1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
|
------------------------------------------------------------------------------
-- --
-- GNAT RUN-TIME COMPONENTS --
-- --
-- A D A . T E X T _ I O . F I X E D _ I O --
-- --
-- B o d y --
-- --
-- Copyright (C) 2020-2022, Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 3, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. --
-- --
-- As a special exception under Section 7 of GPL version 3, you are granted --
-- additional permissions described in the GCC Runtime Library Exception, --
-- version 3.1, as published by the Free Software Foundation. --
-- --
-- You should have received a copy of the GNU General Public License and --
-- a copy of the GCC Runtime Library Exception along with this program; --
-- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
-- <http://www.gnu.org/licenses/>. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc. --
-- --
------------------------------------------------------------------------------
-- -------------------
-- - Fixed point I/O -
-- -------------------
-- The following text documents implementation details of the fixed point
-- input/output routines in the GNAT runtime. The first part describes the
-- general properties of fixed point types as defined by the Ada standard,
-- including the Information Systems Annex.
-- Subsequently these are reduced to implementation constraints and the impact
-- of these constraints on a few possible approaches to input/output is given.
-- Based on this analysis, a specific implementation is selected for use in
-- the GNAT runtime. Finally the chosen algorithms are analyzed numerically in
-- order to provide user-level documentation on limits for range and precision
-- of fixed point types as well as accuracy of input/output conversions.
-- -------------------------------------------
-- - General Properties of Fixed Point Types -
-- -------------------------------------------
-- Operations on fixed point types, other than input/output, are not important
-- for the purpose of this document. Only the set of values that a fixed point
-- type can represent and the input/output operations are significant.
-- Values
-- ------
-- The set of values of a fixed point type comprise the integral multiples of
-- a number called the small of the type. The small can be either a power of
-- two, a power of ten or (if the implementation allows) an arbitrary strictly
-- positive real value.
-- Implementations need to support ordinary fixed point types with a precision
-- of at least 24 bits, and (in order to comply with the Information Systems
-- Annex) decimal fixed point types with at least 18 digits. For the rest, no
-- requirements exist for the minimal small and range that must be supported.
-- Operations
-- ----------
-- [Wide_[Wide_]]Image attribute (see RM 3.5(27.1/2))
-- These attributes return a decimal real literal best approximating
-- the value (rounded away from zero if halfway between) with a
-- single leading character that is either a minus sign or a space,
-- one or more digits before the decimal point (with no redundant
-- leading zeros), a decimal point, and N digits after the decimal
-- point. For a subtype S, the value of N is S'Aft, the smallest
-- positive integer such that (10**N)*S'Delta is greater or equal to
-- one, see RM 3.5.10(5).
-- For an arbitrary small, this means large number arithmetic needs
-- to be performed.
-- Put (see RM A.10.9(22-26))
-- The requirements for Put add no extra constraints over the image
-- attributes, although it would be nice to be able to output more
-- than S'Aft digits after the decimal point for values of subtype S.
-- [Wide_[Wide_]]Value attribute (RM 3.5(39.1/2))
-- Since the input can be given in any base in the range 2..16,
-- accurate conversion to a fixed point number may require
-- arbitrary precision arithmetic if there is no limit on the
-- magnitude of the small of the fixed point type.
-- Get (see RM A.10.9(12-21))
-- The requirements for Get are identical to those of the Value
-- attribute.
-- ------------------------------
-- - Implementation Constraints -
-- ------------------------------
-- The requirements listed above for the input/output operations lead to
-- significant complexity, if no constraints are put on supported smalls.
-- Implementation Strategies
-- -------------------------
-- * Floating point arithmetic
-- * Arbitrary-precision integer arithmetic
-- * Fixed-precision integer arithmetic
-- Although it seems convenient to convert fixed point numbers to floating
-- point and then print them, this leads to a number of restrictions.
-- The first one is precision. The widest floating-point type generally
-- available has 53 bits of mantissa. This means that Fine_Delta cannot
-- be less than 2.0**(-53).
