1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217
|
/* types.cc -- Lower D frontend types to GCC trees.
Copyright (C) 2006-2022 Free Software Foundation, Inc.
GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "dmd/attrib.h"
#include "dmd/aggregate.h"
#include "dmd/enum.h"
#include "dmd/expression.h"
#include "dmd/identifier.h"
#include "dmd/mtype.h"
#include "dmd/target.h"
#include "tree.h"
#include "fold-const.h"
#include "diagnostic.h"
#include "langhooks.h"
#include "tm.h"
#include "function.h"
#include "toplev.h"
#include "target.h"
#include "stringpool.h"
#include "stor-layout.h"
#include "attribs.h"
#include "d-tree.h"
#include "d-target.h"
/* Return the signed or unsigned version of TYPE, an integral type, the
signedness being specified by UNSIGNEDP. */
static tree
d_signed_or_unsigned_type (int unsignedp, tree type)
{
if (TYPE_UNSIGNED (type) == (unsigned) unsignedp)
return type;
if (TYPE_PRECISION (type) == TYPE_PRECISION (d_cent_type))
return unsignedp ? d_ucent_type : d_cent_type;
if (TYPE_PRECISION (type) == TYPE_PRECISION (d_long_type))
return unsignedp ? d_ulong_type : d_long_type;
if (TYPE_PRECISION (type) == TYPE_PRECISION (d_int_type))
return unsignedp ? d_uint_type : d_int_type;
if (TYPE_PRECISION (type) == TYPE_PRECISION (d_short_type))
return unsignedp ? d_ushort_type : d_short_type;
if (TYPE_PRECISION (type) == TYPE_PRECISION (d_byte_type))
return unsignedp ? d_ubyte_type : d_byte_type;
return signed_or_unsigned_type_for (unsignedp, type);
}
/* Return the unsigned version of TYPE, an integral type. */
tree
d_unsigned_type (tree type)
{
return d_signed_or_unsigned_type (1, type);
}
/* Return the signed version of TYPE, an integral type. */
tree
d_signed_type (tree type)
{
return d_signed_or_unsigned_type (0, type);
}
/* Return TRUE if TYPE is a static array va_list. This is for compatibility
with the C ABI, where va_list static arrays are passed by reference.
However for every other case in D, static arrays are passed by value. */
bool
valist_array_p (Type *type)
{
Type *tvalist = target.va_listType (Loc (), NULL);
if (tvalist->ty == TY::Tsarray)
{
Type *tb = type->toBasetype ();
if (same_type_p (tb, tvalist))
return true;
}
return false;
}
/* Returns true if TYPE contains no actual data, just various
possible combinations of empty aggregates. */
bool
empty_aggregate_p (tree type)
{
if (!AGGREGATE_TYPE_P (type))
return false;
/* Want the element type for arrays. */
if (TREE_CODE (type) == ARRAY_TYPE)
return empty_aggregate_p (TREE_TYPE (type));
/* Recursively check all fields. */
for (tree field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
{
if (TREE_CODE (field) == FIELD_DECL
&& !empty_aggregate_p (TREE_TYPE (field)))
return false;
}
return true;
}
/* Returns true if T1 and T2 are related to each other. */
bool
same_type_p (Type *t1, Type *t2)
{
/* Types are equal. */
if (t1 == t2)
return true;
/* Types derive from the same base. */
Type *tb1 = t1->toBasetype ();
Type *tb2 = t2->toBasetype ();
if (tb1 == tb2)
return true;
/* Types are mutably the same type. */
if (tb1->ty == tb2->ty && tb1->equivalent (tb2))
return true;
return false;
}
/* Returns `Object' type which all D classes are derived from. */
Type *
get_object_type (void)
{
if (ClassDeclaration::object)
return ClassDeclaration::object->type;
error ("missing or corrupt object.d");
return Type::terror;
}
/* Returns a static array of TYPE which has SIZE number of elements. */
tree
make_array_type (Type *type, unsigned HOST_WIDE_INT size)
{
/* In [arrays/void-arrays], void arrays can also be static, the length is
specified in bytes. */
if (type->toBasetype ()->ty == TY::Tvoid)
type = Type::tuns8;
/* In [arrays/static-arrays], a static array with a dimension of 0 is allowed,
but no space is allocated for it. */
if (size == 0)
{
tree range = lang_hooks.types.type_for_size (TYPE_PRECISION (sizetype),
TYPE_UNSIGNED (sizetype));
tree index = build_range_type (range, size_zero_node, NULL_TREE);
tree t = build_array_type (build_ctype (type), index);
TYPE_SIZE (t) = bitsize_zero_node;
TYPE_SIZE_UNIT (t) = size_zero_node;
return t;
}
tree t = build_array_type (build_ctype (type),
build_index_type (size_int (size - 1)));
/* Propagate TREE_ADDRESSABLE to the static array type. */
TREE_ADDRESSABLE (t) = TREE_ADDRESSABLE (TREE_TYPE (t));
return t;
}
/* Builds a record type whose name is NAME. NFIELDS is the number of fields,
provided as field ident/type pairs. */
tree
make_struct_type (const char *name, int nfields, ...)
