1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601
|
------------------------------------------------------------------------------
-- --
-- GNAT RUN-TIME COMPONENTS --
-- --
-- S Y S T E M . A R I T H _ 3 2 --
-- --
-- B o d y --
-- --
-- Copyright (C) 2020-2022, Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 3, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. --
-- --
-- As a special exception under Section 7 of GPL version 3, you are granted --
-- additional permissions described in the GCC Runtime Library Exception, --
-- version 3.1, as published by the Free Software Foundation. --
-- --
-- You should have received a copy of the GNU General Public License and --
-- a copy of the GCC Runtime Library Exception along with this program; --
-- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
-- <http://www.gnu.org/licenses/>. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc. --
-- --
------------------------------------------------------------------------------
-- Preconditions, postconditions, ghost code, loop invariants and assertions
-- in this unit are meant for analysis only, not for run-time checking, as it
-- would be too costly otherwise. This is enforced by setting the assertion
-- policy to Ignore.
pragma Assertion_Policy (Pre => Ignore,
Post => Ignore,
Ghost => Ignore,
Loop_Invariant => Ignore,
Assert => Ignore);
with Ada.Numerics.Big_Numbers.Big_Integers_Ghost;
use Ada.Numerics.Big_Numbers.Big_Integers_Ghost;
with Ada.Unchecked_Conversion;
package body System.Arith_32
with SPARK_Mode
is
pragma Suppress (Overflow_Check);
pragma Suppress (Range_Check);
subtype Uns32 is Interfaces.Unsigned_32;
subtype Uns64 is Interfaces.Unsigned_64;
use Interfaces;
function To_Int is new Ada.Unchecked_Conversion (Uns32, Int32);
package Unsigned_Conversion is new Unsigned_Conversions (Int => Uns32);
function Big (Arg : Uns32) return Big_Integer is
(Unsigned_Conversion.To_Big_Integer (Arg))
with Ghost;
package Unsigned_Conversion_64 is new Unsigned_Conversions (Int => Uns64);
function Big (Arg : Uns64) return Big_Integer is
(Unsigned_Conversion_64.To_Big_Integer (Arg))
with Ghost;
pragma Warnings
(Off, "non-preelaborable call not allowed in preelaborated unit",
Reason => "Ghost code is not compiled");
Big_0 : constant Big_Integer :=
Big (Uns32'(0))
with Ghost;
Big_2xx32 : constant Big_Integer :=
Big (Uns32'(2 ** 32 - 1)) + 1
with Ghost;
Big_2xx64 : constant Big_Integer :=
Big (Uns64'(2 ** 64 - 1)) + 1
with Ghost;
pragma Warnings
(On, "non-preelaborable call not allowed in preelaborated unit");
-----------------------
-- Local Subprograms --
-----------------------
function "abs" (X : Int32) return Uns32 is
(if X = Int32'First
then Uns32'(2**31)
else Uns32 (Int32'(abs X)));
-- Convert absolute value of X to unsigned. Note that we can't just use
-- the expression of the Else since it overflows for X = Int32'First.
function Lo (A : Uns64) return Uns32 is (Uns32 (A and (2 ** 32 - 1)));
-- Low order half of 64-bit value
function Hi (A : Uns64) return Uns32 is (Uns32 (Shift_Right (A, 32)));
-- High order half of 64-bit value
function To_Neg_Int (A : Uns32) return Int32
with
Annotate => (GNATprove, Terminating),
Pre => In_Int32_Range (-Big (A)),
Post => Big (To_Neg_Int'Result) = -Big (A);
-- Convert to negative integer equivalent. If the input is in the range
-- 0 .. 2**31, then the corresponding nonpositive signed integer (obtained
-- by negating the given value) is returned, otherwise constraint error is
-- raised.
function To_Pos_Int (A : Uns32) return Int32
with
Annotate => (GNATprove, Terminating),
Pre => In_Int32_Range (Big (A)),
Post => Big (To_Pos_Int'Result) = Big (A);
-- Convert to positive integer equivalent. If the input is in the range
-- 0 .. 2**31 - 1, then the corresponding nonnegative signed integer is
-- returned, otherwise constraint error is raised.