-- In GNAT, Fine_Delta is 2.0**(-127), and Duration for example is a 64-bit
-- type. This means that a floating-point type with 128 bits of mantissa needs
-- to be used, which currently does not exist in any common architecture. It
-- would still be possible to use multi-precision floating point to perform
-- calculations using longer mantissas, but this is a much harder approach.
-- The base conversions needed for input/output of (non-decimal) fixed point
-- types can be seen as pairs of integer multiplications and divisions.
-- Arbitrary-precision integer arithmetic would be suitable for the job at
-- hand, but has the drawback that it is very heavy implementation-wise.
-- Especially in embedded systems, where fixed point types are often used,
-- it may not be desirable to require large amounts of storage and time
-- for fixed I/O operations.
-- Fixed-precision integer arithmetic has the advantage of simplicity and
-- speed. For the most common fixed point types this would be a perfect
-- solution. The downside however may be a restricted set of acceptable
-- fixed point types.
-- Implementation Choices
-- ----------------------
-- The current implementation in the GNAT runtime uses fixed-precision integer
-- arithmetic for fixed point types whose Small is the ratio of two integers
-- whose magnitude is bounded relatively to the size of the mantissa, with a
-- three-tiered approach for 32-bit, 64-bit and 128-bit fixed point types. For
-- other fixed point types, the implementation uses floating-point arithmetic.
-- The exact requirements of the algorithms are analyzed and documented along
-- with the implementation in their respective units.
with Interfaces;
with Ada.Text_IO.Fixed_Aux;
with Ada.Text_IO.Float_Aux;
with System.Img_Fixed_32; use System.Img_Fixed_32;
with System.Img_Fixed_64; use System.Img_Fixed_64;
with System.Img_Fixed_128; use System.Img_Fixed_128;
with System.Img_LFlt; use System.Img_LFlt;
with System.Val_Fixed_32; use System.Val_Fixed_32;
with System.Val_Fixed_64; use System.Val_Fixed_64;
with System.Val_Fixed_128; use System.Val_Fixed_128;
with System.Val_LFlt; use System.Val_LFlt;
package body Ada.Text_IO.Fixed_IO with SPARK_Mode => Off is
-- Note: we still use the floating-point I/O routines for types whose small
-- is not the ratio of two sufficiently small integers. This will result in
-- inaccuracies for fixed point types that require more precision than is
-- available in Long_Float.
subtype Int32 is Interfaces.Integer_32; use type Int32;
subtype Int64 is Interfaces.Integer_64; use type Int64;
subtype Int128 is Interfaces.Integer_128; use type Int128;
package Aux32 is new
Ada.Text_IO.Fixed_Aux (Int32, Scan_Fixed32, Set_Image_Fixed32);
package Aux64 is new
Ada.Text_IO.Fixed_Aux (Int64, Scan_Fixed64, Set_Image_Fixed64);
package Aux128 is new
Ada.Text_IO.Fixed_Aux (Int128, Scan_Fixed128, Set_Image_Fixed128);
package Aux_Long_Float is new
Ada.Text_IO.Float_Aux (Long_Float, Scan_Long_Float, Set_Image_Long_Float);
-- Throughout this generic body, we distinguish between the case where type
-- Int32 is OK, where type Int64 is OK and where type Int128 is OK. These
-- boolean constants are used to test for this, such that only code for the
-- relevant case is included in the instance; that's why the computation of
-- their value must be fully static (although it is not a static expression
-- in the RM sense).