{
tree fields = NULL_TREE;
va_list ap;
va_start (ap, nfields);
for (int i = 0; i < nfields; i++)
{
tree ident = va_arg (ap, tree);
tree type = va_arg (ap, tree);
tree field = build_decl (BUILTINS_LOCATION, FIELD_DECL, ident, type);
DECL_CHAIN (field) = fields;
fields = field;
}
va_end (ap);
tree type = make_node (RECORD_TYPE);
finish_builtin_struct (type, name, fields, NULL_TREE);
return type;
}
/* Return qualified type variant of TYPE determined by modifier value MOD. */
tree
insert_type_modifiers (tree type, unsigned mod)
{
int quals = 0;
switch (mod)
{
case MODconst:
case MODwild:
case MODwildconst:
case MODimmutable:
case MODshared | MODconst:
case MODshared | MODwild:
case MODshared | MODwildconst:
quals |= TYPE_QUAL_CONST;
break;
case 0:
case MODshared:
break;
default:
gcc_unreachable ();
}
tree qualtype = build_qualified_type (type, quals);
/* Mark whether the type is qualified `shared'. */
if (mod & MODshared)
TYPE_SHARED (qualtype) = 1;
return qualtype;
}
/* Adds FIELD into the aggregate TYPE at OFFSET. */
void
insert_aggregate_field (tree type, tree field, size_t offset)
{
DECL_FIELD_CONTEXT (field) = type;
SET_DECL_OFFSET_ALIGN (field, TYPE_ALIGN (TREE_TYPE (field)));
DECL_FIELD_OFFSET (field) = size_int (offset);
DECL_FIELD_BIT_OFFSET (field) = bitsize_zero_node;
TREE_ADDRESSABLE (field) = TYPE_SHARED (TREE_TYPE (field));
layout_decl (field, 0);
TYPE_FIELDS (type) = chainon (TYPE_FIELDS (type), field);
}
/* Build a bit-field integer type for the given WIDTH and UNSIGNEDP. */
static tree
d_build_bitfield_integer_type (unsigned HOST_WIDE_INT width, int unsignedp)
{
/* Same as d_type_for_size, but uses exact match for size. */
if (width == TYPE_PRECISION (d_byte_type))
return unsignedp ? d_ubyte_type : d_byte_type;
if (width == TYPE_PRECISION (d_short_type))
return unsignedp ? d_ushort_type : d_short_type;
if (width == TYPE_PRECISION (d_int_type))
return unsignedp ? d_uint_type : d_int_type;
if (width == TYPE_PRECISION (d_long_type))
return unsignedp ? d_ulong_type : d_long_type;
if (width == TYPE_PRECISION (d_cent_type))
return unsignedp ? d_ucent_type : d_cent_type;
for (int i = 0; i < NUM_INT_N_ENTS; i ++)
{
if (int_n_enabled_p[i] && width == int_n_data[i].bitsize)
{
if (unsignedp)
return int_n_trees[i].unsigned_type;
else
return int_n_trees[i].signed_type;
}
}
return build_nonstandard_integer_type (width, unsignedp);
}
/* Adds BITFIELD into the aggregate TYPE at OFFSET+BITOFFSET. */
static void
insert_aggregate_bitfield (tree type, tree bitfield, size_t width,
size_t offset, size_t bitoffset)
{
DECL_FIELD_CONTEXT (bitfield) = type;
SET_DECL_OFFSET_ALIGN (bitfield, TYPE_ALIGN (TREE_TYPE (bitfield)));
DECL_SIZE (bitfield) = bitsize_int (width);
DECL_FIELD_OFFSET (bitfield) = size_int (offset);
DECL_FIELD_BIT_OFFSET (bitfield) = bitsize_int (bitoffset);
TREE_ADDRESSABLE (bitfield) = TYPE_SHARED (TREE_TYPE (bitfield));
DECL_BIT_FIELD (bitfield) = 1;
DECL_BIT_FIELD_TYPE (bitfield) = TREE_TYPE (bitfield);
layout_decl (bitfield, 0);
/* Give bit-field its proper type after layout_decl. */
tree orig_type = DECL_BIT_FIELD_TYPE (bitfield);
if (width != TYPE_PRECISION (orig_type))
{
TREE_TYPE (bitfield)
= d_build_bitfield_integer_type (width, TYPE_UNSIGNED (orig_type));
SET_DECL_MODE (bitfield, TYPE_MODE (TREE_TYPE (bitfield)));
}
TYPE_FIELDS (type) = chainon (TYPE_FIELDS (type), bitfield);
}
/* For all decls in the FIELDS chain, adjust their field offset by OFFSET.