procedure Raise_Error;
pragma No_Return (Raise_Error);
-- Raise constraint error with appropriate message
------------------
-- Local Lemmas --
------------------
procedure Lemma_Abs_Commutation (X : Int32)
with
Ghost,
Post => abs (Big (X)) = Big (Uns32'(abs X));
procedure Lemma_Abs_Div_Commutation (X, Y : Big_Integer)
with
Ghost,
Pre => Y /= 0,
Post => abs (X / Y) = abs X / abs Y;
procedure Lemma_Abs_Mult_Commutation (X, Y : Big_Integer)
with
Ghost,
Post => abs (X * Y) = abs X * abs Y;
procedure Lemma_Abs_Rem_Commutation (X, Y : Big_Integer)
with
Ghost,
Pre => Y /= 0,
Post => abs (X rem Y) = (abs X) rem (abs Y);
procedure Lemma_Div_Commutation (X, Y : Uns64)
with
Ghost,
Pre => Y /= 0,
Post => Big (X) / Big (Y) = Big (X / Y);
procedure Lemma_Div_Ge (X, Y, Z : Big_Integer)
with
Ghost,
Pre => Z > 0 and then X >= Y * Z,
Post => X / Z >= Y;
procedure Lemma_Ge_Commutation (A, B : Uns32)
with
Ghost,
Pre => A >= B,
Post => Big (A) >= Big (B);
procedure Lemma_Hi_Lo (Xu : Uns64; Xhi, Xlo : Uns32)
with
Ghost,
Pre => Xhi = Hi (Xu) and Xlo = Lo (Xu),
Post => Big (Xu) = Big_2xx32 * Big (Xhi) + Big (Xlo);
procedure Lemma_Mult_Commutation (X, Y, Z : Uns64)
with
Ghost,
Pre => Big (X) * Big (Y) < Big_2xx64 and then Z = X * Y,
Post => Big (X) * Big (Y) = Big (Z);
procedure Lemma_Mult_Non_Negative (X, Y : Big_Integer)
with
Ghost,
Pre => (X >= Big_0 and then Y >= Big_0)
or else (X <= Big_0 and then Y <= Big_0),
Post => X * Y >= Big_0;
procedure Lemma_Mult_Non_Positive (X, Y : Big_Integer)
with
Ghost,
Pre => (X <= Big_0 and then Y >= Big_0)
or else (X >= Big_0 and then Y <= Big_0),
Post => X * Y <= Big_0;
procedure Lemma_Neg_Div (X, Y : Big_Integer)
with
Ghost,
Pre => Y /= 0,
Post => X / Y = (-X) / (-Y);
procedure Lemma_Neg_Rem (X, Y : Big_Integer)
with
Ghost,
Pre => Y /= 0,
Post => X rem Y = X rem (-Y);
procedure Lemma_Not_In_Range_Big2xx32
with
Post => not In_Int32_Range (Big_2xx32)
and then not In_Int32_Range (-Big_2xx32);
procedure Lemma_Rem_Commutation (X, Y : Uns64)
with
Ghost,
Pre => Y /= 0,
Post => Big (X) rem Big (Y) = Big (X rem Y);
-----------------------------
-- Local lemma null bodies --
-----------------------------
procedure Lemma_Abs_Commutation (X : Int32) is null;
procedure Lemma_Abs_Mult_Commutation (X, Y : Big_Integer) is null;
procedure Lemma_Div_Commutation (X, Y : Uns64) is null;
procedure Lemma_Div_Ge (X, Y, Z : Big_Integer) is null;
procedure Lemma_Ge_Commutation (A, B : Uns32) is null;
procedure Lemma_Mult_Commutation (X, Y, Z : Uns64) is null;
procedure Lemma_Mult_Non_Negative (X, Y : Big_Integer) is null;
procedure Lemma_Mult_Non_Positive (X, Y : Big_Integer) is null;
procedure Lemma_Neg_Rem (X, Y : Big_Integer) is null;
procedure Lemma_Not_In_Range_Big2xx32 is null;
procedure Lemma_Rem_Commutation (X, Y : Uns64) is null;
