1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690
|
/* Symbolic values.
Copyright (C) 2019-2022 Free Software Foundation, Inc.
Contributed by David Malcolm <dmalcolm@redhat.com>.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
GCC is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#ifndef GCC_ANALYZER_SVALUE_H
#define GCC_ANALYZER_SVALUE_H
#include "analyzer/complexity.h"
using namespace ana;
namespace ana {
/* An enum for discriminating between the different concrete subclasses
of svalue. */
enum svalue_kind
{
SK_REGION,
SK_CONSTANT,
SK_UNKNOWN,
SK_POISONED,
SK_SETJMP,
SK_INITIAL,
SK_UNARYOP,
SK_BINOP,
SK_SUB,
SK_REPEATED,
SK_BITS_WITHIN,
SK_UNMERGEABLE,
SK_PLACEHOLDER,
SK_WIDENING,
SK_COMPOUND,
SK_CONJURED,
SK_ASM_OUTPUT,
SK_CONST_FN_RESULT
};
/* svalue and its subclasses.
The class hierarchy looks like this (using indentation to show
inheritance, and with svalue_kinds shown for the concrete subclasses):
svalue
region_svalue (SK_REGION): a pointer to a region
constant_svalue (SK_CONSTANT): a constant
unknown_svalue (SK_UNKNOWN): an unknowable value
poisoned_svalue (SK_POISONED): a unusable value (undefined)
setjmp_svalue (SK_SETJMP): a setjmp/longjmp buffer
initial_svalue (SK_INITIAL): the initial value of a region
unaryop_svalue (SK_UNARYOP): unary operation on another svalue
binop_svalue (SK_BINOP): binary operation on two svalues
sub_svalue (SK_SUB): the result of accessing a subregion
repeated_svalue (SK_REPEATED): repeating an svalue to fill a larger region
bits_within_svalue (SK_BITS_WITHIN): a range of bits/bytes within a larger
svalue
unmergeable_svalue (SK_UNMERGEABLE): a value that is so interesting
from a control-flow perspective that it can inhibit state-merging
placeholder_svalue (SK_PLACEHOLDER): for use in selftests.
widening_svalue (SK_WIDENING): a merger of two svalues (possibly
in an iteration).
compound_svalue (SK_COMPOUND): a mapping of bit-ranges to svalues
conjured_svalue (SK_CONJURED): a value arising from a stmt
asm_output_svalue (SK_ASM_OUTPUT): an output from a deterministic
asm stmt.
const_fn_result_svalue (SK_CONST_FN_RESULT): the return value from
a function with __attribute((const)) for given inputs. */
/* An abstract base class representing a value held by a region of memory. */
class svalue
{
public:
virtual ~svalue () {}
tree get_type () const { return m_type; }
virtual enum svalue_kind get_kind () const = 0;
void print (const region_model &model,
pretty_printer *pp) const;
virtual void dump_to_pp (pretty_printer *pp, bool simple) const = 0;
void dump (bool simple=true) const;
label_text get_desc (bool simple=true) const;
json::value *to_json () const;
virtual const region_svalue *
dyn_cast_region_svalue () const { return NULL; }
virtual const constant_svalue *
dyn_cast_constant_svalue () const { return NULL; }
virtual const poisoned_svalue *
dyn_cast_poisoned_svalue () const { return NULL; }
virtual const setjmp_svalue *
dyn_cast_setjmp_svalue () const { return NULL; }
virtual const initial_svalue *
dyn_cast_initial_svalue () const { return NULL; }
virtual const unaryop_svalue *
dyn_cast_unaryop_svalue () const { return NULL; }
virtual const binop_svalue *
dyn_cast_binop_svalue () const { return NULL; }
virtual const sub_svalue *
dyn_cast_sub_svalue () const { return NULL; }
virtual const repeated_svalue *
dyn_cast_repeated_svalue () const { return NULL; }
virtual const bits_within_svalue *
dyn_cast_bits_within_svalue () const { return NULL; }
virtual const unmergeable_svalue *
dyn_cast_unmergeable_svalue () const { return NULL; }
virtual const widening_svalue *
dyn_cast_widening_svalue () const { return NULL; }
virtual const compound_svalue *
dyn_cast_compound_svalue () const { return NULL; }
virtual const conjured_svalue *
dyn_cast_conjured_svalue () const { return NULL; }
virtual const asm_output_svalue *
dyn_cast_asm_output_svalue () const { return NULL; }
virtual const const_fn_result_svalue *
dyn_cast_const_fn_result_svalue () const { return NULL; }
tree maybe_get_constant () const;
const region *maybe_get_region () const;
const svalue *maybe_undo_cast () const;
const svalue *unwrap_any_unmergeable () const;
const svalue *can_merge_p (const svalue *other,
region_model_manager *mgr,
model_merger *merger) const;
const complexity &get_complexity () const { return m_complexity; }
virtual void accept (visitor *v) const = 0;
bool live_p (const svalue_set *live_svalues,
const region_model *model) const;
virtual bool implicitly_live_p (const svalue_set *live_svalues,
const region_model *model) const;
static int cmp_ptr (const svalue *, const svalue *);
static int cmp_ptr_ptr (const void *, const void *);
bool involves_p (const svalue *other) const;
const svalue *
extract_bit_range (tree type,
const bit_range &subrange,
region_model_manager *mgr) const;
virtual const svalue *
maybe_fold_bits_within (tree type,
const bit_range &subrange,
region_model_manager *mgr) const;
virtual bool all_zeroes_p () const;
/* Can this svalue be involved in constraints and sm-state?
