1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
|
------------------------------------------------------------------------------
-- --
-- GNAT RUN-TIME LIBRARY (GNARL) COMPONENTS --
-- --
-- S Y S T E M . V E C T O R S . B O O L E A N _ O P E R A T I O N S --
-- --
-- B o d y --
-- --
-- Copyright (C) 2002-2022, Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 3, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. --
-- --
-- As a special exception under Section 7 of GPL version 3, you are granted --
-- additional permissions described in the GCC Runtime Library Exception, --
-- version 3.1, as published by the Free Software Foundation. --
-- --
-- You should have received a copy of the GNU General Public License and --
-- a copy of the GCC Runtime Library Exception along with this program; --
-- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
-- <http://www.gnu.org/licenses/>. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc. --
-- --
------------------------------------------------------------------------------
-- Ghost code, loop invariants and assertions in this unit are meant for
-- analysis only, not for run-time checking, as it would be too costly
-- otherwise. This is enforced by setting the assertion policy to Ignore.
pragma Assertion_Policy (Ghost => Ignore,
Loop_Invariant => Ignore,
Assert => Ignore);
package body System.Vectors.Boolean_Operations
with SPARK_Mode
is
SU : constant := Storage_Unit;
-- Convenient short hand, used throughout
-- The coding of this unit depends on the fact that the Component_Size
-- of a normally declared array of Boolean is equal to Storage_Unit. We
-- can't use the Component_Size directly since it is non-static. The
-- following declaration checks that this declaration is correct
type Boolean_Array is array (Integer range <>) of Boolean;
pragma Compile_Time_Error
(Boolean_Array'Component_Size /= SU, "run time compile failure");
-- NOTE: The boolean literals must be qualified here to avoid visibility
-- anomalies when this package is compiled through Rtsfind, in a context
-- that includes a user-defined type derived from boolean.
True_Val : constant Vector := Standard.True'Enum_Rep
+ Standard.True'Enum_Rep * 2**SU
+ Standard.True'Enum_Rep * 2**(SU * 2)
+ Standard.True'Enum_Rep * 2**(SU * 3)
+ Standard.True'Enum_Rep * 2**(SU * 4)
+ Standard.True'Enum_Rep * 2**(SU * 5)
+ Standard.True'Enum_Rep * 2**(SU * 6)
+ Standard.True'Enum_Rep * 2**(SU * 7);
-- This constant represents the bits to be flipped to perform a logical
-- "not" on a vector of booleans, independent of the actual
-- representation of True.
-- The representations of (False, True) are assumed to be zero/one and
-- the maximum number of unpacked booleans per Vector is assumed to be 8.
pragma Assert (Standard.False'Enum_Rep = 0);
pragma Assert (Standard.True'Enum_Rep = 1);
pragma Assert (Vector'Size / Storage_Unit <= 8);
-- The reason we need to do these gymnastics is that no call to
-- Unchecked_Conversion can be made at the library level since this
-- unit is pure. Also a conversion from the array type to the Vector type
-- inside the body of "not" is inefficient because of alignment issues.
-----------
-- "not" --
-----------
function "not" (Item : Vectors.Vector) return Vectors.Vector is
procedure Prove_Not (Result : Vectors.Vector)
with
Ghost,
Pre => Valid (Item)
and then Result = (Item xor True_Val),
Post => Valid (Result)
and then (for all J in 1 .. Vector_Boolean_Size =>
Model (Result) (J) = not Model (Item) (J));
procedure Prove_Not (Result : Vectors.Vector) is
begin
for J in 1 .. Vector_Boolean_Size loop
pragma Assert
(Element (Result, J) = 1 - Element (Item, J));
end loop;
end Prove_Not;
begin
Prove_Not (Item xor True_Val);
return Item xor True_Val;
end "not";
----------
-- Nand --
----------
function Nand (Left, Right : Boolean) return Boolean is
begin
return not (Left and Right);
end Nand;
function Nand (Left, Right : Vectors.Vector) return Vectors.Vector is
procedure Prove_And (Result : Vectors.Vector)
with
Ghost,
Pre => Valid (Left)
and then Valid (Right)
and then Result = (Left and Right),
Post => Valid (Result)
and then (for all J in 1 .. Vector_Boolean_Size =>
Model (Result) (J) =
(Model (Left) (J) and Model (Right) (J)));
procedure Prove_And (Result : Vectors.Vector) is
begin
for J in 1 .. Vector_Boolean_Size loop
pragma Assert
(Element (Result, J) =
(if Element (Left, J) = 1
and Element (Right, J) = 1
then 1
else 0));
end loop;
end Prove_And;
begin
Prove_And (Left and Right);
return not (Left and Right);
end Nand;
---------
-- Nor --
---------
function Nor (Left, Right : Boolean) return Boolean is
begin
return not (Left or Right);
end Nor;
function Nor (Left, Right : Vectors.Vector) return Vectors.Vector is
procedure Prove_Or (Result : Vectors.Vector)
with
Ghost,
Pre => Valid (Left)
and then Valid (Right)
and then Result = (Left or Right),
Post => Valid (Result)
and then (for all J in 1 .. Vector_Boolean_Size =>
Model (Result) (J) =
(Model (Left) (J) or Model (Right) (J)));
procedure Prove_Or (Result : Vectors.Vector) is
begin
for J in 1 .. Vector_Boolean_Size loop
pragma Assert
(Element (Result, J) =
(if Element (Left, J) = 1
or Element (Right, J) = 1
then 1
else 0));
end loop;
end Prove_Or;
begin
Prove_Or (Left or Right);
return not (Left or Right);
end Nor;
----------
-- Nxor --
----------
function Nxor (Left, Right : Boolean) return Boolean is
begin
return not (Left xor Right);
end Nxor;
function Nxor (Left, Right : Vectors.Vector) return Vectors.Vector is
procedure Prove_Xor (Result : Vectors.Vector)
with
Ghost,
Pre => Valid (Left)
and then Valid (Right)
and then Result = (Left xor Right),
Post => Valid (Result)
and then (for all J in 1 .. Vector_Boolean_Size =>
Model (Result) (J) =
(Model (Left) (J) xor Model (Right) (J)));
procedure Prove_Xor (Result : Vectors.Vector) is
begin
for J in 1 .. Vector_Boolean_Size loop
pragma Assert
(Element (Result, J) =
(if Element (Left, J) = 1
xor Element (Right, J) = 1
then 1
else 0));
end loop;
end Prove_Xor;
begin
Prove_Xor (Left xor Right);
return not (Left xor Right);
end Nxor;
end System.Vectors.Boolean_Operations;
|