1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
|
------------------------------------------------------------------------------
-- --
-- GNAT COMPILER COMPONENTS --
-- --
-- S Y S T E M . V A L U E _ F --
-- --
-- B o d y --
-- --
-- Copyright (C) 2020-2022, Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 3, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. --
-- --
-- As a special exception under Section 7 of GPL version 3, you are granted --
-- additional permissions described in the GCC Runtime Library Exception, --
-- version 3.1, as published by the Free Software Foundation. --
-- --
-- You should have received a copy of the GNU General Public License and --
-- a copy of the GCC Runtime Library Exception along with this program; --
-- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
-- <http://www.gnu.org/licenses/>. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc. --
-- --
------------------------------------------------------------------------------
with System.Unsigned_Types; use System.Unsigned_Types;
with System.Val_Util; use System.Val_Util;
with System.Value_R;
package body System.Value_F is
-- The prerequisite of the implementation is that the computation of the
-- operands of the scaled divide does not unduly overflow when the small
-- is neither an integer nor the reciprocal of an integer, which means
-- that its numerator and denominator must be both not larger than the
-- smallest divide 2**(Int'Size - 1) / Base where Base ranges over the
-- supported values for the base of the literal. Given that the largest
-- supported base is 16, this gives a limit of 2**(Int'Size - 5).
pragma Assert (Int'Size <= Uns'Size);
-- We need an unsigned type large enough to represent the mantissa
package Impl is new Value_R (Uns, 2**(Int'Size - 1), Round => True);
-- We use the Extra digit for ordinary fixed-point types
function Integer_To_Fixed
(Str : String;
Val : Uns;
Base : Unsigned;
ScaleB : Integer;
Extra : Unsigned;
Minus : Boolean;
Num : Int;
Den : Int) return Int;
-- Convert the real value from integer to fixed point representation
-- The goal is to compute Val * (Base ** ScaleB) / (Num / Den) with correct
-- rounding for all decimal values output by Typ'Image, that is to say up
-- to Typ'Aft decimal digits. Unlike for the output, the RM does not say
-- what the rounding must be for the input, but a reasonable exegesis of
-- the intent is that Typ'Value o Typ'Image should be the identity, which
-- is made possible because 'Aft is defined such that 'Image is injective.
-- For a type with a mantissa of M bits including the sign, the number N1
-- of decimal digits required to represent all the numbers is given by:
-- N1 = ceil ((M - 1) * log 2 / log 10) [N1 = 10/19/39 for M = 32/64/128]
-- but this mantissa can represent any set of contiguous numbers with only
-- N2 different decimal digits where:
-- N2 = floor ((M - 1) * log 2 / log 10) [N2 = 9/18/38 for M = 32/64/128]
-- Of course N1 = N2 + 1 holds, which means both that Val may not contain
-- enough significant bits to represent all the values of the type and that
-- 1 extra decimal digit contains the information for the missing bits.
-- Therefore the actual computation to be performed is
-- V = (Val * Base + Extra) * (Base ** (ScaleB - 1)) / (Num / Den)
-- using two steps of scaled divide if Extra is positive and ScaleB too
-- (1) Val * (Den * (Base ** ScaleB)) = Q1 * Num + R1
-- (2) Extra * (Den * (Base ** ScaleB)) = Q2 * -Base + R2
-- which yields after dividing (1) by Num and (2) by Num * Base and summing
-- V = Q1 + (R1 - Q2) / Num + R2 / (Num * Base)
-- but we get rid of the third term by using a rounding divide for (2).
-- This works only if Den * (Base ** ScaleB) does not overflow for inputs
-- corresponding to 'Image. Let S = Num / Den, B = Base and N the scale in
-- base B of S, i.e. the smallest integer such that B**N * S >= 1. Then,
-- for X a positive of the mantissa, i.e. 1 <= X <= 2**(M-1), we have
-- 1/B <= X * S * B**(N-1) < 2**(M-1)
-- which means that the inputs corresponding to the output of 'Image have a
-- ScaleB equal either to 1 - N or (after multiplying the inequality by B)
-- to -N, possibly after renormalizing X, i.e. multiplying it by a suitable
-- power of B. Therefore
-- Den * (Base ** ScaleB) <= Den * (B ** (1 - N)) < Num * B
-- which means that the product does not overflow if Num <= 2**(M-1) / B.
-- On the other hand, if Extra is positive and ScaleB negative, the above
-- two steps are
-- (1b) Val * Den = Q1 * (Num * (Base ** -ScaleB)) + R1
-- (2b) Extra * Den = Q2 * -Base + R2
-- which yields after dividing (1b) by Num * (Base ** -ScaleB) and (2b) by
-- Num * (Base ** (1 - ScaleB)) and summing
-- V = Q1 + (R1 - Q2) / (Num * (Base ** -ScaleB)) + R2 / ...
-- but we get rid of the third term by using a rounding divide for (2b).
-- This works only if Num * (Base ** -ScaleB) does not overflow for inputs
-- corresponding to 'Image. With the determination of ScaleB above, we have
-- Num * (Base ** -ScaleB) <= Num * (B ** N) < Den * B
-- which means that the product does not overflow if Den <= 2**(M-1) / B.