Most can, but UNKNOWN and POISONED svalues are singletons
per-type and thus it's meaningless for them to "have state". */
virtual bool can_have_associated_state_p () const { return true; }
const region *maybe_get_deref_base_region () const;
protected:
svalue (complexity c, tree type)
: m_complexity (c), m_type (type)
{}
private:
complexity m_complexity;
tree m_type;
};
/* Concrete subclass of svalue representing a pointer value that points to
a known region */
class region_svalue : public svalue
{
public:
/* A support class for uniquifying instances of region_svalue. */
struct key_t
{
key_t (tree type, const region *reg)
: m_type (type), m_reg (reg)
{}
hashval_t hash () const
{
inchash::hash hstate;
hstate.add_ptr (m_type);
hstate.add_ptr (m_reg);
return hstate.end ();
}
bool operator== (const key_t &other) const
{
return (m_type == other.m_type && m_reg == other.m_reg);
}
void mark_deleted () { m_type = reinterpret_cast<tree> (1); }
void mark_empty () { m_type = reinterpret_cast<tree> (2); }
bool is_deleted () const { return m_type == reinterpret_cast<tree> (1); }
bool is_empty () const { return m_type == reinterpret_cast<tree> (2); }
tree m_type;
const region *m_reg;
};
region_svalue (tree type, const region *reg)
: svalue (complexity (reg), type),
m_reg (reg)
{
gcc_assert (m_reg != NULL);
}
enum svalue_kind get_kind () const FINAL OVERRIDE { return SK_REGION; }
const region_svalue *
dyn_cast_region_svalue () const FINAL OVERRIDE { return this; }
void dump_to_pp (pretty_printer *pp, bool simple) const FINAL OVERRIDE;
void accept (visitor *v) const FINAL OVERRIDE;
bool implicitly_live_p (const svalue_set *,
const region_model *) const FINAL OVERRIDE;
const region * get_pointee () const { return m_reg; }
static tristate eval_condition (const region_svalue *lhs_ptr,
enum tree_code op,
const region_svalue *rhs_ptr);
private:
const region *m_reg;
};
} // namespace ana
template <>
template <>
inline bool
is_a_helper <const region_svalue *>::test (const svalue *sval)
{
return sval->get_kind () == SK_REGION;
}
template <> struct default_hash_traits<region_svalue::key_t>
: public member_function_hash_traits<region_svalue::key_t>
{
static const bool empty_zero_p = false;
};
namespace ana {
/* Concrete subclass of svalue representing a specific constant value. */
class constant_svalue : public svalue
{
public:
constant_svalue (tree cst_expr)
: svalue (complexity (1, 1), TREE_TYPE (cst_expr)), m_cst_expr (cst_expr)
{
gcc_assert (cst_expr);
gcc_assert (CONSTANT_CLASS_P (cst_expr));
}
enum svalue_kind get_kind () const FINAL OVERRIDE { return SK_CONSTANT; }
const constant_svalue *
dyn_cast_constant_svalue () const FINAL OVERRIDE { return this; }
void dump_to_pp (pretty_printer *pp, bool simple) const FINAL OVERRIDE;
void accept (visitor *v) const FINAL OVERRIDE;
bool implicitly_live_p (const svalue_set *,
const region_model *) const FINAL OVERRIDE;
tree get_constant () const { return m_cst_expr; }
static tristate eval_condition (const constant_svalue *lhs,
enum tree_code op,
const constant_svalue *rhs);
const svalue *
maybe_fold_bits_within (tree type,
const bit_range &subrange,
region_model_manager *mgr) const FINAL OVERRIDE;
bool all_zeroes_p () const FINAL OVERRIDE;
private:
tree m_cst_expr;
};
} // namespace ana
template <>
template <>
inline bool
is_a_helper <const constant_svalue *>::test (const svalue *sval)
{
return sval->get_kind () == SK_CONSTANT;
}
namespace ana {
/* Concrete subclass of svalue representing an unknowable value, the bottom
value when thinking of svalues as a lattice.
This is a singleton (w.r.t. its manager): there is a single unknown_svalue
per type. Self-comparisons of such instances yield "unknown". */
class unknown_svalue : public svalue
{
public:
unknown_svalue (tree type)
: svalue (complexity (1, 1), type)
{}
enum svalue_kind get_kind () const FINAL OVERRIDE { return SK_UNKNOWN; }
void dump_to_pp (pretty_printer *pp, bool simple) const FINAL OVERRIDE;
void accept (visitor *v) const FINAL OVERRIDE;
const svalue *
maybe_fold_bits_within (tree type,
const bit_range &subrange,
region_model_manager *mgr) const FINAL OVERRIDE;
/* Unknown values are singletons per-type, so can't have state. */
bool can_have_associated_state_p () const FINAL OVERRIDE { return false; }
};
/* An enum describing a particular kind of "poisoned" value. */
enum poison_kind
{
/* For use to describe uninitialized memory. */
POISON_KIND_UNINIT,
/* For use to describe freed memory. */
POISON_KIND_FREED,
/* For use on pointers to regions within popped stack frames. */
POISON_KIND_POPPED_STACK
};
extern const char *poison_kind_to_str (enum poison_kind);
/* Concrete subclass of svalue representing a value that should not
be used (e.g. uninitialized memory, freed memory). */
class poisoned_svalue : public svalue
{
public:
/* A support class for uniquifying instances of poisoned_svalue. */
struct key_t
{
key_t (enum poison_kind kind, tree type)
: m_kind (kind), m_type (type)
{}
hashval_t hash () const
{
inchash::hash hstate;
hstate.add_int (m_kind);
hstate.add_ptr (m_type);
return hstate.end ();
}
bool operator== (const key_t &other) const
{
return (m_kind == other.m_kind && m_type == other.m_type);
}
void mark_deleted () { m_type = reinterpret_cast<tree> (1); }
void mark_empty () { m_type = reinterpret_cast<tree> (2); }
bool is_deleted () const { return m_type == reinterpret_cast<tree> (1); }
bool is_empty () const { return m_type == reinterpret_cast<tree> (2); }
enum poison_kind m_kind;
tree m_type;
};
poisoned_svalue (enum poison_kind kind, tree type)
: svalue (complexity (1, 1), type), m_kind (kind) {}
