1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
|
/* Balanced binary trees using treaps.
Copyright (C) 2000-2022 Free Software Foundation, Inc.
Contributed by Andy Vaught
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
/* The idea is to balance the tree using pseudorandom numbers. The
main constraint on this implementation is that we have several
distinct structures that have to be arranged in a binary tree.
These structures all contain a BBT_HEADER() in front that gives the
treap-related information. The key and value are assumed to reside
in the rest of the structure.
When calling, we are also passed a comparison function that
compares two nodes. We don't implement a separate 'find' function
here, but rather use separate functions for each variety of tree.
We are also restricted to not copy treap structures, which most
implementations find convenient, because we otherwise would need to
know how long the structure is.
This implementation is based on Stefan Nilsson's article in the
July 1997 Doctor Dobb's Journal, "Treaps in Java". */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "gfortran.h"
typedef struct gfc_treap
{
BBT_HEADER (gfc_treap);
}
gfc_bbt;
/* Simple linear congruential pseudorandom number generator. The
period of this generator is 44071, which is plenty for our
purposes. */
static int
pseudo_random (void)
{
static int x0 = 5341;
x0 = (22611 * x0 + 10) % 44071;
return x0;
}
/* Rotate the treap left. */
static gfc_bbt *
rotate_left (gfc_bbt *t)
{
gfc_bbt *temp;
temp = t->right;
t->right = t->right->left;
temp->left = t;
return temp;
}
/* Rotate the treap right. */
static gfc_bbt *
rotate_right (gfc_bbt *t)
{
gfc_bbt *temp;
temp = t->left;
t->left = t->left->right;
temp->right = t;
return temp;
}
/* Recursive insertion function. Returns the updated treap, or
aborts if we find a duplicate key. */
static gfc_bbt *
insert (gfc_bbt *new_bbt, gfc_bbt *t, compare_fn compare)
{
int c;
if (t == NULL)
return new_bbt;
c = (*compare) (new_bbt, t);
if (c < 0)
{
t->left = insert (new_bbt, t->left, compare);
if (t->priority < t->left->priority)
t = rotate_right (t);
}
else if (c > 0)
{
t->right = insert (new_bbt, t->right, compare);
if (t->priority < t->right->priority)
t = rotate_left (t);
}
else /* if (c == 0) */
gfc_internal_error("insert_bbt(): Duplicate key found");
return t;
}
/* Given root pointer, a new node and a comparison function, insert
the new node into the treap. It is an error to insert a key that
already exists. */
void
gfc_insert_bbt (void *root, void *new_node, compare_fn compare)
{
gfc_bbt **r, *n;
r = (gfc_bbt **) root;
n = (gfc_bbt *) new_node;
n->priority = pseudo_random ();
*r = insert (n, *r, compare);
}
static gfc_bbt *
delete_root (gfc_bbt *t)
{
gfc_bbt *temp;
if (t->left == NULL)
return t->right;
if (t->right == NULL)
return t->left;
if (t->left->priority > t->right->priority)
{
temp = rotate_right (t);
temp->right = delete_root (t);
}
else
{
temp = rotate_left (t);
temp->left = delete_root (t);
}
return temp;
}
/* Delete an element from a tree. The 'old' value does not
necessarily have to point to the element to be deleted, it must
just point to a treap structure with the key to be deleted.
Returns the new root node of the tree. */
static gfc_bbt *
delete_treap (gfc_bbt *old, gfc_bbt *t, compare_fn compare)
{
int c;
if (t == NULL)
return NULL;
c = (*compare) (old, t);
if (c < 0)
t->left = delete_treap (old, t->left, compare);
if (c > 0)
t->right = delete_treap (old, t->right, compare);
if (c == 0)
t = delete_root (t);
return t;
}
void
gfc_delete_bbt (void *root, void *old, compare_fn compare)
{
gfc_bbt **t;
t = (gfc_bbt **) root;
*t = delete_treap ((gfc_bbt *) old, *t, compare);
}
|