This is done as the frontend puts fields into the outer struct, and so
their offset is from the beginning of the aggregate.
We want the offset to be from the beginning of the anonymous aggregate. */
static void
fixup_anonymous_offset (tree fields, tree offset)
{
/* No adjustment in field offset required. */
if (integer_zerop (offset))
return;
while (fields != NULL_TREE)
{
/* Traverse all nested anonymous aggregates to update the offset of their
fields. Note that the anonymous field itself is not adjusted, as it
already has an offset relative to its outer aggregate. */
tree ftype = TREE_TYPE (fields);
if (TYPE_NAME (ftype) && IDENTIFIER_ANON_P (TYPE_IDENTIFIER (ftype)))
{
tree vfields = TYPE_FIELDS (ftype);
fixup_anonymous_offset (vfields, offset);
}
else
{
tree voffset = DECL_FIELD_OFFSET (fields);
DECL_FIELD_OFFSET (fields) = size_binop (MINUS_EXPR, voffset, offset);
}
fields = DECL_CHAIN (fields);
}
}
/* Iterate over all MEMBERS of an aggregate, and add them as fields to CONTEXT.
If INHERITED_P is true, then the members derive from a base class.
Returns the number of named fields found. */
static size_t
layout_aggregate_members (Dsymbols *members, tree context, bool inherited_p)
{
size_t fields = 0;
for (size_t i = 0; i < members->length; i++)
{
Dsymbol *sym = (*members)[i];
VarDeclaration *var = sym->isVarDeclaration ();
if (var != NULL)
{
/* Skip fields that have already been added. */
if (!inherited_p && var->csym != NULL)
continue;
/* If this variable was really a tuple, add all tuple fields. */
if (var->aliassym)
{
TupleDeclaration *td = var->aliassym->isTupleDeclaration ();
Dsymbols tmembers;
/* No other way to coerce the underlying type out of the tuple.
Frontend should have already validated this. */
for (size_t j = 0; j < td->objects->length; j++)
{
RootObject *ro = (*td->objects)[j];
gcc_assert (ro->dyncast () == DYNCAST_EXPRESSION);
Expression *e = (Expression *) ro;
gcc_assert (e->op == EXP::dSymbol);
DsymbolExp *se = e->isDsymbolExp ();
tmembers.push (se->s);
}
fields += layout_aggregate_members (&tmembers, context,
inherited_p);
continue;
}
/* Insert the field declaration at its given offset. */
if (var->isField ())
{
const char *ident = (var->ident && !var->ident->isAnonymous ())
? var->ident->toChars () : NULL;
tree field = create_field_decl (declaration_type (var), ident,
inherited_p, inherited_p);
apply_user_attributes (var, field);
if (BitFieldDeclaration *bf = var->isBitFieldDeclaration ())
{
/* Bit-fields come from an ImportC context, and require the
field be correctly adjusted. */
insert_aggregate_bitfield (context, field, bf->fieldWidth,
bf->offset, bf->bitOffset);
}
else
insert_aggregate_field (context, field, var->offset);
/* Because the front-end shares field decls across classes, don't
create the corresponding back-end symbol unless we are adding
it to the aggregate it is defined in. */
if (!inherited_p)
{
DECL_LANG_SPECIFIC (field) = build_lang_decl (var);
var->csym = field;
}
/* Only count the named fields in an aggregate. */
if (ident != NULL)
fields += 1;
continue;
}
}
/* Anonymous struct/union are flattened by the frontend. However, we
want to keep the record layout in-tact when building the type. */
AnonDeclaration *ad = sym->isAnonDeclaration ();
if (ad != NULL)
{
tree ident = make_anon_name ();
tree type = make_node (ad->isunion ? UNION_TYPE : RECORD_TYPE);
ANON_AGGR_TYPE_P (type) = 1;
d_keep (type);
/* Build the type declaration. */
tree decl = build_decl (make_location_t (ad->loc),
TYPE_DECL, ident, type);
DECL_CONTEXT (decl) = context;
DECL_ARTIFICIAL (decl) = 1;
TYPE_CONTEXT (type) = context;
TYPE_NAME (type) = decl;
TYPE_STUB_DECL (type) = decl;
/* Recursively iterator over the anonymous members. */
fields += layout_aggregate_members (ad->decl, type, inherited_p);
/* Remove from the anon fields the base offset of this anonymous