enum svalue_kind get_kind () const FINAL OVERRIDE { return SK_POISONED; }
const poisoned_svalue *
dyn_cast_poisoned_svalue () const FINAL OVERRIDE { return this; }
void dump_to_pp (pretty_printer *pp, bool simple) const FINAL OVERRIDE;
void accept (visitor *v) const FINAL OVERRIDE;
const svalue *
maybe_fold_bits_within (tree type,
const bit_range &subrange,
region_model_manager *mgr) const FINAL OVERRIDE;
enum poison_kind get_poison_kind () const { return m_kind; }
/* Poisoned svalues are singletons per-type, so can't have state. */
bool can_have_associated_state_p () const FINAL OVERRIDE { return false; }
private:
enum poison_kind m_kind;
};
} // namespace ana
template <>
template <>
inline bool
is_a_helper <const poisoned_svalue *>::test (const svalue *sval)
{
return sval->get_kind () == SK_POISONED;
}
template <> struct default_hash_traits<poisoned_svalue::key_t>
: public member_function_hash_traits<poisoned_svalue::key_t>
{
static const bool empty_zero_p = false;
};
namespace ana {
/* A bundle of information recording a setjmp/sigsetjmp call, corresponding
roughly to a jmp_buf. */
struct setjmp_record
{
setjmp_record (const exploded_node *enode,
const gcall *setjmp_call)
: m_enode (enode), m_setjmp_call (setjmp_call)
{
}
bool operator== (const setjmp_record &other) const
{
return (m_enode == other.m_enode
&& m_setjmp_call == other.m_setjmp_call);
}
void add_to_hash (inchash::hash *hstate) const
{
hstate->add_ptr (m_enode);
hstate->add_ptr (m_setjmp_call);
}
static int cmp (const setjmp_record &rec1, const setjmp_record &rec2);
const exploded_node *m_enode;
const gcall *m_setjmp_call;
};
/* Concrete subclass of svalue representing buffers for setjmp/sigsetjmp,
so that longjmp/siglongjmp can potentially "return" to an entirely
different function. */
class setjmp_svalue : public svalue
{
public:
/* A support class for uniquifying instances of poisoned_svalue. */
struct key_t
{
key_t (const setjmp_record &record, tree type)
: m_record (record), m_type (type)
{}
hashval_t hash () const
{
inchash::hash hstate;
m_record.add_to_hash (&hstate);
hstate.add_ptr (m_type);
return hstate.end ();
}
bool operator== (const key_t &other) const
{
return (m_record == other.m_record && m_type == other.m_type);
}
void mark_deleted () { m_type = reinterpret_cast<tree> (1); }
void mark_empty () { m_type = reinterpret_cast<tree> (2); }
bool is_deleted () const { return m_type == reinterpret_cast<tree> (1); }
bool is_empty () const { return m_type == reinterpret_cast<tree> (2); }
setjmp_record m_record;
tree m_type;
};
setjmp_svalue (const setjmp_record &setjmp_record,
tree type)
: svalue (complexity (1, 1), type), m_setjmp_record (setjmp_record)
{}
enum svalue_kind get_kind () const FINAL OVERRIDE { return SK_SETJMP; }
const setjmp_svalue *
dyn_cast_setjmp_svalue () const FINAL OVERRIDE { return this; }
void dump_to_pp (pretty_printer *pp, bool simple) const FINAL OVERRIDE;
void accept (visitor *v) const FINAL OVERRIDE;
int get_enode_index () const;
const setjmp_record &get_setjmp_record () const { return m_setjmp_record; }
private:
setjmp_record m_setjmp_record;
};
} // namespace ana
template <>
template <>
inline bool
is_a_helper <const setjmp_svalue *>::test (const svalue *sval)
{
return sval->get_kind () == SK_SETJMP;
}
template <> struct default_hash_traits<setjmp_svalue::key_t>
: public member_function_hash_traits<setjmp_svalue::key_t>
{
static const bool empty_zero_p = false;
};
namespace ana {
/* Concrete subclass of svalue representing the initial value of a
specific region.
This represents the initial value at the start of the analysis path,
as opposed to the first time the region is accessed during the path.
Hence as soon as we have a call to an unknown function, all previously
unmodelled globals become implicitly "unknown" rathen than "initial". */
class initial_svalue : public svalue
{
public:
initial_svalue (tree type, const region *reg)
: svalue (complexity (reg), type), m_reg (reg)
{
gcc_assert (m_reg != NULL);
}
enum svalue_kind get_kind () const FINAL OVERRIDE { return SK_INITIAL; }
const initial_svalue *
dyn_cast_initial_svalue () const FINAL OVERRIDE { return this; }
void dump_to_pp (pretty_printer *pp, bool simple) const FINAL OVERRIDE;
void accept (visitor *v) const FINAL OVERRIDE;
bool implicitly_live_p (const svalue_set *,
const region_model *) const FINAL OVERRIDE;
bool initial_value_of_param_p () const;
const region *get_region () const { return m_reg; }
private:
const region *m_reg;
};
} // namespace ana
template <>
template <>
inline bool
is_a_helper <const initial_svalue *>::test (const svalue *sval)
{
return sval->get_kind () == SK_INITIAL;
}
namespace ana {
/* Concrete subclass of svalue representing a unary operation on
another svalues (e.g. a cast). */
class unaryop_svalue : public svalue
{
public:
/* A support class for uniquifying instances of unaryop_svalue. */
struct key_t
{
key_t (tree type, enum tree_code op, const svalue *arg)
: m_type (type), m_op (op), m_arg (arg)
{}
hashval_t hash () const
{
inchash::hash hstate;
hstate.add_ptr (m_type);
hstate.add_int (m_op);
hstate.add_ptr (m_arg);
return hstate.end ();
}
bool operator== (const key_t &other) const
{
return (m_type == other.m_type
&& m_op == other.m_op
&& m_arg == other.m_arg);
}
void mark_deleted () { m_type = reinterpret_cast<tree> (1); }
void mark_empty () { m_type = reinterpret_cast<tree> (2); }
bool is_deleted () const { return m_type == reinterpret_cast<tree> (1); }
bool is_empty () const { return m_type == reinterpret_cast<tree> (2); }
tree m_type;
enum tree_code m_op;
const svalue *m_arg;
};
unaryop_svalue (tree type, enum tree_code op, const svalue *arg)
