1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690
|
------------------------------------------------------------------------------
-- --
-- GNAT LIBRARY COMPONENTS --
-- --
-- ADA.CONTAINERS.RED_BLACK_TREES.GENERIC_KEYS --
-- --
-- B o d y --
-- --
-- Copyright (C) 2004-2022, Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 3, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. --
-- --
-- As a special exception under Section 7 of GPL version 3, you are granted --
-- additional permissions described in the GCC Runtime Library Exception, --
-- version 3.1, as published by the Free Software Foundation. --
-- --
-- You should have received a copy of the GNU General Public License and --
-- a copy of the GCC Runtime Library Exception along with this program; --
-- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
-- <http://www.gnu.org/licenses/>. --
-- --
-- This unit was originally developed by Matthew J Heaney. --
------------------------------------------------------------------------------
package body Ada.Containers.Red_Black_Trees.Generic_Keys is
pragma Warnings (Off, "variable ""Busy*"" is not referenced");
pragma Warnings (Off, "variable ""Lock*"" is not referenced");
-- See comment in Ada.Containers.Helpers
package Ops renames Tree_Operations;
-------------
-- Ceiling --
-------------
-- AKA Lower_Bound
function Ceiling (Tree : Tree_Type; Key : Key_Type) return Node_Access is
-- Per AI05-0022, the container implementation is required to detect
-- element tampering by a generic actual subprogram.
Lock : With_Lock (Tree.TC'Unrestricted_Access);
Y : Node_Access;
X : Node_Access;
begin
-- If the container is empty, return a result immediately, so that we do
-- not manipulate the tamper bits unnecessarily.
if Tree.Root = null then
return null;
end if;
X := Tree.Root;
while X /= null loop
if Is_Greater_Key_Node (Key, X) then
X := Ops.Right (X);
else
Y := X;
X := Ops.Left (X);
end if;
end loop;
return Y;
end Ceiling;
----------
-- Find --
----------
function Find (Tree : Tree_Type; Key : Key_Type) return Node_Access is
-- Per AI05-0022, the container implementation is required to detect
-- element tampering by a generic actual subprogram.
Lock : With_Lock (Tree.TC'Unrestricted_Access);
Y : Node_Access;
X : Node_Access;
begin
-- If the container is empty, return a result immediately, so that we do
-- not manipulate the tamper bits unnecessarily.
if Tree.Root = null then
return null;
end if;
X := Tree.Root;
while X /= null loop
if Is_Greater_Key_Node (Key, X) then
X := Ops.Right (X);
else
Y := X;
X := Ops.Left (X);
end if;
end loop;
if Y = null or else Is_Less_Key_Node (Key, Y) then
return null;
else
return Y;
end if;
end Find;
-----------
-- Floor --
-----------
function Floor (Tree : Tree_Type; Key : Key_Type) return Node_Access is
-- Per AI05-0022, the container implementation is required to detect
-- element tampering by a generic actual subprogram.
Lock : With_Lock (Tree.TC'Unrestricted_Access);
Y : Node_Access;
X : Node_Access;
begin
-- If the container is empty, return a result immediately, so that we do
-- not manipulate the tamper bits unnecessarily.
if Tree.Root = null then
return null;
end if;
X := Tree.Root;
while X /= null loop
if Is_Less_Key_Node (Key, X) then
X := Ops.Left (X);
else
Y := X;
X := Ops.Right (X);
end if;
end loop;
return Y;
end Floor;
--------------------------------
-- Generic_Conditional_Insert --
--------------------------------
procedure Generic_Conditional_Insert
(Tree : in out Tree_Type;
Key : Key_Type;
Node : out Node_Access;
Inserted : out Boolean)
is
X : Node_Access;
Y : Node_Access;
Compare : Boolean;
begin
-- This is a "conditional" insertion, meaning that the insertion request
-- can "fail" in the sense that no new node is created. If the Key is
-- equivalent to an existing node, then we return the existing node and
-- Inserted is set to False. Otherwise, we allocate a new node (via
-- Insert_Post) and Inserted is set to True.
-- Note that we are testing for equivalence here, not equality. Key must
-- be strictly less than its next neighbor, and strictly greater than
-- its previous neighbor, in order for the conditional insertion to
-- succeed.