aggregate. Undoes what is set-up in setFieldOffset, but doesn't
affect field accesses. */
tree offset = size_int (ad->anonoffset);
fixup_anonymous_offset (TYPE_FIELDS (type), offset);
finish_aggregate_type (ad->anonstructsize, ad->anonalignsize, type);
/* And make the corresponding data member. */
tree field = create_field_decl (type, NULL, 0, 0);
apply_user_attributes (ad, field);
insert_aggregate_field (context, field, ad->anonoffset);
continue;
}
/* Other kinds of attributes don't create a scope. */
AttribDeclaration *attrib = sym->isAttribDeclaration ();
if (attrib != NULL)
{
Dsymbols *decls = attrib->include (NULL);
if (decls != NULL)
{
fields += layout_aggregate_members (decls, context, inherited_p);
continue;
}
}
/* Same with template mixins and namespaces. */
if (sym->isTemplateMixin () || sym->isNspace ())
{
ScopeDsymbol *scopesym = sym->isScopeDsymbol ();
if (scopesym->members)
{
fields += layout_aggregate_members (scopesym->members, context,
inherited_p);
continue;
}
}
}
return fields;
}
/* Write out all fields for aggregate BASE. For classes, write out all
interfaces first, then the base class fields. */
static void
layout_aggregate_type (AggregateDeclaration *decl, tree type,
AggregateDeclaration *base)
{
ClassDeclaration *cd = base->isClassDeclaration ();
bool inherited_p = (decl != base);
if (cd != NULL)
{
if (cd->baseClass)
layout_aggregate_type (decl, type, cd->baseClass);
else
{
/* This is the base class (Object) or interface. */
tree objtype = TREE_TYPE (build_ctype (cd->type));
/* Add the vtable pointer, and optionally the monitor fields. */
InterfaceDeclaration *id = cd->isInterfaceDeclaration ();
if (!id || id->vtblInterfaces->length == 0)
{
tree field = create_field_decl (vtbl_ptr_type_node, "__vptr", 1,
inherited_p);
DECL_VIRTUAL_P (field) = 1;
TYPE_VFIELD (type) = field;
DECL_FCONTEXT (field) = objtype;
insert_aggregate_field (type, field, 0);
}
if (!id && cd->hasMonitor ())
{
tree field = create_field_decl (ptr_type_node, "__monitor", 1,
inherited_p);
insert_aggregate_field (type, field, target.ptrsize);
}
}
if (cd->vtblInterfaces)
{
for (size_t i = 0; i < cd->vtblInterfaces->length; i++)
{
BaseClass *bc = (*cd->vtblInterfaces)[i];
tree field = create_field_decl (vtbl_ptr_type_node, NULL, 1, 1);
insert_aggregate_field (type, field, bc->offset);
}
}
}
if (base->members)
{
size_t fields = layout_aggregate_members (base->members, type,
inherited_p);
gcc_assert (fields == base->fields.length);
/* Make sure that all fields have been created. */
if (!inherited_p)
{
for (size_t i = 0; i < base->fields.length; i++)
{
VarDeclaration *var = base->fields[i];
gcc_assert (var->csym != NULL);
}
}
}
}
/* Given a record type TYPE, whose size and alignment are determined by
STRUCTSIZE and ALIGNSIZE. Apply any type attributes ATTRS and compute
the finalized record mode. */
void
finish_aggregate_type (unsigned structsize, unsigned alignsize, tree type)
{
/* Set size and alignment as requested by frontend. */
TYPE_SIZE (type) = bitsize_int (structsize * BITS_PER_UNIT);
TYPE_SIZE_UNIT (type) = size_int (structsize);
SET_TYPE_ALIGN (type, alignsize * BITS_PER_UNIT);
TYPE_PACKED (type) = (alignsize == 1);
/* Set the back-end type mode. */
compute_record_mode (type);
/* Fix up all variants of this aggregate type. */
for (tree t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
{
if (t == type)
continue;
TYPE_FIELDS (t) = TYPE_FIELDS (type);
TYPE_LANG_SPECIFIC (t) = TYPE_LANG_SPECIFIC (type);
SET_TYPE_ALIGN (t, TYPE_ALIGN (type));
TYPE_USER_ALIGN (t) = TYPE_USER_ALIGN (type);
gcc_assert (TYPE_MODE (t) == TYPE_MODE (type));
}
}
/* Returns true if the class or struct type TYPE has already been layed out by
the lowering of another front-end AST type. In which case, there will either
be a reuse of the back-end type, or a multiple definition error.