: svalue (complexity (arg), type), m_op (op), m_arg (arg)
{
gcc_assert (arg->can_have_associated_state_p ());
}
enum svalue_kind get_kind () const FINAL OVERRIDE { return SK_UNARYOP; }
const unaryop_svalue *
dyn_cast_unaryop_svalue () const FINAL OVERRIDE { return this; }
void dump_to_pp (pretty_printer *pp, bool simple) const FINAL OVERRIDE;
void accept (visitor *v) const FINAL OVERRIDE;
bool implicitly_live_p (const svalue_set *,
const region_model *) const FINAL OVERRIDE;
enum tree_code get_op () const { return m_op; }
const svalue *get_arg () const { return m_arg; }
const svalue *
maybe_fold_bits_within (tree type,
const bit_range &subrange,
region_model_manager *mgr) const FINAL OVERRIDE;
private:
enum tree_code m_op;
const svalue *m_arg;
};
} // namespace ana
template <>
template <>
inline bool
is_a_helper <const unaryop_svalue *>::test (const svalue *sval)
{
return sval->get_kind () == SK_UNARYOP;
}
template <> struct default_hash_traits<unaryop_svalue::key_t>
: public member_function_hash_traits<unaryop_svalue::key_t>
{
static const bool empty_zero_p = false;
};
namespace ana {
/* Concrete subclass of svalue representing a binary operation of
two svalues. */
class binop_svalue : public svalue
{
public:
/* A support class for uniquifying instances of binop_svalue. */
struct key_t
{
key_t (tree type, enum tree_code op,
const svalue *arg0, const svalue *arg1)
: m_type (type), m_op (op), m_arg0 (arg0), m_arg1 (arg1)
{}
hashval_t hash () const
{
inchash::hash hstate;
hstate.add_ptr (m_type);
hstate.add_int (m_op);
hstate.add_ptr (m_arg0);
hstate.add_ptr (m_arg1);
return hstate.end ();
}
bool operator== (const key_t &other) const
{
return (m_type == other.m_type
&& m_op == other.m_op
&& m_arg0 == other.m_arg0
&& m_arg1 == other.m_arg1);
}
void mark_deleted () { m_type = reinterpret_cast<tree> (1); }
void mark_empty () { m_type = reinterpret_cast<tree> (2); }
bool is_deleted () const { return m_type == reinterpret_cast<tree> (1); }
bool is_empty () const { return m_type == reinterpret_cast<tree> (2); }
tree m_type;
enum tree_code m_op;
const svalue *m_arg0;
const svalue *m_arg1;
};
binop_svalue (tree type, enum tree_code op,
const svalue *arg0, const svalue *arg1)
: svalue (complexity::from_pair (arg0->get_complexity (),
arg1->get_complexity ()),
type),
m_op (op), m_arg0 (arg0), m_arg1 (arg1)
{
gcc_assert (arg0->can_have_associated_state_p ());
gcc_assert (arg1->can_have_associated_state_p ());
}
enum svalue_kind get_kind () const FINAL OVERRIDE { return SK_BINOP; }
const binop_svalue *dyn_cast_binop_svalue () const FINAL OVERRIDE
{
return this;
}
void dump_to_pp (pretty_printer *pp, bool simple) const FINAL OVERRIDE;
void accept (visitor *v) const FINAL OVERRIDE;
bool implicitly_live_p (const svalue_set *,
const region_model *) const FINAL OVERRIDE;
enum tree_code get_op () const { return m_op; }
const svalue *get_arg0 () const { return m_arg0; }
const svalue *get_arg1 () const { return m_arg1; }
private:
enum tree_code m_op;
const svalue *m_arg0;
const svalue *m_arg1;
};
} // namespace ana
template <>
template <>
inline bool
is_a_helper <const binop_svalue *>::test (const svalue *sval)
{
return sval->get_kind () == SK_BINOP;
}
template <> struct default_hash_traits<binop_svalue::key_t>
: public member_function_hash_traits<binop_svalue::key_t>
{
static const bool empty_zero_p = false;
};
namespace ana {
/* Concrete subclass of svalue representing the result of accessing a subregion
of another svalue (the value of a component/field of a struct, or an element
from an array). */
class sub_svalue : public svalue
{
public:
/* A support class for uniquifying instances of sub_svalue. */
struct key_t
{
key_t (tree type, const svalue *parent_svalue, const region *subregion)
: m_type (type), m_parent_svalue (parent_svalue), m_subregion (subregion)
{}
hashval_t hash () const
{
inchash::hash hstate;
hstate.add_ptr (m_type);
hstate.add_ptr (m_parent_svalue);
hstate.add_ptr (m_subregion);
return hstate.end ();
}
bool operator== (const key_t &other) const
{
return (m_type == other.m_type
&& m_parent_svalue == other.m_parent_svalue
&& m_subregion == other.m_subregion);
}
void mark_deleted () { m_type = reinterpret_cast<tree> (1); }
void mark_empty () { m_type = reinterpret_cast<tree> (2); }
bool is_deleted () const { return m_type == reinterpret_cast<tree> (1); }
bool is_empty () const { return m_type == reinterpret_cast<tree> (2); }
tree m_type;
const svalue *m_parent_svalue;
const region *m_subregion;
};
sub_svalue (tree type, const svalue *parent_svalue,
const region *subregion);
enum svalue_kind get_kind () const FINAL OVERRIDE { return SK_SUB; }
const sub_svalue *dyn_cast_sub_svalue () const FINAL OVERRIDE
{
return this;
}
void dump_to_pp (pretty_printer *pp, bool simple) const FINAL OVERRIDE;
void accept (visitor *v) const FINAL OVERRIDE;
bool implicitly_live_p (const svalue_set *,
const region_model *) const FINAL OVERRIDE;
const svalue *get_parent () const { return m_parent_svalue; }
const region *get_subregion () const { return m_subregion; }
private:
const svalue *m_parent_svalue;
const region *m_subregion;
};
} // namespace ana
template <>
template <>
inline bool
is_a_helper <const sub_svalue *>::test (const svalue *sval)
{
return sval->get_kind () == SK_SUB;
}
template <> struct default_hash_traits<sub_svalue::key_t>
: public member_function_hash_traits<sub_svalue::key_t>
{
static const bool empty_zero_p = false;
};
namespace ana {
/* Concrete subclass of svalue representing repeating an inner svalue
(possibly not a whole number of times) to fill a larger region of
type TYPE of size OUTER_SIZE bytes. */
class repeated_svalue : public svalue
{