-- Handle insertion into an empty container as a special case, so that
-- we do not manipulate the tamper bits unnecessarily.
if Tree.Root = null then
Insert_Post (Tree, null, True, Node);
Inserted := True;
return;
end if;
-- We search the tree to find the nearest neighbor of Key, which is
-- either the smallest node greater than Key (Inserted is True), or the
-- largest node less or equivalent to Key (Inserted is False).
declare
Lock : With_Lock (Tree.TC'Unrestricted_Access);
begin
X := Tree.Root;
Y := null;
Inserted := True;
while X /= null loop
Y := X;
Inserted := Is_Less_Key_Node (Key, X);
X := (if Inserted then Ops.Left (X) else Ops.Right (X));
end loop;
end;
if Inserted then
-- Key is less than Y. If Y is the first node in the tree, then there
-- are no other nodes that we need to search for, and we insert a new
-- node into the tree.
if Y = Tree.First then
Insert_Post (Tree, Y, True, Node);
return;
end if;
-- Y is the next nearest-neighbor of Key. We know that Key is not
-- equivalent to Y (because Key is strictly less than Y), so we move
-- to the previous node, the nearest-neighbor just smaller or
-- equivalent to Key.
Node := Ops.Previous (Y);
else
-- Y is the previous nearest-neighbor of Key. We know that Key is not
-- less than Y, which means either that Key is equivalent to Y, or
-- greater than Y.
Node := Y;
end if;
-- Key is equivalent to or greater than Node. We must resolve which is
-- the case, to determine whether the conditional insertion succeeds.
declare
Lock : With_Lock (Tree.TC'Unrestricted_Access);
begin
Compare := Is_Greater_Key_Node (Key, Node);
end;
if Compare then
-- Key is strictly greater than Node, which means that Key is not
-- equivalent to Node. In this case, the insertion succeeds, and we
-- insert a new node into the tree.
Insert_Post (Tree, Y, Inserted, Node);
Inserted := True;
return;
end if;
-- Key is equivalent to Node. This is a conditional insertion, so we do
-- not insert a new node in this case. We return the existing node and
-- report that no insertion has occurred.
Inserted := False;
end Generic_Conditional_Insert;
------------------------------------------
-- Generic_Conditional_Insert_With_Hint --
------------------------------------------
procedure Generic_Conditional_Insert_With_Hint
(Tree : in out Tree_Type;
Position : Node_Access;
Key : Key_Type;
Node : out Node_Access;
Inserted : out Boolean)
is
Test : Node_Access;
Compare : Boolean;
begin
-- The purpose of a hint is to avoid a search from the root of
-- tree. If we have it hint it means we only need to traverse the
-- subtree rooted at the hint to find the nearest neighbor. Note
-- that finding the neighbor means merely walking the tree; this
-- is not a search and the only comparisons that occur are with
-- the hint and its neighbor.
-- Handle insertion into an empty container as a special case, so that
-- we do not manipulate the tamper bits unnecessarily.
if Tree.Root = null then
Insert_Post (Tree, null, True, Node);
Inserted := True;
return;
end if;
-- If Position is null, this is interpreted to mean that Key is large
-- relative to the nodes in the tree. If Key is greater than the last
-- node in the tree, then we're done; otherwise the hint was "wrong" and
-- we must search.
if Position = null then -- largest
declare
Lock : With_Lock (Tree.TC'Unrestricted_Access);
begin
Compare := Is_Greater_Key_Node (Key, Tree.Last);
end;
if Compare then
Insert_Post (Tree, Tree.Last, False, Node);
Inserted := True;
else
Conditional_Insert_Sans_Hint (Tree, Key, Node, Inserted);
end if;
return;
end if;
pragma Assert (Tree.Length > 0);
-- A hint can either name the node that immediately follows Key,
-- or immediately precedes Key. We first test whether Key is
-- less than the hint, and if so we compare Key to the node that
-- precedes the hint. If Key is both less than the hint and
-- greater than the hint's preceding neighbor, then we're done;
-- otherwise we must search.
-- Note also that a hint can either be an anterior node or a leaf
-- node. A new node is always inserted at the bottom of the tree
-- (at least prior to rebalancing), becoming the new left or
-- right child of leaf node (which prior to the insertion must
-- necessarily be null, since this is a leaf). If the hint names
-- an anterior node then its neighbor must be a leaf, and so
-- (here) we insert after the neighbor. If the hint names a leaf
-- then its neighbor must be anterior and so we insert before the
-- hint.