DECO is the uniquely mangled decoration for the type. */
static bool
merge_aggregate_types (Type *type, tree deco)
{
AggregateDeclaration *sym;
if (type->ty == TY::Tstruct)
sym = type->isTypeStruct ()->sym;
else if (type->ty == TY::Tclass)
sym = type->isTypeClass ()->sym;
else
gcc_unreachable ();
if (IDENTIFIER_DAGGREGATE (deco))
{
AggregateDeclaration *ad = IDENTIFIER_DAGGREGATE (deco);
/* There should never be a class/struct mismatch in mangled names. */
gcc_assert ((sym->isStructDeclaration () && ad->isStructDeclaration ())
|| (sym->isClassDeclaration () && ad->isClassDeclaration ()));
/* Non-templated variables shouldn't be defined twice. */
if (!sym->isInstantiated ())
ScopeDsymbol::multiplyDefined (sym->loc, sym, ad);
type->ctype = build_ctype (ad->type);
return true;
}
return false;
}
/* Implements the visitor interface to build the GCC trees of all
Type AST classes emitted from the D Front-end, where CTYPE holds
the cached back-end representation to be returned. */
class TypeVisitor : public Visitor
{
using Visitor::visit;
public:
TypeVisitor (void)
{
}
/* This should be overridden by each type class. */
void visit (Type *)
{
gcc_unreachable ();
}
/* Type assigned to erroneous expressions or constructs that
failed during the semantic stage. */
void visit (TypeError *t)
{
t->ctype = error_mark_node;
}
/* Type assigned to generic nullable types. */
void visit (TypeNull *t)
{
t->ctype = ptr_type_node;
}
/* Bottom type used for functions that never return. */
void visit (TypeNoreturn *t)
{
t->ctype = noreturn_type_node;
TYPE_NAME (t->ctype) = get_identifier (t->toChars ());
}
/* Basic Data Types. */
void visit (TypeBasic *t)
{
/* [type/basic-data-types]
void no type.
bool 8-bit boolean value.
byte 8-bit signed value.
ubyte 8-bit unsigned value.
short 16-bit signed value.
ushort 16-bit unsigned value.
int 32-bit signed value.
uint 32-bit unsigned value.
long 64-bit signed value.
ulong 64-bit unsigned value.
cent 128-bit signed value.
ucent 128-bit unsigned value.
float 32-bit IEEE 754 floating-point value.
double 64-bit IEEE 754 floating-point value.
real largest FP size implemented in hardware.
ifloat imaginary float.
idouble imaginary double.
ireal imaginary real.
cfloat complex float.
cdouble complex double.
creal complex real.
char UTF-8 code unit.
wchar UTF-16 code unit.
dchar UTF-32 code unit. */
switch (t->ty)
{
case TY::Tvoid: t->ctype = void_type_node; break;
case TY::Tbool: t->ctype = d_bool_type; break;
case TY::Tint8: t->ctype = d_byte_type; break;
case TY::Tuns8: t->ctype = d_ubyte_type; break;
case TY::Tint16: t->ctype = d_short_type; break;
case TY::Tuns16: t->ctype = d_ushort_type; break;
case TY::Tint32: t->ctype = d_int_type; break;
case TY::Tuns32: t->ctype = d_uint_type; break;
case TY::Tint64: t->ctype = d_long_type; break;
case TY::Tuns64: t->ctype = d_ulong_type; break;
case TY::Tint128: t->ctype = d_cent_type; break;
case TY::Tuns128: t->ctype = d_ucent_type; break;
case TY::Tfloat32: t->ctype = float_type_node; break;
case TY::Tfloat64: t->ctype = double_type_node; break;
case TY::Tfloat80: t->ctype = long_double_type_node; break;
case TY::Timaginary32: t->ctype = ifloat_type_node; break;
case TY::Timaginary64: t->ctype = idouble_type_node; break;
case TY::Timaginary80: t->ctype = ireal_type_node; break;
case TY::Tcomplex32: t->ctype = complex_float_type_node; break;
case TY::Tcomplex64: t->ctype = complex_double_type_node; break;
case TY::Tcomplex80: t->ctype = complex_long_double_type_node; break;
case TY::Tchar: t->ctype = char8_type_node; break;
case TY::Twchar: t->ctype = char16_type_node; break;
case TY::Tdchar: t->ctype = char32_type_node; break;
default: gcc_unreachable ();
}
TYPE_NAME (t->ctype) = get_identifier (t->toChars ());
}
/* Derived Data Types. */
/* Build a simple pointer to data type, analogous to C pointers. */
void visit (TypePointer *t)
{
t->ctype = build_pointer_type (build_ctype (t->next));
}
/* Build a dynamic array type, consisting of a length and a pointer
to the array data. */
void visit (TypeDArray *t)
{
/* In [abi/arrays], dynamic array layout is:
.length array dimension.