public:
/* A support class for uniquifying instances of repeated_svalue. */
struct key_t
{
key_t (tree type,
const svalue *outer_size,
const svalue *inner_svalue)
: m_type (type), m_outer_size (outer_size), m_inner_svalue (inner_svalue)
{}
hashval_t hash () const
{
inchash::hash hstate;
hstate.add_ptr (m_type);
hstate.add_ptr (m_outer_size);
hstate.add_ptr (m_inner_svalue);
return hstate.end ();
}
bool operator== (const key_t &other) const
{
return (m_type == other.m_type
&& m_outer_size == other.m_outer_size
&& m_inner_svalue == other.m_inner_svalue);
}
void mark_deleted () { m_type = reinterpret_cast<tree> (1); }
void mark_empty () { m_type = reinterpret_cast<tree> (2); }
bool is_deleted () const { return m_type == reinterpret_cast<tree> (1); }
bool is_empty () const { return m_type == reinterpret_cast<tree> (2); }
tree m_type;
const svalue *m_outer_size;
const svalue *m_inner_svalue;
};
repeated_svalue (tree type,
const svalue *outer_size,
const svalue *inner_svalue);
enum svalue_kind get_kind () const FINAL OVERRIDE { return SK_REPEATED; }
const repeated_svalue *dyn_cast_repeated_svalue () const FINAL OVERRIDE
{
return this;
}
void dump_to_pp (pretty_printer *pp, bool simple) const FINAL OVERRIDE;
void accept (visitor *v) const FINAL OVERRIDE;
const svalue *get_outer_size () const { return m_outer_size; }
const svalue *get_inner_svalue () const { return m_inner_svalue; }
bool all_zeroes_p () const FINAL OVERRIDE;
const svalue *
maybe_fold_bits_within (tree type,
const bit_range &subrange,
region_model_manager *mgr) const FINAL OVERRIDE;
private:
const svalue *m_outer_size;
const svalue *m_inner_svalue;
};
} // namespace ana
template <>
template <>
inline bool
is_a_helper <const repeated_svalue *>::test (const svalue *sval)
{
return sval->get_kind () == SK_REPEATED;
}
template <> struct default_hash_traits<repeated_svalue::key_t>
: public member_function_hash_traits<repeated_svalue::key_t>
{
static const bool empty_zero_p = false;
};
namespace ana {
/* A range of bits/bytes within another svalue
e.g. bytes 5-39 of INITIAL_SVALUE(R).
These can be generated for prefixes and suffixes when part of a binding
is clobbered, so that we don't lose too much information. */
class bits_within_svalue : public svalue
{
public:
/* A support class for uniquifying instances of bits_within_svalue. */
struct key_t
{
key_t (tree type,
const bit_range &bits,
const svalue *inner_svalue)
: m_type (type), m_bits (bits), m_inner_svalue (inner_svalue)
{}
hashval_t hash () const
{
inchash::hash hstate;
hstate.add_ptr (m_type);
hstate.add_ptr (m_inner_svalue);
return hstate.end ();
}
bool operator== (const key_t &other) const
{
return (m_type == other.m_type
&& m_bits == other.m_bits
&& m_inner_svalue == other.m_inner_svalue);
}
void mark_deleted () { m_type = reinterpret_cast<tree> (1); }
void mark_empty () { m_type = reinterpret_cast<tree> (2); }
bool is_deleted () const { return m_type == reinterpret_cast<tree> (1); }
bool is_empty () const { return m_type == reinterpret_cast<tree> (2); }
tree m_type;
bit_range m_bits;
const svalue *m_inner_svalue;
};
bits_within_svalue (tree type,
const bit_range &bits,
const svalue *inner_svalue);
enum svalue_kind get_kind () const FINAL OVERRIDE { return SK_BITS_WITHIN; }
const bits_within_svalue *
dyn_cast_bits_within_svalue () const FINAL OVERRIDE
{
return this;
}
void dump_to_pp (pretty_printer *pp, bool simple) const FINAL OVERRIDE;
void accept (visitor *v) const FINAL OVERRIDE;
bool implicitly_live_p (const svalue_set *,
const region_model *) const FINAL OVERRIDE;
const bit_range &get_bits () const { return m_bits; }
const svalue *get_inner_svalue () const { return m_inner_svalue; }
const svalue *
maybe_fold_bits_within (tree type,
const bit_range &subrange,
region_model_manager *mgr) const FINAL OVERRIDE;
private:
const bit_range m_bits;
const svalue *m_inner_svalue;
};
} // namespace ana
template <>
template <>
inline bool
is_a_helper <const bits_within_svalue *>::test (const svalue *sval)
{
return sval->get_kind () == SK_BITS_WITHIN;
}
template <> struct default_hash_traits<bits_within_svalue::key_t>
: public member_function_hash_traits<bits_within_svalue::key_t>
{
static const bool empty_zero_p = false;
};
namespace ana {
/* Concrete subclass of svalue: decorate another svalue,
so that the resulting svalue can be identified as being
"interesting to control flow".
For example, consider the return value from setjmp. We
don't want to merge states in which the result is 0 with
those in which the result is non-zero. By using an
unmergeable_svalue for the result, we can inhibit such merges
and have separate exploded nodes for those states, keeping
the first and second returns from setjmp distinct in the exploded
graph. */
class unmergeable_svalue : public svalue
{
public:
unmergeable_svalue (const svalue *arg)
: svalue (complexity (arg), arg->get_type ()), m_arg (arg)
{
}
enum svalue_kind get_kind () const FINAL OVERRIDE { return SK_UNMERGEABLE; }
const unmergeable_svalue *
dyn_cast_unmergeable_svalue () const FINAL OVERRIDE { return this; }
void dump_to_pp (pretty_printer *pp, bool simple) const FINAL OVERRIDE;
void accept (visitor *v) const FINAL OVERRIDE;
bool implicitly_live_p (const svalue_set *,
const region_model *) const FINAL OVERRIDE;
const svalue *get_arg () const { return m_arg; }
private:
const svalue *m_arg;
};
} // namespace ana
template <>
template <>
inline bool
is_a_helper <const unmergeable_svalue *>::test (const svalue *sval)
{
return sval->get_kind () == SK_UNMERGEABLE;
}
namespace ana {
/* Concrete subclass of svalue for use in selftests, where
we want a specific but unknown svalue.