OK_Get_32 : constant Boolean :=
Num'Base'Object_Size <= 32
and then
((Num'Small_Numerator = 1 and then Num'Small_Denominator <= 2**31)
or else
(Num'Small_Denominator = 1 and then Num'Small_Numerator <= 2**31)
or else
(Num'Small_Numerator <= 2**27
and then Num'Small_Denominator <= 2**27));
-- These conditions are derived from the prerequisites of System.Value_F
OK_Put_32 : constant Boolean :=
Num'Base'Object_Size <= 32
and then
((Num'Small_Numerator = 1 and then Num'Small_Denominator <= 2**31)
or else
(Num'Small_Denominator = 1 and then Num'Small_Numerator <= 2**31)
or else
(Num'Small_Numerator < Num'Small_Denominator
and then Num'Small_Denominator <= 2**27)
or else
(Num'Small_Denominator < Num'Small_Numerator
and then Num'Small_Numerator <= 2**25));
-- These conditions are derived from the prerequisites of System.Image_F
OK_Get_64 : constant Boolean :=
Num'Base'Object_Size <= 64
and then
((Num'Small_Numerator = 1 and then Num'Small_Denominator <= 2**63)
or else
(Num'Small_Denominator = 1 and then Num'Small_Numerator <= 2**63)
or else
(Num'Small_Numerator <= 2**59
and then Num'Small_Denominator <= 2**59));
-- These conditions are derived from the prerequisites of System.Value_F
OK_Put_64 : constant Boolean :=
Num'Base'Object_Size <= 64
and then
((Num'Small_Numerator = 1 and then Num'Small_Denominator <= 2**63)
or else
(Num'Small_Denominator = 1 and then Num'Small_Numerator <= 2**63)
or else
(Num'Small_Numerator < Num'Small_Denominator
and then Num'Small_Denominator <= 2**59)
or else
(Num'Small_Denominator < Num'Small_Numerator
and then Num'Small_Numerator <= 2**53));
-- These conditions are derived from the prerequisites of System.Image_F
OK_Get_128 : constant Boolean :=
Num'Base'Object_Size <= 128
and then
((Num'Small_Numerator = 1 and then Num'Small_Denominator <= 2**127)
or else
(Num'Small_Denominator = 1 and then Num'Small_Numerator <= 2**127)
or else
(Num'Small_Numerator <= 2**123
and then Num'Small_Denominator <= 2**123));
-- These conditions are derived from the prerequisites of System.Value_F
OK_Put_128 : constant Boolean :=
Num'Base'Object_Size <= 128
and then
((Num'Small_Numerator = 1 and then Num'Small_Denominator <= 2**127)
or else
(Num'Small_Denominator = 1 and then Num'Small_Numerator <= 2**127)
or else
(Num'Small_Numerator < Num'Small_Denominator
and then Num'Small_Denominator <= 2**123)
or else
(Num'Small_Denominator < Num'Small_Numerator
and then Num'Small_Numerator <= 2**122));
-- These conditions are derived from the prerequisites of System.Image_F
E : constant Natural :=
127 - 64 * Boolean'Pos (OK_Put_64) - 32 * Boolean'Pos (OK_Put_32);
-- T'Size - 1 for the selected Int{32,64,128}
F0 : constant Natural := 0;
F1 : constant Natural :=
F0 + 38 * Boolean'Pos (2.0**E * Num'Small * 10.0**(-F0) >= 1.0E+38);
F2 : constant Natural :=
F1 + 19 * Boolean'Pos (2.0**E * Num'Small * 10.0**(-F1) >= 1.0E+19);
F3 : constant Natural :=
F2 + 9 * Boolean'Pos (2.0**E * Num'Small * 10.0**(-F2) >= 1.0E+9);
F4 : constant Natural :=
F3 + 5 * Boolean'Pos (2.0**E * Num'Small * 10.0**(-F3) >= 1.0E+5);
F5 : constant Natural :=
F4 + 3 * Boolean'Pos (2.0**E * Num'Small * 10.0**(-F4) >= 1.0E+3);
F6 : constant Natural :=
F5 + 2 * Boolean'Pos (2.0**E * Num'Small * 10.0**(-F5) >= 1.0E+2);
F7 : constant Natural :=
F6 + 1 * Boolean'Pos (2.0**E * Num'Small * 10.0**(-F6) >= 1.0E+1);
-- Binary search for the number of digits - 1 before the decimal point of
-- the product 2.0**E * Num'Small.