.ptr pointer to array data. */
t->ctype = make_struct_type (t->toChars (), 2,
get_identifier ("length"),
build_ctype (Type::tsize_t),
get_identifier ("ptr"),
build_pointer_type (build_ctype (t->next)));
TYPE_DYNAMIC_ARRAY (t->ctype) = 1;
TYPE_LANG_SPECIFIC (t->ctype) = build_lang_type (t);
d_keep (t->ctype);
}
/* Build a static array type, distinguished from dynamic arrays by
having a length fixed at compile-time, analogous to C arrays. */
void visit (TypeSArray *t)
{
if (t->dim->isConst () && t->dim->type->isintegral ())
{
uinteger_t size = t->dim->toUInteger ();
t->ctype = make_array_type (t->next, size);
}
else
{
error ("invalid expression for static array dimension: %s",
t->dim->toChars ());
gcc_unreachable ();
}
}
/* Build a vector type, a fixed array of floating or integer types. */
void visit (TypeVector *t)
{
int nunits = t->basetype->isTypeSArray ()->dim->toUInteger ();
tree inner = build_ctype (t->elementType ());
/* Same rationale as void static arrays. */
if (inner == void_type_node)
inner = build_ctype (Type::tuns8);
t->ctype = build_vector_type (inner, nunits);
TYPE_NAME (t->ctype) = get_identifier (t->toChars ());
layout_type (t->ctype);
}
/* Build an associative array type, distinguished from arrays by having an
index that's not necessarily an integer, and can be sparsely populated. */
void visit (TypeAArray *t)
{
/* In [abi/associative-arrays], associative arrays are a struct that only
consist of a pointer to an opaque, implementation defined type. */
t->ctype = make_struct_type (t->toChars (), 1,
get_identifier ("ptr"), ptr_type_node);
TYPE_ASSOCIATIVE_ARRAY (t->ctype) = 1;
TYPE_LANG_SPECIFIC (t->ctype) = build_lang_type (t);
d_keep (t->ctype);
}
/* Build type for a function declaration, which consists of a return type,
and a list of parameter types, and a linkage attribute. */
void visit (TypeFunction *t)
{
tree fnparams = NULL_TREE;
tree fntype;
/* [function/variadic]
Variadic functions with D linkage have an additional hidden argument
with the name _arguments passed to the function. */
if (t->isDstyleVariadic ())
{
tree type = build_ctype (Type::typeinfotypelist->type);
fnparams = chainon (fnparams, build_tree_list (0, type));
}
const size_t n_args = t->parameterList.length ();
for (size_t i = 0; i < n_args; i++)
{
tree type = parameter_type (t->parameterList[i]);
/* Type `noreturn` is a terminator, as no other arguments can possibly
be evaluated after it. */
if (type == noreturn_type_node)
break;
fnparams = chainon (fnparams, build_tree_list (0, type));
}
/* When the last parameter is void_list_node, that indicates a fixed length
parameter list, otherwise function is treated as variadic. */
if (t->parameterList.varargs != VARARGvariadic)
fnparams = chainon (fnparams, void_list_node);
if (t->next != NULL)
{
fntype = build_ctype (t->next);
if (t->isref ())
fntype = build_reference_type (fntype);
}
else
fntype = void_type_node;
/* Could the function type be self referenced by parameters? */
t->ctype = build_function_type (fntype, fnparams);
TYPE_LANG_SPECIFIC (t->ctype) = build_lang_type (t);
d_keep (t->ctype);
/* Qualify function types that have the type `noreturn` as volatile. */
if (fntype == noreturn_type_node)
t->ctype = build_qualified_type (t->ctype, TYPE_QUAL_VOLATILE);
/* Handle any special support for calling conventions. */
switch (t->linkage)
{
case LINK::windows:
{
/* [attribute/linkage]
The Windows convention is distinct from the C convention only
on Win32, where it is equivalent to the stdcall convention. */
unsigned link_system, link_windows;
if (targetdm.d_has_stdcall_convention (&link_system, &link_windows))
{
if (link_windows)
t->ctype = insert_type_attribute (t->ctype, "stdcall");
}
break;
}
case LINK::c:
case LINK::cpp:
case LINK::d:
case LINK::objc:
/* [abi/function-calling-conventions]
The extern (C) and extern (D) calling convention matches
the C calling convention used by the supported C compiler
on the host system. */
break;
default:
gcc_unreachable ();
}
}
/* Build a delegate type, an aggregate of two pieces of data, an object
reference and a pointer to a non-static member function, or a pointer
to a closure and a pointer to a nested function. */
void visit (TypeDelegate *t)
{
/* In [abi/delegates], delegate layout is:
.ptr context pointer.