Unlike other svalue subclasses these aren't managed by
region_model_manager. */
class placeholder_svalue : public svalue
{
public:
placeholder_svalue (tree type, const char *name)
: svalue (complexity (1, 1), type), m_name (name)
{
}
enum svalue_kind get_kind () const FINAL OVERRIDE { return SK_PLACEHOLDER; }
void dump_to_pp (pretty_printer *pp, bool simple) const FINAL OVERRIDE;
void accept (visitor *v) const FINAL OVERRIDE;
const char *get_name () const { return m_name; }
private:
const char *m_name;
};
} // namespace ana
template <>
template <>
inline bool
is_a_helper <const placeholder_svalue *>::test (const svalue *sval)
{
return sval->get_kind () == SK_PLACEHOLDER;
}
namespace ana {
/* Concrete subclass of svalue representing a "widening" seen when merging
states, widening from a base value to {base value, iter value} and thus
representing a possible fixed point in an iteration from the base to
+ve infinity, or -ve infinity, and thus useful for representing a value
within a loop.
We also need to capture the program_point at which the merger happens,
so that distinguish between different iterators, and thus handle
nested loops. (currently we capture the function_point instead, for
simplicity of hashing). */
class widening_svalue : public svalue
{
public:
/* A support class for uniquifying instances of widening_svalue. */
struct key_t
{
key_t (tree type, const program_point &point,
const svalue *base_sval, const svalue *iter_sval)
: m_type (type), m_point (point.get_function_point ()),
m_base_sval (base_sval), m_iter_sval (iter_sval)
{}
hashval_t hash () const
{
inchash::hash hstate;
hstate.add_ptr (m_base_sval);
hstate.add_ptr (m_iter_sval);
return hstate.end ();
}
bool operator== (const key_t &other) const
{
return (m_type == other.m_type
&& m_point == other.m_point
&& m_base_sval == other.m_base_sval
&& m_iter_sval == other.m_iter_sval);
}
void mark_deleted () { m_type = reinterpret_cast<tree> (1); }
void mark_empty () { m_type = reinterpret_cast<tree> (2); }
bool is_deleted () const { return m_type == reinterpret_cast<tree> (1); }
bool is_empty () const { return m_type == reinterpret_cast<tree> (2); }
tree m_type;
function_point m_point;
const svalue *m_base_sval;
const svalue *m_iter_sval;
};
enum direction_t
{
DIR_ASCENDING,
DIR_DESCENDING,
DIR_UNKNOWN
};
widening_svalue (tree type, const program_point &point,
const svalue *base_sval, const svalue *iter_sval)
: svalue (complexity::from_pair (base_sval->get_complexity (),
iter_sval->get_complexity ()),
type),
m_point (point.get_function_point ()),
m_base_sval (base_sval), m_iter_sval (iter_sval)
{
gcc_assert (base_sval->can_have_associated_state_p ());
gcc_assert (iter_sval->can_have_associated_state_p ());
}
enum svalue_kind get_kind () const FINAL OVERRIDE { return SK_WIDENING; }
const widening_svalue *dyn_cast_widening_svalue () const FINAL OVERRIDE
{
return this;
}
void dump_to_pp (pretty_printer *pp, bool simple) const FINAL OVERRIDE;
void accept (visitor *v) const FINAL OVERRIDE;
const function_point &get_point () const { return m_point; }
const svalue *get_base_svalue () const { return m_base_sval; }
const svalue *get_iter_svalue () const { return m_iter_sval; }
enum direction_t get_direction () const;
tristate eval_condition_without_cm (enum tree_code op,
tree rhs_cst) const;
private:
function_point m_point;
const svalue *m_base_sval;
const svalue *m_iter_sval;
};
} // namespace ana
template <>
template <>
inline bool
is_a_helper <const widening_svalue *>::test (const svalue *sval)
{
return sval->get_kind () == SK_WIDENING;
}
template <> struct default_hash_traits<widening_svalue::key_t>
: public member_function_hash_traits<widening_svalue::key_t>
{
static const bool empty_zero_p = false;
};
namespace ana {
/* Concrete subclass of svalue representing a mapping of bit-ranges
to svalues, analogous to a cluster within the store.
This is for use in places where we want to represent a store-like
mapping, but are required to use an svalue, such as when handling
compound assignments and compound return values.
All keys within the underlying binding_map are required to be concrete,
not symbolic.
Instances of this class shouldn't be bound as-is into the store;
instead they should be unpacked. Similarly, they should not be
nested. */
class compound_svalue : public svalue
{
public:
typedef binding_map::iterator_t iterator_t;
/* A support class for uniquifying instances of compound_svalue.