-------------------------------
-- Lemma_Abs_Div_Commutation --
-------------------------------
procedure Lemma_Abs_Div_Commutation (X, Y : Big_Integer) is
begin
if Y < 0 then
if X < 0 then
pragma Assert (abs (X / Y) = abs (X / (-Y)));
else
Lemma_Neg_Div (X, Y);
pragma Assert (abs (X / Y) = abs ((-X) / (-Y)));
end if;
end if;
end Lemma_Abs_Div_Commutation;
-------------------------------
-- Lemma_Abs_Rem_Commutation --
-------------------------------
procedure Lemma_Abs_Rem_Commutation (X, Y : Big_Integer) is
begin
if Y < 0 then
Lemma_Neg_Rem (X, Y);
if X < 0 then
pragma Assert (X rem Y = -((-X) rem (-Y)));
pragma Assert (abs (X rem Y) = (abs X) rem (abs Y));
else
pragma Assert (abs (X rem Y) = (abs X) rem (abs Y));
end if;
end if;
end Lemma_Abs_Rem_Commutation;
-----------------
-- Lemma_Hi_Lo --
-----------------
procedure Lemma_Hi_Lo (Xu : Uns64; Xhi, Xlo : Uns32) is
begin
pragma Assert (Uns64 (Xhi) = Xu / Uns64'(2 ** 32));
pragma Assert (Uns64 (Xlo) = Xu mod 2 ** 32);
end Lemma_Hi_Lo;
-------------------
-- Lemma_Neg_Div --
-------------------
procedure Lemma_Neg_Div (X, Y : Big_Integer) is
begin
pragma Assert ((-X) / (-Y) = -(X / (-Y)));
pragma Assert (X / (-Y) = -(X / Y));
end Lemma_Neg_Div;
-----------------
-- Raise_Error --
-----------------
procedure Raise_Error is
begin
raise Constraint_Error with "32-bit arithmetic overflow";
pragma Annotate
(GNATprove, Intentional, "exception might be raised",
"Procedure Raise_Error is called to signal input errors");
end Raise_Error;
-------------------
-- Scaled_Divide --
-------------------
procedure Scaled_Divide32
(X, Y, Z : Int32;
Q, R : out Int32;
Round : Boolean)
is
Xu : constant Uns32 := abs X;
Yu : constant Uns32 := abs Y;
Zu : constant Uns32 := abs Z;
D : Uns64;
-- The dividend
Qu : Uns32;
Ru : Uns32;
-- Unsigned quotient and remainder
-- Local ghost variables
Mult : constant Big_Integer := abs (Big (X) * Big (Y)) with Ghost;
Quot : Big_Integer with Ghost;
Big_R : Big_Integer with Ghost;
Big_Q : Big_Integer with Ghost;
-- Local lemmas
procedure Prove_Negative_Dividend
with
Ghost,
Pre => Z /= 0
and then ((X >= 0 and Y < 0) or (X < 0 and Y >= 0))
and then Big_Q =
(if Round then Round_Quotient (Big (X) * Big (Y), Big (Z),
Big (X) * Big (Y) / Big (Z),
Big (X) * Big (Y) rem Big (Z))
else Big (X) * Big (Y) / Big (Z)),
Post =>
(if Z > 0 then Big_Q <= Big_0 else Big_Q >= Big_0);
-- Proves the sign of rounded quotient when dividend is non-positive
procedure Prove_Overflow
with
Ghost,
Pre => Z /= 0 and then Mult >= Big_2xx32 * Big (Uns32'(abs Z)),
Post => not In_Int32_Range (Big (X) * Big (Y) / Big (Z))
and then not In_Int32_Range
(Round_Quotient (Big (X) * Big (Y), Big (Z),
Big (X) * Big (Y) / Big (Z),
Big (X) * Big (Y) rem Big (Z)));
-- Proves overflow case
procedure Prove_Positive_Dividend