.funcptr pointer to function. */
tree fntype = build_ctype (t->next);
tree dgtype = build_vthis_function (void_type_node, fntype);
TYPE_ATTRIBUTES (dgtype) = TYPE_ATTRIBUTES (fntype);
TYPE_LANG_SPECIFIC (dgtype) = TYPE_LANG_SPECIFIC (fntype);
t->ctype = make_struct_type (t->toChars (), 2,
get_identifier ("ptr"),
build_ctype (Type::tvoidptr),
get_identifier ("funcptr"),
build_pointer_type (dgtype));
TYPE_DELEGATE (t->ctype) = 1;
TYPE_LANG_SPECIFIC (t->ctype) = build_lang_type (t);
d_keep (t->ctype);
}
/* User Defined Types. */
/* Build a named enum type, a distinct value whose values are restrict to
a group of constants of the same underlying base type. */
void visit (TypeEnum *t)
{
tree basetype = (t->sym->memtype)
? build_ctype (t->sym->memtype) : void_type_node;
if (t->sym->isSpecial ())
{
/* Special enums are opaque types that bind to C types. */
const char *ident = t->toChars ();
Type *underlying = NULL;
/* Skip over the prefixing `__c_'. */
gcc_assert (startswith (ident, "__c_"));
ident = ident + strlen ("__c_");
/* To keep things compatible within the code generation we stick to
mapping to equivalent D types. However it should be OK to use the
GCC provided C types here as the front-end enforces that everything
must be explicitly cast from a D type to any of the opaque types. */
if (strcmp (ident, "long") == 0)
underlying = build_frontend_type (long_integer_type_node);
else if (strcmp (ident, "ulong") == 0)
underlying = build_frontend_type (long_unsigned_type_node);
else if (strcmp (ident, "wchar_t") == 0)
underlying =
build_frontend_type (make_unsigned_type (WCHAR_TYPE_SIZE));
else if (strcmp (ident, "longlong") == 0)
underlying = build_frontend_type (long_long_integer_type_node);
else if (strcmp (ident, "ulonglong") == 0)
underlying = build_frontend_type (long_long_unsigned_type_node);
else if (strcmp (ident, "long_double") == 0)
underlying = build_frontend_type (long_double_type_node);
else if (strcmp (ident, "complex_real") == 0)
underlying = build_frontend_type (complex_long_double_type_node);
else if (strcmp (ident, "complex_float") == 0)
underlying = build_frontend_type (complex_float_type_node);
else if (strcmp (ident, "complex_double") == 0)
underlying = build_frontend_type (complex_double_type_node);
/* Conversion failed or there's an unhandled special type. */
gcc_assert (underlying != NULL);
t->ctype = build_variant_type_copy (build_ctype (underlying));
build_type_decl (t->ctype, t->sym);
}
else if (t->sym->ident == NULL
|| !INTEGRAL_TYPE_P (basetype)
|| TREE_CODE (basetype) == BOOLEAN_TYPE)
{
/* Enums in D2 can either be anonymous, or have a base type that is not
necessarily integral. For these, we simplify this a little by using
the base type directly instead of building an ENUMERAL_TYPE. */
t->ctype = build_variant_type_copy (basetype);
if (t->sym->ident != NULL)
build_type_decl (t->ctype, t->sym);
}
else
{
t->ctype = make_node (ENUMERAL_TYPE);
TYPE_LANG_SPECIFIC (t->ctype) = build_lang_type (t);
d_keep (t->ctype);
ENUM_IS_SCOPED (t->ctype) = 1;
TREE_TYPE (t->ctype) = basetype;
if (flag_short_enums)
TYPE_PACKED (t->ctype) = 1;
TYPE_PRECISION (t->ctype) = t->size (t->sym->loc) * 8;
TYPE_SIZE (t->ctype) = 0;
TYPE_MIN_VALUE (t->ctype) = TYPE_MIN_VALUE (basetype);
TYPE_MAX_VALUE (t->ctype) = TYPE_MAX_VALUE (basetype);
layout_type (t->ctype);
tree values = NULL_TREE;
if (t->sym->members)
{
for (size_t i = 0; i < t->sym->members->length; i++)
{
EnumMember *member = (*t->sym->members)[i]->isEnumMember ();
/* Templated functions can seep through to the back-end
just ignore for now. */
if (member == NULL)
continue;
tree ident = get_identifier (member->ident->toChars ());
tree value = build_integer_cst (member->value ()->toInteger (),
basetype);
/* Build an identifier for the enumeration constant. */
tree decl = build_decl (make_location_t (member->loc),
CONST_DECL, ident, basetype);
DECL_CONTEXT (decl) = t->ctype;
TREE_CONSTANT (decl) = 1;
TREE_READONLY (decl) = 1;
DECL_INITIAL (decl) = value;
/* Add this enumeration constant to the list for this type. */
values = chainon (values, build_tree_list (ident, decl));
}
}
TYPE_VALUES (t->ctype) = values;
TYPE_UNSIGNED (t->ctype) = TYPE_UNSIGNED (basetype);
build_type_decl (t->ctype, t->sym);
}
apply_user_attributes (t->sym, t->ctype);
}
/* Build a struct or union type. Layout should be exactly represented
as an equivalent C struct, except for non-POD or nested structs. */
void visit (TypeStruct *t)
{
/* Merge types in the back-end if the front-end did not itself do so. */
tree deco = get_identifier (d_mangle_decl (t->sym));
if (merge_aggregate_types (t, deco))
return;
/* Need to set this right away in case of self-references. */
t->ctype = make_node (t->sym->isUnionDeclaration ()
? UNION_TYPE : RECORD_TYPE);
d_keep (t->ctype);
IDENTIFIER_DAGGREGATE (deco) = t->sym;
TYPE_LANG_SPECIFIC (t->ctype) = build_lang_type (t);
TYPE_CXX_ODR_P (t->ctype) = 1;
if (t->sym->members)
{
/* Must set up the overall size and alignment before determining
the context or laying out fields as those types may make
recursive references to this type. */
unsigned structsize = t->sym->structsize;
unsigned alignsize = t->sym->alignment.isDefault ()
? t->sym->alignsize : t->sym->alignment.get ();
TYPE_SIZE (t->ctype) = bitsize_int (structsize * BITS_PER_UNIT);
TYPE_SIZE_UNIT (t->ctype) = size_int (structsize);
SET_TYPE_ALIGN (t->ctype, alignsize * BITS_PER_UNIT);
TYPE_PACKED (t->ctype) = (alignsize == 1);
compute_record_mode (t->ctype);
/* Put out all fields. */
layout_aggregate_type (t->sym, t->ctype, t->sym);
apply_user_attributes (t->sym, t->ctype);
finish_aggregate_type (structsize, alignsize, t->ctype);
}
TYPE_CONTEXT (t->ctype) = d_decl_context (t->sym);
build_type_decl (t->ctype, t->sym);
/* For structs with a user defined postblit, copy constructor, or a
destructor, also set TREE_ADDRESSABLE on the type and all variants.