Note that to avoid copies, keys store pointers to binding_maps,
rather than the maps themselves. */
struct key_t
{
key_t (tree type, const binding_map *map_ptr)
: m_type (type), m_map_ptr (map_ptr)
{}
hashval_t hash () const
{
inchash::hash hstate;
hstate.add_ptr (m_type);
//hstate.add_ptr (m_map_ptr); // TODO
return hstate.end ();
}
bool operator== (const key_t &other) const
{
return (m_type == other.m_type
&& *m_map_ptr == *other.m_map_ptr);
}
void mark_deleted () { m_type = reinterpret_cast<tree> (1); }
void mark_empty () { m_type = reinterpret_cast<tree> (2); }
bool is_deleted () const { return m_type == reinterpret_cast<tree> (1); }
bool is_empty () const { return m_type == reinterpret_cast<tree> (2); }
tree m_type;
const binding_map *m_map_ptr;
};
compound_svalue (tree type, const binding_map &map);
enum svalue_kind get_kind () const FINAL OVERRIDE { return SK_COMPOUND; }
const compound_svalue *dyn_cast_compound_svalue () const FINAL OVERRIDE
{
return this;
}
void dump_to_pp (pretty_printer *pp, bool simple) const FINAL OVERRIDE;
void accept (visitor *v) const FINAL OVERRIDE;
const binding_map &get_map () const { return m_map; }
iterator_t begin () const { return m_map.begin (); }
iterator_t end () const { return m_map.end (); }
struct key_t make_key () const
{
return key_t (get_type (), &m_map);
}
const svalue *
maybe_fold_bits_within (tree type,
const bit_range &subrange,
region_model_manager *mgr) const FINAL OVERRIDE;
private:
static complexity calc_complexity (const binding_map &map);
binding_map m_map;
};
} // namespace ana
template <>
template <>
inline bool
is_a_helper <const compound_svalue *>::test (const svalue *sval)
{
return sval->get_kind () == SK_COMPOUND;
}
template <> struct default_hash_traits<compound_svalue::key_t>
: public member_function_hash_traits<compound_svalue::key_t>
{
static const bool empty_zero_p = false;
};
namespace ana {
/* A bundle of state for purging information from a program_state about
a conjured_svalue. We pass this whenever calling
get_or_create_conjured_svalue, so that if the program_state already
has information about this conjured_svalue on an execution path, we
can purge that information, to avoid the analyzer confusing the two
values as being the same. */
class conjured_purge
{
public:
conjured_purge (region_model *model, region_model_context *ctxt)
: m_model (model), m_ctxt (ctxt)
{
}
void purge (const conjured_svalue *sval) const;
private:
region_model *m_model;
region_model_context *m_ctxt;
};
/* A defined value arising from a statement, where we want to identify a
particular unknown value, rather than resorting to the unknown_value
singleton, so that the value can have sm-state.
Comparisons of variables that share the same conjured_svalue are known
to be equal, even if we don't know what the value is.
For example, this is used for the values of regions that may have been
touched when calling an unknown function.
The value captures a region as well as a stmt in order to avoid falsely
aliasing the various values that could arise in one statement. For
example, after:
unknown_fn (&a, &b);
we want values to clobber a and b with, but we don't want to use the
same value, or it would falsely implicitly assume that a == b. */
class conjured_svalue : public svalue
{
public:
/* A support class for uniquifying instances of conjured_svalue. */
struct key_t
{
key_t (tree type, const gimple *stmt, const region *id_reg)
: m_type (type), m_stmt (stmt), m_id_reg (id_reg)
{}
hashval_t hash () const
{
inchash::hash hstate;
hstate.add_ptr (m_type);
hstate.add_ptr (m_stmt);
hstate.add_ptr (m_id_reg);
return hstate.end ();
}
bool operator== (const key_t &other) const
{
return (m_type == other.m_type
&& m_stmt == other.m_stmt
&& m_id_reg == other.m_id_reg);
}
/* Use m_stmt to mark empty/deleted, as m_type can be NULL for
legitimate instances. */
void mark_deleted () { m_stmt = reinterpret_cast<const gimple *> (1); }
void mark_empty () { m_stmt = NULL; }
bool is_deleted () const
{
return m_stmt == reinterpret_cast<const gimple *> (1);
}
bool is_empty () const { return m_stmt == NULL; }
tree m_type;
const gimple *m_stmt;
const region *m_id_reg;
};
conjured_svalue (tree type, const gimple *stmt, const region *id_reg)
: svalue (complexity (id_reg), type),
m_stmt (stmt), m_id_reg (id_reg)
{
gcc_assert (m_stmt != NULL);
}
enum svalue_kind get_kind () const FINAL OVERRIDE { return SK_CONJURED; }
const conjured_svalue *dyn_cast_conjured_svalue () const FINAL OVERRIDE
{
return this;
}
void dump_to_pp (pretty_printer *pp, bool simple) const FINAL OVERRIDE;
void accept (visitor *v) const FINAL OVERRIDE;
const gimple *get_stmt () const { return m_stmt; }
const region *get_id_region () const { return m_id_reg; }
private:
const gimple *m_stmt;
const region *m_id_reg;
};
} // namespace ana
template <>
template <>
inline bool
is_a_helper <const conjured_svalue *>::test (const svalue *sval)
{
return sval->get_kind () == SK_CONJURED;
}
template <> struct default_hash_traits<conjured_svalue::key_t>
: public member_function_hash_traits<conjured_svalue::key_t>
{
static const bool empty_zero_p = true;
};
namespace ana {
/* An output from a deterministic asm stmt, where we want to identify a
particular unknown value, rather than resorting to the unknown_value
singleton.