For0 : constant Natural := 2 + F7;
-- Fore value for the fixed point type whose mantissa is Int{32,64,128} and
-- whose small is Num'Small.
---------
-- Get --
---------
procedure Get
(File : File_Type;
Item : out Num;
Width : Field := 0)
is
pragma Unsuppress (Range_Check);
begin
if OK_Get_32 then
Item := Num'Fixed_Value
(Aux32.Get (File, Width,
-Num'Small_Numerator,
-Num'Small_Denominator));
elsif OK_Get_64 then
Item := Num'Fixed_Value
(Aux64.Get (File, Width,
-Num'Small_Numerator,
-Num'Small_Denominator));
elsif OK_Get_128 then
Item := Num'Fixed_Value
(Aux128.Get (File, Width,
-Num'Small_Numerator,
-Num'Small_Denominator));
else
Aux_Long_Float.Get (File, Long_Float (Item), Width);
end if;
exception
when Constraint_Error => raise Data_Error;
end Get;
procedure Get
(Item : out Num;
Width : Field := 0)
is
begin
Get (Current_In, Item, Width);
end Get;
procedure Get
(From : String;
Item : out Num;
Last : out Positive)
is
pragma Unsuppress (Range_Check);
begin
if OK_Get_32 then
Item := Num'Fixed_Value
(Aux32.Gets (From, Last,
-Num'Small_Numerator,
-Num'Small_Denominator));
elsif OK_Get_64 then
Item := Num'Fixed_Value
(Aux64.Gets (From, Last,
-Num'Small_Numerator,
-Num'Small_Denominator));
elsif OK_Get_128 then
Item := Num'Fixed_Value
(Aux128.Gets (From, Last,
-Num'Small_Numerator,
-Num'Small_Denominator));
else
Aux_Long_Float.Gets (From, Long_Float (Item), Last);
end if;
exception
when Constraint_Error => raise Data_Error;
end Get;
---------
-- Put --
---------
procedure Put
(File : File_Type;
Item : Num;
Fore : Field := Default_Fore;
Aft : Field := Default_Aft;
Exp : Field := Default_Exp)
is
begin
if OK_Put_32 then
Aux32.Put (File, Int32'Integer_Value (Item), Fore, Aft, Exp,
-Num'Small_Numerator, -Num'Small_Denominator,
For0, Num'Aft);
elsif OK_Put_64 then
Aux64.Put (File, Int64'Integer_Value (Item), Fore, Aft, Exp,
-Num'Small_Numerator, -Num'Small_Denominator,
For0, Num'Aft);
elsif OK_Put_128 then
Aux128.Put (File, Int128'Integer_Value (Item), Fore, Aft, Exp,
-Num'Small_Numerator, -Num'Small_Denominator,
For0, Num'Aft);
else
Aux_Long_Float.Put (File, Long_Float (Item), Fore, Aft, Exp);
end if;
end Put;
procedure Put
(Item : Num;
Fore : Field := Default_Fore;
Aft : Field := Default_Aft;
Exp : Field := Default_Exp)
is
begin
Put (Current_Out, Item, Fore, Aft, Exp);
end Put;
procedure Put
(To : out String;
Item : Num;
Aft : Field := Default_Aft;
Exp : Field := Default_Exp)
is
begin
if OK_Put_32 then
Aux32.Puts (To, Int32'Integer_Value (Item), Aft, Exp,
-Num'Small_Numerator, -Num'Small_Denominator,
For0, Num'Aft);
elsif OK_Put_64 then
Aux64.Puts (To, Int64'Integer_Value (Item), Aft, Exp,
-Num'Small_Numerator, -Num'Small_Denominator,
For0, Num'Aft);
elsif OK_Put_128 then
Aux128.Puts (To, Int128'Integer_Value (Item), Aft, Exp,
-Num'Small_Numerator, -Num'Small_Denominator,
For0, Num'Aft);
else
Aux_Long_Float.Puts (To, Long_Float (Item), Aft, Exp);
end if;
end Put;
end Ada.Text_IO.Fixed_IO;
|