----------------------
-- Integer_To_Fixed --
----------------------
function Integer_To_Fixed
(Str : String;
Val : Uns;
Base : Unsigned;
ScaleB : Integer;
Extra : Unsigned;
Minus : Boolean;
Num : Int;
Den : Int) return Int
is
pragma Assert (Base in 2 .. 16);
pragma Assert (Extra < Base);
-- Accept only one extra digit after those used for Val
pragma Assert (Num < 0 and then Den < 0);
-- Accept only negative numbers to allow -2**(Int'Size - 1)
function Safe_Expont
(Base : Int;
Exp : in out Natural;
Factor : Int) return Int;
-- Return (Base ** Exp) * Factor if the computation does not overflow,
-- or else the number of the form (Base ** K) * Factor with the largest
-- magnitude if the former computation overflows. In both cases, Exp is
-- updated to contain the remaining power in the computation. Note that
-- Factor is expected to be negative in this context.
function Unsigned_To_Signed (Val : Uns) return Int;
-- Convert an integer value from unsigned to signed representation
-----------------
-- Safe_Expont --
-----------------
function Safe_Expont
(Base : Int;
Exp : in out Natural;
Factor : Int) return Int
is
pragma Assert (Base /= 0 and then Factor < 0);
Min : constant Int := Int'First / Base;
Result : Int := Factor;
begin
while Exp > 0 and then Result >= Min loop
Result := Result * Base;
Exp := Exp - 1;
end loop;
return Result;
end Safe_Expont;
------------------------
-- Unsigned_To_Signed --
------------------------
function Unsigned_To_Signed (Val : Uns) return Int is
begin
-- Deal with overflow cases, and also with largest negative number
if Val > Uns (Int'Last) then
if Minus and then Val = Uns (-(Int'First)) then
return Int'First;
else
Bad_Value (Str);
end if;
-- Negative values
elsif Minus then
return -(Int (Val));
-- Positive values
else
return Int (Val);
end if;
end Unsigned_To_Signed;
-- Local variables
B : constant Int := Int (Base);
V : Uns := Val;
E : Uns := Uns (Extra);
Y, Z, Q1, R1, Q2, R2 : Int;
begin
-- We will use a scaled divide operation for which we must control the
-- magnitude of operands so that an overflow exception is not unduly
-- raised during the computation. The only real concern is the exponent.
-- If ScaleB is too negative, then drop trailing digits, but preserve
-- the last dropped digit.
if ScaleB < 0 then
declare
LS : Integer := -ScaleB;
begin
Y := Den;
Z := Safe_Expont (B, LS, Num);
for J in 1 .. LS loop
E := V rem Uns (B);
V := V / Uns (B);
end loop;
end;
-- If ScaleB is too positive, then scale V up, which may then overflow
elsif ScaleB > 0 then
declare
LS : Integer := ScaleB;
begin
Y := Safe_Expont (B, LS, Den);
Z := Num;
for J in 1 .. LS loop
if V <= (Uns'Last - E) / Uns (B) then
V := V * Uns (B) + E;
E := 0;
else
Bad_Value (Str);
end if;
end loop;
end;
-- If ScaleB is zero, then proceed directly
else
Y := Den;
Z := Num;
end if;
-- Perform a scaled divide operation with final rounding to match Image
-- using two steps if there is an extra digit available. The second and
-- third operands are always negative so the sign of the quotient is the
-- sign of the first operand and the sign of the remainder the opposite.
if E > 0 then
Scaled_Divide (Unsigned_To_Signed (V), Y, Z, Q1, R1, Round => False);
Scaled_Divide (Unsigned_To_Signed (E), Y, -B, Q2, R2, Round => True);
-- Avoid an overflow during the subtraction. Note that Q2 is smaller
-- than Y and R1 smaller than Z in magnitude, so it is safe to take
-- their absolute value.
if abs Q2 >= 2 ** (Int'Size - 2)
or else abs R1 >= 2 ** (Int'Size - 2)
then
declare
Bit : constant Int := Q2 rem 2;
begin
Q2 := (Q2 - Bit) / 2;
R1 := (R1 - Bit) / 2;
Y := -2;
end;
else
Y := -1;
end if;
Scaled_Divide (Q2 - R1, Y, Z, Q2, R2, Round => True);
return Q1 + Q2;
else
Scaled_Divide (Unsigned_To_Signed (V), Y, Z, Q1, R1, Round => True);
return Q1;
end if;
exception
when Constraint_Error => Bad_Value (Str);
end Integer_To_Fixed;
----------------
-- Scan_Fixed --
----------------
function Scan_Fixed
(Str : String;
Ptr : not null access Integer;
Max : Integer;
Num : Int;
Den : Int) return Int
is
Base : Unsigned;
ScaleB : Integer;
Extra : Unsigned;
Minus : Boolean;
Val : Uns;
begin
Val := Impl.Scan_Raw_Real (Str, Ptr, Max, Base, ScaleB, Extra, Minus);
return Integer_To_Fixed (Str, Val, Base, ScaleB, Extra, Minus, Num, Den);
end Scan_Fixed;
-----------------
-- Value_Fixed --
-----------------
function Value_Fixed
(Str : String;
Num : Int;
Den : Int) return Int
is
Base : Unsigned;
ScaleB : Integer;
Extra : Unsigned;
Minus : Boolean;
Val : Uns;
begin
Val := Impl.Value_Raw_Real (Str, Base, ScaleB, Extra, Minus);
return Integer_To_Fixed (Str, Val, Base, ScaleB, Extra, Minus, Num, Den);
end Value_Fixed;
end System.Value_F;
|