Comparisons of variables that share the same asm_output_svalue are known
to be equal, even if we don't know what the value is. */
class asm_output_svalue : public svalue
{
public:
/* Imposing an upper limit and using a (small) array allows key_t
to avoid memory management. */
static const unsigned MAX_INPUTS = 2;
/* A support class for uniquifying instances of asm_output_svalue. */
struct key_t
{
key_t (tree type,
const char *asm_string,
unsigned output_idx,
const vec<const svalue *> &inputs)
: m_type (type), m_asm_string (asm_string), m_output_idx (output_idx),
m_num_inputs (inputs.length ())
{
gcc_assert (inputs.length () <= MAX_INPUTS);
for (unsigned i = 0; i < m_num_inputs; i++)
m_input_arr[i] = inputs[i];
}
hashval_t hash () const
{
inchash::hash hstate;
hstate.add_ptr (m_type);
/* We don't bother hashing m_asm_str. */
hstate.add_int (m_output_idx);
for (unsigned i = 0; i < m_num_inputs; i++)
hstate.add_ptr (m_input_arr[i]);
return hstate.end ();
}
bool operator== (const key_t &other) const
{
if (!(m_type == other.m_type
&& 0 == (strcmp (m_asm_string, other.m_asm_string))
&& m_output_idx == other.m_output_idx
&& m_num_inputs == other.m_num_inputs))
return false;
for (unsigned i = 0; i < m_num_inputs; i++)
if (m_input_arr[i] != other.m_input_arr[i])
return false;
return true;
}
/* Use m_asm_string to mark empty/deleted, as m_type can be NULL for
legitimate instances. */
void mark_deleted () { m_asm_string = reinterpret_cast<const char *> (1); }
void mark_empty () { m_asm_string = NULL; }
bool is_deleted () const
{
return m_asm_string == reinterpret_cast<const char *> (1);
}
bool is_empty () const { return m_asm_string == NULL; }
tree m_type;
const char *m_asm_string;
unsigned m_output_idx;
unsigned m_num_inputs;
const svalue *m_input_arr[MAX_INPUTS];
};
asm_output_svalue (tree type,
const char *asm_string,
unsigned output_idx,
unsigned num_outputs,
const vec<const svalue *> &inputs)
: svalue (complexity::from_vec_svalue (inputs), type),
m_asm_string (asm_string),
m_output_idx (output_idx),
m_num_outputs (num_outputs),
m_num_inputs (inputs.length ())
{
gcc_assert (inputs.length () <= MAX_INPUTS);
for (unsigned i = 0; i < m_num_inputs; i++)
m_input_arr[i] = inputs[i];
}
enum svalue_kind get_kind () const FINAL OVERRIDE { return SK_ASM_OUTPUT; }
const asm_output_svalue *
dyn_cast_asm_output_svalue () const FINAL OVERRIDE
{
return this;
}
void dump_to_pp (pretty_printer *pp, bool simple) const FINAL OVERRIDE;
void accept (visitor *v) const FINAL OVERRIDE;
const char *get_asm_string () const { return m_asm_string; }
unsigned get_output_idx () const { return m_output_idx; }
unsigned get_num_inputs () const { return m_num_inputs; }
const svalue *get_input (unsigned idx) const { return m_input_arr[idx]; }
private:
void dump_input (pretty_printer *pp,
unsigned input_idx,
const svalue *sval,
bool simple) const;
unsigned input_idx_to_asm_idx (unsigned input_idx) const;
const char *m_asm_string;
unsigned m_output_idx;
/* We capture this so that we can offset the input indices
to match the %0, %1, %2 in the asm_string when dumping. */
unsigned m_num_outputs;
unsigned m_num_inputs;
const svalue *m_input_arr[MAX_INPUTS];
};
} // namespace ana
template <>
template <>
inline bool
is_a_helper <const asm_output_svalue *>::test (const svalue *sval)
{
return sval->get_kind () == SK_ASM_OUTPUT;
}
template <> struct default_hash_traits<asm_output_svalue::key_t>
: public member_function_hash_traits<asm_output_svalue::key_t>
{
static const bool empty_zero_p = true;
};
namespace ana {
/* The return value from a function with __attribute((const)) for given
inputs, provided that we don't have too many inputs, and all of them
are deterministic.
Comparisons of variables that share the same const_fn_result_svalue are known
to be equal, even if we don't know what the value is. */
class const_fn_result_svalue : public svalue
{
public:
/* Imposing an upper limit and using a (small) array allows key_t
to avoid memory management. */
static const unsigned MAX_INPUTS = 2;
/* A support class for uniquifying instances of const_fn_result_svalue. */
struct key_t
{
key_t (tree type,
tree fndecl,
const vec<const svalue *> &inputs)
: m_type (type), m_fndecl (fndecl),
m_num_inputs (inputs.length ())
{
gcc_assert (inputs.length () <= MAX_INPUTS);
for (unsigned i = 0; i < m_num_inputs; i++)
m_input_arr[i] = inputs[i];
}
hashval_t hash () const
{
inchash::hash hstate;
hstate.add_ptr (m_type);
hstate.add_ptr (m_fndecl);
for (unsigned i = 0; i < m_num_inputs; i++)
hstate.add_ptr (m_input_arr[i]);
return hstate.end ();
}
bool operator== (const key_t &other) const
{
if (!(m_type == other.m_type
&& m_fndecl == other.m_fndecl
&& m_num_inputs == other.m_num_inputs))
return false;
for (unsigned i = 0; i < m_num_inputs; i++)
if (m_input_arr[i] != other.m_input_arr[i])
return false;
return true;
}
/* Use m_fndecl to mark empty/deleted. */
void mark_deleted () { m_fndecl = reinterpret_cast<tree> (1); }
void mark_empty () { m_fndecl = NULL; }
bool is_deleted () const
{
return m_fndecl == reinterpret_cast<tree> (1);
}
bool is_empty () const { return m_fndecl == NULL; }
tree m_type;
tree m_fndecl;
unsigned m_num_inputs;
const svalue *m_input_arr[MAX_INPUTS];
};
const_fn_result_svalue (tree type,
tree fndecl,
const vec<const svalue *> &inputs)
: svalue (complexity::from_vec_svalue (inputs), type),
m_fndecl (fndecl),
m_num_inputs (inputs.length ())
{
gcc_assert (inputs.length () <= MAX_INPUTS);
for (unsigned i = 0; i < m_num_inputs; i++)
m_input_arr[i] = inputs[i];
}
enum svalue_kind get_kind () const FINAL OVERRIDE
{
return SK_CONST_FN_RESULT;
}
const const_fn_result_svalue *
dyn_cast_const_fn_result_svalue () const FINAL OVERRIDE
{
return this;
}
void dump_to_pp (pretty_printer *pp, bool simple) const FINAL OVERRIDE;
void accept (visitor *v) const FINAL OVERRIDE;
tree get_fndecl () const { return m_fndecl; }
unsigned get_num_inputs () const { return m_num_inputs; }
const svalue *get_input (unsigned idx) const { return m_input_arr[idx]; }
private:
void dump_input (pretty_printer *pp,
unsigned input_idx,
const svalue *sval,
bool simple) const;
tree m_fndecl;
unsigned m_num_inputs;
const svalue *m_input_arr[MAX_INPUTS];
};
} // namespace ana
template <>
template <>
inline bool
is_a_helper <const const_fn_result_svalue *>::test (const svalue *sval)
{
return sval->get_kind () == SK_CONST_FN_RESULT;
}
template <> struct default_hash_traits<const_fn_result_svalue::key_t>
: public member_function_hash_traits<const_fn_result_svalue::key_t>
{
static const bool empty_zero_p = true;
};
#endif /* GCC_ANALYZER_SVALUE_H */
|