with
Ghost,
Pre => Z /= 0
and then ((X >= 0 and Y >= 0) or (X < 0 and Y < 0))
and then Big_Q =
(if Round then Round_Quotient (Big (X) * Big (Y), Big (Z),
Big (X) * Big (Y) / Big (Z),
Big (X) * Big (Y) rem Big (Z))
else Big (X) * Big (Y) / Big (Z)),
Post =>
(if Z > 0 then Big_Q >= Big_0 else Big_Q <= Big_0);
-- Proves the sign of rounded quotient when dividend is non-negative
procedure Prove_Rounding_Case
with
Ghost,
Pre => Z /= 0
and then Quot = Big (X) * Big (Y) / Big (Z)
and then Big_R = Big (X) * Big (Y) rem Big (Z)
and then Big_Q =
Round_Quotient (Big (X) * Big (Y), Big (Z), Quot, Big_R)
and then Big (Ru) = abs Big_R
and then Big (Zu) = Big (Uns32'(abs Z)),
Post => abs Big_Q =
(if Ru > (Zu - Uns32'(1)) / Uns32'(2)
then abs Quot + 1
else abs Quot);
-- Proves correctness of the rounding of the unsigned quotient
procedure Prove_Sign_R
with
Ghost,
Pre => Z /= 0 and then Big_R = Big (X) * Big (Y) rem Big (Z),
Post => In_Int32_Range (Big_R);
procedure Prove_Signs
with
Ghost,
Pre => Z /= 0
and then Quot = Big (X) * Big (Y) / Big (Z)
and then Big_R = Big (X) * Big (Y) rem Big (Z)
and then Big_Q =
(if Round then
Round_Quotient (Big (X) * Big (Y), Big (Z), Quot, Big_R)
else Quot)
and then Big (Ru) = abs Big_R
and then Big (Qu) = abs Big_Q
and then In_Int32_Range (Big_Q)
and then In_Int32_Range (Big_R)
and then R =
(if (X >= 0) = (Y >= 0) then To_Pos_Int (Ru) else To_Neg_Int (Ru))
and then Q =
(if ((X >= 0) = (Y >= 0)) = (Z >= 0) then To_Pos_Int (Qu)
else To_Neg_Int (Qu)), -- need to ensure To_Pos_Int precondition
Post => Big (R) = Big_R and then Big (Q) = Big_Q;
-- Proves final signs match the intended result after the unsigned
-- division is done.
-----------------------------
-- Prove_Negative_Dividend --
-----------------------------
procedure Prove_Negative_Dividend is
begin
Lemma_Mult_Non_Positive (Big (X), Big (Y));
end Prove_Negative_Dividend;
--------------------
-- Prove_Overflow --
--------------------
procedure Prove_Overflow is
begin
Lemma_Div_Ge (Mult, Big_2xx32, Big (Uns32'(abs Z)));
Lemma_Abs_Commutation (Z);
Lemma_Abs_Div_Commutation (Big (X) * Big (Y), Big (Z));
end Prove_Overflow;
-----------------------------
-- Prove_Positive_Dividend --
-----------------------------
procedure Prove_Positive_Dividend is
begin
Lemma_Mult_Non_Negative (Big (X), Big (Y));
end Prove_Positive_Dividend;
-------------------------
-- Prove_Rounding_Case --
-------------------------
procedure Prove_Rounding_Case is
begin
if Same_Sign (Big (X) * Big (Y), Big (Z)) then
null;
end if;
end Prove_Rounding_Case;
------------------
-- Prove_Sign_R --
------------------
procedure Prove_Sign_R is
begin
pragma Assert (In_Int32_Range (Big (Z)));
end Prove_Sign_R;
-----------------
-- Prove_Signs --
-----------------
procedure Prove_Signs is null;
