
In association with a PARALLEL, or within the lexical extent
of a PARALLEL block, the variable becomes a local variable in
the parallel subfunction.
In association with FOR or SECTIONS blocks, create a new
automatic variable within the current function. This preserves
the semantic of new variable creation.
@node Implementing FIRSTPRIVATE LASTPRIVATE COPYIN and COPYPRIVATE clauses
@section Implementing FIRSTPRIVATE LASTPRIVATE COPYIN and COPYPRIVATE clauses
This seems simple enough for PARALLEL blocks. Create a private
struct for communicating between the parent and subfunction.
In the parent, copy in values for scalar and "small" structs;
copy in addresses for others TREE_ADDRESSABLE types. In the
subfunction, copy the value into the local variable.
It is not clear what to do with bare FOR or SECTION blocks.
The only thing I can figure is that we do something like:
@smallexample
#pragma omp for firstprivate(x) lastprivate(y)
for (int i = 0; i < n; ++i)
body;
@end smallexample
which becomes
@smallexample
@{
int x = x, y;
// for stuff
if (i == n)
y = y;
@}
@end smallexample
where the "x=x" and "y=y" assignments actually have different
uids for the two variables, i.e. not something you could write
directly in C. Presumably this only makes sense if the "outer"
x and y are global variables.
COPYPRIVATE would work the same way, except the structure
broadcast would have to happen via SINGLE machinery instead.
@node Implementing REDUCTION clause
@section Implementing REDUCTION clause
The private struct mentioned in the previous section should have
a pointer to an array of the type of the variable, indexed by the
thread's @var{team_id}. The thread stores its final value into the
array, and after the barrier, the primary thread iterates over the
array to collect the values.
@node Implementing PARALLEL construct
@section Implementing PARALLEL construct
@smallexample
#pragma omp parallel
@{
body;
@}
@end smallexample
becomes
@smallexample
void subfunction (void *data)
@{
use data;
body;
@}
setup data;
GOMP_parallel_start (subfunction, &data, num_threads);
subfunction (&data);
GOMP_parallel_end ();
@end smallexample
@smallexample
void GOMP_parallel_start (void (*fn)(void *), void *data, unsigned num_threads)
@end smallexample
The @var{FN} argument is the subfunction to be run in parallel.
The @var{DATA} argument is a pointer to a structure used to
communicate data in and out of the subfunction, as discussed
above with respect to FIRSTPRIVATE et al.
The @var{NUM_THREADS} argument is 1 if an IF clause is present
and false, or the value of the NUM_THREADS clause, if
present, or 0.
The function needs to create the appropriate number of
threads and/or launch them from the dock. It needs to
create the team structure and assign team ids.
@smallexample
void GOMP_parallel_end (void)
@end smallexample
Tears down the team and returns us to the previous @code{omp_in_parallel()} state.
@node Implementing FOR construct
@section Implementing FOR construct
@smallexample
#pragma omp parallel for
for (i = lb; i <= ub; i++)
body;
@end smallexample
becomes
@smallexample
void subfunction (void *data)
@{
long _s0, _e0;
while (GOMP_loop_static_next (&_s0, &_e0))
@{
long _e1 = _e0, i;
for (i = _s0; i < _e1; i++)
body;
@}
GOMP_loop_end_nowait ();
@}
GOMP_parallel_loop_static (subfunction, NULL, 0, lb, ub+1, 1, 0);
subfunction (NULL);
GOMP_parallel_end ();
@end smallexample
@smallexample
#pragma omp for schedule(runtime)
for (i = 0; i < n; i++)
body;
@end smallexample
becomes
@smallexample
@{
long i, _s0, _e0;
if (GOMP_loop_runtime_start (0, n, 1, &_s0, &_e0))
do @{
long _e1 = _e0;
for (i = _s0, i < _e0; i++)
body;
@} while (GOMP_loop_runtime_next (&_s0, _&e0));
GOMP_loop_end ();
@}
@end smallexample
Note that while it looks like there is trickiness to propagating
a non-constant STEP, there isn't really. We're explicitly allowed
to evaluate it as many times as we want, and any variables involved
should automatically be handled as PRIVATE or SHARED like any other
variables. So the expression should remain evaluable in the
subfunction. We can also pull it into a local variable if we like,
but since its supposed to remain unchanged, we can also not if we like.
If we have SCHEDULE(STATIC), and no ORDERED, then we ought to be
able to get away with no work-sharing context at all, since we can
simply perform the arithmetic directly in each thread to divide up
the iterations. Which would mean that we wouldn't need to call any
of these routines.
There are separate routines for handling loops with an ORDERED
clause. Bookkeeping for that is non-trivial...
@node Implementing ORDERED construct
@section Implementing ORDERED construct
@smallexample
void GOMP_ordered_start (void)
void GOMP_ordered_end (void)
@end smallexample
@node Implementing SECTIONS construct
@section Implementing SECTIONS construct
A block as
@smallexample
#pragma omp sections
@{
#pragma omp section
stmt1;
#pragma omp section
stmt2;
#pragma omp section
stmt3;
@}
@end smallexample
becomes
@smallexample
for (i = GOMP_sections_start (3); i != 0; i = GOMP_sections_next ())
switch (i)
@{
case 1:
stmt1;
break;
case 2:
stmt2;
break;
case 3:
stmt3;
break;
@}
GOMP_barrier ();
@end smallexample
@node Implementing SINGLE construct
@section Implementing SINGLE construct
A block like
@smallexample
#pragma omp single
@{
body;
@}
@end smallexample
becomes
@smallexample
if (GOMP_single_start ())
body;
GOMP_barrier ();
@end smallexample
while
@smallexample
#pragma omp single copyprivate(x)
body;
@end smallexample
becomes
@smallexample
datap = GOMP_single_copy_start ();
if (datap == NULL)
@{
body;
data.x = x;
GOMP_single_copy_end (&data);
@}
else
x = datap->x;
GOMP_barrier ();
@end smallexample
@node Implementing OpenACC's PARALLEL construct
@section Implementing OpenACC's PARALLEL construct
@smallexample
void GOACC_parallel ()
@end smallexample
@c ---------------------------------------------------------------------
@c Reporting Bugs
@c ---------------------------------------------------------------------
@node Reporting Bugs
@chapter Reporting Bugs
Bugs in the GNU Offloading and Multi Processing Runtime Library should
be reported via @uref{https://gcc.gnu.org/bugzilla/, Bugzilla}. Please add
"openacc", or "openmp", or both to the keywords field in the bug
report, as appropriate.
@c ---------------------------------------------------------------------
@c GNU General Public License
@c ---------------------------------------------------------------------
@include gpl_v3.texi
@c ---------------------------------------------------------------------
@c GNU Free Documentation License
@c ---------------------------------------------------------------------
@include fdl.texi
@c ---------------------------------------------------------------------
@c Funding Free Software
@c ---------------------------------------------------------------------
@include funding.texi
@c ---------------------------------------------------------------------
@c Index
@c ---------------------------------------------------------------------
@node Library Index
@unnumbered Library Index
@printindex cp
@bye
|