declare
Lock : With_Lock (Tree.TC'Unrestricted_Access);
begin
Compare := Is_Less_Key_Node (Key, Position);
end;
if Compare then
Test := Ops.Previous (Position); -- "before"
if Test = null then -- new first node
Insert_Post (Tree, Tree.First, True, Node);
Inserted := True;
return;
end if;
declare
Lock : With_Lock (Tree.TC'Unrestricted_Access);
begin
Compare := Is_Greater_Key_Node (Key, Test);
end;
if Compare then
if Ops.Right (Test) = null then
Insert_Post (Tree, Test, False, Node);
else
Insert_Post (Tree, Position, True, Node);
end if;
Inserted := True;
else
Conditional_Insert_Sans_Hint (Tree, Key, Node, Inserted);
end if;
return;
end if;
-- We know that Key isn't less than the hint so we try again, this time
-- to see if it's greater than the hint. If so we compare Key to the
-- node that follows the hint. If Key is both greater than the hint and
-- less than the hint's next neighbor, then we're done; otherwise we
-- must search.
declare
Lock : With_Lock (Tree.TC'Unrestricted_Access);
begin
Compare := Is_Greater_Key_Node (Key, Position);
end;
if Compare then
Test := Ops.Next (Position); -- "after"
if Test = null then -- new last node
Insert_Post (Tree, Tree.Last, False, Node);
Inserted := True;
return;
end if;
declare
Lock : With_Lock (Tree.TC'Unrestricted_Access);
begin
Compare := Is_Less_Key_Node (Key, Test);
end;
if Compare then
if Ops.Right (Position) = null then
Insert_Post (Tree, Position, False, Node);
else
Insert_Post (Tree, Test, True, Node);
end if;
Inserted := True;
else
Conditional_Insert_Sans_Hint (Tree, Key, Node, Inserted);
end if;
return;
end if;
-- We know that Key is neither less than the hint nor greater than the
-- hint, and that's the definition of equivalence. There's nothing else
-- we need to do, since a search would just reach the same conclusion.
Node := Position;
Inserted := False;
end Generic_Conditional_Insert_With_Hint;
-------------------------
-- Generic_Insert_Post --
-------------------------
procedure Generic_Insert_Post
(Tree : in out Tree_Type;
Y : Node_Access;
Before : Boolean;
Z : out Node_Access)
is
begin
TC_Check (Tree.TC);
if Checks and then Tree.Length = Count_Type'Last then
raise Constraint_Error with "too many elements";
end if;
Z := New_Node;
pragma Assert (Z /= null);
pragma Assert (Ops.Color (Z) = Red);
if Y = null then
pragma Assert (Tree.Length = 0);
pragma Assert (Tree.Root = null);
pragma Assert (Tree.First = null);
pragma Assert (Tree.Last = null);
Tree.Root := Z;
Tree.First := Z;
Tree.Last := Z;
elsif Before then
pragma Assert (Ops.Left (Y) = null);
Ops.Set_Left (Y, Z);
if Y = Tree.First then
Tree.First := Z;
end if;
else
pragma Assert (Ops.Right (Y) = null);
Ops.Set_Right (Y, Z);
if Y = Tree.Last then
Tree.Last := Z;
end if;
end if;
Ops.Set_Parent (Z, Y);
Ops.Rebalance_For_Insert (Tree, Z);
Tree.Length := Tree.Length + 1;
end Generic_Insert_Post;
-----------------------
-- Generic_Iteration --
-----------------------
procedure Generic_Iteration
(Tree : Tree_Type;
Key : Key_Type)
is
procedure Iterate (Node : Node_Access);
-------------
-- Iterate --
-------------
procedure Iterate (Node : Node_Access) is
N : Node_Access;
begin
N := Node;
while N /= null loop
if Is_Less_Key_Node (Key, N) then
N := Ops.Left (N);
elsif Is_Greater_Key_Node (Key, N) then
N := Ops.Right (N);
else
Iterate (Ops.Left (N));
Process (N);
N := Ops.Right (N);
end if;
end loop;
end Iterate;
-- Start of processing for Generic_Iteration
begin
Iterate (Tree.Root);
end Generic_Iteration;
-------------------------------
-- Generic_Reverse_Iteration --
-------------------------------
procedure Generic_Reverse_Iteration
(Tree : Tree_Type;
Key : Key_Type)
is
procedure Iterate (Node : Node_Access);
-------------
-- Iterate --
-------------
procedure Iterate (Node : Node_Access) is
N : Node_Access;
begin
N := Node;
while N /= null loop
if Is_Less_Key_Node (Key, N) then
N := Ops.Left (N);
elsif Is_Greater_Key_Node (Key, N) then
N := Ops.Right (N);
else
Iterate (Ops.Right (N));
Process (N);
N := Ops.Left (N);
end if;
end loop;
end Iterate;
-- Start of processing for Generic_Reverse_Iteration
begin
Iterate (Tree.Root);
end Generic_Reverse_Iteration;
----------------------------------
-- Generic_Unconditional_Insert --
----------------------------------
procedure Generic_Unconditional_Insert
(Tree : in out Tree_Type;
Key : Key_Type;
Node : out Node_Access)
is
Y : Node_Access;
X : Node_Access;
Before : Boolean;
begin
Y := null;
Before := False;
X := Tree.Root;
while X /= null loop
Y := X;
Before := Is_Less_Key_Node (Key, X);
X := (if Before then Ops.Left (X) else Ops.Right (X));
end loop;
Insert_Post (Tree, Y, Before, Node);
end Generic_Unconditional_Insert;
--------------------------------------------
-- Generic_Unconditional_Insert_With_Hint --
--------------------------------------------
procedure Generic_Unconditional_Insert_With_Hint
(Tree : in out Tree_Type;
Hint : Node_Access;
Key : Key_Type;
Node : out Node_Access)
is
begin
-- There are fewer constraints for an unconditional insertion
-- than for a conditional insertion, since we allow duplicate
-- keys. So instead of having to check (say) whether Key is
-- (strictly) greater than the hint's previous neighbor, here we
-- allow Key to be equal to or greater than the previous node.