-- Start of processing for Scaled_Divide32
begin
-- First do the 64-bit multiplication
D := Uns64 (Xu) * Uns64 (Yu);
pragma Assert (Mult = Big (D));
Lemma_Hi_Lo (D, Hi (D), Lo (D));
pragma Assert (Mult = Big_2xx32 * Big (Hi (D)) + Big (Lo (D)));
-- If divisor is zero, raise error
if Z = 0 then
Raise_Error;
end if;
Quot := Big (X) * Big (Y) / Big (Z);
Big_R := Big (X) * Big (Y) rem Big (Z);
if Round then
Big_Q := Round_Quotient (Big (X) * Big (Y), Big (Z), Quot, Big_R);
else
Big_Q := Quot;
end if;
-- If dividend is too large, raise error
if Hi (D) >= Zu then
Lemma_Ge_Commutation (Hi (D), Zu);
pragma Assert (Mult >= Big_2xx32 * Big (Zu));
Prove_Overflow;
Raise_Error;
end if;
-- Then do the 64-bit division
Qu := Uns32 (D / Uns64 (Zu));
Ru := Uns32 (D rem Uns64 (Zu));
Lemma_Abs_Div_Commutation (Big (X) * Big (Y), Big (Z));
Lemma_Abs_Rem_Commutation (Big (X) * Big (Y), Big (Z));
Lemma_Abs_Mult_Commutation (Big (X), Big (Y));
Lemma_Abs_Commutation (X);
Lemma_Abs_Commutation (Y);
Lemma_Abs_Commutation (Z);
Lemma_Mult_Commutation (Uns64 (Xu), Uns64 (Yu), D);
Lemma_Div_Commutation (D, Uns64 (Zu));
Lemma_Rem_Commutation (D, Uns64 (Zu));
pragma Assert (Big (Ru) = abs Big_R);
pragma Assert (Big (Qu) = abs Quot);
pragma Assert (Big (Zu) = Big (Uns32'(abs Z)));
-- Deal with rounding case
if Round then
Prove_Rounding_Case;
if Ru > (Zu - Uns32'(1)) / Uns32'(2) then
pragma Assert (abs Big_Q = Big (Qu) + 1);
-- Protect against wrapping around when rounding, by signaling
-- an overflow when the quotient is too large.
if Qu = Uns32'Last then
pragma Assert (abs Big_Q = Big_2xx32);
Lemma_Not_In_Range_Big2xx32;
Raise_Error;
end if;
Qu := Qu + Uns32'(1);
end if;
end if;
pragma Assert (Big (Qu) = abs Big_Q);
pragma Assert (Big (Ru) = abs Big_R);
-- Set final signs (RM 4.5.5(27-30))
-- Case of dividend (X * Y) sign positive
if (X >= 0 and then Y >= 0) or else (X < 0 and then Y < 0) then
Prove_Positive_Dividend;
R := To_Pos_Int (Ru);
Q := (if Z > 0 then To_Pos_Int (Qu) else To_Neg_Int (Qu));
-- Case of dividend (X * Y) sign negative
else
Prove_Negative_Dividend;
R := To_Neg_Int (Ru);
Q := (if Z > 0 then To_Neg_Int (Qu) else To_Pos_Int (Qu));
end if;
Prove_Sign_R;
Prove_Signs;
end Scaled_Divide32;
----------------
-- To_Neg_Int --
----------------
function To_Neg_Int (A : Uns32) return Int32 is
R : constant Int32 :=
(if A = 2**31 then Int32'First else -To_Int (A));
-- Note that we can't just use the expression of the Else, because it
-- overflows for A = 2**31.
begin
if R <= 0 then
return R;
else
Raise_Error;
end if;
end To_Neg_Int;
----------------
-- To_Pos_Int --
----------------
function To_Pos_Int (A : Uns32) return Int32 is
R : constant Int32 := To_Int (A);
begin
if R >= 0 then
return R;
else
Raise_Error;
end if;
end To_Pos_Int;
end System.Arith_32;
|