This will make the struct be passed around by reference. */
if (!t->sym->isPOD ())
{
for (tree tv = t->ctype; tv != NULL_TREE; tv = TYPE_NEXT_VARIANT (tv))
{
TREE_ADDRESSABLE (tv) = 1;
SET_TYPE_MODE (tv, BLKmode);
}
}
}
/* Build a class type. Whereas structs are value types, classes are
reference types, with all the object-orientated features. */
void visit (TypeClass *t)
{
/* Merge types in the back-end if the front-end did not itself do so. */
tree deco = get_identifier (d_mangle_decl (t->sym));
if (merge_aggregate_types (t, deco))
return;
/* Need to set ctype right away in case of self-references to
the type during this call. */
tree basetype = make_node (RECORD_TYPE);
t->ctype = build_pointer_type (basetype);
d_keep (t->ctype);
IDENTIFIER_DAGGREGATE (deco) = t->sym;
/* Note that lang_specific data is assigned to both the reference
and the underlying record type. */
TYPE_LANG_SPECIFIC (t->ctype) = build_lang_type (t);
TYPE_LANG_SPECIFIC (basetype) = TYPE_LANG_SPECIFIC (t->ctype);
CLASS_TYPE_P (basetype) = 1;
TYPE_CXX_ODR_P (basetype) = 1;
/* Put out all fields, including from each base class. */
layout_aggregate_type (t->sym, basetype, t->sym);
apply_user_attributes (t->sym, basetype);
finish_aggregate_type (t->sym->structsize, t->sym->alignsize, basetype);
/* Classes only live in memory, so always set the TREE_ADDRESSABLE bit. */
for (tree tv = basetype; tv != NULL_TREE; tv = TYPE_NEXT_VARIANT (tv))
{
TREE_ADDRESSABLE (tv) = 1;
SET_TYPE_MODE (tv, BLKmode);
}
/* Type is final, there are no derivations. */
if (t->sym->storage_class & STCfinal)
TYPE_FINAL_P (basetype) = 1;
/* Create BINFO even if debugging is off. This is needed to keep
references to inherited types. */
if (!t->sym->isInterfaceDeclaration ())
TYPE_BINFO (basetype) = build_class_binfo (NULL_TREE, t->sym);
else
{
unsigned offset = 0;
TYPE_BINFO (basetype) = build_interface_binfo (NULL_TREE, t->sym,
offset);
}
/* Associate all virtual methods with the class too. */
for (size_t i = 0; i < t->sym->vtbl.length; i++)
{
FuncDeclaration *fd = t->sym->vtbl[i]->isFuncDeclaration ();
tree method = fd ? get_symbol_decl (fd) : error_mark_node;
if (!error_operand_p (method)
&& DECL_CONTEXT (method) == basetype
&& !chain_member (method, TYPE_FIELDS (basetype)))
TYPE_FIELDS (basetype) = chainon (TYPE_FIELDS (basetype), method);
}
TYPE_CONTEXT (basetype) = d_decl_context (t->sym);
build_type_decl (basetype, t->sym);
}
};
/* Build a tree from a frontend Type. */
tree
build_ctype (Type *t)
{
if (!t->ctype)
{
TypeVisitor v;
/* Strip const modifiers from type before building. This is done
to ensure that back-end treats e.g: const (T) as a variant of T,
and not as two distinct types. */
if (t->isNaked ())
t->accept (&v);
else
{
Type *tb = t->castMod (0);
if (!tb->ctype)
tb->accept (&v);
t->ctype = insert_type_modifiers (tb->ctype, t->mod);
}
}
return t->ctype;
}
|