-- There is the issue of what to do if Key is equivalent to the
-- hint. Does the new node get inserted before or after the hint?
-- We decide that it gets inserted after the hint, reasoning that
-- this is consistent with behavior for non-hint insertion, which
-- inserts a new node after existing nodes with equivalent keys.
-- First we check whether the hint is null, which is interpreted
-- to mean that Key is large relative to existing nodes.
-- Following our rule above, if Key is equal to or greater than
-- the last node, then we insert the new node immediately after
-- last. (We don't have an operation for testing whether a key is
-- "equal to or greater than" a node, so we must say instead "not
-- less than", which is equivalent.)
if Hint = null then -- largest
if Tree.Last = null then
Insert_Post (Tree, null, False, Node);
elsif Is_Less_Key_Node (Key, Tree.Last) then
Unconditional_Insert_Sans_Hint (Tree, Key, Node);
else
Insert_Post (Tree, Tree.Last, False, Node);
end if;
return;
end if;
pragma Assert (Tree.Length > 0);
-- We decide here whether to insert the new node prior to the
-- hint. Key could be equivalent to the hint, so in theory we
-- could write the following test as "not greater than" (same as
-- "less than or equal to"). If Key were equivalent to the hint,
-- that would mean that the new node gets inserted before an
-- equivalent node. That wouldn't break any container invariants,
-- but our rule above says that new nodes always get inserted
-- after equivalent nodes. So here we test whether Key is both
-- less than the hint and equal to or greater than the hint's
-- previous neighbor, and if so insert it before the hint.
if Is_Less_Key_Node (Key, Hint) then
declare
Before : constant Node_Access := Ops.Previous (Hint);
begin
if Before = null then
Insert_Post (Tree, Hint, True, Node);
elsif Is_Less_Key_Node (Key, Before) then
Unconditional_Insert_Sans_Hint (Tree, Key, Node);
elsif Ops.Right (Before) = null then
Insert_Post (Tree, Before, False, Node);
else
Insert_Post (Tree, Hint, True, Node);
end if;
end;
return;
end if;
-- We know that Key isn't less than the hint, so it must be equal
-- or greater. So we just test whether Key is less than or equal
-- to (same as "not greater than") the hint's next neighbor, and
-- if so insert it after the hint.
declare
After : constant Node_Access := Ops.Next (Hint);
begin
if After = null then
Insert_Post (Tree, Hint, False, Node);
elsif Is_Greater_Key_Node (Key, After) then
Unconditional_Insert_Sans_Hint (Tree, Key, Node);
elsif Ops.Right (Hint) = null then
Insert_Post (Tree, Hint, False, Node);
else
Insert_Post (Tree, After, True, Node);
end if;
end;
end Generic_Unconditional_Insert_With_Hint;
-----------------
-- Upper_Bound --
-----------------
function Upper_Bound
(Tree : Tree_Type;
Key : Key_Type) return Node_Access
is
Y : Node_Access;
X : Node_Access;
begin
X := Tree.Root;
while X /= null loop
if Is_Less_Key_Node (Key, X) then
Y := X;
X := Ops.Left (X);
else
X := Ops.Right (X);
end if;
end loop;
return Y;
end Upper_Bound;
end Ada.Containers.Red_Black_Trees.Generic_Keys;
|